1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata
= 1;
69 static int really_do_swap_account __initdata
= 0;
73 #define do_swap_account (0)
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index
{
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS
,
93 enum mem_cgroup_events_index
{
94 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_NSTATS
,
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
105 enum mem_cgroup_events_target
{
106 MEM_CGROUP_TARGET_THRESH
,
107 MEM_CGROUP_TARGET_SOFTLIMIT
,
110 #define THRESHOLDS_EVENTS_TARGET (128)
111 #define SOFTLIMIT_EVENTS_TARGET (1024)
113 struct mem_cgroup_stat_cpu
{
114 long count
[MEM_CGROUP_STAT_NSTATS
];
115 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
116 unsigned long targets
[MEM_CGROUP_NTARGETS
];
120 * per-zone information in memory controller.
122 struct mem_cgroup_per_zone
{
124 * spin_lock to protect the per cgroup LRU
126 struct list_head lists
[NR_LRU_LISTS
];
127 unsigned long count
[NR_LRU_LISTS
];
129 struct zone_reclaim_stat reclaim_stat
;
130 struct rb_node tree_node
; /* RB tree node */
131 unsigned long long usage_in_excess
;/* Set to the value by which */
132 /* the soft limit is exceeded*/
134 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
135 /* use container_of */
137 /* Macro for accessing counter */
138 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
140 struct mem_cgroup_per_node
{
141 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
144 struct mem_cgroup_lru_info
{
145 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
153 struct mem_cgroup_tree_per_zone
{
154 struct rb_root rb_root
;
158 struct mem_cgroup_tree_per_node
{
159 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
162 struct mem_cgroup_tree
{
163 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
166 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
168 struct mem_cgroup_threshold
{
169 struct eventfd_ctx
*eventfd
;
174 struct mem_cgroup_threshold_ary
{
175 /* An array index points to threshold just below usage. */
176 int current_threshold
;
177 /* Size of entries[] */
179 /* Array of thresholds */
180 struct mem_cgroup_threshold entries
[0];
183 struct mem_cgroup_thresholds
{
184 /* Primary thresholds array */
185 struct mem_cgroup_threshold_ary
*primary
;
187 * Spare threshold array.
188 * This is needed to make mem_cgroup_unregister_event() "never fail".
189 * It must be able to store at least primary->size - 1 entries.
191 struct mem_cgroup_threshold_ary
*spare
;
195 struct mem_cgroup_eventfd_list
{
196 struct list_head list
;
197 struct eventfd_ctx
*eventfd
;
200 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
201 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
215 struct cgroup_subsys_state css
;
217 * the counter to account for memory usage
219 struct res_counter res
;
221 * the counter to account for mem+swap usage.
223 struct res_counter memsw
;
225 * Per cgroup active and inactive list, similar to the
226 * per zone LRU lists.
228 struct mem_cgroup_lru_info info
;
230 * While reclaiming in a hierarchy, we cache the last child we
233 int last_scanned_child
;
234 int last_scanned_node
;
236 nodemask_t scan_nodes
;
237 unsigned long next_scan_node_update
;
240 * Should the accounting and control be hierarchical, per subtree?
246 unsigned int swappiness
;
247 /* OOM-Killer disable */
248 int oom_kill_disable
;
250 /* set when res.limit == memsw.limit */
251 bool memsw_is_minimum
;
253 /* protect arrays of thresholds */
254 struct mutex thresholds_lock
;
256 /* thresholds for memory usage. RCU-protected */
257 struct mem_cgroup_thresholds thresholds
;
259 /* thresholds for mem+swap usage. RCU-protected */
260 struct mem_cgroup_thresholds memsw_thresholds
;
262 /* For oom notifier event fd */
263 struct list_head oom_notify
;
266 * Should we move charges of a task when a task is moved into this
267 * mem_cgroup ? And what type of charges should we move ?
269 unsigned long move_charge_at_immigrate
;
273 struct mem_cgroup_stat_cpu
*stat
;
275 * used when a cpu is offlined or other synchronizations
276 * See mem_cgroup_read_stat().
278 struct mem_cgroup_stat_cpu nocpu_base
;
279 spinlock_t pcp_counter_lock
;
282 /* Stuffs for move charges at task migration. */
284 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
285 * left-shifted bitmap of these types.
288 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
289 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
293 /* "mc" and its members are protected by cgroup_mutex */
294 static struct move_charge_struct
{
295 spinlock_t lock
; /* for from, to */
296 struct mem_cgroup
*from
;
297 struct mem_cgroup
*to
;
298 unsigned long precharge
;
299 unsigned long moved_charge
;
300 unsigned long moved_swap
;
301 struct task_struct
*moving_task
; /* a task moving charges */
302 wait_queue_head_t waitq
; /* a waitq for other context */
304 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
305 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
308 static bool move_anon(void)
310 return test_bit(MOVE_CHARGE_TYPE_ANON
,
311 &mc
.to
->move_charge_at_immigrate
);
314 static bool move_file(void)
316 return test_bit(MOVE_CHARGE_TYPE_FILE
,
317 &mc
.to
->move_charge_at_immigrate
);
321 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
322 * limit reclaim to prevent infinite loops, if they ever occur.
324 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
325 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
328 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
329 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
330 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
331 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
332 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
333 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
337 /* for encoding cft->private value on file */
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357 static void mem_cgroup_get(struct mem_cgroup
*mem
);
358 static void mem_cgroup_put(struct mem_cgroup
*mem
);
359 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
360 static void drain_all_stock_async(void);
362 static struct mem_cgroup_per_zone
*
363 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
365 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
368 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
373 static struct mem_cgroup_per_zone
*
374 page_cgroup_zoneinfo(struct mem_cgroup
*mem
, struct page
*page
)
376 int nid
= page_to_nid(page
);
377 int zid
= page_zonenum(page
);
379 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
382 static struct mem_cgroup_tree_per_zone
*
383 soft_limit_tree_node_zone(int nid
, int zid
)
385 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
388 static struct mem_cgroup_tree_per_zone
*
389 soft_limit_tree_from_page(struct page
*page
)
391 int nid
= page_to_nid(page
);
392 int zid
= page_zonenum(page
);
394 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
398 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
399 struct mem_cgroup_per_zone
*mz
,
400 struct mem_cgroup_tree_per_zone
*mctz
,
401 unsigned long long new_usage_in_excess
)
403 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
404 struct rb_node
*parent
= NULL
;
405 struct mem_cgroup_per_zone
*mz_node
;
410 mz
->usage_in_excess
= new_usage_in_excess
;
411 if (!mz
->usage_in_excess
)
415 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
417 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
420 * We can't avoid mem cgroups that are over their soft
421 * limit by the same amount
423 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
426 rb_link_node(&mz
->tree_node
, parent
, p
);
427 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
432 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
433 struct mem_cgroup_per_zone
*mz
,
434 struct mem_cgroup_tree_per_zone
*mctz
)
438 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
443 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
444 struct mem_cgroup_per_zone
*mz
,
445 struct mem_cgroup_tree_per_zone
*mctz
)
447 spin_lock(&mctz
->lock
);
448 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
449 spin_unlock(&mctz
->lock
);
453 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
455 unsigned long long excess
;
456 struct mem_cgroup_per_zone
*mz
;
457 struct mem_cgroup_tree_per_zone
*mctz
;
458 int nid
= page_to_nid(page
);
459 int zid
= page_zonenum(page
);
460 mctz
= soft_limit_tree_from_page(page
);
463 * Necessary to update all ancestors when hierarchy is used.
464 * because their event counter is not touched.
466 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
467 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
468 excess
= res_counter_soft_limit_excess(&mem
->res
);
470 * We have to update the tree if mz is on RB-tree or
471 * mem is over its softlimit.
473 if (excess
|| mz
->on_tree
) {
474 spin_lock(&mctz
->lock
);
475 /* if on-tree, remove it */
477 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
479 * Insert again. mz->usage_in_excess will be updated.
480 * If excess is 0, no tree ops.
482 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
483 spin_unlock(&mctz
->lock
);
488 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
491 struct mem_cgroup_per_zone
*mz
;
492 struct mem_cgroup_tree_per_zone
*mctz
;
494 for_each_node_state(node
, N_POSSIBLE
) {
495 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
496 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
497 mctz
= soft_limit_tree_node_zone(node
, zone
);
498 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
503 static struct mem_cgroup_per_zone
*
504 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
506 struct rb_node
*rightmost
= NULL
;
507 struct mem_cgroup_per_zone
*mz
;
511 rightmost
= rb_last(&mctz
->rb_root
);
513 goto done
; /* Nothing to reclaim from */
515 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
517 * Remove the node now but someone else can add it back,
518 * we will to add it back at the end of reclaim to its correct
519 * position in the tree.
521 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
522 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
523 !css_tryget(&mz
->mem
->css
))
529 static struct mem_cgroup_per_zone
*
530 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
532 struct mem_cgroup_per_zone
*mz
;
534 spin_lock(&mctz
->lock
);
535 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
536 spin_unlock(&mctz
->lock
);
541 * Implementation Note: reading percpu statistics for memcg.
543 * Both of vmstat[] and percpu_counter has threshold and do periodic
544 * synchronization to implement "quick" read. There are trade-off between
545 * reading cost and precision of value. Then, we may have a chance to implement
546 * a periodic synchronizion of counter in memcg's counter.
548 * But this _read() function is used for user interface now. The user accounts
549 * memory usage by memory cgroup and he _always_ requires exact value because
550 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
551 * have to visit all online cpus and make sum. So, for now, unnecessary
552 * synchronization is not implemented. (just implemented for cpu hotplug)
554 * If there are kernel internal actions which can make use of some not-exact
555 * value, and reading all cpu value can be performance bottleneck in some
556 * common workload, threashold and synchonization as vmstat[] should be
559 static long mem_cgroup_read_stat(struct mem_cgroup
*mem
,
560 enum mem_cgroup_stat_index idx
)
566 for_each_online_cpu(cpu
)
567 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
568 #ifdef CONFIG_HOTPLUG_CPU
569 spin_lock(&mem
->pcp_counter_lock
);
570 val
+= mem
->nocpu_base
.count
[idx
];
571 spin_unlock(&mem
->pcp_counter_lock
);
577 static long mem_cgroup_local_usage(struct mem_cgroup
*mem
)
581 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
582 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
586 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
589 int val
= (charge
) ? 1 : -1;
590 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
593 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*mem
,
594 enum mem_cgroup_events_index idx
)
596 unsigned long val
= 0;
599 for_each_online_cpu(cpu
)
600 val
+= per_cpu(mem
->stat
->events
[idx
], cpu
);
601 #ifdef CONFIG_HOTPLUG_CPU
602 spin_lock(&mem
->pcp_counter_lock
);
603 val
+= mem
->nocpu_base
.events
[idx
];
604 spin_unlock(&mem
->pcp_counter_lock
);
609 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
610 bool file
, int nr_pages
)
615 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_pages
);
617 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_pages
);
619 /* pagein of a big page is an event. So, ignore page size */
621 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
623 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
624 nr_pages
= -nr_pages
; /* for event */
627 __this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
633 mem_cgroup_get_zonestat_node(struct mem_cgroup
*mem
, int nid
, enum lru_list idx
)
635 struct mem_cgroup_per_zone
*mz
;
639 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
640 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
641 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
645 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
651 for_each_online_node(nid
)
652 total
+= mem_cgroup_get_zonestat_node(mem
, nid
, idx
);
656 static bool __memcg_event_check(struct mem_cgroup
*mem
, int target
)
658 unsigned long val
, next
;
660 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
661 next
= this_cpu_read(mem
->stat
->targets
[target
]);
662 /* from time_after() in jiffies.h */
663 return ((long)next
- (long)val
< 0);
666 static void __mem_cgroup_target_update(struct mem_cgroup
*mem
, int target
)
668 unsigned long val
, next
;
670 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
673 case MEM_CGROUP_TARGET_THRESH
:
674 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
676 case MEM_CGROUP_TARGET_SOFTLIMIT
:
677 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
683 this_cpu_write(mem
->stat
->targets
[target
], next
);
687 * Check events in order.
690 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
692 /* threshold event is triggered in finer grain than soft limit */
693 if (unlikely(__memcg_event_check(mem
, MEM_CGROUP_TARGET_THRESH
))) {
694 mem_cgroup_threshold(mem
);
695 __mem_cgroup_target_update(mem
, MEM_CGROUP_TARGET_THRESH
);
696 if (unlikely(__memcg_event_check(mem
,
697 MEM_CGROUP_TARGET_SOFTLIMIT
))){
698 mem_cgroup_update_tree(mem
, page
);
699 __mem_cgroup_target_update(mem
,
700 MEM_CGROUP_TARGET_SOFTLIMIT
);
705 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
707 return container_of(cgroup_subsys_state(cont
,
708 mem_cgroup_subsys_id
), struct mem_cgroup
,
712 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
722 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
723 struct mem_cgroup
, css
);
726 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
728 struct mem_cgroup
*mem
= NULL
;
733 * Because we have no locks, mm->owner's may be being moved to other
734 * cgroup. We use css_tryget() here even if this looks
735 * pessimistic (rather than adding locks here).
739 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
742 } while (!css_tryget(&mem
->css
));
747 /* The caller has to guarantee "mem" exists before calling this */
748 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
750 struct cgroup_subsys_state
*css
;
753 if (!mem
) /* ROOT cgroup has the smallest ID */
754 return root_mem_cgroup
; /*css_put/get against root is ignored*/
755 if (!mem
->use_hierarchy
) {
756 if (css_tryget(&mem
->css
))
762 * searching a memory cgroup which has the smallest ID under given
763 * ROOT cgroup. (ID >= 1)
765 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
766 if (css
&& css_tryget(css
))
767 mem
= container_of(css
, struct mem_cgroup
, css
);
774 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
775 struct mem_cgroup
*root
,
778 int nextid
= css_id(&iter
->css
) + 1;
781 struct cgroup_subsys_state
*css
;
783 hierarchy_used
= iter
->use_hierarchy
;
786 /* If no ROOT, walk all, ignore hierarchy */
787 if (!cond
|| (root
&& !hierarchy_used
))
791 root
= root_mem_cgroup
;
797 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
799 if (css
&& css_tryget(css
))
800 iter
= container_of(css
, struct mem_cgroup
, css
);
802 /* If css is NULL, no more cgroups will be found */
804 } while (css
&& !iter
);
809 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
810 * be careful that "break" loop is not allowed. We have reference count.
811 * Instead of that modify "cond" to be false and "continue" to exit the loop.
813 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
814 for (iter = mem_cgroup_start_loop(root);\
816 iter = mem_cgroup_get_next(iter, root, cond))
818 #define for_each_mem_cgroup_tree(iter, root) \
819 for_each_mem_cgroup_tree_cond(iter, root, true)
821 #define for_each_mem_cgroup_all(iter) \
822 for_each_mem_cgroup_tree_cond(iter, NULL, true)
825 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
827 return (mem
== root_mem_cgroup
);
831 * Following LRU functions are allowed to be used without PCG_LOCK.
832 * Operations are called by routine of global LRU independently from memcg.
833 * What we have to take care of here is validness of pc->mem_cgroup.
835 * Changes to pc->mem_cgroup happens when
838 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
839 * It is added to LRU before charge.
840 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
841 * When moving account, the page is not on LRU. It's isolated.
844 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
846 struct page_cgroup
*pc
;
847 struct mem_cgroup_per_zone
*mz
;
849 if (mem_cgroup_disabled())
851 pc
= lookup_page_cgroup(page
);
852 /* can happen while we handle swapcache. */
853 if (!TestClearPageCgroupAcctLRU(pc
))
855 VM_BUG_ON(!pc
->mem_cgroup
);
857 * We don't check PCG_USED bit. It's cleared when the "page" is finally
858 * removed from global LRU.
860 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
861 /* huge page split is done under lru_lock. so, we have no races. */
862 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
863 if (mem_cgroup_is_root(pc
->mem_cgroup
))
865 VM_BUG_ON(list_empty(&pc
->lru
));
866 list_del_init(&pc
->lru
);
869 void mem_cgroup_del_lru(struct page
*page
)
871 mem_cgroup_del_lru_list(page
, page_lru(page
));
875 * Writeback is about to end against a page which has been marked for immediate
876 * reclaim. If it still appears to be reclaimable, move it to the tail of the
879 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
881 struct mem_cgroup_per_zone
*mz
;
882 struct page_cgroup
*pc
;
883 enum lru_list lru
= page_lru(page
);
885 if (mem_cgroup_disabled())
888 pc
= lookup_page_cgroup(page
);
889 /* unused or root page is not rotated. */
890 if (!PageCgroupUsed(pc
))
892 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
894 if (mem_cgroup_is_root(pc
->mem_cgroup
))
896 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
897 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
900 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
902 struct mem_cgroup_per_zone
*mz
;
903 struct page_cgroup
*pc
;
905 if (mem_cgroup_disabled())
908 pc
= lookup_page_cgroup(page
);
909 /* unused or root page is not rotated. */
910 if (!PageCgroupUsed(pc
))
912 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
914 if (mem_cgroup_is_root(pc
->mem_cgroup
))
916 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
917 list_move(&pc
->lru
, &mz
->lists
[lru
]);
920 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
922 struct page_cgroup
*pc
;
923 struct mem_cgroup_per_zone
*mz
;
925 if (mem_cgroup_disabled())
927 pc
= lookup_page_cgroup(page
);
928 VM_BUG_ON(PageCgroupAcctLRU(pc
));
929 if (!PageCgroupUsed(pc
))
931 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
933 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
934 /* huge page split is done under lru_lock. so, we have no races. */
935 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
936 SetPageCgroupAcctLRU(pc
);
937 if (mem_cgroup_is_root(pc
->mem_cgroup
))
939 list_add(&pc
->lru
, &mz
->lists
[lru
]);
943 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
944 * while it's linked to lru because the page may be reused after it's fully
945 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
946 * It's done under lock_page and expected that zone->lru_lock isnever held.
948 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
951 struct zone
*zone
= page_zone(page
);
952 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
955 * Doing this check without taking ->lru_lock seems wrong but this
956 * is safe. Because if page_cgroup's USED bit is unset, the page
957 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
958 * set, the commit after this will fail, anyway.
959 * This all charge/uncharge is done under some mutual execustion.
960 * So, we don't need to taking care of changes in USED bit.
962 if (likely(!PageLRU(page
)))
965 spin_lock_irqsave(&zone
->lru_lock
, flags
);
967 * Forget old LRU when this page_cgroup is *not* used. This Used bit
968 * is guarded by lock_page() because the page is SwapCache.
970 if (!PageCgroupUsed(pc
))
971 mem_cgroup_del_lru_list(page
, page_lru(page
));
972 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
975 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
978 struct zone
*zone
= page_zone(page
);
979 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
981 /* taking care of that the page is added to LRU while we commit it */
982 if (likely(!PageLRU(page
)))
984 spin_lock_irqsave(&zone
->lru_lock
, flags
);
985 /* link when the page is linked to LRU but page_cgroup isn't */
986 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
987 mem_cgroup_add_lru_list(page
, page_lru(page
));
988 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
992 void mem_cgroup_move_lists(struct page
*page
,
993 enum lru_list from
, enum lru_list to
)
995 if (mem_cgroup_disabled())
997 mem_cgroup_del_lru_list(page
, from
);
998 mem_cgroup_add_lru_list(page
, to
);
1001 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
1004 struct mem_cgroup
*curr
= NULL
;
1005 struct task_struct
*p
;
1007 p
= find_lock_task_mm(task
);
1010 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1015 * We should check use_hierarchy of "mem" not "curr". Because checking
1016 * use_hierarchy of "curr" here make this function true if hierarchy is
1017 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1018 * hierarchy(even if use_hierarchy is disabled in "mem").
1020 if (mem
->use_hierarchy
)
1021 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
1023 ret
= (curr
== mem
);
1024 css_put(&curr
->css
);
1028 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
1030 unsigned long active
;
1031 unsigned long inactive
;
1033 unsigned long inactive_ratio
;
1035 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
1036 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
1038 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1040 inactive_ratio
= int_sqrt(10 * gb
);
1044 if (present_pages
) {
1045 present_pages
[0] = inactive
;
1046 present_pages
[1] = active
;
1049 return inactive_ratio
;
1052 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
1054 unsigned long active
;
1055 unsigned long inactive
;
1056 unsigned long present_pages
[2];
1057 unsigned long inactive_ratio
;
1059 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
1061 inactive
= present_pages
[0];
1062 active
= present_pages
[1];
1064 if (inactive
* inactive_ratio
< active
)
1070 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
1072 unsigned long active
;
1073 unsigned long inactive
;
1075 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
1076 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
1078 return (active
> inactive
);
1081 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
,
1085 int nid
= zone_to_nid(zone
);
1086 int zid
= zone_idx(zone
);
1087 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1089 return MEM_CGROUP_ZSTAT(mz
, lru
);
1093 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup
*memcg
,
1098 ret
= mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_INACTIVE_FILE
) +
1099 mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_ACTIVE_FILE
);
1104 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup
*memcg
)
1109 for_each_node_state(nid
, N_HIGH_MEMORY
)
1110 total
+= mem_cgroup_node_nr_file_lru_pages(memcg
, nid
);
1115 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup
*memcg
,
1120 ret
= mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_INACTIVE_ANON
) +
1121 mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_ACTIVE_ANON
);
1126 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup
*memcg
)
1131 for_each_node_state(nid
, N_HIGH_MEMORY
)
1132 total
+= mem_cgroup_node_nr_anon_lru_pages(memcg
, nid
);
1137 static unsigned long
1138 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup
*memcg
, int nid
)
1140 return mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_UNEVICTABLE
);
1143 static unsigned long
1144 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup
*memcg
)
1149 for_each_node_state(nid
, N_HIGH_MEMORY
)
1150 total
+= mem_cgroup_node_nr_unevictable_lru_pages(memcg
, nid
);
1155 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
1162 total
+= mem_cgroup_get_zonestat_node(memcg
, nid
, l
);
1167 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
)
1172 for_each_node_state(nid
, N_HIGH_MEMORY
)
1173 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
);
1177 #endif /* CONFIG_NUMA */
1179 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1182 int nid
= zone_to_nid(zone
);
1183 int zid
= zone_idx(zone
);
1184 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1186 return &mz
->reclaim_stat
;
1189 struct zone_reclaim_stat
*
1190 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1192 struct page_cgroup
*pc
;
1193 struct mem_cgroup_per_zone
*mz
;
1195 if (mem_cgroup_disabled())
1198 pc
= lookup_page_cgroup(page
);
1199 if (!PageCgroupUsed(pc
))
1201 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1203 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1204 return &mz
->reclaim_stat
;
1207 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1208 struct list_head
*dst
,
1209 unsigned long *scanned
, int order
,
1210 int mode
, struct zone
*z
,
1211 struct mem_cgroup
*mem_cont
,
1212 int active
, int file
)
1214 unsigned long nr_taken
= 0;
1218 struct list_head
*src
;
1219 struct page_cgroup
*pc
, *tmp
;
1220 int nid
= zone_to_nid(z
);
1221 int zid
= zone_idx(z
);
1222 struct mem_cgroup_per_zone
*mz
;
1223 int lru
= LRU_FILE
* file
+ active
;
1227 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1228 src
= &mz
->lists
[lru
];
1231 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1232 if (scan
>= nr_to_scan
)
1235 if (unlikely(!PageCgroupUsed(pc
)))
1238 page
= lookup_cgroup_page(pc
);
1240 if (unlikely(!PageLRU(page
)))
1244 ret
= __isolate_lru_page(page
, mode
, file
);
1247 list_move(&page
->lru
, dst
);
1248 mem_cgroup_del_lru(page
);
1249 nr_taken
+= hpage_nr_pages(page
);
1252 /* we don't affect global LRU but rotate in our LRU */
1253 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1262 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1268 #define mem_cgroup_from_res_counter(counter, member) \
1269 container_of(counter, struct mem_cgroup, member)
1272 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1273 * @mem: the memory cgroup
1275 * Returns the maximum amount of memory @mem can be charged with, in
1278 static unsigned long mem_cgroup_margin(struct mem_cgroup
*mem
)
1280 unsigned long long margin
;
1282 margin
= res_counter_margin(&mem
->res
);
1283 if (do_swap_account
)
1284 margin
= min(margin
, res_counter_margin(&mem
->memsw
));
1285 return margin
>> PAGE_SHIFT
;
1288 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1290 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1293 if (cgrp
->parent
== NULL
)
1294 return vm_swappiness
;
1296 return memcg
->swappiness
;
1299 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1304 spin_lock(&mem
->pcp_counter_lock
);
1305 for_each_online_cpu(cpu
)
1306 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1307 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1308 spin_unlock(&mem
->pcp_counter_lock
);
1314 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1321 spin_lock(&mem
->pcp_counter_lock
);
1322 for_each_online_cpu(cpu
)
1323 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1324 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1325 spin_unlock(&mem
->pcp_counter_lock
);
1329 * 2 routines for checking "mem" is under move_account() or not.
1331 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1332 * for avoiding race in accounting. If true,
1333 * pc->mem_cgroup may be overwritten.
1335 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1336 * under hierarchy of moving cgroups. This is for
1337 * waiting at hith-memory prressure caused by "move".
1340 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1342 VM_BUG_ON(!rcu_read_lock_held());
1343 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1346 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1348 struct mem_cgroup
*from
;
1349 struct mem_cgroup
*to
;
1352 * Unlike task_move routines, we access mc.to, mc.from not under
1353 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1355 spin_lock(&mc
.lock
);
1360 if (from
== mem
|| to
== mem
1361 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1362 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1365 spin_unlock(&mc
.lock
);
1369 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1371 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1372 if (mem_cgroup_under_move(mem
)) {
1374 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1375 /* moving charge context might have finished. */
1378 finish_wait(&mc
.waitq
, &wait
);
1386 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1387 * @memcg: The memory cgroup that went over limit
1388 * @p: Task that is going to be killed
1390 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1393 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1395 struct cgroup
*task_cgrp
;
1396 struct cgroup
*mem_cgrp
;
1398 * Need a buffer in BSS, can't rely on allocations. The code relies
1399 * on the assumption that OOM is serialized for memory controller.
1400 * If this assumption is broken, revisit this code.
1402 static char memcg_name
[PATH_MAX
];
1411 mem_cgrp
= memcg
->css
.cgroup
;
1412 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1414 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1417 * Unfortunately, we are unable to convert to a useful name
1418 * But we'll still print out the usage information
1425 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1428 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1436 * Continues from above, so we don't need an KERN_ level
1438 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1441 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1442 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1443 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1444 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1445 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1447 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1448 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1449 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1453 * This function returns the number of memcg under hierarchy tree. Returns
1454 * 1(self count) if no children.
1456 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1459 struct mem_cgroup
*iter
;
1461 for_each_mem_cgroup_tree(iter
, mem
)
1467 * Return the memory (and swap, if configured) limit for a memcg.
1469 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1474 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1475 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1477 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1479 * If memsw is finite and limits the amount of swap space available
1480 * to this memcg, return that limit.
1482 return min(limit
, memsw
);
1486 * Visit the first child (need not be the first child as per the ordering
1487 * of the cgroup list, since we track last_scanned_child) of @mem and use
1488 * that to reclaim free pages from.
1490 static struct mem_cgroup
*
1491 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1493 struct mem_cgroup
*ret
= NULL
;
1494 struct cgroup_subsys_state
*css
;
1497 if (!root_mem
->use_hierarchy
) {
1498 css_get(&root_mem
->css
);
1504 nextid
= root_mem
->last_scanned_child
+ 1;
1505 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1507 if (css
&& css_tryget(css
))
1508 ret
= container_of(css
, struct mem_cgroup
, css
);
1511 /* Updates scanning parameter */
1513 /* this means start scan from ID:1 */
1514 root_mem
->last_scanned_child
= 0;
1516 root_mem
->last_scanned_child
= found
;
1522 #if MAX_NUMNODES > 1
1525 * Always updating the nodemask is not very good - even if we have an empty
1526 * list or the wrong list here, we can start from some node and traverse all
1527 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1530 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*mem
)
1534 if (time_after(mem
->next_scan_node_update
, jiffies
))
1537 mem
->next_scan_node_update
= jiffies
+ 10*HZ
;
1538 /* make a nodemask where this memcg uses memory from */
1539 mem
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1541 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1543 if (mem_cgroup_get_zonestat_node(mem
, nid
, LRU_INACTIVE_FILE
) ||
1544 mem_cgroup_get_zonestat_node(mem
, nid
, LRU_ACTIVE_FILE
))
1547 if (total_swap_pages
&&
1548 (mem_cgroup_get_zonestat_node(mem
, nid
, LRU_INACTIVE_ANON
) ||
1549 mem_cgroup_get_zonestat_node(mem
, nid
, LRU_ACTIVE_ANON
)))
1551 node_clear(nid
, mem
->scan_nodes
);
1556 * Selecting a node where we start reclaim from. Because what we need is just
1557 * reducing usage counter, start from anywhere is O,K. Considering
1558 * memory reclaim from current node, there are pros. and cons.
1560 * Freeing memory from current node means freeing memory from a node which
1561 * we'll use or we've used. So, it may make LRU bad. And if several threads
1562 * hit limits, it will see a contention on a node. But freeing from remote
1563 * node means more costs for memory reclaim because of memory latency.
1565 * Now, we use round-robin. Better algorithm is welcomed.
1567 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1571 mem_cgroup_may_update_nodemask(mem
);
1572 node
= mem
->last_scanned_node
;
1574 node
= next_node(node
, mem
->scan_nodes
);
1575 if (node
== MAX_NUMNODES
)
1576 node
= first_node(mem
->scan_nodes
);
1578 * We call this when we hit limit, not when pages are added to LRU.
1579 * No LRU may hold pages because all pages are UNEVICTABLE or
1580 * memcg is too small and all pages are not on LRU. In that case,
1581 * we use curret node.
1583 if (unlikely(node
== MAX_NUMNODES
))
1584 node
= numa_node_id();
1586 mem
->last_scanned_node
= node
;
1591 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1598 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1599 * we reclaimed from, so that we don't end up penalizing one child extensively
1600 * based on its position in the children list.
1602 * root_mem is the original ancestor that we've been reclaim from.
1604 * We give up and return to the caller when we visit root_mem twice.
1605 * (other groups can be removed while we're walking....)
1607 * If shrink==true, for avoiding to free too much, this returns immedieately.
1609 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1612 unsigned long reclaim_options
,
1613 unsigned long *total_scanned
)
1615 struct mem_cgroup
*victim
;
1618 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1619 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1620 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1621 unsigned long excess
;
1622 unsigned long nr_scanned
;
1624 excess
= res_counter_soft_limit_excess(&root_mem
->res
) >> PAGE_SHIFT
;
1626 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1627 if (root_mem
->memsw_is_minimum
)
1631 victim
= mem_cgroup_select_victim(root_mem
);
1632 if (victim
== root_mem
) {
1635 drain_all_stock_async();
1638 * If we have not been able to reclaim
1639 * anything, it might because there are
1640 * no reclaimable pages under this hierarchy
1642 if (!check_soft
|| !total
) {
1643 css_put(&victim
->css
);
1647 * We want to do more targeted reclaim.
1648 * excess >> 2 is not to excessive so as to
1649 * reclaim too much, nor too less that we keep
1650 * coming back to reclaim from this cgroup
1652 if (total
>= (excess
>> 2) ||
1653 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1654 css_put(&victim
->css
);
1659 if (!mem_cgroup_local_usage(victim
)) {
1660 /* this cgroup's local usage == 0 */
1661 css_put(&victim
->css
);
1664 /* we use swappiness of local cgroup */
1666 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1667 noswap
, get_swappiness(victim
), zone
,
1669 *total_scanned
+= nr_scanned
;
1671 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1672 noswap
, get_swappiness(victim
));
1673 css_put(&victim
->css
);
1675 * At shrinking usage, we can't check we should stop here or
1676 * reclaim more. It's depends on callers. last_scanned_child
1677 * will work enough for keeping fairness under tree.
1683 if (!res_counter_soft_limit_excess(&root_mem
->res
))
1685 } else if (mem_cgroup_margin(root_mem
))
1692 * Check OOM-Killer is already running under our hierarchy.
1693 * If someone is running, return false.
1695 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1697 int x
, lock_count
= 0;
1698 struct mem_cgroup
*iter
;
1700 for_each_mem_cgroup_tree(iter
, mem
) {
1701 x
= atomic_inc_return(&iter
->oom_lock
);
1702 lock_count
= max(x
, lock_count
);
1705 if (lock_count
== 1)
1710 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1712 struct mem_cgroup
*iter
;
1715 * When a new child is created while the hierarchy is under oom,
1716 * mem_cgroup_oom_lock() may not be called. We have to use
1717 * atomic_add_unless() here.
1719 for_each_mem_cgroup_tree(iter
, mem
)
1720 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1725 static DEFINE_MUTEX(memcg_oom_mutex
);
1726 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1728 struct oom_wait_info
{
1729 struct mem_cgroup
*mem
;
1733 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1734 unsigned mode
, int sync
, void *arg
)
1736 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1737 struct oom_wait_info
*oom_wait_info
;
1739 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1741 if (oom_wait_info
->mem
== wake_mem
)
1743 /* if no hierarchy, no match */
1744 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1747 * Both of oom_wait_info->mem and wake_mem are stable under us.
1748 * Then we can use css_is_ancestor without taking care of RCU.
1750 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1751 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1755 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1758 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1760 /* for filtering, pass "mem" as argument. */
1761 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1764 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1766 if (mem
&& atomic_read(&mem
->oom_lock
))
1767 memcg_wakeup_oom(mem
);
1771 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1773 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1775 struct oom_wait_info owait
;
1776 bool locked
, need_to_kill
;
1779 owait
.wait
.flags
= 0;
1780 owait
.wait
.func
= memcg_oom_wake_function
;
1781 owait
.wait
.private = current
;
1782 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1783 need_to_kill
= true;
1784 /* At first, try to OOM lock hierarchy under mem.*/
1785 mutex_lock(&memcg_oom_mutex
);
1786 locked
= mem_cgroup_oom_lock(mem
);
1788 * Even if signal_pending(), we can't quit charge() loop without
1789 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1790 * under OOM is always welcomed, use TASK_KILLABLE here.
1792 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1793 if (!locked
|| mem
->oom_kill_disable
)
1794 need_to_kill
= false;
1796 mem_cgroup_oom_notify(mem
);
1797 mutex_unlock(&memcg_oom_mutex
);
1800 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1801 mem_cgroup_out_of_memory(mem
, mask
);
1804 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1806 mutex_lock(&memcg_oom_mutex
);
1807 mem_cgroup_oom_unlock(mem
);
1808 memcg_wakeup_oom(mem
);
1809 mutex_unlock(&memcg_oom_mutex
);
1811 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1813 /* Give chance to dying process */
1814 schedule_timeout(1);
1819 * Currently used to update mapped file statistics, but the routine can be
1820 * generalized to update other statistics as well.
1822 * Notes: Race condition
1824 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1825 * it tends to be costly. But considering some conditions, we doesn't need
1826 * to do so _always_.
1828 * Considering "charge", lock_page_cgroup() is not required because all
1829 * file-stat operations happen after a page is attached to radix-tree. There
1830 * are no race with "charge".
1832 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1833 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1834 * if there are race with "uncharge". Statistics itself is properly handled
1837 * Considering "move", this is an only case we see a race. To make the race
1838 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1839 * possibility of race condition. If there is, we take a lock.
1842 void mem_cgroup_update_page_stat(struct page
*page
,
1843 enum mem_cgroup_page_stat_item idx
, int val
)
1845 struct mem_cgroup
*mem
;
1846 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1847 bool need_unlock
= false;
1848 unsigned long uninitialized_var(flags
);
1854 mem
= pc
->mem_cgroup
;
1855 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1857 /* pc->mem_cgroup is unstable ? */
1858 if (unlikely(mem_cgroup_stealed(mem
)) || PageTransHuge(page
)) {
1859 /* take a lock against to access pc->mem_cgroup */
1860 move_lock_page_cgroup(pc
, &flags
);
1862 mem
= pc
->mem_cgroup
;
1863 if (!mem
|| !PageCgroupUsed(pc
))
1868 case MEMCG_NR_FILE_MAPPED
:
1870 SetPageCgroupFileMapped(pc
);
1871 else if (!page_mapped(page
))
1872 ClearPageCgroupFileMapped(pc
);
1873 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1879 this_cpu_add(mem
->stat
->count
[idx
], val
);
1882 if (unlikely(need_unlock
))
1883 move_unlock_page_cgroup(pc
, &flags
);
1887 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1890 * size of first charge trial. "32" comes from vmscan.c's magic value.
1891 * TODO: maybe necessary to use big numbers in big irons.
1893 #define CHARGE_BATCH 32U
1894 struct memcg_stock_pcp
{
1895 struct mem_cgroup
*cached
; /* this never be root cgroup */
1896 unsigned int nr_pages
;
1897 struct work_struct work
;
1899 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1900 static atomic_t memcg_drain_count
;
1903 * Try to consume stocked charge on this cpu. If success, one page is consumed
1904 * from local stock and true is returned. If the stock is 0 or charges from a
1905 * cgroup which is not current target, returns false. This stock will be
1908 static bool consume_stock(struct mem_cgroup
*mem
)
1910 struct memcg_stock_pcp
*stock
;
1913 stock
= &get_cpu_var(memcg_stock
);
1914 if (mem
== stock
->cached
&& stock
->nr_pages
)
1916 else /* need to call res_counter_charge */
1918 put_cpu_var(memcg_stock
);
1923 * Returns stocks cached in percpu to res_counter and reset cached information.
1925 static void drain_stock(struct memcg_stock_pcp
*stock
)
1927 struct mem_cgroup
*old
= stock
->cached
;
1929 if (stock
->nr_pages
) {
1930 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
1932 res_counter_uncharge(&old
->res
, bytes
);
1933 if (do_swap_account
)
1934 res_counter_uncharge(&old
->memsw
, bytes
);
1935 stock
->nr_pages
= 0;
1937 stock
->cached
= NULL
;
1941 * This must be called under preempt disabled or must be called by
1942 * a thread which is pinned to local cpu.
1944 static void drain_local_stock(struct work_struct
*dummy
)
1946 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1951 * Cache charges(val) which is from res_counter, to local per_cpu area.
1952 * This will be consumed by consume_stock() function, later.
1954 static void refill_stock(struct mem_cgroup
*mem
, unsigned int nr_pages
)
1956 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1958 if (stock
->cached
!= mem
) { /* reset if necessary */
1960 stock
->cached
= mem
;
1962 stock
->nr_pages
+= nr_pages
;
1963 put_cpu_var(memcg_stock
);
1967 * Tries to drain stocked charges in other cpus. This function is asynchronous
1968 * and just put a work per cpu for draining localy on each cpu. Caller can
1969 * expects some charges will be back to res_counter later but cannot wait for
1972 static void drain_all_stock_async(void)
1975 /* This function is for scheduling "drain" in asynchronous way.
1976 * The result of "drain" is not directly handled by callers. Then,
1977 * if someone is calling drain, we don't have to call drain more.
1978 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1979 * there is a race. We just do loose check here.
1981 if (atomic_read(&memcg_drain_count
))
1983 /* Notify other cpus that system-wide "drain" is running */
1984 atomic_inc(&memcg_drain_count
);
1986 for_each_online_cpu(cpu
) {
1987 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1988 schedule_work_on(cpu
, &stock
->work
);
1991 atomic_dec(&memcg_drain_count
);
1992 /* We don't wait for flush_work */
1995 /* This is a synchronous drain interface. */
1996 static void drain_all_stock_sync(void)
1998 /* called when force_empty is called */
1999 atomic_inc(&memcg_drain_count
);
2000 schedule_on_each_cpu(drain_local_stock
);
2001 atomic_dec(&memcg_drain_count
);
2005 * This function drains percpu counter value from DEAD cpu and
2006 * move it to local cpu. Note that this function can be preempted.
2008 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
2012 spin_lock(&mem
->pcp_counter_lock
);
2013 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2014 long x
= per_cpu(mem
->stat
->count
[i
], cpu
);
2016 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
2017 mem
->nocpu_base
.count
[i
] += x
;
2019 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2020 unsigned long x
= per_cpu(mem
->stat
->events
[i
], cpu
);
2022 per_cpu(mem
->stat
->events
[i
], cpu
) = 0;
2023 mem
->nocpu_base
.events
[i
] += x
;
2025 /* need to clear ON_MOVE value, works as a kind of lock. */
2026 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2027 spin_unlock(&mem
->pcp_counter_lock
);
2030 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
2032 int idx
= MEM_CGROUP_ON_MOVE
;
2034 spin_lock(&mem
->pcp_counter_lock
);
2035 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
2036 spin_unlock(&mem
->pcp_counter_lock
);
2039 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2040 unsigned long action
,
2043 int cpu
= (unsigned long)hcpu
;
2044 struct memcg_stock_pcp
*stock
;
2045 struct mem_cgroup
*iter
;
2047 if ((action
== CPU_ONLINE
)) {
2048 for_each_mem_cgroup_all(iter
)
2049 synchronize_mem_cgroup_on_move(iter
, cpu
);
2053 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2056 for_each_mem_cgroup_all(iter
)
2057 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2059 stock
= &per_cpu(memcg_stock
, cpu
);
2065 /* See __mem_cgroup_try_charge() for details */
2067 CHARGE_OK
, /* success */
2068 CHARGE_RETRY
, /* need to retry but retry is not bad */
2069 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2070 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2071 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2074 static int mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
2075 unsigned int nr_pages
, bool oom_check
)
2077 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2078 struct mem_cgroup
*mem_over_limit
;
2079 struct res_counter
*fail_res
;
2080 unsigned long flags
= 0;
2083 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
2086 if (!do_swap_account
)
2088 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
2092 res_counter_uncharge(&mem
->res
, csize
);
2093 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2094 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2096 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2098 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2099 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2101 * Never reclaim on behalf of optional batching, retry with a
2102 * single page instead.
2104 if (nr_pages
== CHARGE_BATCH
)
2105 return CHARGE_RETRY
;
2107 if (!(gfp_mask
& __GFP_WAIT
))
2108 return CHARGE_WOULDBLOCK
;
2110 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2111 gfp_mask
, flags
, NULL
);
2112 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2113 return CHARGE_RETRY
;
2115 * Even though the limit is exceeded at this point, reclaim
2116 * may have been able to free some pages. Retry the charge
2117 * before killing the task.
2119 * Only for regular pages, though: huge pages are rather
2120 * unlikely to succeed so close to the limit, and we fall back
2121 * to regular pages anyway in case of failure.
2123 if (nr_pages
== 1 && ret
)
2124 return CHARGE_RETRY
;
2127 * At task move, charge accounts can be doubly counted. So, it's
2128 * better to wait until the end of task_move if something is going on.
2130 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2131 return CHARGE_RETRY
;
2133 /* If we don't need to call oom-killer at el, return immediately */
2135 return CHARGE_NOMEM
;
2137 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2138 return CHARGE_OOM_DIE
;
2140 return CHARGE_RETRY
;
2144 * Unlike exported interface, "oom" parameter is added. if oom==true,
2145 * oom-killer can be invoked.
2147 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2149 unsigned int nr_pages
,
2150 struct mem_cgroup
**memcg
,
2153 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2154 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2155 struct mem_cgroup
*mem
= NULL
;
2159 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2160 * in system level. So, allow to go ahead dying process in addition to
2163 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2164 || fatal_signal_pending(current
)))
2168 * We always charge the cgroup the mm_struct belongs to.
2169 * The mm_struct's mem_cgroup changes on task migration if the
2170 * thread group leader migrates. It's possible that mm is not
2171 * set, if so charge the init_mm (happens for pagecache usage).
2176 if (*memcg
) { /* css should be a valid one */
2178 VM_BUG_ON(css_is_removed(&mem
->css
));
2179 if (mem_cgroup_is_root(mem
))
2181 if (nr_pages
== 1 && consume_stock(mem
))
2185 struct task_struct
*p
;
2188 p
= rcu_dereference(mm
->owner
);
2190 * Because we don't have task_lock(), "p" can exit.
2191 * In that case, "mem" can point to root or p can be NULL with
2192 * race with swapoff. Then, we have small risk of mis-accouning.
2193 * But such kind of mis-account by race always happens because
2194 * we don't have cgroup_mutex(). It's overkill and we allo that
2196 * (*) swapoff at el will charge against mm-struct not against
2197 * task-struct. So, mm->owner can be NULL.
2199 mem
= mem_cgroup_from_task(p
);
2200 if (!mem
|| mem_cgroup_is_root(mem
)) {
2204 if (nr_pages
== 1 && consume_stock(mem
)) {
2206 * It seems dagerous to access memcg without css_get().
2207 * But considering how consume_stok works, it's not
2208 * necessary. If consume_stock success, some charges
2209 * from this memcg are cached on this cpu. So, we
2210 * don't need to call css_get()/css_tryget() before
2211 * calling consume_stock().
2216 /* after here, we may be blocked. we need to get refcnt */
2217 if (!css_tryget(&mem
->css
)) {
2227 /* If killed, bypass charge */
2228 if (fatal_signal_pending(current
)) {
2234 if (oom
&& !nr_oom_retries
) {
2236 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2239 ret
= mem_cgroup_do_charge(mem
, gfp_mask
, batch
, oom_check
);
2243 case CHARGE_RETRY
: /* not in OOM situation but retry */
2248 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2251 case CHARGE_NOMEM
: /* OOM routine works */
2256 /* If oom, we never return -ENOMEM */
2259 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2263 } while (ret
!= CHARGE_OK
);
2265 if (batch
> nr_pages
)
2266 refill_stock(mem
, batch
- nr_pages
);
2280 * Somemtimes we have to undo a charge we got by try_charge().
2281 * This function is for that and do uncharge, put css's refcnt.
2282 * gotten by try_charge().
2284 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2285 unsigned int nr_pages
)
2287 if (!mem_cgroup_is_root(mem
)) {
2288 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2290 res_counter_uncharge(&mem
->res
, bytes
);
2291 if (do_swap_account
)
2292 res_counter_uncharge(&mem
->memsw
, bytes
);
2297 * A helper function to get mem_cgroup from ID. must be called under
2298 * rcu_read_lock(). The caller must check css_is_removed() or some if
2299 * it's concern. (dropping refcnt from swap can be called against removed
2302 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2304 struct cgroup_subsys_state
*css
;
2306 /* ID 0 is unused ID */
2309 css
= css_lookup(&mem_cgroup_subsys
, id
);
2312 return container_of(css
, struct mem_cgroup
, css
);
2315 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2317 struct mem_cgroup
*mem
= NULL
;
2318 struct page_cgroup
*pc
;
2322 VM_BUG_ON(!PageLocked(page
));
2324 pc
= lookup_page_cgroup(page
);
2325 lock_page_cgroup(pc
);
2326 if (PageCgroupUsed(pc
)) {
2327 mem
= pc
->mem_cgroup
;
2328 if (mem
&& !css_tryget(&mem
->css
))
2330 } else if (PageSwapCache(page
)) {
2331 ent
.val
= page_private(page
);
2332 id
= lookup_swap_cgroup(ent
);
2334 mem
= mem_cgroup_lookup(id
);
2335 if (mem
&& !css_tryget(&mem
->css
))
2339 unlock_page_cgroup(pc
);
2343 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2345 unsigned int nr_pages
,
2346 struct page_cgroup
*pc
,
2347 enum charge_type ctype
)
2349 lock_page_cgroup(pc
);
2350 if (unlikely(PageCgroupUsed(pc
))) {
2351 unlock_page_cgroup(pc
);
2352 __mem_cgroup_cancel_charge(mem
, nr_pages
);
2356 * we don't need page_cgroup_lock about tail pages, becase they are not
2357 * accessed by any other context at this point.
2359 pc
->mem_cgroup
= mem
;
2361 * We access a page_cgroup asynchronously without lock_page_cgroup().
2362 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2363 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2364 * before USED bit, we need memory barrier here.
2365 * See mem_cgroup_add_lru_list(), etc.
2369 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2370 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2371 SetPageCgroupCache(pc
);
2372 SetPageCgroupUsed(pc
);
2374 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2375 ClearPageCgroupCache(pc
);
2376 SetPageCgroupUsed(pc
);
2382 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), nr_pages
);
2383 unlock_page_cgroup(pc
);
2385 * "charge_statistics" updated event counter. Then, check it.
2386 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2387 * if they exceeds softlimit.
2389 memcg_check_events(mem
, page
);
2392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2394 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2395 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2397 * Because tail pages are not marked as "used", set it. We're under
2398 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2400 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2402 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2403 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2404 unsigned long flags
;
2406 if (mem_cgroup_disabled())
2409 * We have no races with charge/uncharge but will have races with
2410 * page state accounting.
2412 move_lock_page_cgroup(head_pc
, &flags
);
2414 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2415 smp_wmb(); /* see __commit_charge() */
2416 if (PageCgroupAcctLRU(head_pc
)) {
2418 struct mem_cgroup_per_zone
*mz
;
2421 * LRU flags cannot be copied because we need to add tail
2422 *.page to LRU by generic call and our hook will be called.
2423 * We hold lru_lock, then, reduce counter directly.
2425 lru
= page_lru(head
);
2426 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2427 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2429 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2430 move_unlock_page_cgroup(head_pc
, &flags
);
2435 * mem_cgroup_move_account - move account of the page
2437 * @nr_pages: number of regular pages (>1 for huge pages)
2438 * @pc: page_cgroup of the page.
2439 * @from: mem_cgroup which the page is moved from.
2440 * @to: mem_cgroup which the page is moved to. @from != @to.
2441 * @uncharge: whether we should call uncharge and css_put against @from.
2443 * The caller must confirm following.
2444 * - page is not on LRU (isolate_page() is useful.)
2445 * - compound_lock is held when nr_pages > 1
2447 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2448 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2449 * true, this function does "uncharge" from old cgroup, but it doesn't if
2450 * @uncharge is false, so a caller should do "uncharge".
2452 static int mem_cgroup_move_account(struct page
*page
,
2453 unsigned int nr_pages
,
2454 struct page_cgroup
*pc
,
2455 struct mem_cgroup
*from
,
2456 struct mem_cgroup
*to
,
2459 unsigned long flags
;
2462 VM_BUG_ON(from
== to
);
2463 VM_BUG_ON(PageLRU(page
));
2465 * The page is isolated from LRU. So, collapse function
2466 * will not handle this page. But page splitting can happen.
2467 * Do this check under compound_page_lock(). The caller should
2471 if (nr_pages
> 1 && !PageTransHuge(page
))
2474 lock_page_cgroup(pc
);
2477 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2480 move_lock_page_cgroup(pc
, &flags
);
2482 if (PageCgroupFileMapped(pc
)) {
2483 /* Update mapped_file data for mem_cgroup */
2485 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2486 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2489 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2491 /* This is not "cancel", but cancel_charge does all we need. */
2492 __mem_cgroup_cancel_charge(from
, nr_pages
);
2494 /* caller should have done css_get */
2495 pc
->mem_cgroup
= to
;
2496 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2498 * We charges against "to" which may not have any tasks. Then, "to"
2499 * can be under rmdir(). But in current implementation, caller of
2500 * this function is just force_empty() and move charge, so it's
2501 * guaranteed that "to" is never removed. So, we don't check rmdir
2504 move_unlock_page_cgroup(pc
, &flags
);
2507 unlock_page_cgroup(pc
);
2511 memcg_check_events(to
, page
);
2512 memcg_check_events(from
, page
);
2518 * move charges to its parent.
2521 static int mem_cgroup_move_parent(struct page
*page
,
2522 struct page_cgroup
*pc
,
2523 struct mem_cgroup
*child
,
2526 struct cgroup
*cg
= child
->css
.cgroup
;
2527 struct cgroup
*pcg
= cg
->parent
;
2528 struct mem_cgroup
*parent
;
2529 unsigned int nr_pages
;
2530 unsigned long uninitialized_var(flags
);
2538 if (!get_page_unless_zero(page
))
2540 if (isolate_lru_page(page
))
2543 nr_pages
= hpage_nr_pages(page
);
2545 parent
= mem_cgroup_from_cont(pcg
);
2546 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2551 flags
= compound_lock_irqsave(page
);
2553 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2555 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2558 compound_unlock_irqrestore(page
, flags
);
2560 putback_lru_page(page
);
2568 * Charge the memory controller for page usage.
2570 * 0 if the charge was successful
2571 * < 0 if the cgroup is over its limit
2573 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2574 gfp_t gfp_mask
, enum charge_type ctype
)
2576 struct mem_cgroup
*mem
= NULL
;
2577 unsigned int nr_pages
= 1;
2578 struct page_cgroup
*pc
;
2582 if (PageTransHuge(page
)) {
2583 nr_pages
<<= compound_order(page
);
2584 VM_BUG_ON(!PageTransHuge(page
));
2586 * Never OOM-kill a process for a huge page. The
2587 * fault handler will fall back to regular pages.
2592 pc
= lookup_page_cgroup(page
);
2593 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2595 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &mem
, oom
);
2599 __mem_cgroup_commit_charge(mem
, page
, nr_pages
, pc
, ctype
);
2603 int mem_cgroup_newpage_charge(struct page
*page
,
2604 struct mm_struct
*mm
, gfp_t gfp_mask
)
2606 if (mem_cgroup_disabled())
2609 * If already mapped, we don't have to account.
2610 * If page cache, page->mapping has address_space.
2611 * But page->mapping may have out-of-use anon_vma pointer,
2612 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2615 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2619 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2620 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2624 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2625 enum charge_type ctype
);
2628 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*mem
,
2629 enum charge_type ctype
)
2631 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2633 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2634 * is already on LRU. It means the page may on some other page_cgroup's
2635 * LRU. Take care of it.
2637 mem_cgroup_lru_del_before_commit(page
);
2638 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
2639 mem_cgroup_lru_add_after_commit(page
);
2643 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2646 struct mem_cgroup
*mem
= NULL
;
2649 if (mem_cgroup_disabled())
2651 if (PageCompound(page
))
2654 * Corner case handling. This is called from add_to_page_cache()
2655 * in usual. But some FS (shmem) precharges this page before calling it
2656 * and call add_to_page_cache() with GFP_NOWAIT.
2658 * For GFP_NOWAIT case, the page may be pre-charged before calling
2659 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2660 * charge twice. (It works but has to pay a bit larger cost.)
2661 * And when the page is SwapCache, it should take swap information
2662 * into account. This is under lock_page() now.
2664 if (!(gfp_mask
& __GFP_WAIT
)) {
2665 struct page_cgroup
*pc
;
2667 pc
= lookup_page_cgroup(page
);
2670 lock_page_cgroup(pc
);
2671 if (PageCgroupUsed(pc
)) {
2672 unlock_page_cgroup(pc
);
2675 unlock_page_cgroup(pc
);
2681 if (page_is_file_cache(page
)) {
2682 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &mem
, true);
2687 * FUSE reuses pages without going through the final
2688 * put that would remove them from the LRU list, make
2689 * sure that they get relinked properly.
2691 __mem_cgroup_commit_charge_lrucare(page
, mem
,
2692 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2696 if (PageSwapCache(page
)) {
2697 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2699 __mem_cgroup_commit_charge_swapin(page
, mem
,
2700 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2702 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2703 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2709 * While swap-in, try_charge -> commit or cancel, the page is locked.
2710 * And when try_charge() successfully returns, one refcnt to memcg without
2711 * struct page_cgroup is acquired. This refcnt will be consumed by
2712 * "commit()" or removed by "cancel()"
2714 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2716 gfp_t mask
, struct mem_cgroup
**ptr
)
2718 struct mem_cgroup
*mem
;
2723 if (mem_cgroup_disabled())
2726 if (!do_swap_account
)
2729 * A racing thread's fault, or swapoff, may have already updated
2730 * the pte, and even removed page from swap cache: in those cases
2731 * do_swap_page()'s pte_same() test will fail; but there's also a
2732 * KSM case which does need to charge the page.
2734 if (!PageSwapCache(page
))
2736 mem
= try_get_mem_cgroup_from_page(page
);
2740 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2746 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2750 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2751 enum charge_type ctype
)
2753 if (mem_cgroup_disabled())
2757 cgroup_exclude_rmdir(&ptr
->css
);
2759 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2761 * Now swap is on-memory. This means this page may be
2762 * counted both as mem and swap....double count.
2763 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2764 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2765 * may call delete_from_swap_cache() before reach here.
2767 if (do_swap_account
&& PageSwapCache(page
)) {
2768 swp_entry_t ent
= {.val
= page_private(page
)};
2770 struct mem_cgroup
*memcg
;
2772 id
= swap_cgroup_record(ent
, 0);
2774 memcg
= mem_cgroup_lookup(id
);
2777 * This recorded memcg can be obsolete one. So, avoid
2778 * calling css_tryget
2780 if (!mem_cgroup_is_root(memcg
))
2781 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2782 mem_cgroup_swap_statistics(memcg
, false);
2783 mem_cgroup_put(memcg
);
2788 * At swapin, we may charge account against cgroup which has no tasks.
2789 * So, rmdir()->pre_destroy() can be called while we do this charge.
2790 * In that case, we need to call pre_destroy() again. check it here.
2792 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2795 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2797 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2798 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2801 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2803 if (mem_cgroup_disabled())
2807 __mem_cgroup_cancel_charge(mem
, 1);
2810 static void mem_cgroup_do_uncharge(struct mem_cgroup
*mem
,
2811 unsigned int nr_pages
,
2812 const enum charge_type ctype
)
2814 struct memcg_batch_info
*batch
= NULL
;
2815 bool uncharge_memsw
= true;
2817 /* If swapout, usage of swap doesn't decrease */
2818 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2819 uncharge_memsw
= false;
2821 batch
= ¤t
->memcg_batch
;
2823 * In usual, we do css_get() when we remember memcg pointer.
2824 * But in this case, we keep res->usage until end of a series of
2825 * uncharges. Then, it's ok to ignore memcg's refcnt.
2830 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2831 * In those cases, all pages freed continuously can be expected to be in
2832 * the same cgroup and we have chance to coalesce uncharges.
2833 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2834 * because we want to do uncharge as soon as possible.
2837 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2838 goto direct_uncharge
;
2841 goto direct_uncharge
;
2844 * In typical case, batch->memcg == mem. This means we can
2845 * merge a series of uncharges to an uncharge of res_counter.
2846 * If not, we uncharge res_counter ony by one.
2848 if (batch
->memcg
!= mem
)
2849 goto direct_uncharge
;
2850 /* remember freed charge and uncharge it later */
2853 batch
->memsw_nr_pages
++;
2856 res_counter_uncharge(&mem
->res
, nr_pages
* PAGE_SIZE
);
2858 res_counter_uncharge(&mem
->memsw
, nr_pages
* PAGE_SIZE
);
2859 if (unlikely(batch
->memcg
!= mem
))
2860 memcg_oom_recover(mem
);
2865 * uncharge if !page_mapped(page)
2867 static struct mem_cgroup
*
2868 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2870 struct mem_cgroup
*mem
= NULL
;
2871 unsigned int nr_pages
= 1;
2872 struct page_cgroup
*pc
;
2874 if (mem_cgroup_disabled())
2877 if (PageSwapCache(page
))
2880 if (PageTransHuge(page
)) {
2881 nr_pages
<<= compound_order(page
);
2882 VM_BUG_ON(!PageTransHuge(page
));
2885 * Check if our page_cgroup is valid
2887 pc
= lookup_page_cgroup(page
);
2888 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2891 lock_page_cgroup(pc
);
2893 mem
= pc
->mem_cgroup
;
2895 if (!PageCgroupUsed(pc
))
2899 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2900 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2901 /* See mem_cgroup_prepare_migration() */
2902 if (page_mapped(page
) || PageCgroupMigration(pc
))
2905 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2906 if (!PageAnon(page
)) { /* Shared memory */
2907 if (page
->mapping
&& !page_is_file_cache(page
))
2909 } else if (page_mapped(page
)) /* Anon */
2916 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), -nr_pages
);
2918 ClearPageCgroupUsed(pc
);
2920 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2921 * freed from LRU. This is safe because uncharged page is expected not
2922 * to be reused (freed soon). Exception is SwapCache, it's handled by
2923 * special functions.
2926 unlock_page_cgroup(pc
);
2928 * even after unlock, we have mem->res.usage here and this memcg
2929 * will never be freed.
2931 memcg_check_events(mem
, page
);
2932 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
2933 mem_cgroup_swap_statistics(mem
, true);
2934 mem_cgroup_get(mem
);
2936 if (!mem_cgroup_is_root(mem
))
2937 mem_cgroup_do_uncharge(mem
, nr_pages
, ctype
);
2942 unlock_page_cgroup(pc
);
2946 void mem_cgroup_uncharge_page(struct page
*page
)
2949 if (page_mapped(page
))
2951 if (page
->mapping
&& !PageAnon(page
))
2953 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2956 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2958 VM_BUG_ON(page_mapped(page
));
2959 VM_BUG_ON(page
->mapping
);
2960 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2964 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2965 * In that cases, pages are freed continuously and we can expect pages
2966 * are in the same memcg. All these calls itself limits the number of
2967 * pages freed at once, then uncharge_start/end() is called properly.
2968 * This may be called prural(2) times in a context,
2971 void mem_cgroup_uncharge_start(void)
2973 current
->memcg_batch
.do_batch
++;
2974 /* We can do nest. */
2975 if (current
->memcg_batch
.do_batch
== 1) {
2976 current
->memcg_batch
.memcg
= NULL
;
2977 current
->memcg_batch
.nr_pages
= 0;
2978 current
->memcg_batch
.memsw_nr_pages
= 0;
2982 void mem_cgroup_uncharge_end(void)
2984 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2986 if (!batch
->do_batch
)
2990 if (batch
->do_batch
) /* If stacked, do nothing. */
2996 * This "batch->memcg" is valid without any css_get/put etc...
2997 * bacause we hide charges behind us.
2999 if (batch
->nr_pages
)
3000 res_counter_uncharge(&batch
->memcg
->res
,
3001 batch
->nr_pages
* PAGE_SIZE
);
3002 if (batch
->memsw_nr_pages
)
3003 res_counter_uncharge(&batch
->memcg
->memsw
,
3004 batch
->memsw_nr_pages
* PAGE_SIZE
);
3005 memcg_oom_recover(batch
->memcg
);
3006 /* forget this pointer (for sanity check) */
3007 batch
->memcg
= NULL
;
3012 * called after __delete_from_swap_cache() and drop "page" account.
3013 * memcg information is recorded to swap_cgroup of "ent"
3016 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3018 struct mem_cgroup
*memcg
;
3019 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3021 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3022 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3024 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3027 * record memcg information, if swapout && memcg != NULL,
3028 * mem_cgroup_get() was called in uncharge().
3030 if (do_swap_account
&& swapout
&& memcg
)
3031 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3035 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3037 * called from swap_entry_free(). remove record in swap_cgroup and
3038 * uncharge "memsw" account.
3040 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3042 struct mem_cgroup
*memcg
;
3045 if (!do_swap_account
)
3048 id
= swap_cgroup_record(ent
, 0);
3050 memcg
= mem_cgroup_lookup(id
);
3053 * We uncharge this because swap is freed.
3054 * This memcg can be obsolete one. We avoid calling css_tryget
3056 if (!mem_cgroup_is_root(memcg
))
3057 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3058 mem_cgroup_swap_statistics(memcg
, false);
3059 mem_cgroup_put(memcg
);
3065 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3066 * @entry: swap entry to be moved
3067 * @from: mem_cgroup which the entry is moved from
3068 * @to: mem_cgroup which the entry is moved to
3069 * @need_fixup: whether we should fixup res_counters and refcounts.
3071 * It succeeds only when the swap_cgroup's record for this entry is the same
3072 * as the mem_cgroup's id of @from.
3074 * Returns 0 on success, -EINVAL on failure.
3076 * The caller must have charged to @to, IOW, called res_counter_charge() about
3077 * both res and memsw, and called css_get().
3079 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3080 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3082 unsigned short old_id
, new_id
;
3084 old_id
= css_id(&from
->css
);
3085 new_id
= css_id(&to
->css
);
3087 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3088 mem_cgroup_swap_statistics(from
, false);
3089 mem_cgroup_swap_statistics(to
, true);
3091 * This function is only called from task migration context now.
3092 * It postpones res_counter and refcount handling till the end
3093 * of task migration(mem_cgroup_clear_mc()) for performance
3094 * improvement. But we cannot postpone mem_cgroup_get(to)
3095 * because if the process that has been moved to @to does
3096 * swap-in, the refcount of @to might be decreased to 0.
3100 if (!mem_cgroup_is_root(from
))
3101 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3102 mem_cgroup_put(from
);
3104 * we charged both to->res and to->memsw, so we should
3107 if (!mem_cgroup_is_root(to
))
3108 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3115 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3116 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3123 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3126 int mem_cgroup_prepare_migration(struct page
*page
,
3127 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3129 struct mem_cgroup
*mem
= NULL
;
3130 struct page_cgroup
*pc
;
3131 enum charge_type ctype
;
3136 VM_BUG_ON(PageTransHuge(page
));
3137 if (mem_cgroup_disabled())
3140 pc
= lookup_page_cgroup(page
);
3141 lock_page_cgroup(pc
);
3142 if (PageCgroupUsed(pc
)) {
3143 mem
= pc
->mem_cgroup
;
3146 * At migrating an anonymous page, its mapcount goes down
3147 * to 0 and uncharge() will be called. But, even if it's fully
3148 * unmapped, migration may fail and this page has to be
3149 * charged again. We set MIGRATION flag here and delay uncharge
3150 * until end_migration() is called
3152 * Corner Case Thinking
3154 * When the old page was mapped as Anon and it's unmap-and-freed
3155 * while migration was ongoing.
3156 * If unmap finds the old page, uncharge() of it will be delayed
3157 * until end_migration(). If unmap finds a new page, it's
3158 * uncharged when it make mapcount to be 1->0. If unmap code
3159 * finds swap_migration_entry, the new page will not be mapped
3160 * and end_migration() will find it(mapcount==0).
3163 * When the old page was mapped but migraion fails, the kernel
3164 * remaps it. A charge for it is kept by MIGRATION flag even
3165 * if mapcount goes down to 0. We can do remap successfully
3166 * without charging it again.
3169 * The "old" page is under lock_page() until the end of
3170 * migration, so, the old page itself will not be swapped-out.
3171 * If the new page is swapped out before end_migraton, our
3172 * hook to usual swap-out path will catch the event.
3175 SetPageCgroupMigration(pc
);
3177 unlock_page_cgroup(pc
);
3179 * If the page is not charged at this point,
3186 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3187 css_put(&mem
->css
);/* drop extra refcnt */
3188 if (ret
|| *ptr
== NULL
) {
3189 if (PageAnon(page
)) {
3190 lock_page_cgroup(pc
);
3191 ClearPageCgroupMigration(pc
);
3192 unlock_page_cgroup(pc
);
3194 * The old page may be fully unmapped while we kept it.
3196 mem_cgroup_uncharge_page(page
);
3201 * We charge new page before it's used/mapped. So, even if unlock_page()
3202 * is called before end_migration, we can catch all events on this new
3203 * page. In the case new page is migrated but not remapped, new page's
3204 * mapcount will be finally 0 and we call uncharge in end_migration().
3206 pc
= lookup_page_cgroup(newpage
);
3208 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3209 else if (page_is_file_cache(page
))
3210 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3212 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3213 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
3217 /* remove redundant charge if migration failed*/
3218 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
3219 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3221 struct page
*used
, *unused
;
3222 struct page_cgroup
*pc
;
3226 /* blocks rmdir() */
3227 cgroup_exclude_rmdir(&mem
->css
);
3228 if (!migration_ok
) {
3236 * We disallowed uncharge of pages under migration because mapcount
3237 * of the page goes down to zero, temporarly.
3238 * Clear the flag and check the page should be charged.
3240 pc
= lookup_page_cgroup(oldpage
);
3241 lock_page_cgroup(pc
);
3242 ClearPageCgroupMigration(pc
);
3243 unlock_page_cgroup(pc
);
3245 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3248 * If a page is a file cache, radix-tree replacement is very atomic
3249 * and we can skip this check. When it was an Anon page, its mapcount
3250 * goes down to 0. But because we added MIGRATION flage, it's not
3251 * uncharged yet. There are several case but page->mapcount check
3252 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3253 * check. (see prepare_charge() also)
3256 mem_cgroup_uncharge_page(used
);
3258 * At migration, we may charge account against cgroup which has no
3260 * So, rmdir()->pre_destroy() can be called while we do this charge.
3261 * In that case, we need to call pre_destroy() again. check it here.
3263 cgroup_release_and_wakeup_rmdir(&mem
->css
);
3267 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3268 * Calling hierarchical_reclaim is not enough because we should update
3269 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3270 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3271 * not from the memcg which this page would be charged to.
3272 * try_charge_swapin does all of these works properly.
3274 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
3275 struct mm_struct
*mm
,
3278 struct mem_cgroup
*mem
;
3281 if (mem_cgroup_disabled())
3284 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
3286 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
3291 #ifdef CONFIG_DEBUG_VM
3292 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3294 struct page_cgroup
*pc
;
3296 pc
= lookup_page_cgroup(page
);
3297 if (likely(pc
) && PageCgroupUsed(pc
))
3302 bool mem_cgroup_bad_page_check(struct page
*page
)
3304 if (mem_cgroup_disabled())
3307 return lookup_page_cgroup_used(page
) != NULL
;
3310 void mem_cgroup_print_bad_page(struct page
*page
)
3312 struct page_cgroup
*pc
;
3314 pc
= lookup_page_cgroup_used(page
);
3319 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3320 pc
, pc
->flags
, pc
->mem_cgroup
);
3322 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3325 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3330 printk(KERN_CONT
"(%s)\n",
3331 (ret
< 0) ? "cannot get the path" : path
);
3337 static DEFINE_MUTEX(set_limit_mutex
);
3339 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3340 unsigned long long val
)
3343 u64 memswlimit
, memlimit
;
3345 int children
= mem_cgroup_count_children(memcg
);
3346 u64 curusage
, oldusage
;
3350 * For keeping hierarchical_reclaim simple, how long we should retry
3351 * is depends on callers. We set our retry-count to be function
3352 * of # of children which we should visit in this loop.
3354 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3356 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3359 while (retry_count
) {
3360 if (signal_pending(current
)) {
3365 * Rather than hide all in some function, I do this in
3366 * open coded manner. You see what this really does.
3367 * We have to guarantee mem->res.limit < mem->memsw.limit.
3369 mutex_lock(&set_limit_mutex
);
3370 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3371 if (memswlimit
< val
) {
3373 mutex_unlock(&set_limit_mutex
);
3377 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3381 ret
= res_counter_set_limit(&memcg
->res
, val
);
3383 if (memswlimit
== val
)
3384 memcg
->memsw_is_minimum
= true;
3386 memcg
->memsw_is_minimum
= false;
3388 mutex_unlock(&set_limit_mutex
);
3393 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3394 MEM_CGROUP_RECLAIM_SHRINK
,
3396 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3397 /* Usage is reduced ? */
3398 if (curusage
>= oldusage
)
3401 oldusage
= curusage
;
3403 if (!ret
&& enlarge
)
3404 memcg_oom_recover(memcg
);
3409 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3410 unsigned long long val
)
3413 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3414 int children
= mem_cgroup_count_children(memcg
);
3418 /* see mem_cgroup_resize_res_limit */
3419 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3420 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3421 while (retry_count
) {
3422 if (signal_pending(current
)) {
3427 * Rather than hide all in some function, I do this in
3428 * open coded manner. You see what this really does.
3429 * We have to guarantee mem->res.limit < mem->memsw.limit.
3431 mutex_lock(&set_limit_mutex
);
3432 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3433 if (memlimit
> val
) {
3435 mutex_unlock(&set_limit_mutex
);
3438 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3439 if (memswlimit
< val
)
3441 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3443 if (memlimit
== val
)
3444 memcg
->memsw_is_minimum
= true;
3446 memcg
->memsw_is_minimum
= false;
3448 mutex_unlock(&set_limit_mutex
);
3453 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3454 MEM_CGROUP_RECLAIM_NOSWAP
|
3455 MEM_CGROUP_RECLAIM_SHRINK
,
3457 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3458 /* Usage is reduced ? */
3459 if (curusage
>= oldusage
)
3462 oldusage
= curusage
;
3464 if (!ret
&& enlarge
)
3465 memcg_oom_recover(memcg
);
3469 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3471 unsigned long *total_scanned
)
3473 unsigned long nr_reclaimed
= 0;
3474 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3475 unsigned long reclaimed
;
3477 struct mem_cgroup_tree_per_zone
*mctz
;
3478 unsigned long long excess
;
3479 unsigned long nr_scanned
;
3484 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3486 * This loop can run a while, specially if mem_cgroup's continuously
3487 * keep exceeding their soft limit and putting the system under
3494 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3499 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3501 MEM_CGROUP_RECLAIM_SOFT
,
3503 nr_reclaimed
+= reclaimed
;
3504 *total_scanned
+= nr_scanned
;
3505 spin_lock(&mctz
->lock
);
3508 * If we failed to reclaim anything from this memory cgroup
3509 * it is time to move on to the next cgroup
3515 * Loop until we find yet another one.
3517 * By the time we get the soft_limit lock
3518 * again, someone might have aded the
3519 * group back on the RB tree. Iterate to
3520 * make sure we get a different mem.
3521 * mem_cgroup_largest_soft_limit_node returns
3522 * NULL if no other cgroup is present on
3526 __mem_cgroup_largest_soft_limit_node(mctz
);
3528 css_put(&next_mz
->mem
->css
);
3529 else /* next_mz == NULL or other memcg */
3533 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3534 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3536 * One school of thought says that we should not add
3537 * back the node to the tree if reclaim returns 0.
3538 * But our reclaim could return 0, simply because due
3539 * to priority we are exposing a smaller subset of
3540 * memory to reclaim from. Consider this as a longer
3543 /* If excess == 0, no tree ops */
3544 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3545 spin_unlock(&mctz
->lock
);
3546 css_put(&mz
->mem
->css
);
3549 * Could not reclaim anything and there are no more
3550 * mem cgroups to try or we seem to be looping without
3551 * reclaiming anything.
3553 if (!nr_reclaimed
&&
3555 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3557 } while (!nr_reclaimed
);
3559 css_put(&next_mz
->mem
->css
);
3560 return nr_reclaimed
;
3564 * This routine traverse page_cgroup in given list and drop them all.
3565 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3567 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3568 int node
, int zid
, enum lru_list lru
)
3571 struct mem_cgroup_per_zone
*mz
;
3572 struct page_cgroup
*pc
, *busy
;
3573 unsigned long flags
, loop
;
3574 struct list_head
*list
;
3577 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3578 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3579 list
= &mz
->lists
[lru
];
3581 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3582 /* give some margin against EBUSY etc...*/
3589 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3590 if (list_empty(list
)) {
3591 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3594 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3596 list_move(&pc
->lru
, list
);
3598 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3601 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3603 page
= lookup_cgroup_page(pc
);
3605 ret
= mem_cgroup_move_parent(page
, pc
, mem
, GFP_KERNEL
);
3609 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3610 /* found lock contention or "pc" is obsolete. */
3617 if (!ret
&& !list_empty(list
))
3623 * make mem_cgroup's charge to be 0 if there is no task.
3624 * This enables deleting this mem_cgroup.
3626 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3629 int node
, zid
, shrink
;
3630 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3631 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3636 /* should free all ? */
3642 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3645 if (signal_pending(current
))
3647 /* This is for making all *used* pages to be on LRU. */
3648 lru_add_drain_all();
3649 drain_all_stock_sync();
3651 mem_cgroup_start_move(mem
);
3652 for_each_node_state(node
, N_HIGH_MEMORY
) {
3653 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3656 ret
= mem_cgroup_force_empty_list(mem
,
3665 mem_cgroup_end_move(mem
);
3666 memcg_oom_recover(mem
);
3667 /* it seems parent cgroup doesn't have enough mem */
3671 /* "ret" should also be checked to ensure all lists are empty. */
3672 } while (mem
->res
.usage
> 0 || ret
);
3678 /* returns EBUSY if there is a task or if we come here twice. */
3679 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3683 /* we call try-to-free pages for make this cgroup empty */
3684 lru_add_drain_all();
3685 /* try to free all pages in this cgroup */
3687 while (nr_retries
&& mem
->res
.usage
> 0) {
3690 if (signal_pending(current
)) {
3694 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3695 false, get_swappiness(mem
));
3698 /* maybe some writeback is necessary */
3699 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3704 /* try move_account...there may be some *locked* pages. */
3708 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3710 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3714 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3716 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3719 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3723 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3724 struct cgroup
*parent
= cont
->parent
;
3725 struct mem_cgroup
*parent_mem
= NULL
;
3728 parent_mem
= mem_cgroup_from_cont(parent
);
3732 * If parent's use_hierarchy is set, we can't make any modifications
3733 * in the child subtrees. If it is unset, then the change can
3734 * occur, provided the current cgroup has no children.
3736 * For the root cgroup, parent_mem is NULL, we allow value to be
3737 * set if there are no children.
3739 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3740 (val
== 1 || val
== 0)) {
3741 if (list_empty(&cont
->children
))
3742 mem
->use_hierarchy
= val
;
3753 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*mem
,
3754 enum mem_cgroup_stat_index idx
)
3756 struct mem_cgroup
*iter
;
3759 /* Per-cpu values can be negative, use a signed accumulator */
3760 for_each_mem_cgroup_tree(iter
, mem
)
3761 val
+= mem_cgroup_read_stat(iter
, idx
);
3763 if (val
< 0) /* race ? */
3768 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3772 if (!mem_cgroup_is_root(mem
)) {
3774 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3776 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3779 val
= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3780 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_RSS
);
3783 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3785 return val
<< PAGE_SHIFT
;
3788 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3790 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3794 type
= MEMFILE_TYPE(cft
->private);
3795 name
= MEMFILE_ATTR(cft
->private);
3798 if (name
== RES_USAGE
)
3799 val
= mem_cgroup_usage(mem
, false);
3801 val
= res_counter_read_u64(&mem
->res
, name
);
3804 if (name
== RES_USAGE
)
3805 val
= mem_cgroup_usage(mem
, true);
3807 val
= res_counter_read_u64(&mem
->memsw
, name
);
3816 * The user of this function is...
3819 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3822 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3824 unsigned long long val
;
3827 type
= MEMFILE_TYPE(cft
->private);
3828 name
= MEMFILE_ATTR(cft
->private);
3831 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3835 /* This function does all necessary parse...reuse it */
3836 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3840 ret
= mem_cgroup_resize_limit(memcg
, val
);
3842 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3844 case RES_SOFT_LIMIT
:
3845 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3849 * For memsw, soft limits are hard to implement in terms
3850 * of semantics, for now, we support soft limits for
3851 * control without swap
3854 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3859 ret
= -EINVAL
; /* should be BUG() ? */
3865 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3866 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3868 struct cgroup
*cgroup
;
3869 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3871 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3872 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3873 cgroup
= memcg
->css
.cgroup
;
3874 if (!memcg
->use_hierarchy
)
3877 while (cgroup
->parent
) {
3878 cgroup
= cgroup
->parent
;
3879 memcg
= mem_cgroup_from_cont(cgroup
);
3880 if (!memcg
->use_hierarchy
)
3882 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3883 min_limit
= min(min_limit
, tmp
);
3884 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3885 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3888 *mem_limit
= min_limit
;
3889 *memsw_limit
= min_memsw_limit
;
3893 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3895 struct mem_cgroup
*mem
;
3898 mem
= mem_cgroup_from_cont(cont
);
3899 type
= MEMFILE_TYPE(event
);
3900 name
= MEMFILE_ATTR(event
);
3904 res_counter_reset_max(&mem
->res
);
3906 res_counter_reset_max(&mem
->memsw
);
3910 res_counter_reset_failcnt(&mem
->res
);
3912 res_counter_reset_failcnt(&mem
->memsw
);
3919 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3922 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3926 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3927 struct cftype
*cft
, u64 val
)
3929 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3931 if (val
>= (1 << NR_MOVE_TYPE
))
3934 * We check this value several times in both in can_attach() and
3935 * attach(), so we need cgroup lock to prevent this value from being
3939 mem
->move_charge_at_immigrate
= val
;
3945 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3946 struct cftype
*cft
, u64 val
)
3953 /* For read statistics */
3969 struct mcs_total_stat
{
3970 s64 stat
[NR_MCS_STAT
];
3976 } memcg_stat_strings
[NR_MCS_STAT
] = {
3977 {"cache", "total_cache"},
3978 {"rss", "total_rss"},
3979 {"mapped_file", "total_mapped_file"},
3980 {"pgpgin", "total_pgpgin"},
3981 {"pgpgout", "total_pgpgout"},
3982 {"swap", "total_swap"},
3983 {"inactive_anon", "total_inactive_anon"},
3984 {"active_anon", "total_active_anon"},
3985 {"inactive_file", "total_inactive_file"},
3986 {"active_file", "total_active_file"},
3987 {"unevictable", "total_unevictable"}
3992 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3997 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3998 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3999 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
4000 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4001 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
4002 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4003 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGIN
);
4004 s
->stat
[MCS_PGPGIN
] += val
;
4005 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGOUT
);
4006 s
->stat
[MCS_PGPGOUT
] += val
;
4007 if (do_swap_account
) {
4008 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
4009 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4013 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
4014 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4015 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
4016 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4017 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
4018 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4019 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
4020 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4021 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
4022 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4026 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4028 struct mem_cgroup
*iter
;
4030 for_each_mem_cgroup_tree(iter
, mem
)
4031 mem_cgroup_get_local_stat(iter
, s
);
4035 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4038 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4039 unsigned long node_nr
;
4040 struct cgroup
*cont
= m
->private;
4041 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4043 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
);
4044 seq_printf(m
, "total=%lu", total_nr
);
4045 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4046 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
);
4047 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4051 file_nr
= mem_cgroup_nr_file_lru_pages(mem_cont
);
4052 seq_printf(m
, "file=%lu", file_nr
);
4053 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4054 node_nr
= mem_cgroup_node_nr_file_lru_pages(mem_cont
, nid
);
4055 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4059 anon_nr
= mem_cgroup_nr_anon_lru_pages(mem_cont
);
4060 seq_printf(m
, "anon=%lu", anon_nr
);
4061 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4062 node_nr
= mem_cgroup_node_nr_anon_lru_pages(mem_cont
, nid
);
4063 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4067 unevictable_nr
= mem_cgroup_nr_unevictable_lru_pages(mem_cont
);
4068 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4069 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4070 node_nr
= mem_cgroup_node_nr_unevictable_lru_pages(mem_cont
,
4072 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4077 #endif /* CONFIG_NUMA */
4079 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4080 struct cgroup_map_cb
*cb
)
4082 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4083 struct mcs_total_stat mystat
;
4086 memset(&mystat
, 0, sizeof(mystat
));
4087 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4090 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4091 if (i
== MCS_SWAP
&& !do_swap_account
)
4093 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4096 /* Hierarchical information */
4098 unsigned long long limit
, memsw_limit
;
4099 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4100 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4101 if (do_swap_account
)
4102 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4105 memset(&mystat
, 0, sizeof(mystat
));
4106 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4107 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4108 if (i
== MCS_SWAP
&& !do_swap_account
)
4110 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4113 #ifdef CONFIG_DEBUG_VM
4114 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
4118 struct mem_cgroup_per_zone
*mz
;
4119 unsigned long recent_rotated
[2] = {0, 0};
4120 unsigned long recent_scanned
[2] = {0, 0};
4122 for_each_online_node(nid
)
4123 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4124 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4126 recent_rotated
[0] +=
4127 mz
->reclaim_stat
.recent_rotated
[0];
4128 recent_rotated
[1] +=
4129 mz
->reclaim_stat
.recent_rotated
[1];
4130 recent_scanned
[0] +=
4131 mz
->reclaim_stat
.recent_scanned
[0];
4132 recent_scanned
[1] +=
4133 mz
->reclaim_stat
.recent_scanned
[1];
4135 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4136 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4137 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4138 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4145 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4147 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4149 return get_swappiness(memcg
);
4152 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4155 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4156 struct mem_cgroup
*parent
;
4161 if (cgrp
->parent
== NULL
)
4164 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4168 /* If under hierarchy, only empty-root can set this value */
4169 if ((parent
->use_hierarchy
) ||
4170 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4175 memcg
->swappiness
= val
;
4182 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4184 struct mem_cgroup_threshold_ary
*t
;
4190 t
= rcu_dereference(memcg
->thresholds
.primary
);
4192 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4197 usage
= mem_cgroup_usage(memcg
, swap
);
4200 * current_threshold points to threshold just below usage.
4201 * If it's not true, a threshold was crossed after last
4202 * call of __mem_cgroup_threshold().
4204 i
= t
->current_threshold
;
4207 * Iterate backward over array of thresholds starting from
4208 * current_threshold and check if a threshold is crossed.
4209 * If none of thresholds below usage is crossed, we read
4210 * only one element of the array here.
4212 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4213 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4215 /* i = current_threshold + 1 */
4219 * Iterate forward over array of thresholds starting from
4220 * current_threshold+1 and check if a threshold is crossed.
4221 * If none of thresholds above usage is crossed, we read
4222 * only one element of the array here.
4224 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4225 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4227 /* Update current_threshold */
4228 t
->current_threshold
= i
- 1;
4233 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4236 __mem_cgroup_threshold(memcg
, false);
4237 if (do_swap_account
)
4238 __mem_cgroup_threshold(memcg
, true);
4240 memcg
= parent_mem_cgroup(memcg
);
4244 static int compare_thresholds(const void *a
, const void *b
)
4246 const struct mem_cgroup_threshold
*_a
= a
;
4247 const struct mem_cgroup_threshold
*_b
= b
;
4249 return _a
->threshold
- _b
->threshold
;
4252 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
4254 struct mem_cgroup_eventfd_list
*ev
;
4256 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
4257 eventfd_signal(ev
->eventfd
, 1);
4261 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
4263 struct mem_cgroup
*iter
;
4265 for_each_mem_cgroup_tree(iter
, mem
)
4266 mem_cgroup_oom_notify_cb(iter
);
4269 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4270 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4272 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4273 struct mem_cgroup_thresholds
*thresholds
;
4274 struct mem_cgroup_threshold_ary
*new;
4275 int type
= MEMFILE_TYPE(cft
->private);
4276 u64 threshold
, usage
;
4279 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4283 mutex_lock(&memcg
->thresholds_lock
);
4286 thresholds
= &memcg
->thresholds
;
4287 else if (type
== _MEMSWAP
)
4288 thresholds
= &memcg
->memsw_thresholds
;
4292 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4294 /* Check if a threshold crossed before adding a new one */
4295 if (thresholds
->primary
)
4296 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4298 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4300 /* Allocate memory for new array of thresholds */
4301 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4309 /* Copy thresholds (if any) to new array */
4310 if (thresholds
->primary
) {
4311 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4312 sizeof(struct mem_cgroup_threshold
));
4315 /* Add new threshold */
4316 new->entries
[size
- 1].eventfd
= eventfd
;
4317 new->entries
[size
- 1].threshold
= threshold
;
4319 /* Sort thresholds. Registering of new threshold isn't time-critical */
4320 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4321 compare_thresholds
, NULL
);
4323 /* Find current threshold */
4324 new->current_threshold
= -1;
4325 for (i
= 0; i
< size
; i
++) {
4326 if (new->entries
[i
].threshold
< usage
) {
4328 * new->current_threshold will not be used until
4329 * rcu_assign_pointer(), so it's safe to increment
4332 ++new->current_threshold
;
4336 /* Free old spare buffer and save old primary buffer as spare */
4337 kfree(thresholds
->spare
);
4338 thresholds
->spare
= thresholds
->primary
;
4340 rcu_assign_pointer(thresholds
->primary
, new);
4342 /* To be sure that nobody uses thresholds */
4346 mutex_unlock(&memcg
->thresholds_lock
);
4351 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4352 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4354 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4355 struct mem_cgroup_thresholds
*thresholds
;
4356 struct mem_cgroup_threshold_ary
*new;
4357 int type
= MEMFILE_TYPE(cft
->private);
4361 mutex_lock(&memcg
->thresholds_lock
);
4363 thresholds
= &memcg
->thresholds
;
4364 else if (type
== _MEMSWAP
)
4365 thresholds
= &memcg
->memsw_thresholds
;
4370 * Something went wrong if we trying to unregister a threshold
4371 * if we don't have thresholds
4373 BUG_ON(!thresholds
);
4375 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4377 /* Check if a threshold crossed before removing */
4378 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4380 /* Calculate new number of threshold */
4382 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4383 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4387 new = thresholds
->spare
;
4389 /* Set thresholds array to NULL if we don't have thresholds */
4398 /* Copy thresholds and find current threshold */
4399 new->current_threshold
= -1;
4400 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4401 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4404 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4405 if (new->entries
[j
].threshold
< usage
) {
4407 * new->current_threshold will not be used
4408 * until rcu_assign_pointer(), so it's safe to increment
4411 ++new->current_threshold
;
4417 /* Swap primary and spare array */
4418 thresholds
->spare
= thresholds
->primary
;
4419 rcu_assign_pointer(thresholds
->primary
, new);
4421 /* To be sure that nobody uses thresholds */
4424 mutex_unlock(&memcg
->thresholds_lock
);
4427 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4428 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4430 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4431 struct mem_cgroup_eventfd_list
*event
;
4432 int type
= MEMFILE_TYPE(cft
->private);
4434 BUG_ON(type
!= _OOM_TYPE
);
4435 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4439 mutex_lock(&memcg_oom_mutex
);
4441 event
->eventfd
= eventfd
;
4442 list_add(&event
->list
, &memcg
->oom_notify
);
4444 /* already in OOM ? */
4445 if (atomic_read(&memcg
->oom_lock
))
4446 eventfd_signal(eventfd
, 1);
4447 mutex_unlock(&memcg_oom_mutex
);
4452 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4453 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4455 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4456 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4457 int type
= MEMFILE_TYPE(cft
->private);
4459 BUG_ON(type
!= _OOM_TYPE
);
4461 mutex_lock(&memcg_oom_mutex
);
4463 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4464 if (ev
->eventfd
== eventfd
) {
4465 list_del(&ev
->list
);
4470 mutex_unlock(&memcg_oom_mutex
);
4473 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4474 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4476 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4478 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4480 if (atomic_read(&mem
->oom_lock
))
4481 cb
->fill(cb
, "under_oom", 1);
4483 cb
->fill(cb
, "under_oom", 0);
4487 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4488 struct cftype
*cft
, u64 val
)
4490 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4491 struct mem_cgroup
*parent
;
4493 /* cannot set to root cgroup and only 0 and 1 are allowed */
4494 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4497 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4500 /* oom-kill-disable is a flag for subhierarchy. */
4501 if ((parent
->use_hierarchy
) ||
4502 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4506 mem
->oom_kill_disable
= val
;
4508 memcg_oom_recover(mem
);
4514 static const struct file_operations mem_control_numa_stat_file_operations
= {
4516 .llseek
= seq_lseek
,
4517 .release
= single_release
,
4520 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4522 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4524 file
->f_op
= &mem_control_numa_stat_file_operations
;
4525 return single_open(file
, mem_control_numa_stat_show
, cont
);
4527 #endif /* CONFIG_NUMA */
4529 static struct cftype mem_cgroup_files
[] = {
4531 .name
= "usage_in_bytes",
4532 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4533 .read_u64
= mem_cgroup_read
,
4534 .register_event
= mem_cgroup_usage_register_event
,
4535 .unregister_event
= mem_cgroup_usage_unregister_event
,
4538 .name
= "max_usage_in_bytes",
4539 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4540 .trigger
= mem_cgroup_reset
,
4541 .read_u64
= mem_cgroup_read
,
4544 .name
= "limit_in_bytes",
4545 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4546 .write_string
= mem_cgroup_write
,
4547 .read_u64
= mem_cgroup_read
,
4550 .name
= "soft_limit_in_bytes",
4551 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4552 .write_string
= mem_cgroup_write
,
4553 .read_u64
= mem_cgroup_read
,
4557 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4558 .trigger
= mem_cgroup_reset
,
4559 .read_u64
= mem_cgroup_read
,
4563 .read_map
= mem_control_stat_show
,
4566 .name
= "force_empty",
4567 .trigger
= mem_cgroup_force_empty_write
,
4570 .name
= "use_hierarchy",
4571 .write_u64
= mem_cgroup_hierarchy_write
,
4572 .read_u64
= mem_cgroup_hierarchy_read
,
4575 .name
= "swappiness",
4576 .read_u64
= mem_cgroup_swappiness_read
,
4577 .write_u64
= mem_cgroup_swappiness_write
,
4580 .name
= "move_charge_at_immigrate",
4581 .read_u64
= mem_cgroup_move_charge_read
,
4582 .write_u64
= mem_cgroup_move_charge_write
,
4585 .name
= "oom_control",
4586 .read_map
= mem_cgroup_oom_control_read
,
4587 .write_u64
= mem_cgroup_oom_control_write
,
4588 .register_event
= mem_cgroup_oom_register_event
,
4589 .unregister_event
= mem_cgroup_oom_unregister_event
,
4590 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4594 .name
= "numa_stat",
4595 .open
= mem_control_numa_stat_open
,
4600 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4601 static struct cftype memsw_cgroup_files
[] = {
4603 .name
= "memsw.usage_in_bytes",
4604 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4605 .read_u64
= mem_cgroup_read
,
4606 .register_event
= mem_cgroup_usage_register_event
,
4607 .unregister_event
= mem_cgroup_usage_unregister_event
,
4610 .name
= "memsw.max_usage_in_bytes",
4611 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4612 .trigger
= mem_cgroup_reset
,
4613 .read_u64
= mem_cgroup_read
,
4616 .name
= "memsw.limit_in_bytes",
4617 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4618 .write_string
= mem_cgroup_write
,
4619 .read_u64
= mem_cgroup_read
,
4622 .name
= "memsw.failcnt",
4623 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4624 .trigger
= mem_cgroup_reset
,
4625 .read_u64
= mem_cgroup_read
,
4629 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4631 if (!do_swap_account
)
4633 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4634 ARRAY_SIZE(memsw_cgroup_files
));
4637 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4643 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4645 struct mem_cgroup_per_node
*pn
;
4646 struct mem_cgroup_per_zone
*mz
;
4648 int zone
, tmp
= node
;
4650 * This routine is called against possible nodes.
4651 * But it's BUG to call kmalloc() against offline node.
4653 * TODO: this routine can waste much memory for nodes which will
4654 * never be onlined. It's better to use memory hotplug callback
4657 if (!node_state(node
, N_NORMAL_MEMORY
))
4659 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4663 mem
->info
.nodeinfo
[node
] = pn
;
4664 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4665 mz
= &pn
->zoneinfo
[zone
];
4667 INIT_LIST_HEAD(&mz
->lists
[l
]);
4668 mz
->usage_in_excess
= 0;
4669 mz
->on_tree
= false;
4675 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4677 kfree(mem
->info
.nodeinfo
[node
]);
4680 static struct mem_cgroup
*mem_cgroup_alloc(void)
4682 struct mem_cgroup
*mem
;
4683 int size
= sizeof(struct mem_cgroup
);
4685 /* Can be very big if MAX_NUMNODES is very big */
4686 if (size
< PAGE_SIZE
)
4687 mem
= kzalloc(size
, GFP_KERNEL
);
4689 mem
= vzalloc(size
);
4694 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4697 spin_lock_init(&mem
->pcp_counter_lock
);
4701 if (size
< PAGE_SIZE
)
4709 * At destroying mem_cgroup, references from swap_cgroup can remain.
4710 * (scanning all at force_empty is too costly...)
4712 * Instead of clearing all references at force_empty, we remember
4713 * the number of reference from swap_cgroup and free mem_cgroup when
4714 * it goes down to 0.
4716 * Removal of cgroup itself succeeds regardless of refs from swap.
4719 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4723 mem_cgroup_remove_from_trees(mem
);
4724 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4726 for_each_node_state(node
, N_POSSIBLE
)
4727 free_mem_cgroup_per_zone_info(mem
, node
);
4729 free_percpu(mem
->stat
);
4730 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4736 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4738 atomic_inc(&mem
->refcnt
);
4741 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4743 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4744 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4745 __mem_cgroup_free(mem
);
4747 mem_cgroup_put(parent
);
4751 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4753 __mem_cgroup_put(mem
, 1);
4757 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4759 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4761 if (!mem
->res
.parent
)
4763 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4766 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4767 static void __init
enable_swap_cgroup(void)
4769 if (!mem_cgroup_disabled() && really_do_swap_account
)
4770 do_swap_account
= 1;
4773 static void __init
enable_swap_cgroup(void)
4778 static int mem_cgroup_soft_limit_tree_init(void)
4780 struct mem_cgroup_tree_per_node
*rtpn
;
4781 struct mem_cgroup_tree_per_zone
*rtpz
;
4782 int tmp
, node
, zone
;
4784 for_each_node_state(node
, N_POSSIBLE
) {
4786 if (!node_state(node
, N_NORMAL_MEMORY
))
4788 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4792 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4794 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4795 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4796 rtpz
->rb_root
= RB_ROOT
;
4797 spin_lock_init(&rtpz
->lock
);
4803 static struct cgroup_subsys_state
* __ref
4804 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4806 struct mem_cgroup
*mem
, *parent
;
4807 long error
= -ENOMEM
;
4810 mem
= mem_cgroup_alloc();
4812 return ERR_PTR(error
);
4814 for_each_node_state(node
, N_POSSIBLE
)
4815 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4819 if (cont
->parent
== NULL
) {
4821 enable_swap_cgroup();
4823 root_mem_cgroup
= mem
;
4824 if (mem_cgroup_soft_limit_tree_init())
4826 for_each_possible_cpu(cpu
) {
4827 struct memcg_stock_pcp
*stock
=
4828 &per_cpu(memcg_stock
, cpu
);
4829 INIT_WORK(&stock
->work
, drain_local_stock
);
4831 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4833 parent
= mem_cgroup_from_cont(cont
->parent
);
4834 mem
->use_hierarchy
= parent
->use_hierarchy
;
4835 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4838 if (parent
&& parent
->use_hierarchy
) {
4839 res_counter_init(&mem
->res
, &parent
->res
);
4840 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4842 * We increment refcnt of the parent to ensure that we can
4843 * safely access it on res_counter_charge/uncharge.
4844 * This refcnt will be decremented when freeing this
4845 * mem_cgroup(see mem_cgroup_put).
4847 mem_cgroup_get(parent
);
4849 res_counter_init(&mem
->res
, NULL
);
4850 res_counter_init(&mem
->memsw
, NULL
);
4852 mem
->last_scanned_child
= 0;
4853 mem
->last_scanned_node
= MAX_NUMNODES
;
4854 INIT_LIST_HEAD(&mem
->oom_notify
);
4857 mem
->swappiness
= get_swappiness(parent
);
4858 atomic_set(&mem
->refcnt
, 1);
4859 mem
->move_charge_at_immigrate
= 0;
4860 mutex_init(&mem
->thresholds_lock
);
4863 __mem_cgroup_free(mem
);
4864 root_mem_cgroup
= NULL
;
4865 return ERR_PTR(error
);
4868 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4869 struct cgroup
*cont
)
4871 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4873 return mem_cgroup_force_empty(mem
, false);
4876 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4877 struct cgroup
*cont
)
4879 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4881 mem_cgroup_put(mem
);
4884 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4885 struct cgroup
*cont
)
4889 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4890 ARRAY_SIZE(mem_cgroup_files
));
4893 ret
= register_memsw_files(cont
, ss
);
4898 /* Handlers for move charge at task migration. */
4899 #define PRECHARGE_COUNT_AT_ONCE 256
4900 static int mem_cgroup_do_precharge(unsigned long count
)
4903 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4904 struct mem_cgroup
*mem
= mc
.to
;
4906 if (mem_cgroup_is_root(mem
)) {
4907 mc
.precharge
+= count
;
4908 /* we don't need css_get for root */
4911 /* try to charge at once */
4913 struct res_counter
*dummy
;
4915 * "mem" cannot be under rmdir() because we've already checked
4916 * by cgroup_lock_live_cgroup() that it is not removed and we
4917 * are still under the same cgroup_mutex. So we can postpone
4920 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4922 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4923 PAGE_SIZE
* count
, &dummy
)) {
4924 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
4927 mc
.precharge
+= count
;
4931 /* fall back to one by one charge */
4933 if (signal_pending(current
)) {
4937 if (!batch_count
--) {
4938 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4941 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, 1, &mem
, false);
4943 /* mem_cgroup_clear_mc() will do uncharge later */
4951 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4952 * @vma: the vma the pte to be checked belongs
4953 * @addr: the address corresponding to the pte to be checked
4954 * @ptent: the pte to be checked
4955 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4958 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4959 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4960 * move charge. if @target is not NULL, the page is stored in target->page
4961 * with extra refcnt got(Callers should handle it).
4962 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4963 * target for charge migration. if @target is not NULL, the entry is stored
4966 * Called with pte lock held.
4973 enum mc_target_type
{
4974 MC_TARGET_NONE
, /* not used */
4979 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4980 unsigned long addr
, pte_t ptent
)
4982 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4984 if (!page
|| !page_mapped(page
))
4986 if (PageAnon(page
)) {
4987 /* we don't move shared anon */
4988 if (!move_anon() || page_mapcount(page
) > 2)
4990 } else if (!move_file())
4991 /* we ignore mapcount for file pages */
4993 if (!get_page_unless_zero(page
))
4999 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5000 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5003 struct page
*page
= NULL
;
5004 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5006 if (!move_anon() || non_swap_entry(ent
))
5008 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5009 if (usage_count
> 1) { /* we don't move shared anon */
5014 if (do_swap_account
)
5015 entry
->val
= ent
.val
;
5020 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5021 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5023 struct page
*page
= NULL
;
5024 struct inode
*inode
;
5025 struct address_space
*mapping
;
5028 if (!vma
->vm_file
) /* anonymous vma */
5033 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5034 mapping
= vma
->vm_file
->f_mapping
;
5035 if (pte_none(ptent
))
5036 pgoff
= linear_page_index(vma
, addr
);
5037 else /* pte_file(ptent) is true */
5038 pgoff
= pte_to_pgoff(ptent
);
5040 /* page is moved even if it's not RSS of this task(page-faulted). */
5041 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
5042 page
= find_get_page(mapping
, pgoff
);
5043 } else { /* shmem/tmpfs file. we should take account of swap too. */
5045 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
5046 if (do_swap_account
)
5047 entry
->val
= ent
.val
;
5053 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5054 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5056 struct page
*page
= NULL
;
5057 struct page_cgroup
*pc
;
5059 swp_entry_t ent
= { .val
= 0 };
5061 if (pte_present(ptent
))
5062 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5063 else if (is_swap_pte(ptent
))
5064 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5065 else if (pte_none(ptent
) || pte_file(ptent
))
5066 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5068 if (!page
&& !ent
.val
)
5071 pc
= lookup_page_cgroup(page
);
5073 * Do only loose check w/o page_cgroup lock.
5074 * mem_cgroup_move_account() checks the pc is valid or not under
5077 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5078 ret
= MC_TARGET_PAGE
;
5080 target
->page
= page
;
5082 if (!ret
|| !target
)
5085 /* There is a swap entry and a page doesn't exist or isn't charged */
5086 if (ent
.val
&& !ret
&&
5087 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5088 ret
= MC_TARGET_SWAP
;
5095 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5096 unsigned long addr
, unsigned long end
,
5097 struct mm_walk
*walk
)
5099 struct vm_area_struct
*vma
= walk
->private;
5103 split_huge_page_pmd(walk
->mm
, pmd
);
5105 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5106 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5107 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5108 mc
.precharge
++; /* increment precharge temporarily */
5109 pte_unmap_unlock(pte
- 1, ptl
);
5115 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5117 unsigned long precharge
;
5118 struct vm_area_struct
*vma
;
5120 down_read(&mm
->mmap_sem
);
5121 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5122 struct mm_walk mem_cgroup_count_precharge_walk
= {
5123 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5127 if (is_vm_hugetlb_page(vma
))
5129 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5130 &mem_cgroup_count_precharge_walk
);
5132 up_read(&mm
->mmap_sem
);
5134 precharge
= mc
.precharge
;
5140 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5142 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5144 VM_BUG_ON(mc
.moving_task
);
5145 mc
.moving_task
= current
;
5146 return mem_cgroup_do_precharge(precharge
);
5149 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5150 static void __mem_cgroup_clear_mc(void)
5152 struct mem_cgroup
*from
= mc
.from
;
5153 struct mem_cgroup
*to
= mc
.to
;
5155 /* we must uncharge all the leftover precharges from mc.to */
5157 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5161 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5162 * we must uncharge here.
5164 if (mc
.moved_charge
) {
5165 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5166 mc
.moved_charge
= 0;
5168 /* we must fixup refcnts and charges */
5169 if (mc
.moved_swap
) {
5170 /* uncharge swap account from the old cgroup */
5171 if (!mem_cgroup_is_root(mc
.from
))
5172 res_counter_uncharge(&mc
.from
->memsw
,
5173 PAGE_SIZE
* mc
.moved_swap
);
5174 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5176 if (!mem_cgroup_is_root(mc
.to
)) {
5178 * we charged both to->res and to->memsw, so we should
5181 res_counter_uncharge(&mc
.to
->res
,
5182 PAGE_SIZE
* mc
.moved_swap
);
5184 /* we've already done mem_cgroup_get(mc.to) */
5187 memcg_oom_recover(from
);
5188 memcg_oom_recover(to
);
5189 wake_up_all(&mc
.waitq
);
5192 static void mem_cgroup_clear_mc(void)
5194 struct mem_cgroup
*from
= mc
.from
;
5197 * we must clear moving_task before waking up waiters at the end of
5200 mc
.moving_task
= NULL
;
5201 __mem_cgroup_clear_mc();
5202 spin_lock(&mc
.lock
);
5205 spin_unlock(&mc
.lock
);
5206 mem_cgroup_end_move(from
);
5209 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5210 struct cgroup
*cgroup
,
5211 struct task_struct
*p
)
5214 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
5216 if (mem
->move_charge_at_immigrate
) {
5217 struct mm_struct
*mm
;
5218 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5220 VM_BUG_ON(from
== mem
);
5222 mm
= get_task_mm(p
);
5225 /* We move charges only when we move a owner of the mm */
5226 if (mm
->owner
== p
) {
5229 VM_BUG_ON(mc
.precharge
);
5230 VM_BUG_ON(mc
.moved_charge
);
5231 VM_BUG_ON(mc
.moved_swap
);
5232 mem_cgroup_start_move(from
);
5233 spin_lock(&mc
.lock
);
5236 spin_unlock(&mc
.lock
);
5237 /* We set mc.moving_task later */
5239 ret
= mem_cgroup_precharge_mc(mm
);
5241 mem_cgroup_clear_mc();
5248 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5249 struct cgroup
*cgroup
,
5250 struct task_struct
*p
)
5252 mem_cgroup_clear_mc();
5255 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5256 unsigned long addr
, unsigned long end
,
5257 struct mm_walk
*walk
)
5260 struct vm_area_struct
*vma
= walk
->private;
5264 split_huge_page_pmd(walk
->mm
, pmd
);
5266 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5267 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5268 pte_t ptent
= *(pte
++);
5269 union mc_target target
;
5272 struct page_cgroup
*pc
;
5278 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5280 case MC_TARGET_PAGE
:
5282 if (isolate_lru_page(page
))
5284 pc
= lookup_page_cgroup(page
);
5285 if (!mem_cgroup_move_account(page
, 1, pc
,
5286 mc
.from
, mc
.to
, false)) {
5288 /* we uncharge from mc.from later. */
5291 putback_lru_page(page
);
5292 put
: /* is_target_pte_for_mc() gets the page */
5295 case MC_TARGET_SWAP
:
5297 if (!mem_cgroup_move_swap_account(ent
,
5298 mc
.from
, mc
.to
, false)) {
5300 /* we fixup refcnts and charges later. */
5308 pte_unmap_unlock(pte
- 1, ptl
);
5313 * We have consumed all precharges we got in can_attach().
5314 * We try charge one by one, but don't do any additional
5315 * charges to mc.to if we have failed in charge once in attach()
5318 ret
= mem_cgroup_do_precharge(1);
5326 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5328 struct vm_area_struct
*vma
;
5330 lru_add_drain_all();
5332 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5334 * Someone who are holding the mmap_sem might be waiting in
5335 * waitq. So we cancel all extra charges, wake up all waiters,
5336 * and retry. Because we cancel precharges, we might not be able
5337 * to move enough charges, but moving charge is a best-effort
5338 * feature anyway, so it wouldn't be a big problem.
5340 __mem_cgroup_clear_mc();
5344 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5346 struct mm_walk mem_cgroup_move_charge_walk
= {
5347 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5351 if (is_vm_hugetlb_page(vma
))
5353 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5354 &mem_cgroup_move_charge_walk
);
5357 * means we have consumed all precharges and failed in
5358 * doing additional charge. Just abandon here.
5362 up_read(&mm
->mmap_sem
);
5365 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5366 struct cgroup
*cont
,
5367 struct cgroup
*old_cont
,
5368 struct task_struct
*p
)
5370 struct mm_struct
*mm
;
5373 /* no need to move charge */
5376 mm
= get_task_mm(p
);
5378 mem_cgroup_move_charge(mm
);
5381 mem_cgroup_clear_mc();
5383 #else /* !CONFIG_MMU */
5384 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5385 struct cgroup
*cgroup
,
5386 struct task_struct
*p
)
5390 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5391 struct cgroup
*cgroup
,
5392 struct task_struct
*p
)
5395 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5396 struct cgroup
*cont
,
5397 struct cgroup
*old_cont
,
5398 struct task_struct
*p
)
5403 struct cgroup_subsys mem_cgroup_subsys
= {
5405 .subsys_id
= mem_cgroup_subsys_id
,
5406 .create
= mem_cgroup_create
,
5407 .pre_destroy
= mem_cgroup_pre_destroy
,
5408 .destroy
= mem_cgroup_destroy
,
5409 .populate
= mem_cgroup_populate
,
5410 .can_attach
= mem_cgroup_can_attach
,
5411 .cancel_attach
= mem_cgroup_cancel_attach
,
5412 .attach
= mem_cgroup_move_task
,
5417 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5418 static int __init
enable_swap_account(char *s
)
5420 /* consider enabled if no parameter or 1 is given */
5421 if (!strcmp(s
, "1"))
5422 really_do_swap_account
= 1;
5423 else if (!strcmp(s
, "0"))
5424 really_do_swap_account
= 0;
5427 __setup("swapaccount=", enable_swap_account
);