md: enable suspend/resume of md devices.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid10.c
blobc2059e25d03f1ed28db23e1f59b877a512e04dc1
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
24 #include "md.h"
25 #include "dm-bio-list.h"
26 #include "raid10.h"
27 #include "bitmap.h"
30 * RAID10 provides a combination of RAID0 and RAID1 functionality.
31 * The layout of data is defined by
32 * chunk_size
33 * raid_disks
34 * near_copies (stored in low byte of layout)
35 * far_copies (stored in second byte of layout)
36 * far_offset (stored in bit 16 of layout )
38 * The data to be stored is divided into chunks using chunksize.
39 * Each device is divided into far_copies sections.
40 * In each section, chunks are laid out in a style similar to raid0, but
41 * near_copies copies of each chunk is stored (each on a different drive).
42 * The starting device for each section is offset near_copies from the starting
43 * device of the previous section.
44 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
45 * drive.
46 * near_copies and far_copies must be at least one, and their product is at most
47 * raid_disks.
49 * If far_offset is true, then the far_copies are handled a bit differently.
50 * The copies are still in different stripes, but instead of be very far apart
51 * on disk, there are adjacent stripes.
55 * Number of guaranteed r10bios in case of extreme VM load:
57 #define NR_RAID10_BIOS 256
59 static void unplug_slaves(mddev_t *mddev);
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 conf_t *conf = data;
67 r10bio_t *r10_bio;
68 int size = offsetof(struct r10bio_s, devs[conf->copies]);
70 /* allocate a r10bio with room for raid_disks entries in the bios array */
71 r10_bio = kzalloc(size, gfp_flags);
72 if (!r10_bio)
73 unplug_slaves(conf->mddev);
75 return r10_bio;
78 static void r10bio_pool_free(void *r10_bio, void *data)
80 kfree(r10_bio);
83 /* Maximum size of each resync request */
84 #define RESYNC_BLOCK_SIZE (64*1024)
85 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
86 /* amount of memory to reserve for resync requests */
87 #define RESYNC_WINDOW (1024*1024)
88 /* maximum number of concurrent requests, memory permitting */
89 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
92 * When performing a resync, we need to read and compare, so
93 * we need as many pages are there are copies.
94 * When performing a recovery, we need 2 bios, one for read,
95 * one for write (we recover only one drive per r10buf)
98 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
100 conf_t *conf = data;
101 struct page *page;
102 r10bio_t *r10_bio;
103 struct bio *bio;
104 int i, j;
105 int nalloc;
107 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
108 if (!r10_bio) {
109 unplug_slaves(conf->mddev);
110 return NULL;
113 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
114 nalloc = conf->copies; /* resync */
115 else
116 nalloc = 2; /* recovery */
119 * Allocate bios.
121 for (j = nalloc ; j-- ; ) {
122 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
123 if (!bio)
124 goto out_free_bio;
125 r10_bio->devs[j].bio = bio;
128 * Allocate RESYNC_PAGES data pages and attach them
129 * where needed.
131 for (j = 0 ; j < nalloc; j++) {
132 bio = r10_bio->devs[j].bio;
133 for (i = 0; i < RESYNC_PAGES; i++) {
134 page = alloc_page(gfp_flags);
135 if (unlikely(!page))
136 goto out_free_pages;
138 bio->bi_io_vec[i].bv_page = page;
142 return r10_bio;
144 out_free_pages:
145 for ( ; i > 0 ; i--)
146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
158 static void r10buf_pool_free(void *__r10_bio, void *data)
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
169 safe_put_page(bio->bi_io_vec[i].bv_page);
170 bio->bi_io_vec[i].bv_page = NULL;
172 bio_put(bio);
175 r10bio_pool_free(r10bio, conf);
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 int i;
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
184 if (*bio && *bio != IO_BLOCKED)
185 bio_put(*bio);
186 *bio = NULL;
190 static void free_r10bio(r10bio_t *r10_bio)
192 conf_t *conf = mddev_to_conf(r10_bio->mddev);
195 * Wake up any possible resync thread that waits for the device
196 * to go idle.
198 allow_barrier(conf);
200 put_all_bios(conf, r10_bio);
201 mempool_free(r10_bio, conf->r10bio_pool);
204 static void put_buf(r10bio_t *r10_bio)
206 conf_t *conf = mddev_to_conf(r10_bio->mddev);
208 mempool_free(r10_bio, conf->r10buf_pool);
210 lower_barrier(conf);
213 static void reschedule_retry(r10bio_t *r10_bio)
215 unsigned long flags;
216 mddev_t *mddev = r10_bio->mddev;
217 conf_t *conf = mddev_to_conf(mddev);
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r10_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 /* wake up frozen array... */
225 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
235 static void raid_end_bio_io(r10bio_t *r10_bio)
237 struct bio *bio = r10_bio->master_bio;
239 bio_endio(bio,
240 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
241 free_r10bio(r10_bio);
245 * Update disk head position estimator based on IRQ completion info.
247 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 conf_t *conf = mddev_to_conf(r10_bio->mddev);
251 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
252 r10_bio->devs[slot].addr + (r10_bio->sectors);
255 static void raid10_end_read_request(struct bio *bio, int error)
257 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
258 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
259 int slot, dev;
260 conf_t *conf = mddev_to_conf(r10_bio->mddev);
263 slot = r10_bio->read_slot;
264 dev = r10_bio->devs[slot].devnum;
266 * this branch is our 'one mirror IO has finished' event handler:
268 update_head_pos(slot, r10_bio);
270 if (uptodate) {
272 * Set R10BIO_Uptodate in our master bio, so that
273 * we will return a good error code to the higher
274 * levels even if IO on some other mirrored buffer fails.
276 * The 'master' represents the composite IO operation to
277 * user-side. So if something waits for IO, then it will
278 * wait for the 'master' bio.
280 set_bit(R10BIO_Uptodate, &r10_bio->state);
281 raid_end_bio_io(r10_bio);
282 } else {
284 * oops, read error:
286 char b[BDEVNAME_SIZE];
287 if (printk_ratelimit())
288 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
289 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
290 reschedule_retry(r10_bio);
293 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
296 static void raid10_end_write_request(struct bio *bio, int error)
298 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
299 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
300 int slot, dev;
301 conf_t *conf = mddev_to_conf(r10_bio->mddev);
303 for (slot = 0; slot < conf->copies; slot++)
304 if (r10_bio->devs[slot].bio == bio)
305 break;
306 dev = r10_bio->devs[slot].devnum;
309 * this branch is our 'one mirror IO has finished' event handler:
311 if (!uptodate) {
312 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
313 /* an I/O failed, we can't clear the bitmap */
314 set_bit(R10BIO_Degraded, &r10_bio->state);
315 } else
317 * Set R10BIO_Uptodate in our master bio, so that
318 * we will return a good error code for to the higher
319 * levels even if IO on some other mirrored buffer fails.
321 * The 'master' represents the composite IO operation to
322 * user-side. So if something waits for IO, then it will
323 * wait for the 'master' bio.
325 set_bit(R10BIO_Uptodate, &r10_bio->state);
327 update_head_pos(slot, r10_bio);
331 * Let's see if all mirrored write operations have finished
332 * already.
334 if (atomic_dec_and_test(&r10_bio->remaining)) {
335 /* clear the bitmap if all writes complete successfully */
336 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
337 r10_bio->sectors,
338 !test_bit(R10BIO_Degraded, &r10_bio->state),
340 md_write_end(r10_bio->mddev);
341 raid_end_bio_io(r10_bio);
344 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
349 * RAID10 layout manager
350 * Aswell as the chunksize and raid_disks count, there are two
351 * parameters: near_copies and far_copies.
352 * near_copies * far_copies must be <= raid_disks.
353 * Normally one of these will be 1.
354 * If both are 1, we get raid0.
355 * If near_copies == raid_disks, we get raid1.
357 * Chunks are layed out in raid0 style with near_copies copies of the
358 * first chunk, followed by near_copies copies of the next chunk and
359 * so on.
360 * If far_copies > 1, then after 1/far_copies of the array has been assigned
361 * as described above, we start again with a device offset of near_copies.
362 * So we effectively have another copy of the whole array further down all
363 * the drives, but with blocks on different drives.
364 * With this layout, and block is never stored twice on the one device.
366 * raid10_find_phys finds the sector offset of a given virtual sector
367 * on each device that it is on.
369 * raid10_find_virt does the reverse mapping, from a device and a
370 * sector offset to a virtual address
373 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
375 int n,f;
376 sector_t sector;
377 sector_t chunk;
378 sector_t stripe;
379 int dev;
381 int slot = 0;
383 /* now calculate first sector/dev */
384 chunk = r10bio->sector >> conf->chunk_shift;
385 sector = r10bio->sector & conf->chunk_mask;
387 chunk *= conf->near_copies;
388 stripe = chunk;
389 dev = sector_div(stripe, conf->raid_disks);
390 if (conf->far_offset)
391 stripe *= conf->far_copies;
393 sector += stripe << conf->chunk_shift;
395 /* and calculate all the others */
396 for (n=0; n < conf->near_copies; n++) {
397 int d = dev;
398 sector_t s = sector;
399 r10bio->devs[slot].addr = sector;
400 r10bio->devs[slot].devnum = d;
401 slot++;
403 for (f = 1; f < conf->far_copies; f++) {
404 d += conf->near_copies;
405 if (d >= conf->raid_disks)
406 d -= conf->raid_disks;
407 s += conf->stride;
408 r10bio->devs[slot].devnum = d;
409 r10bio->devs[slot].addr = s;
410 slot++;
412 dev++;
413 if (dev >= conf->raid_disks) {
414 dev = 0;
415 sector += (conf->chunk_mask + 1);
418 BUG_ON(slot != conf->copies);
421 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
423 sector_t offset, chunk, vchunk;
425 offset = sector & conf->chunk_mask;
426 if (conf->far_offset) {
427 int fc;
428 chunk = sector >> conf->chunk_shift;
429 fc = sector_div(chunk, conf->far_copies);
430 dev -= fc * conf->near_copies;
431 if (dev < 0)
432 dev += conf->raid_disks;
433 } else {
434 while (sector >= conf->stride) {
435 sector -= conf->stride;
436 if (dev < conf->near_copies)
437 dev += conf->raid_disks - conf->near_copies;
438 else
439 dev -= conf->near_copies;
441 chunk = sector >> conf->chunk_shift;
443 vchunk = chunk * conf->raid_disks + dev;
444 sector_div(vchunk, conf->near_copies);
445 return (vchunk << conf->chunk_shift) + offset;
449 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
450 * @q: request queue
451 * @bvm: properties of new bio
452 * @biovec: the request that could be merged to it.
454 * Return amount of bytes we can accept at this offset
455 * If near_copies == raid_disk, there are no striping issues,
456 * but in that case, the function isn't called at all.
458 static int raid10_mergeable_bvec(struct request_queue *q,
459 struct bvec_merge_data *bvm,
460 struct bio_vec *biovec)
462 mddev_t *mddev = q->queuedata;
463 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
464 int max;
465 unsigned int chunk_sectors = mddev->chunk_size >> 9;
466 unsigned int bio_sectors = bvm->bi_size >> 9;
468 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
469 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
470 if (max <= biovec->bv_len && bio_sectors == 0)
471 return biovec->bv_len;
472 else
473 return max;
477 * This routine returns the disk from which the requested read should
478 * be done. There is a per-array 'next expected sequential IO' sector
479 * number - if this matches on the next IO then we use the last disk.
480 * There is also a per-disk 'last know head position' sector that is
481 * maintained from IRQ contexts, both the normal and the resync IO
482 * completion handlers update this position correctly. If there is no
483 * perfect sequential match then we pick the disk whose head is closest.
485 * If there are 2 mirrors in the same 2 devices, performance degrades
486 * because position is mirror, not device based.
488 * The rdev for the device selected will have nr_pending incremented.
492 * FIXME: possibly should rethink readbalancing and do it differently
493 * depending on near_copies / far_copies geometry.
495 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
497 const unsigned long this_sector = r10_bio->sector;
498 int disk, slot, nslot;
499 const int sectors = r10_bio->sectors;
500 sector_t new_distance, current_distance;
501 mdk_rdev_t *rdev;
503 raid10_find_phys(conf, r10_bio);
504 rcu_read_lock();
506 * Check if we can balance. We can balance on the whole
507 * device if no resync is going on (recovery is ok), or below
508 * the resync window. We take the first readable disk when
509 * above the resync window.
511 if (conf->mddev->recovery_cp < MaxSector
512 && (this_sector + sectors >= conf->next_resync)) {
513 /* make sure that disk is operational */
514 slot = 0;
515 disk = r10_bio->devs[slot].devnum;
517 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
518 r10_bio->devs[slot].bio == IO_BLOCKED ||
519 !test_bit(In_sync, &rdev->flags)) {
520 slot++;
521 if (slot == conf->copies) {
522 slot = 0;
523 disk = -1;
524 break;
526 disk = r10_bio->devs[slot].devnum;
528 goto rb_out;
532 /* make sure the disk is operational */
533 slot = 0;
534 disk = r10_bio->devs[slot].devnum;
535 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
536 r10_bio->devs[slot].bio == IO_BLOCKED ||
537 !test_bit(In_sync, &rdev->flags)) {
538 slot ++;
539 if (slot == conf->copies) {
540 disk = -1;
541 goto rb_out;
543 disk = r10_bio->devs[slot].devnum;
547 current_distance = abs(r10_bio->devs[slot].addr -
548 conf->mirrors[disk].head_position);
550 /* Find the disk whose head is closest,
551 * or - for far > 1 - find the closest to partition beginning */
553 for (nslot = slot; nslot < conf->copies; nslot++) {
554 int ndisk = r10_bio->devs[nslot].devnum;
557 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
558 r10_bio->devs[nslot].bio == IO_BLOCKED ||
559 !test_bit(In_sync, &rdev->flags))
560 continue;
562 /* This optimisation is debatable, and completely destroys
563 * sequential read speed for 'far copies' arrays. So only
564 * keep it for 'near' arrays, and review those later.
566 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
567 disk = ndisk;
568 slot = nslot;
569 break;
572 /* for far > 1 always use the lowest address */
573 if (conf->far_copies > 1)
574 new_distance = r10_bio->devs[nslot].addr;
575 else
576 new_distance = abs(r10_bio->devs[nslot].addr -
577 conf->mirrors[ndisk].head_position);
578 if (new_distance < current_distance) {
579 current_distance = new_distance;
580 disk = ndisk;
581 slot = nslot;
585 rb_out:
586 r10_bio->read_slot = slot;
587 /* conf->next_seq_sect = this_sector + sectors;*/
589 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
590 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
591 else
592 disk = -1;
593 rcu_read_unlock();
595 return disk;
598 static void unplug_slaves(mddev_t *mddev)
600 conf_t *conf = mddev_to_conf(mddev);
601 int i;
603 rcu_read_lock();
604 for (i=0; i<mddev->raid_disks; i++) {
605 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
606 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
607 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
609 atomic_inc(&rdev->nr_pending);
610 rcu_read_unlock();
612 blk_unplug(r_queue);
614 rdev_dec_pending(rdev, mddev);
615 rcu_read_lock();
618 rcu_read_unlock();
621 static void raid10_unplug(struct request_queue *q)
623 mddev_t *mddev = q->queuedata;
625 unplug_slaves(q->queuedata);
626 md_wakeup_thread(mddev->thread);
629 static int raid10_congested(void *data, int bits)
631 mddev_t *mddev = data;
632 conf_t *conf = mddev_to_conf(mddev);
633 int i, ret = 0;
635 rcu_read_lock();
636 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
637 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
638 if (rdev && !test_bit(Faulty, &rdev->flags)) {
639 struct request_queue *q = bdev_get_queue(rdev->bdev);
641 ret |= bdi_congested(&q->backing_dev_info, bits);
644 rcu_read_unlock();
645 return ret;
648 static int flush_pending_writes(conf_t *conf)
650 /* Any writes that have been queued but are awaiting
651 * bitmap updates get flushed here.
652 * We return 1 if any requests were actually submitted.
654 int rv = 0;
656 spin_lock_irq(&conf->device_lock);
658 if (conf->pending_bio_list.head) {
659 struct bio *bio;
660 bio = bio_list_get(&conf->pending_bio_list);
661 blk_remove_plug(conf->mddev->queue);
662 spin_unlock_irq(&conf->device_lock);
663 /* flush any pending bitmap writes to disk
664 * before proceeding w/ I/O */
665 bitmap_unplug(conf->mddev->bitmap);
667 while (bio) { /* submit pending writes */
668 struct bio *next = bio->bi_next;
669 bio->bi_next = NULL;
670 generic_make_request(bio);
671 bio = next;
673 rv = 1;
674 } else
675 spin_unlock_irq(&conf->device_lock);
676 return rv;
678 /* Barriers....
679 * Sometimes we need to suspend IO while we do something else,
680 * either some resync/recovery, or reconfigure the array.
681 * To do this we raise a 'barrier'.
682 * The 'barrier' is a counter that can be raised multiple times
683 * to count how many activities are happening which preclude
684 * normal IO.
685 * We can only raise the barrier if there is no pending IO.
686 * i.e. if nr_pending == 0.
687 * We choose only to raise the barrier if no-one is waiting for the
688 * barrier to go down. This means that as soon as an IO request
689 * is ready, no other operations which require a barrier will start
690 * until the IO request has had a chance.
692 * So: regular IO calls 'wait_barrier'. When that returns there
693 * is no backgroup IO happening, It must arrange to call
694 * allow_barrier when it has finished its IO.
695 * backgroup IO calls must call raise_barrier. Once that returns
696 * there is no normal IO happeing. It must arrange to call
697 * lower_barrier when the particular background IO completes.
700 static void raise_barrier(conf_t *conf, int force)
702 BUG_ON(force && !conf->barrier);
703 spin_lock_irq(&conf->resync_lock);
705 /* Wait until no block IO is waiting (unless 'force') */
706 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
707 conf->resync_lock,
708 raid10_unplug(conf->mddev->queue));
710 /* block any new IO from starting */
711 conf->barrier++;
713 /* No wait for all pending IO to complete */
714 wait_event_lock_irq(conf->wait_barrier,
715 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
716 conf->resync_lock,
717 raid10_unplug(conf->mddev->queue));
719 spin_unlock_irq(&conf->resync_lock);
722 static void lower_barrier(conf_t *conf)
724 unsigned long flags;
725 spin_lock_irqsave(&conf->resync_lock, flags);
726 conf->barrier--;
727 spin_unlock_irqrestore(&conf->resync_lock, flags);
728 wake_up(&conf->wait_barrier);
731 static void wait_barrier(conf_t *conf)
733 spin_lock_irq(&conf->resync_lock);
734 if (conf->barrier) {
735 conf->nr_waiting++;
736 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
737 conf->resync_lock,
738 raid10_unplug(conf->mddev->queue));
739 conf->nr_waiting--;
741 conf->nr_pending++;
742 spin_unlock_irq(&conf->resync_lock);
745 static void allow_barrier(conf_t *conf)
747 unsigned long flags;
748 spin_lock_irqsave(&conf->resync_lock, flags);
749 conf->nr_pending--;
750 spin_unlock_irqrestore(&conf->resync_lock, flags);
751 wake_up(&conf->wait_barrier);
754 static void freeze_array(conf_t *conf)
756 /* stop syncio and normal IO and wait for everything to
757 * go quiet.
758 * We increment barrier and nr_waiting, and then
759 * wait until nr_pending match nr_queued+1
760 * This is called in the context of one normal IO request
761 * that has failed. Thus any sync request that might be pending
762 * will be blocked by nr_pending, and we need to wait for
763 * pending IO requests to complete or be queued for re-try.
764 * Thus the number queued (nr_queued) plus this request (1)
765 * must match the number of pending IOs (nr_pending) before
766 * we continue.
768 spin_lock_irq(&conf->resync_lock);
769 conf->barrier++;
770 conf->nr_waiting++;
771 wait_event_lock_irq(conf->wait_barrier,
772 conf->nr_pending == conf->nr_queued+1,
773 conf->resync_lock,
774 ({ flush_pending_writes(conf);
775 raid10_unplug(conf->mddev->queue); }));
776 spin_unlock_irq(&conf->resync_lock);
779 static void unfreeze_array(conf_t *conf)
781 /* reverse the effect of the freeze */
782 spin_lock_irq(&conf->resync_lock);
783 conf->barrier--;
784 conf->nr_waiting--;
785 wake_up(&conf->wait_barrier);
786 spin_unlock_irq(&conf->resync_lock);
789 static int make_request(struct request_queue *q, struct bio * bio)
791 mddev_t *mddev = q->queuedata;
792 conf_t *conf = mddev_to_conf(mddev);
793 mirror_info_t *mirror;
794 r10bio_t *r10_bio;
795 struct bio *read_bio;
796 int cpu;
797 int i;
798 int chunk_sects = conf->chunk_mask + 1;
799 const int rw = bio_data_dir(bio);
800 const int do_sync = bio_sync(bio);
801 struct bio_list bl;
802 unsigned long flags;
803 mdk_rdev_t *blocked_rdev;
805 if (unlikely(bio_barrier(bio))) {
806 bio_endio(bio, -EOPNOTSUPP);
807 return 0;
810 /* If this request crosses a chunk boundary, we need to
811 * split it. This will only happen for 1 PAGE (or less) requests.
813 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
814 > chunk_sects &&
815 conf->near_copies < conf->raid_disks)) {
816 struct bio_pair *bp;
817 /* Sanity check -- queue functions should prevent this happening */
818 if (bio->bi_vcnt != 1 ||
819 bio->bi_idx != 0)
820 goto bad_map;
821 /* This is a one page bio that upper layers
822 * refuse to split for us, so we need to split it.
824 bp = bio_split(bio,
825 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
826 if (make_request(q, &bp->bio1))
827 generic_make_request(&bp->bio1);
828 if (make_request(q, &bp->bio2))
829 generic_make_request(&bp->bio2);
831 bio_pair_release(bp);
832 return 0;
833 bad_map:
834 printk("raid10_make_request bug: can't convert block across chunks"
835 " or bigger than %dk %llu %d\n", chunk_sects/2,
836 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
838 bio_io_error(bio);
839 return 0;
842 md_write_start(mddev, bio);
845 * Register the new request and wait if the reconstruction
846 * thread has put up a bar for new requests.
847 * Continue immediately if no resync is active currently.
849 wait_barrier(conf);
851 cpu = part_stat_lock();
852 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
853 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
854 bio_sectors(bio));
855 part_stat_unlock();
857 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
859 r10_bio->master_bio = bio;
860 r10_bio->sectors = bio->bi_size >> 9;
862 r10_bio->mddev = mddev;
863 r10_bio->sector = bio->bi_sector;
864 r10_bio->state = 0;
866 if (rw == READ) {
868 * read balancing logic:
870 int disk = read_balance(conf, r10_bio);
871 int slot = r10_bio->read_slot;
872 if (disk < 0) {
873 raid_end_bio_io(r10_bio);
874 return 0;
876 mirror = conf->mirrors + disk;
878 read_bio = bio_clone(bio, GFP_NOIO);
880 r10_bio->devs[slot].bio = read_bio;
882 read_bio->bi_sector = r10_bio->devs[slot].addr +
883 mirror->rdev->data_offset;
884 read_bio->bi_bdev = mirror->rdev->bdev;
885 read_bio->bi_end_io = raid10_end_read_request;
886 read_bio->bi_rw = READ | do_sync;
887 read_bio->bi_private = r10_bio;
889 generic_make_request(read_bio);
890 return 0;
894 * WRITE:
896 /* first select target devices under rcu_lock and
897 * inc refcount on their rdev. Record them by setting
898 * bios[x] to bio
900 raid10_find_phys(conf, r10_bio);
901 retry_write:
902 blocked_rdev = NULL;
903 rcu_read_lock();
904 for (i = 0; i < conf->copies; i++) {
905 int d = r10_bio->devs[i].devnum;
906 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
907 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
908 atomic_inc(&rdev->nr_pending);
909 blocked_rdev = rdev;
910 break;
912 if (rdev && !test_bit(Faulty, &rdev->flags)) {
913 atomic_inc(&rdev->nr_pending);
914 r10_bio->devs[i].bio = bio;
915 } else {
916 r10_bio->devs[i].bio = NULL;
917 set_bit(R10BIO_Degraded, &r10_bio->state);
920 rcu_read_unlock();
922 if (unlikely(blocked_rdev)) {
923 /* Have to wait for this device to get unblocked, then retry */
924 int j;
925 int d;
927 for (j = 0; j < i; j++)
928 if (r10_bio->devs[j].bio) {
929 d = r10_bio->devs[j].devnum;
930 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
932 allow_barrier(conf);
933 md_wait_for_blocked_rdev(blocked_rdev, mddev);
934 wait_barrier(conf);
935 goto retry_write;
938 atomic_set(&r10_bio->remaining, 0);
940 bio_list_init(&bl);
941 for (i = 0; i < conf->copies; i++) {
942 struct bio *mbio;
943 int d = r10_bio->devs[i].devnum;
944 if (!r10_bio->devs[i].bio)
945 continue;
947 mbio = bio_clone(bio, GFP_NOIO);
948 r10_bio->devs[i].bio = mbio;
950 mbio->bi_sector = r10_bio->devs[i].addr+
951 conf->mirrors[d].rdev->data_offset;
952 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
953 mbio->bi_end_io = raid10_end_write_request;
954 mbio->bi_rw = WRITE | do_sync;
955 mbio->bi_private = r10_bio;
957 atomic_inc(&r10_bio->remaining);
958 bio_list_add(&bl, mbio);
961 if (unlikely(!atomic_read(&r10_bio->remaining))) {
962 /* the array is dead */
963 md_write_end(mddev);
964 raid_end_bio_io(r10_bio);
965 return 0;
968 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
969 spin_lock_irqsave(&conf->device_lock, flags);
970 bio_list_merge(&conf->pending_bio_list, &bl);
971 blk_plug_device(mddev->queue);
972 spin_unlock_irqrestore(&conf->device_lock, flags);
974 /* In case raid10d snuck in to freeze_array */
975 wake_up(&conf->wait_barrier);
977 if (do_sync)
978 md_wakeup_thread(mddev->thread);
980 return 0;
983 static void status(struct seq_file *seq, mddev_t *mddev)
985 conf_t *conf = mddev_to_conf(mddev);
986 int i;
988 if (conf->near_copies < conf->raid_disks)
989 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
990 if (conf->near_copies > 1)
991 seq_printf(seq, " %d near-copies", conf->near_copies);
992 if (conf->far_copies > 1) {
993 if (conf->far_offset)
994 seq_printf(seq, " %d offset-copies", conf->far_copies);
995 else
996 seq_printf(seq, " %d far-copies", conf->far_copies);
998 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
999 conf->raid_disks - mddev->degraded);
1000 for (i = 0; i < conf->raid_disks; i++)
1001 seq_printf(seq, "%s",
1002 conf->mirrors[i].rdev &&
1003 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1004 seq_printf(seq, "]");
1007 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1009 char b[BDEVNAME_SIZE];
1010 conf_t *conf = mddev_to_conf(mddev);
1013 * If it is not operational, then we have already marked it as dead
1014 * else if it is the last working disks, ignore the error, let the
1015 * next level up know.
1016 * else mark the drive as failed
1018 if (test_bit(In_sync, &rdev->flags)
1019 && conf->raid_disks-mddev->degraded == 1)
1021 * Don't fail the drive, just return an IO error.
1022 * The test should really be more sophisticated than
1023 * "working_disks == 1", but it isn't critical, and
1024 * can wait until we do more sophisticated "is the drive
1025 * really dead" tests...
1027 return;
1028 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1029 unsigned long flags;
1030 spin_lock_irqsave(&conf->device_lock, flags);
1031 mddev->degraded++;
1032 spin_unlock_irqrestore(&conf->device_lock, flags);
1034 * if recovery is running, make sure it aborts.
1036 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1038 set_bit(Faulty, &rdev->flags);
1039 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1040 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1041 "raid10: Operation continuing on %d devices.\n",
1042 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1045 static void print_conf(conf_t *conf)
1047 int i;
1048 mirror_info_t *tmp;
1050 printk("RAID10 conf printout:\n");
1051 if (!conf) {
1052 printk("(!conf)\n");
1053 return;
1055 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1056 conf->raid_disks);
1058 for (i = 0; i < conf->raid_disks; i++) {
1059 char b[BDEVNAME_SIZE];
1060 tmp = conf->mirrors + i;
1061 if (tmp->rdev)
1062 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1063 i, !test_bit(In_sync, &tmp->rdev->flags),
1064 !test_bit(Faulty, &tmp->rdev->flags),
1065 bdevname(tmp->rdev->bdev,b));
1069 static void close_sync(conf_t *conf)
1071 wait_barrier(conf);
1072 allow_barrier(conf);
1074 mempool_destroy(conf->r10buf_pool);
1075 conf->r10buf_pool = NULL;
1078 /* check if there are enough drives for
1079 * every block to appear on atleast one
1081 static int enough(conf_t *conf)
1083 int first = 0;
1085 do {
1086 int n = conf->copies;
1087 int cnt = 0;
1088 while (n--) {
1089 if (conf->mirrors[first].rdev)
1090 cnt++;
1091 first = (first+1) % conf->raid_disks;
1093 if (cnt == 0)
1094 return 0;
1095 } while (first != 0);
1096 return 1;
1099 static int raid10_spare_active(mddev_t *mddev)
1101 int i;
1102 conf_t *conf = mddev->private;
1103 mirror_info_t *tmp;
1106 * Find all non-in_sync disks within the RAID10 configuration
1107 * and mark them in_sync
1109 for (i = 0; i < conf->raid_disks; i++) {
1110 tmp = conf->mirrors + i;
1111 if (tmp->rdev
1112 && !test_bit(Faulty, &tmp->rdev->flags)
1113 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1114 unsigned long flags;
1115 spin_lock_irqsave(&conf->device_lock, flags);
1116 mddev->degraded--;
1117 spin_unlock_irqrestore(&conf->device_lock, flags);
1121 print_conf(conf);
1122 return 0;
1126 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1128 conf_t *conf = mddev->private;
1129 int err = -EEXIST;
1130 int mirror;
1131 mirror_info_t *p;
1132 int first = 0;
1133 int last = mddev->raid_disks - 1;
1135 if (mddev->recovery_cp < MaxSector)
1136 /* only hot-add to in-sync arrays, as recovery is
1137 * very different from resync
1139 return -EBUSY;
1140 if (!enough(conf))
1141 return -EINVAL;
1143 if (rdev->raid_disk >= 0)
1144 first = last = rdev->raid_disk;
1146 if (rdev->saved_raid_disk >= 0 &&
1147 rdev->saved_raid_disk >= first &&
1148 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1149 mirror = rdev->saved_raid_disk;
1150 else
1151 mirror = first;
1152 for ( ; mirror <= last ; mirror++)
1153 if ( !(p=conf->mirrors+mirror)->rdev) {
1155 blk_queue_stack_limits(mddev->queue,
1156 rdev->bdev->bd_disk->queue);
1157 /* as we don't honour merge_bvec_fn, we must never risk
1158 * violating it, so limit ->max_sector to one PAGE, as
1159 * a one page request is never in violation.
1161 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1162 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1163 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1165 p->head_position = 0;
1166 rdev->raid_disk = mirror;
1167 err = 0;
1168 if (rdev->saved_raid_disk != mirror)
1169 conf->fullsync = 1;
1170 rcu_assign_pointer(p->rdev, rdev);
1171 break;
1174 print_conf(conf);
1175 return err;
1178 static int raid10_remove_disk(mddev_t *mddev, int number)
1180 conf_t *conf = mddev->private;
1181 int err = 0;
1182 mdk_rdev_t *rdev;
1183 mirror_info_t *p = conf->mirrors+ number;
1185 print_conf(conf);
1186 rdev = p->rdev;
1187 if (rdev) {
1188 if (test_bit(In_sync, &rdev->flags) ||
1189 atomic_read(&rdev->nr_pending)) {
1190 err = -EBUSY;
1191 goto abort;
1193 /* Only remove faulty devices in recovery
1194 * is not possible.
1196 if (!test_bit(Faulty, &rdev->flags) &&
1197 enough(conf)) {
1198 err = -EBUSY;
1199 goto abort;
1201 p->rdev = NULL;
1202 synchronize_rcu();
1203 if (atomic_read(&rdev->nr_pending)) {
1204 /* lost the race, try later */
1205 err = -EBUSY;
1206 p->rdev = rdev;
1209 abort:
1211 print_conf(conf);
1212 return err;
1216 static void end_sync_read(struct bio *bio, int error)
1218 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1219 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1220 int i,d;
1222 for (i=0; i<conf->copies; i++)
1223 if (r10_bio->devs[i].bio == bio)
1224 break;
1225 BUG_ON(i == conf->copies);
1226 update_head_pos(i, r10_bio);
1227 d = r10_bio->devs[i].devnum;
1229 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1230 set_bit(R10BIO_Uptodate, &r10_bio->state);
1231 else {
1232 atomic_add(r10_bio->sectors,
1233 &conf->mirrors[d].rdev->corrected_errors);
1234 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1235 md_error(r10_bio->mddev,
1236 conf->mirrors[d].rdev);
1239 /* for reconstruct, we always reschedule after a read.
1240 * for resync, only after all reads
1242 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1243 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1244 atomic_dec_and_test(&r10_bio->remaining)) {
1245 /* we have read all the blocks,
1246 * do the comparison in process context in raid10d
1248 reschedule_retry(r10_bio);
1252 static void end_sync_write(struct bio *bio, int error)
1254 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1255 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1256 mddev_t *mddev = r10_bio->mddev;
1257 conf_t *conf = mddev_to_conf(mddev);
1258 int i,d;
1260 for (i = 0; i < conf->copies; i++)
1261 if (r10_bio->devs[i].bio == bio)
1262 break;
1263 d = r10_bio->devs[i].devnum;
1265 if (!uptodate)
1266 md_error(mddev, conf->mirrors[d].rdev);
1268 update_head_pos(i, r10_bio);
1270 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1271 while (atomic_dec_and_test(&r10_bio->remaining)) {
1272 if (r10_bio->master_bio == NULL) {
1273 /* the primary of several recovery bios */
1274 sector_t s = r10_bio->sectors;
1275 put_buf(r10_bio);
1276 md_done_sync(mddev, s, 1);
1277 break;
1278 } else {
1279 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1280 put_buf(r10_bio);
1281 r10_bio = r10_bio2;
1287 * Note: sync and recover and handled very differently for raid10
1288 * This code is for resync.
1289 * For resync, we read through virtual addresses and read all blocks.
1290 * If there is any error, we schedule a write. The lowest numbered
1291 * drive is authoritative.
1292 * However requests come for physical address, so we need to map.
1293 * For every physical address there are raid_disks/copies virtual addresses,
1294 * which is always are least one, but is not necessarly an integer.
1295 * This means that a physical address can span multiple chunks, so we may
1296 * have to submit multiple io requests for a single sync request.
1299 * We check if all blocks are in-sync and only write to blocks that
1300 * aren't in sync
1302 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1304 conf_t *conf = mddev_to_conf(mddev);
1305 int i, first;
1306 struct bio *tbio, *fbio;
1308 atomic_set(&r10_bio->remaining, 1);
1310 /* find the first device with a block */
1311 for (i=0; i<conf->copies; i++)
1312 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1313 break;
1315 if (i == conf->copies)
1316 goto done;
1318 first = i;
1319 fbio = r10_bio->devs[i].bio;
1321 /* now find blocks with errors */
1322 for (i=0 ; i < conf->copies ; i++) {
1323 int j, d;
1324 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1326 tbio = r10_bio->devs[i].bio;
1328 if (tbio->bi_end_io != end_sync_read)
1329 continue;
1330 if (i == first)
1331 continue;
1332 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1333 /* We know that the bi_io_vec layout is the same for
1334 * both 'first' and 'i', so we just compare them.
1335 * All vec entries are PAGE_SIZE;
1337 for (j = 0; j < vcnt; j++)
1338 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1339 page_address(tbio->bi_io_vec[j].bv_page),
1340 PAGE_SIZE))
1341 break;
1342 if (j == vcnt)
1343 continue;
1344 mddev->resync_mismatches += r10_bio->sectors;
1346 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1347 /* Don't fix anything. */
1348 continue;
1349 /* Ok, we need to write this bio
1350 * First we need to fixup bv_offset, bv_len and
1351 * bi_vecs, as the read request might have corrupted these
1353 tbio->bi_vcnt = vcnt;
1354 tbio->bi_size = r10_bio->sectors << 9;
1355 tbio->bi_idx = 0;
1356 tbio->bi_phys_segments = 0;
1357 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1358 tbio->bi_flags |= 1 << BIO_UPTODATE;
1359 tbio->bi_next = NULL;
1360 tbio->bi_rw = WRITE;
1361 tbio->bi_private = r10_bio;
1362 tbio->bi_sector = r10_bio->devs[i].addr;
1364 for (j=0; j < vcnt ; j++) {
1365 tbio->bi_io_vec[j].bv_offset = 0;
1366 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1368 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1369 page_address(fbio->bi_io_vec[j].bv_page),
1370 PAGE_SIZE);
1372 tbio->bi_end_io = end_sync_write;
1374 d = r10_bio->devs[i].devnum;
1375 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1376 atomic_inc(&r10_bio->remaining);
1377 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1379 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1380 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1381 generic_make_request(tbio);
1384 done:
1385 if (atomic_dec_and_test(&r10_bio->remaining)) {
1386 md_done_sync(mddev, r10_bio->sectors, 1);
1387 put_buf(r10_bio);
1392 * Now for the recovery code.
1393 * Recovery happens across physical sectors.
1394 * We recover all non-is_sync drives by finding the virtual address of
1395 * each, and then choose a working drive that also has that virt address.
1396 * There is a separate r10_bio for each non-in_sync drive.
1397 * Only the first two slots are in use. The first for reading,
1398 * The second for writing.
1402 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1404 conf_t *conf = mddev_to_conf(mddev);
1405 int i, d;
1406 struct bio *bio, *wbio;
1409 /* move the pages across to the second bio
1410 * and submit the write request
1412 bio = r10_bio->devs[0].bio;
1413 wbio = r10_bio->devs[1].bio;
1414 for (i=0; i < wbio->bi_vcnt; i++) {
1415 struct page *p = bio->bi_io_vec[i].bv_page;
1416 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1417 wbio->bi_io_vec[i].bv_page = p;
1419 d = r10_bio->devs[1].devnum;
1421 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1422 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1423 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1424 generic_make_request(wbio);
1425 else
1426 bio_endio(wbio, -EIO);
1431 * This is a kernel thread which:
1433 * 1. Retries failed read operations on working mirrors.
1434 * 2. Updates the raid superblock when problems encounter.
1435 * 3. Performs writes following reads for array synchronising.
1438 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1440 int sect = 0; /* Offset from r10_bio->sector */
1441 int sectors = r10_bio->sectors;
1442 mdk_rdev_t*rdev;
1443 while(sectors) {
1444 int s = sectors;
1445 int sl = r10_bio->read_slot;
1446 int success = 0;
1447 int start;
1449 if (s > (PAGE_SIZE>>9))
1450 s = PAGE_SIZE >> 9;
1452 rcu_read_lock();
1453 do {
1454 int d = r10_bio->devs[sl].devnum;
1455 rdev = rcu_dereference(conf->mirrors[d].rdev);
1456 if (rdev &&
1457 test_bit(In_sync, &rdev->flags)) {
1458 atomic_inc(&rdev->nr_pending);
1459 rcu_read_unlock();
1460 success = sync_page_io(rdev->bdev,
1461 r10_bio->devs[sl].addr +
1462 sect + rdev->data_offset,
1463 s<<9,
1464 conf->tmppage, READ);
1465 rdev_dec_pending(rdev, mddev);
1466 rcu_read_lock();
1467 if (success)
1468 break;
1470 sl++;
1471 if (sl == conf->copies)
1472 sl = 0;
1473 } while (!success && sl != r10_bio->read_slot);
1474 rcu_read_unlock();
1476 if (!success) {
1477 /* Cannot read from anywhere -- bye bye array */
1478 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1479 md_error(mddev, conf->mirrors[dn].rdev);
1480 break;
1483 start = sl;
1484 /* write it back and re-read */
1485 rcu_read_lock();
1486 while (sl != r10_bio->read_slot) {
1487 int d;
1488 if (sl==0)
1489 sl = conf->copies;
1490 sl--;
1491 d = r10_bio->devs[sl].devnum;
1492 rdev = rcu_dereference(conf->mirrors[d].rdev);
1493 if (rdev &&
1494 test_bit(In_sync, &rdev->flags)) {
1495 atomic_inc(&rdev->nr_pending);
1496 rcu_read_unlock();
1497 atomic_add(s, &rdev->corrected_errors);
1498 if (sync_page_io(rdev->bdev,
1499 r10_bio->devs[sl].addr +
1500 sect + rdev->data_offset,
1501 s<<9, conf->tmppage, WRITE)
1502 == 0)
1503 /* Well, this device is dead */
1504 md_error(mddev, rdev);
1505 rdev_dec_pending(rdev, mddev);
1506 rcu_read_lock();
1509 sl = start;
1510 while (sl != r10_bio->read_slot) {
1511 int d;
1512 if (sl==0)
1513 sl = conf->copies;
1514 sl--;
1515 d = r10_bio->devs[sl].devnum;
1516 rdev = rcu_dereference(conf->mirrors[d].rdev);
1517 if (rdev &&
1518 test_bit(In_sync, &rdev->flags)) {
1519 char b[BDEVNAME_SIZE];
1520 atomic_inc(&rdev->nr_pending);
1521 rcu_read_unlock();
1522 if (sync_page_io(rdev->bdev,
1523 r10_bio->devs[sl].addr +
1524 sect + rdev->data_offset,
1525 s<<9, conf->tmppage, READ) == 0)
1526 /* Well, this device is dead */
1527 md_error(mddev, rdev);
1528 else
1529 printk(KERN_INFO
1530 "raid10:%s: read error corrected"
1531 " (%d sectors at %llu on %s)\n",
1532 mdname(mddev), s,
1533 (unsigned long long)(sect+
1534 rdev->data_offset),
1535 bdevname(rdev->bdev, b));
1537 rdev_dec_pending(rdev, mddev);
1538 rcu_read_lock();
1541 rcu_read_unlock();
1543 sectors -= s;
1544 sect += s;
1548 static void raid10d(mddev_t *mddev)
1550 r10bio_t *r10_bio;
1551 struct bio *bio;
1552 unsigned long flags;
1553 conf_t *conf = mddev_to_conf(mddev);
1554 struct list_head *head = &conf->retry_list;
1555 int unplug=0;
1556 mdk_rdev_t *rdev;
1558 md_check_recovery(mddev);
1560 for (;;) {
1561 char b[BDEVNAME_SIZE];
1563 unplug += flush_pending_writes(conf);
1565 spin_lock_irqsave(&conf->device_lock, flags);
1566 if (list_empty(head)) {
1567 spin_unlock_irqrestore(&conf->device_lock, flags);
1568 break;
1570 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1571 list_del(head->prev);
1572 conf->nr_queued--;
1573 spin_unlock_irqrestore(&conf->device_lock, flags);
1575 mddev = r10_bio->mddev;
1576 conf = mddev_to_conf(mddev);
1577 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1578 sync_request_write(mddev, r10_bio);
1579 unplug = 1;
1580 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1581 recovery_request_write(mddev, r10_bio);
1582 unplug = 1;
1583 } else {
1584 int mirror;
1585 /* we got a read error. Maybe the drive is bad. Maybe just
1586 * the block and we can fix it.
1587 * We freeze all other IO, and try reading the block from
1588 * other devices. When we find one, we re-write
1589 * and check it that fixes the read error.
1590 * This is all done synchronously while the array is
1591 * frozen.
1593 if (mddev->ro == 0) {
1594 freeze_array(conf);
1595 fix_read_error(conf, mddev, r10_bio);
1596 unfreeze_array(conf);
1599 bio = r10_bio->devs[r10_bio->read_slot].bio;
1600 r10_bio->devs[r10_bio->read_slot].bio =
1601 mddev->ro ? IO_BLOCKED : NULL;
1602 mirror = read_balance(conf, r10_bio);
1603 if (mirror == -1) {
1604 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1605 " read error for block %llu\n",
1606 bdevname(bio->bi_bdev,b),
1607 (unsigned long long)r10_bio->sector);
1608 raid_end_bio_io(r10_bio);
1609 bio_put(bio);
1610 } else {
1611 const int do_sync = bio_sync(r10_bio->master_bio);
1612 bio_put(bio);
1613 rdev = conf->mirrors[mirror].rdev;
1614 if (printk_ratelimit())
1615 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1616 " another mirror\n",
1617 bdevname(rdev->bdev,b),
1618 (unsigned long long)r10_bio->sector);
1619 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1620 r10_bio->devs[r10_bio->read_slot].bio = bio;
1621 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1622 + rdev->data_offset;
1623 bio->bi_bdev = rdev->bdev;
1624 bio->bi_rw = READ | do_sync;
1625 bio->bi_private = r10_bio;
1626 bio->bi_end_io = raid10_end_read_request;
1627 unplug = 1;
1628 generic_make_request(bio);
1632 if (unplug)
1633 unplug_slaves(mddev);
1637 static int init_resync(conf_t *conf)
1639 int buffs;
1641 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1642 BUG_ON(conf->r10buf_pool);
1643 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1644 if (!conf->r10buf_pool)
1645 return -ENOMEM;
1646 conf->next_resync = 0;
1647 return 0;
1651 * perform a "sync" on one "block"
1653 * We need to make sure that no normal I/O request - particularly write
1654 * requests - conflict with active sync requests.
1656 * This is achieved by tracking pending requests and a 'barrier' concept
1657 * that can be installed to exclude normal IO requests.
1659 * Resync and recovery are handled very differently.
1660 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1662 * For resync, we iterate over virtual addresses, read all copies,
1663 * and update if there are differences. If only one copy is live,
1664 * skip it.
1665 * For recovery, we iterate over physical addresses, read a good
1666 * value for each non-in_sync drive, and over-write.
1668 * So, for recovery we may have several outstanding complex requests for a
1669 * given address, one for each out-of-sync device. We model this by allocating
1670 * a number of r10_bio structures, one for each out-of-sync device.
1671 * As we setup these structures, we collect all bio's together into a list
1672 * which we then process collectively to add pages, and then process again
1673 * to pass to generic_make_request.
1675 * The r10_bio structures are linked using a borrowed master_bio pointer.
1676 * This link is counted in ->remaining. When the r10_bio that points to NULL
1677 * has its remaining count decremented to 0, the whole complex operation
1678 * is complete.
1682 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1684 conf_t *conf = mddev_to_conf(mddev);
1685 r10bio_t *r10_bio;
1686 struct bio *biolist = NULL, *bio;
1687 sector_t max_sector, nr_sectors;
1688 int disk;
1689 int i;
1690 int max_sync;
1691 int sync_blocks;
1693 sector_t sectors_skipped = 0;
1694 int chunks_skipped = 0;
1696 if (!conf->r10buf_pool)
1697 if (init_resync(conf))
1698 return 0;
1700 skipped:
1701 max_sector = mddev->dev_sectors;
1702 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1703 max_sector = mddev->resync_max_sectors;
1704 if (sector_nr >= max_sector) {
1705 /* If we aborted, we need to abort the
1706 * sync on the 'current' bitmap chucks (there can
1707 * be several when recovering multiple devices).
1708 * as we may have started syncing it but not finished.
1709 * We can find the current address in
1710 * mddev->curr_resync, but for recovery,
1711 * we need to convert that to several
1712 * virtual addresses.
1714 if (mddev->curr_resync < max_sector) { /* aborted */
1715 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1716 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1717 &sync_blocks, 1);
1718 else for (i=0; i<conf->raid_disks; i++) {
1719 sector_t sect =
1720 raid10_find_virt(conf, mddev->curr_resync, i);
1721 bitmap_end_sync(mddev->bitmap, sect,
1722 &sync_blocks, 1);
1724 } else /* completed sync */
1725 conf->fullsync = 0;
1727 bitmap_close_sync(mddev->bitmap);
1728 close_sync(conf);
1729 *skipped = 1;
1730 return sectors_skipped;
1732 if (chunks_skipped >= conf->raid_disks) {
1733 /* if there has been nothing to do on any drive,
1734 * then there is nothing to do at all..
1736 *skipped = 1;
1737 return (max_sector - sector_nr) + sectors_skipped;
1740 if (max_sector > mddev->resync_max)
1741 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1743 /* make sure whole request will fit in a chunk - if chunks
1744 * are meaningful
1746 if (conf->near_copies < conf->raid_disks &&
1747 max_sector > (sector_nr | conf->chunk_mask))
1748 max_sector = (sector_nr | conf->chunk_mask) + 1;
1750 * If there is non-resync activity waiting for us then
1751 * put in a delay to throttle resync.
1753 if (!go_faster && conf->nr_waiting)
1754 msleep_interruptible(1000);
1756 /* Again, very different code for resync and recovery.
1757 * Both must result in an r10bio with a list of bios that
1758 * have bi_end_io, bi_sector, bi_bdev set,
1759 * and bi_private set to the r10bio.
1760 * For recovery, we may actually create several r10bios
1761 * with 2 bios in each, that correspond to the bios in the main one.
1762 * In this case, the subordinate r10bios link back through a
1763 * borrowed master_bio pointer, and the counter in the master
1764 * includes a ref from each subordinate.
1766 /* First, we decide what to do and set ->bi_end_io
1767 * To end_sync_read if we want to read, and
1768 * end_sync_write if we will want to write.
1771 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1772 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1773 /* recovery... the complicated one */
1774 int i, j, k;
1775 r10_bio = NULL;
1777 for (i=0 ; i<conf->raid_disks; i++)
1778 if (conf->mirrors[i].rdev &&
1779 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1780 int still_degraded = 0;
1781 /* want to reconstruct this device */
1782 r10bio_t *rb2 = r10_bio;
1783 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1784 int must_sync;
1785 /* Unless we are doing a full sync, we only need
1786 * to recover the block if it is set in the bitmap
1788 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1789 &sync_blocks, 1);
1790 if (sync_blocks < max_sync)
1791 max_sync = sync_blocks;
1792 if (!must_sync &&
1793 !conf->fullsync) {
1794 /* yep, skip the sync_blocks here, but don't assume
1795 * that there will never be anything to do here
1797 chunks_skipped = -1;
1798 continue;
1801 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1802 raise_barrier(conf, rb2 != NULL);
1803 atomic_set(&r10_bio->remaining, 0);
1805 r10_bio->master_bio = (struct bio*)rb2;
1806 if (rb2)
1807 atomic_inc(&rb2->remaining);
1808 r10_bio->mddev = mddev;
1809 set_bit(R10BIO_IsRecover, &r10_bio->state);
1810 r10_bio->sector = sect;
1812 raid10_find_phys(conf, r10_bio);
1813 /* Need to check if this section will still be
1814 * degraded
1816 for (j=0; j<conf->copies;j++) {
1817 int d = r10_bio->devs[j].devnum;
1818 if (conf->mirrors[d].rdev == NULL ||
1819 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1820 still_degraded = 1;
1821 break;
1824 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1825 &sync_blocks, still_degraded);
1827 for (j=0; j<conf->copies;j++) {
1828 int d = r10_bio->devs[j].devnum;
1829 if (conf->mirrors[d].rdev &&
1830 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1831 /* This is where we read from */
1832 bio = r10_bio->devs[0].bio;
1833 bio->bi_next = biolist;
1834 biolist = bio;
1835 bio->bi_private = r10_bio;
1836 bio->bi_end_io = end_sync_read;
1837 bio->bi_rw = READ;
1838 bio->bi_sector = r10_bio->devs[j].addr +
1839 conf->mirrors[d].rdev->data_offset;
1840 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1841 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1842 atomic_inc(&r10_bio->remaining);
1843 /* and we write to 'i' */
1845 for (k=0; k<conf->copies; k++)
1846 if (r10_bio->devs[k].devnum == i)
1847 break;
1848 BUG_ON(k == conf->copies);
1849 bio = r10_bio->devs[1].bio;
1850 bio->bi_next = biolist;
1851 biolist = bio;
1852 bio->bi_private = r10_bio;
1853 bio->bi_end_io = end_sync_write;
1854 bio->bi_rw = WRITE;
1855 bio->bi_sector = r10_bio->devs[k].addr +
1856 conf->mirrors[i].rdev->data_offset;
1857 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1859 r10_bio->devs[0].devnum = d;
1860 r10_bio->devs[1].devnum = i;
1862 break;
1865 if (j == conf->copies) {
1866 /* Cannot recover, so abort the recovery */
1867 put_buf(r10_bio);
1868 if (rb2)
1869 atomic_dec(&rb2->remaining);
1870 r10_bio = rb2;
1871 if (!test_and_set_bit(MD_RECOVERY_INTR,
1872 &mddev->recovery))
1873 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1874 mdname(mddev));
1875 break;
1878 if (biolist == NULL) {
1879 while (r10_bio) {
1880 r10bio_t *rb2 = r10_bio;
1881 r10_bio = (r10bio_t*) rb2->master_bio;
1882 rb2->master_bio = NULL;
1883 put_buf(rb2);
1885 goto giveup;
1887 } else {
1888 /* resync. Schedule a read for every block at this virt offset */
1889 int count = 0;
1891 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1893 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1894 &sync_blocks, mddev->degraded) &&
1895 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1896 /* We can skip this block */
1897 *skipped = 1;
1898 return sync_blocks + sectors_skipped;
1900 if (sync_blocks < max_sync)
1901 max_sync = sync_blocks;
1902 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1904 r10_bio->mddev = mddev;
1905 atomic_set(&r10_bio->remaining, 0);
1906 raise_barrier(conf, 0);
1907 conf->next_resync = sector_nr;
1909 r10_bio->master_bio = NULL;
1910 r10_bio->sector = sector_nr;
1911 set_bit(R10BIO_IsSync, &r10_bio->state);
1912 raid10_find_phys(conf, r10_bio);
1913 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1915 for (i=0; i<conf->copies; i++) {
1916 int d = r10_bio->devs[i].devnum;
1917 bio = r10_bio->devs[i].bio;
1918 bio->bi_end_io = NULL;
1919 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1920 if (conf->mirrors[d].rdev == NULL ||
1921 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1922 continue;
1923 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1924 atomic_inc(&r10_bio->remaining);
1925 bio->bi_next = biolist;
1926 biolist = bio;
1927 bio->bi_private = r10_bio;
1928 bio->bi_end_io = end_sync_read;
1929 bio->bi_rw = READ;
1930 bio->bi_sector = r10_bio->devs[i].addr +
1931 conf->mirrors[d].rdev->data_offset;
1932 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1933 count++;
1936 if (count < 2) {
1937 for (i=0; i<conf->copies; i++) {
1938 int d = r10_bio->devs[i].devnum;
1939 if (r10_bio->devs[i].bio->bi_end_io)
1940 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1942 put_buf(r10_bio);
1943 biolist = NULL;
1944 goto giveup;
1948 for (bio = biolist; bio ; bio=bio->bi_next) {
1950 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1951 if (bio->bi_end_io)
1952 bio->bi_flags |= 1 << BIO_UPTODATE;
1953 bio->bi_vcnt = 0;
1954 bio->bi_idx = 0;
1955 bio->bi_phys_segments = 0;
1956 bio->bi_size = 0;
1959 nr_sectors = 0;
1960 if (sector_nr + max_sync < max_sector)
1961 max_sector = sector_nr + max_sync;
1962 do {
1963 struct page *page;
1964 int len = PAGE_SIZE;
1965 disk = 0;
1966 if (sector_nr + (len>>9) > max_sector)
1967 len = (max_sector - sector_nr) << 9;
1968 if (len == 0)
1969 break;
1970 for (bio= biolist ; bio ; bio=bio->bi_next) {
1971 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1972 if (bio_add_page(bio, page, len, 0) == 0) {
1973 /* stop here */
1974 struct bio *bio2;
1975 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1976 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1977 /* remove last page from this bio */
1978 bio2->bi_vcnt--;
1979 bio2->bi_size -= len;
1980 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1982 goto bio_full;
1984 disk = i;
1986 nr_sectors += len>>9;
1987 sector_nr += len>>9;
1988 } while (biolist->bi_vcnt < RESYNC_PAGES);
1989 bio_full:
1990 r10_bio->sectors = nr_sectors;
1992 while (biolist) {
1993 bio = biolist;
1994 biolist = biolist->bi_next;
1996 bio->bi_next = NULL;
1997 r10_bio = bio->bi_private;
1998 r10_bio->sectors = nr_sectors;
2000 if (bio->bi_end_io == end_sync_read) {
2001 md_sync_acct(bio->bi_bdev, nr_sectors);
2002 generic_make_request(bio);
2006 if (sectors_skipped)
2007 /* pretend they weren't skipped, it makes
2008 * no important difference in this case
2010 md_done_sync(mddev, sectors_skipped, 1);
2012 return sectors_skipped + nr_sectors;
2013 giveup:
2014 /* There is nowhere to write, so all non-sync
2015 * drives must be failed, so try the next chunk...
2017 if (sector_nr + max_sync < max_sector)
2018 max_sector = sector_nr + max_sync;
2020 sectors_skipped += (max_sector - sector_nr);
2021 chunks_skipped ++;
2022 sector_nr = max_sector;
2023 goto skipped;
2026 static int run(mddev_t *mddev)
2028 conf_t *conf;
2029 int i, disk_idx;
2030 mirror_info_t *disk;
2031 mdk_rdev_t *rdev;
2032 int nc, fc, fo;
2033 sector_t stride, size;
2035 if (mddev->chunk_size < PAGE_SIZE) {
2036 printk(KERN_ERR "md/raid10: chunk size must be "
2037 "at least PAGE_SIZE(%ld).\n", PAGE_SIZE);
2038 return -EINVAL;
2041 nc = mddev->layout & 255;
2042 fc = (mddev->layout >> 8) & 255;
2043 fo = mddev->layout & (1<<16);
2044 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2045 (mddev->layout >> 17)) {
2046 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2047 mdname(mddev), mddev->layout);
2048 goto out;
2051 * copy the already verified devices into our private RAID10
2052 * bookkeeping area. [whatever we allocate in run(),
2053 * should be freed in stop()]
2055 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2056 mddev->private = conf;
2057 if (!conf) {
2058 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2059 mdname(mddev));
2060 goto out;
2062 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2063 GFP_KERNEL);
2064 if (!conf->mirrors) {
2065 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2066 mdname(mddev));
2067 goto out_free_conf;
2070 conf->tmppage = alloc_page(GFP_KERNEL);
2071 if (!conf->tmppage)
2072 goto out_free_conf;
2074 conf->mddev = mddev;
2075 conf->raid_disks = mddev->raid_disks;
2076 conf->near_copies = nc;
2077 conf->far_copies = fc;
2078 conf->copies = nc*fc;
2079 conf->far_offset = fo;
2080 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2081 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2082 size = mddev->dev_sectors >> conf->chunk_shift;
2083 sector_div(size, fc);
2084 size = size * conf->raid_disks;
2085 sector_div(size, nc);
2086 /* 'size' is now the number of chunks in the array */
2087 /* calculate "used chunks per device" in 'stride' */
2088 stride = size * conf->copies;
2090 /* We need to round up when dividing by raid_disks to
2091 * get the stride size.
2093 stride += conf->raid_disks - 1;
2094 sector_div(stride, conf->raid_disks);
2095 mddev->dev_sectors = stride << conf->chunk_shift;
2097 if (fo)
2098 stride = 1;
2099 else
2100 sector_div(stride, fc);
2101 conf->stride = stride << conf->chunk_shift;
2103 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2104 r10bio_pool_free, conf);
2105 if (!conf->r10bio_pool) {
2106 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2107 mdname(mddev));
2108 goto out_free_conf;
2111 spin_lock_init(&conf->device_lock);
2112 mddev->queue->queue_lock = &conf->device_lock;
2114 list_for_each_entry(rdev, &mddev->disks, same_set) {
2115 disk_idx = rdev->raid_disk;
2116 if (disk_idx >= mddev->raid_disks
2117 || disk_idx < 0)
2118 continue;
2119 disk = conf->mirrors + disk_idx;
2121 disk->rdev = rdev;
2123 blk_queue_stack_limits(mddev->queue,
2124 rdev->bdev->bd_disk->queue);
2125 /* as we don't honour merge_bvec_fn, we must never risk
2126 * violating it, so limit ->max_sector to one PAGE, as
2127 * a one page request is never in violation.
2129 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2130 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2131 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2133 disk->head_position = 0;
2135 INIT_LIST_HEAD(&conf->retry_list);
2137 spin_lock_init(&conf->resync_lock);
2138 init_waitqueue_head(&conf->wait_barrier);
2140 /* need to check that every block has at least one working mirror */
2141 if (!enough(conf)) {
2142 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2143 mdname(mddev));
2144 goto out_free_conf;
2147 mddev->degraded = 0;
2148 for (i = 0; i < conf->raid_disks; i++) {
2150 disk = conf->mirrors + i;
2152 if (!disk->rdev ||
2153 !test_bit(In_sync, &disk->rdev->flags)) {
2154 disk->head_position = 0;
2155 mddev->degraded++;
2156 if (disk->rdev)
2157 conf->fullsync = 1;
2162 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2163 if (!mddev->thread) {
2164 printk(KERN_ERR
2165 "raid10: couldn't allocate thread for %s\n",
2166 mdname(mddev));
2167 goto out_free_conf;
2170 printk(KERN_INFO
2171 "raid10: raid set %s active with %d out of %d devices\n",
2172 mdname(mddev), mddev->raid_disks - mddev->degraded,
2173 mddev->raid_disks);
2175 * Ok, everything is just fine now
2177 mddev->array_sectors = size << conf->chunk_shift;
2178 mddev->resync_max_sectors = size << conf->chunk_shift;
2180 mddev->queue->unplug_fn = raid10_unplug;
2181 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2182 mddev->queue->backing_dev_info.congested_data = mddev;
2184 /* Calculate max read-ahead size.
2185 * We need to readahead at least twice a whole stripe....
2186 * maybe...
2189 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2190 stripe /= conf->near_copies;
2191 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2192 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2195 if (conf->near_copies < mddev->raid_disks)
2196 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2197 return 0;
2199 out_free_conf:
2200 if (conf->r10bio_pool)
2201 mempool_destroy(conf->r10bio_pool);
2202 safe_put_page(conf->tmppage);
2203 kfree(conf->mirrors);
2204 kfree(conf);
2205 mddev->private = NULL;
2206 out:
2207 return -EIO;
2210 static int stop(mddev_t *mddev)
2212 conf_t *conf = mddev_to_conf(mddev);
2214 raise_barrier(conf, 0);
2215 lower_barrier(conf);
2217 md_unregister_thread(mddev->thread);
2218 mddev->thread = NULL;
2219 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2220 if (conf->r10bio_pool)
2221 mempool_destroy(conf->r10bio_pool);
2222 kfree(conf->mirrors);
2223 kfree(conf);
2224 mddev->private = NULL;
2225 return 0;
2228 static void raid10_quiesce(mddev_t *mddev, int state)
2230 conf_t *conf = mddev_to_conf(mddev);
2232 switch(state) {
2233 case 1:
2234 raise_barrier(conf, 0);
2235 break;
2236 case 0:
2237 lower_barrier(conf);
2238 break;
2240 if (mddev->thread) {
2241 if (mddev->bitmap)
2242 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2243 else
2244 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2245 md_wakeup_thread(mddev->thread);
2249 static struct mdk_personality raid10_personality =
2251 .name = "raid10",
2252 .level = 10,
2253 .owner = THIS_MODULE,
2254 .make_request = make_request,
2255 .run = run,
2256 .stop = stop,
2257 .status = status,
2258 .error_handler = error,
2259 .hot_add_disk = raid10_add_disk,
2260 .hot_remove_disk= raid10_remove_disk,
2261 .spare_active = raid10_spare_active,
2262 .sync_request = sync_request,
2263 .quiesce = raid10_quiesce,
2266 static int __init raid_init(void)
2268 return register_md_personality(&raid10_personality);
2271 static void raid_exit(void)
2273 unregister_md_personality(&raid10_personality);
2276 module_init(raid_init);
2277 module_exit(raid_exit);
2278 MODULE_LICENSE("GPL");
2279 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2280 MODULE_ALIAS("md-raid10");
2281 MODULE_ALIAS("md-level-10");