[PATCH] irq-flags: serial: Use the new IRQF_ constants
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blob15caf93e4a4379df3d1072bb82d286cb70a06a80
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
53 #include "rtmutex_common.h"
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
65 union futex_key {
66 struct {
67 unsigned long pgoff;
68 struct inode *inode;
69 int offset;
70 } shared;
71 struct {
72 unsigned long address;
73 struct mm_struct *mm;
74 int offset;
75 } private;
76 struct {
77 unsigned long word;
78 void *ptr;
79 int offset;
80 } both;
84 * Priority Inheritance state:
86 struct futex_pi_state {
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
91 struct list_head list;
94 * The PI object:
96 struct rt_mutex pi_mutex;
98 struct task_struct *owner;
99 atomic_t refcount;
101 union futex_key key;
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
113 struct futex_q {
114 struct list_head list;
115 wait_queue_head_t waiters;
117 /* Which hash list lock to use: */
118 spinlock_t *lock_ptr;
120 /* Key which the futex is hashed on: */
121 union futex_key key;
123 /* For fd, sigio sent using these: */
124 int fd;
125 struct file *filp;
127 /* Optional priority inheritance state: */
128 struct futex_pi_state *pi_state;
129 struct task_struct *task;
133 * Split the global futex_lock into every hash list lock.
135 struct futex_hash_bucket {
136 spinlock_t lock;
137 struct list_head chain;
140 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount *futex_mnt;
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
167 * Get parameters which are the keys for a futex.
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
176 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
178 static int get_futex_key(u32 __user *uaddr, union futex_key *key)
180 unsigned long address = (unsigned long)uaddr;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *vma;
183 struct page *page;
184 int err;
187 * The futex address must be "naturally" aligned.
189 key->both.offset = address % PAGE_SIZE;
190 if (unlikely((key->both.offset % sizeof(u32)) != 0))
191 return -EINVAL;
192 address -= key->both.offset;
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
198 vma = find_extend_vma(mm, address);
199 if (unlikely(!vma))
200 return -EFAULT;
203 * Permissions.
205 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
209 * Private mappings are handled in a simple way.
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
217 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218 key->private.mm = mm;
219 key->private.address = address;
220 return 0;
224 * Linear file mappings are also simple.
226 key->shared.inode = vma->vm_file->f_dentry->d_inode;
227 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
230 + vma->vm_pgoff);
231 return 0;
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
247 return err;
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
257 static inline void get_key_refs(union futex_key *key)
259 if (key->both.ptr != 0) {
260 if (key->both.offset & 1)
261 atomic_inc(&key->shared.inode->i_count);
262 else
263 atomic_inc(&key->private.mm->mm_count);
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
271 static void drop_key_refs(union futex_key *key)
273 if (key->both.ptr != 0) {
274 if (key->both.offset & 1)
275 iput(key->shared.inode);
276 else
277 mmdrop(key->private.mm);
281 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
283 int ret;
285 inc_preempt_count();
286 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
287 dec_preempt_count();
289 return ret ? -EFAULT : 0;
293 * Fault handling. Called with current->mm->mmap_sem held.
295 static int futex_handle_fault(unsigned long address, int attempt)
297 struct vm_area_struct * vma;
298 struct mm_struct *mm = current->mm;
300 if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
301 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302 return -EFAULT;
304 switch (handle_mm_fault(mm, vma, address, 1)) {
305 case VM_FAULT_MINOR:
306 current->min_flt++;
307 break;
308 case VM_FAULT_MAJOR:
309 current->maj_flt++;
310 break;
311 default:
312 return -EFAULT;
314 return 0;
318 * PI code:
320 static int refill_pi_state_cache(void)
322 struct futex_pi_state *pi_state;
324 if (likely(current->pi_state_cache))
325 return 0;
327 pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
329 if (!pi_state)
330 return -ENOMEM;
332 memset(pi_state, 0, sizeof(*pi_state));
333 INIT_LIST_HEAD(&pi_state->list);
334 /* pi_mutex gets initialized later */
335 pi_state->owner = NULL;
336 atomic_set(&pi_state->refcount, 1);
338 current->pi_state_cache = pi_state;
340 return 0;
343 static struct futex_pi_state * alloc_pi_state(void)
345 struct futex_pi_state *pi_state = current->pi_state_cache;
347 WARN_ON(!pi_state);
348 current->pi_state_cache = NULL;
350 return pi_state;
353 static void free_pi_state(struct futex_pi_state *pi_state)
355 if (!atomic_dec_and_test(&pi_state->refcount))
356 return;
359 * If pi_state->owner is NULL, the owner is most probably dying
360 * and has cleaned up the pi_state already
362 if (pi_state->owner) {
363 spin_lock_irq(&pi_state->owner->pi_lock);
364 list_del_init(&pi_state->list);
365 spin_unlock_irq(&pi_state->owner->pi_lock);
367 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
370 if (current->pi_state_cache)
371 kfree(pi_state);
372 else {
374 * pi_state->list is already empty.
375 * clear pi_state->owner.
376 * refcount is at 0 - put it back to 1.
378 pi_state->owner = NULL;
379 atomic_set(&pi_state->refcount, 1);
380 current->pi_state_cache = pi_state;
385 * Look up the task based on what TID userspace gave us.
386 * We dont trust it.
388 static struct task_struct * futex_find_get_task(pid_t pid)
390 struct task_struct *p;
392 read_lock(&tasklist_lock);
393 p = find_task_by_pid(pid);
394 if (!p)
395 goto out_unlock;
396 if ((current->euid != p->euid) && (current->euid != p->uid)) {
397 p = NULL;
398 goto out_unlock;
400 if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
401 p = NULL;
402 goto out_unlock;
404 get_task_struct(p);
405 out_unlock:
406 read_unlock(&tasklist_lock);
408 return p;
412 * This task is holding PI mutexes at exit time => bad.
413 * Kernel cleans up PI-state, but userspace is likely hosed.
414 * (Robust-futex cleanup is separate and might save the day for userspace.)
416 void exit_pi_state_list(struct task_struct *curr)
418 struct futex_hash_bucket *hb;
419 struct list_head *next, *head = &curr->pi_state_list;
420 struct futex_pi_state *pi_state;
421 union futex_key key;
424 * We are a ZOMBIE and nobody can enqueue itself on
425 * pi_state_list anymore, but we have to be careful
426 * versus waiters unqueueing themselfs
428 spin_lock_irq(&curr->pi_lock);
429 while (!list_empty(head)) {
431 next = head->next;
432 pi_state = list_entry(next, struct futex_pi_state, list);
433 key = pi_state->key;
434 spin_unlock_irq(&curr->pi_lock);
436 hb = hash_futex(&key);
437 spin_lock(&hb->lock);
439 spin_lock_irq(&curr->pi_lock);
440 if (head->next != next) {
441 spin_unlock(&hb->lock);
442 continue;
445 list_del_init(&pi_state->list);
447 WARN_ON(pi_state->owner != curr);
449 pi_state->owner = NULL;
450 spin_unlock_irq(&curr->pi_lock);
452 rt_mutex_unlock(&pi_state->pi_mutex);
454 spin_unlock(&hb->lock);
456 spin_lock_irq(&curr->pi_lock);
458 spin_unlock_irq(&curr->pi_lock);
461 static int
462 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
464 struct futex_pi_state *pi_state = NULL;
465 struct futex_q *this, *next;
466 struct list_head *head;
467 struct task_struct *p;
468 pid_t pid;
470 head = &hb->chain;
472 list_for_each_entry_safe(this, next, head, list) {
473 if (match_futex (&this->key, &me->key)) {
475 * Another waiter already exists - bump up
476 * the refcount and return its pi_state:
478 pi_state = this->pi_state;
479 atomic_inc(&pi_state->refcount);
480 me->pi_state = pi_state;
482 return 0;
487 * We are the first waiter - try to look up the real owner and
488 * attach the new pi_state to it:
490 pid = uval & FUTEX_TID_MASK;
491 p = futex_find_get_task(pid);
492 if (!p)
493 return -ESRCH;
495 pi_state = alloc_pi_state();
498 * Initialize the pi_mutex in locked state and make 'p'
499 * the owner of it:
501 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
503 /* Store the key for possible exit cleanups: */
504 pi_state->key = me->key;
506 spin_lock_irq(&p->pi_lock);
507 list_add(&pi_state->list, &p->pi_state_list);
508 pi_state->owner = p;
509 spin_unlock_irq(&p->pi_lock);
511 put_task_struct(p);
513 me->pi_state = pi_state;
515 return 0;
519 * The hash bucket lock must be held when this is called.
520 * Afterwards, the futex_q must not be accessed.
522 static void wake_futex(struct futex_q *q)
524 list_del_init(&q->list);
525 if (q->filp)
526 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
528 * The lock in wake_up_all() is a crucial memory barrier after the
529 * list_del_init() and also before assigning to q->lock_ptr.
531 wake_up_all(&q->waiters);
533 * The waiting task can free the futex_q as soon as this is written,
534 * without taking any locks. This must come last.
536 * A memory barrier is required here to prevent the following store
537 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
538 * at the end of wake_up_all() does not prevent this store from
539 * moving.
541 wmb();
542 q->lock_ptr = NULL;
545 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
547 struct task_struct *new_owner;
548 struct futex_pi_state *pi_state = this->pi_state;
549 u32 curval, newval;
551 if (!pi_state)
552 return -EINVAL;
554 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
557 * This happens when we have stolen the lock and the original
558 * pending owner did not enqueue itself back on the rt_mutex.
559 * Thats not a tragedy. We know that way, that a lock waiter
560 * is on the fly. We make the futex_q waiter the pending owner.
562 if (!new_owner)
563 new_owner = this->task;
566 * We pass it to the next owner. (The WAITERS bit is always
567 * kept enabled while there is PI state around. We must also
568 * preserve the owner died bit.)
570 newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
572 inc_preempt_count();
573 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
574 dec_preempt_count();
576 if (curval == -EFAULT)
577 return -EFAULT;
578 if (curval != uval)
579 return -EINVAL;
581 list_del_init(&pi_state->owner->pi_state_list);
582 list_add(&pi_state->list, &new_owner->pi_state_list);
583 pi_state->owner = new_owner;
584 rt_mutex_unlock(&pi_state->pi_mutex);
586 return 0;
589 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
591 u32 oldval;
594 * There is no waiter, so we unlock the futex. The owner died
595 * bit has not to be preserved here. We are the owner:
597 inc_preempt_count();
598 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
599 dec_preempt_count();
601 if (oldval == -EFAULT)
602 return oldval;
603 if (oldval != uval)
604 return -EAGAIN;
606 return 0;
610 * Wake up all waiters hashed on the physical page that is mapped
611 * to this virtual address:
613 static int futex_wake(u32 __user *uaddr, int nr_wake)
615 struct futex_hash_bucket *hb;
616 struct futex_q *this, *next;
617 struct list_head *head;
618 union futex_key key;
619 int ret;
621 down_read(&current->mm->mmap_sem);
623 ret = get_futex_key(uaddr, &key);
624 if (unlikely(ret != 0))
625 goto out;
627 hb = hash_futex(&key);
628 spin_lock(&hb->lock);
629 head = &hb->chain;
631 list_for_each_entry_safe(this, next, head, list) {
632 if (match_futex (&this->key, &key)) {
633 if (this->pi_state) {
634 ret = -EINVAL;
635 break;
637 wake_futex(this);
638 if (++ret >= nr_wake)
639 break;
643 spin_unlock(&hb->lock);
644 out:
645 up_read(&current->mm->mmap_sem);
646 return ret;
650 * Wake up all waiters hashed on the physical page that is mapped
651 * to this virtual address:
653 static int
654 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
655 int nr_wake, int nr_wake2, int op)
657 union futex_key key1, key2;
658 struct futex_hash_bucket *hb1, *hb2;
659 struct list_head *head;
660 struct futex_q *this, *next;
661 int ret, op_ret, attempt = 0;
663 retryfull:
664 down_read(&current->mm->mmap_sem);
666 ret = get_futex_key(uaddr1, &key1);
667 if (unlikely(ret != 0))
668 goto out;
669 ret = get_futex_key(uaddr2, &key2);
670 if (unlikely(ret != 0))
671 goto out;
673 hb1 = hash_futex(&key1);
674 hb2 = hash_futex(&key2);
676 retry:
677 if (hb1 < hb2)
678 spin_lock(&hb1->lock);
679 spin_lock(&hb2->lock);
680 if (hb1 > hb2)
681 spin_lock(&hb1->lock);
683 op_ret = futex_atomic_op_inuser(op, uaddr2);
684 if (unlikely(op_ret < 0)) {
685 u32 dummy;
687 spin_unlock(&hb1->lock);
688 if (hb1 != hb2)
689 spin_unlock(&hb2->lock);
691 #ifndef CONFIG_MMU
693 * we don't get EFAULT from MMU faults if we don't have an MMU,
694 * but we might get them from range checking
696 ret = op_ret;
697 goto out;
698 #endif
700 if (unlikely(op_ret != -EFAULT)) {
701 ret = op_ret;
702 goto out;
706 * futex_atomic_op_inuser needs to both read and write
707 * *(int __user *)uaddr2, but we can't modify it
708 * non-atomically. Therefore, if get_user below is not
709 * enough, we need to handle the fault ourselves, while
710 * still holding the mmap_sem.
712 if (attempt++) {
713 if (futex_handle_fault((unsigned long)uaddr2,
714 attempt))
715 goto out;
716 goto retry;
720 * If we would have faulted, release mmap_sem,
721 * fault it in and start all over again.
723 up_read(&current->mm->mmap_sem);
725 ret = get_user(dummy, uaddr2);
726 if (ret)
727 return ret;
729 goto retryfull;
732 head = &hb1->chain;
734 list_for_each_entry_safe(this, next, head, list) {
735 if (match_futex (&this->key, &key1)) {
736 wake_futex(this);
737 if (++ret >= nr_wake)
738 break;
742 if (op_ret > 0) {
743 head = &hb2->chain;
745 op_ret = 0;
746 list_for_each_entry_safe(this, next, head, list) {
747 if (match_futex (&this->key, &key2)) {
748 wake_futex(this);
749 if (++op_ret >= nr_wake2)
750 break;
753 ret += op_ret;
756 spin_unlock(&hb1->lock);
757 if (hb1 != hb2)
758 spin_unlock(&hb2->lock);
759 out:
760 up_read(&current->mm->mmap_sem);
761 return ret;
765 * Requeue all waiters hashed on one physical page to another
766 * physical page.
768 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
769 int nr_wake, int nr_requeue, u32 *cmpval)
771 union futex_key key1, key2;
772 struct futex_hash_bucket *hb1, *hb2;
773 struct list_head *head1;
774 struct futex_q *this, *next;
775 int ret, drop_count = 0;
777 retry:
778 down_read(&current->mm->mmap_sem);
780 ret = get_futex_key(uaddr1, &key1);
781 if (unlikely(ret != 0))
782 goto out;
783 ret = get_futex_key(uaddr2, &key2);
784 if (unlikely(ret != 0))
785 goto out;
787 hb1 = hash_futex(&key1);
788 hb2 = hash_futex(&key2);
790 if (hb1 < hb2)
791 spin_lock(&hb1->lock);
792 spin_lock(&hb2->lock);
793 if (hb1 > hb2)
794 spin_lock(&hb1->lock);
796 if (likely(cmpval != NULL)) {
797 u32 curval;
799 ret = get_futex_value_locked(&curval, uaddr1);
801 if (unlikely(ret)) {
802 spin_unlock(&hb1->lock);
803 if (hb1 != hb2)
804 spin_unlock(&hb2->lock);
807 * If we would have faulted, release mmap_sem, fault
808 * it in and start all over again.
810 up_read(&current->mm->mmap_sem);
812 ret = get_user(curval, uaddr1);
814 if (!ret)
815 goto retry;
817 return ret;
819 if (curval != *cmpval) {
820 ret = -EAGAIN;
821 goto out_unlock;
825 head1 = &hb1->chain;
826 list_for_each_entry_safe(this, next, head1, list) {
827 if (!match_futex (&this->key, &key1))
828 continue;
829 if (++ret <= nr_wake) {
830 wake_futex(this);
831 } else {
833 * If key1 and key2 hash to the same bucket, no need to
834 * requeue.
836 if (likely(head1 != &hb2->chain)) {
837 list_move_tail(&this->list, &hb2->chain);
838 this->lock_ptr = &hb2->lock;
840 this->key = key2;
841 get_key_refs(&key2);
842 drop_count++;
844 if (ret - nr_wake >= nr_requeue)
845 break;
849 out_unlock:
850 spin_unlock(&hb1->lock);
851 if (hb1 != hb2)
852 spin_unlock(&hb2->lock);
854 /* drop_key_refs() must be called outside the spinlocks. */
855 while (--drop_count >= 0)
856 drop_key_refs(&key1);
858 out:
859 up_read(&current->mm->mmap_sem);
860 return ret;
863 /* The key must be already stored in q->key. */
864 static inline struct futex_hash_bucket *
865 queue_lock(struct futex_q *q, int fd, struct file *filp)
867 struct futex_hash_bucket *hb;
869 q->fd = fd;
870 q->filp = filp;
872 init_waitqueue_head(&q->waiters);
874 get_key_refs(&q->key);
875 hb = hash_futex(&q->key);
876 q->lock_ptr = &hb->lock;
878 spin_lock(&hb->lock);
879 return hb;
882 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
884 list_add_tail(&q->list, &hb->chain);
885 q->task = current;
886 spin_unlock(&hb->lock);
889 static inline void
890 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
892 spin_unlock(&hb->lock);
893 drop_key_refs(&q->key);
897 * queue_me and unqueue_me must be called as a pair, each
898 * exactly once. They are called with the hashed spinlock held.
901 /* The key must be already stored in q->key. */
902 static void queue_me(struct futex_q *q, int fd, struct file *filp)
904 struct futex_hash_bucket *hb;
906 hb = queue_lock(q, fd, filp);
907 __queue_me(q, hb);
910 /* Return 1 if we were still queued (ie. 0 means we were woken) */
911 static int unqueue_me(struct futex_q *q)
913 spinlock_t *lock_ptr;
914 int ret = 0;
916 /* In the common case we don't take the spinlock, which is nice. */
917 retry:
918 lock_ptr = q->lock_ptr;
919 if (lock_ptr != 0) {
920 spin_lock(lock_ptr);
922 * q->lock_ptr can change between reading it and
923 * spin_lock(), causing us to take the wrong lock. This
924 * corrects the race condition.
926 * Reasoning goes like this: if we have the wrong lock,
927 * q->lock_ptr must have changed (maybe several times)
928 * between reading it and the spin_lock(). It can
929 * change again after the spin_lock() but only if it was
930 * already changed before the spin_lock(). It cannot,
931 * however, change back to the original value. Therefore
932 * we can detect whether we acquired the correct lock.
934 if (unlikely(lock_ptr != q->lock_ptr)) {
935 spin_unlock(lock_ptr);
936 goto retry;
938 WARN_ON(list_empty(&q->list));
939 list_del(&q->list);
941 BUG_ON(q->pi_state);
943 spin_unlock(lock_ptr);
944 ret = 1;
947 drop_key_refs(&q->key);
948 return ret;
952 * PI futexes can not be requeued and must remove themself from the
953 * hash bucket. The hash bucket lock is held on entry and dropped here.
955 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
957 WARN_ON(list_empty(&q->list));
958 list_del(&q->list);
960 BUG_ON(!q->pi_state);
961 free_pi_state(q->pi_state);
962 q->pi_state = NULL;
964 spin_unlock(&hb->lock);
966 drop_key_refs(&q->key);
969 static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
971 struct task_struct *curr = current;
972 DECLARE_WAITQUEUE(wait, curr);
973 struct futex_hash_bucket *hb;
974 struct futex_q q;
975 u32 uval;
976 int ret;
978 q.pi_state = NULL;
979 retry:
980 down_read(&curr->mm->mmap_sem);
982 ret = get_futex_key(uaddr, &q.key);
983 if (unlikely(ret != 0))
984 goto out_release_sem;
986 hb = queue_lock(&q, -1, NULL);
989 * Access the page AFTER the futex is queued.
990 * Order is important:
992 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
993 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
995 * The basic logical guarantee of a futex is that it blocks ONLY
996 * if cond(var) is known to be true at the time of blocking, for
997 * any cond. If we queued after testing *uaddr, that would open
998 * a race condition where we could block indefinitely with
999 * cond(var) false, which would violate the guarantee.
1001 * A consequence is that futex_wait() can return zero and absorb
1002 * a wakeup when *uaddr != val on entry to the syscall. This is
1003 * rare, but normal.
1005 * We hold the mmap semaphore, so the mapping cannot have changed
1006 * since we looked it up in get_futex_key.
1008 ret = get_futex_value_locked(&uval, uaddr);
1010 if (unlikely(ret)) {
1011 queue_unlock(&q, hb);
1014 * If we would have faulted, release mmap_sem, fault it in and
1015 * start all over again.
1017 up_read(&curr->mm->mmap_sem);
1019 ret = get_user(uval, uaddr);
1021 if (!ret)
1022 goto retry;
1023 return ret;
1025 ret = -EWOULDBLOCK;
1026 if (uval != val)
1027 goto out_unlock_release_sem;
1029 /* Only actually queue if *uaddr contained val. */
1030 __queue_me(&q, hb);
1033 * Now the futex is queued and we have checked the data, we
1034 * don't want to hold mmap_sem while we sleep.
1036 up_read(&curr->mm->mmap_sem);
1039 * There might have been scheduling since the queue_me(), as we
1040 * cannot hold a spinlock across the get_user() in case it
1041 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1042 * queueing ourselves into the futex hash. This code thus has to
1043 * rely on the futex_wake() code removing us from hash when it
1044 * wakes us up.
1047 /* add_wait_queue is the barrier after __set_current_state. */
1048 __set_current_state(TASK_INTERRUPTIBLE);
1049 add_wait_queue(&q.waiters, &wait);
1051 * !list_empty() is safe here without any lock.
1052 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1054 if (likely(!list_empty(&q.list)))
1055 time = schedule_timeout(time);
1056 __set_current_state(TASK_RUNNING);
1059 * NOTE: we don't remove ourselves from the waitqueue because
1060 * we are the only user of it.
1063 /* If we were woken (and unqueued), we succeeded, whatever. */
1064 if (!unqueue_me(&q))
1065 return 0;
1066 if (time == 0)
1067 return -ETIMEDOUT;
1069 * We expect signal_pending(current), but another thread may
1070 * have handled it for us already.
1072 return -EINTR;
1074 out_unlock_release_sem:
1075 queue_unlock(&q, hb);
1077 out_release_sem:
1078 up_read(&curr->mm->mmap_sem);
1079 return ret;
1083 * Userspace tried a 0 -> TID atomic transition of the futex value
1084 * and failed. The kernel side here does the whole locking operation:
1085 * if there are waiters then it will block, it does PI, etc. (Due to
1086 * races the kernel might see a 0 value of the futex too.)
1088 static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
1089 struct hrtimer_sleeper *to)
1091 struct task_struct *curr = current;
1092 struct futex_hash_bucket *hb;
1093 u32 uval, newval, curval;
1094 struct futex_q q;
1095 int ret, attempt = 0;
1097 if (refill_pi_state_cache())
1098 return -ENOMEM;
1100 q.pi_state = NULL;
1101 retry:
1102 down_read(&curr->mm->mmap_sem);
1104 ret = get_futex_key(uaddr, &q.key);
1105 if (unlikely(ret != 0))
1106 goto out_release_sem;
1108 hb = queue_lock(&q, -1, NULL);
1110 retry_locked:
1112 * To avoid races, we attempt to take the lock here again
1113 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1114 * the locks. It will most likely not succeed.
1116 newval = current->pid;
1118 inc_preempt_count();
1119 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1120 dec_preempt_count();
1122 if (unlikely(curval == -EFAULT))
1123 goto uaddr_faulted;
1125 /* We own the lock already */
1126 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1127 if (!detect && 0)
1128 force_sig(SIGKILL, current);
1129 ret = -EDEADLK;
1130 goto out_unlock_release_sem;
1134 * Surprise - we got the lock. Just return
1135 * to userspace:
1137 if (unlikely(!curval))
1138 goto out_unlock_release_sem;
1140 uval = curval;
1141 newval = uval | FUTEX_WAITERS;
1143 inc_preempt_count();
1144 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1145 dec_preempt_count();
1147 if (unlikely(curval == -EFAULT))
1148 goto uaddr_faulted;
1149 if (unlikely(curval != uval))
1150 goto retry_locked;
1153 * We dont have the lock. Look up the PI state (or create it if
1154 * we are the first waiter):
1156 ret = lookup_pi_state(uval, hb, &q);
1158 if (unlikely(ret)) {
1160 * There were no waiters and the owner task lookup
1161 * failed. When the OWNER_DIED bit is set, then we
1162 * know that this is a robust futex and we actually
1163 * take the lock. This is safe as we are protected by
1164 * the hash bucket lock. We also set the waiters bit
1165 * unconditionally here, to simplify glibc handling of
1166 * multiple tasks racing to acquire the lock and
1167 * cleanup the problems which were left by the dead
1168 * owner.
1170 if (curval & FUTEX_OWNER_DIED) {
1171 uval = newval;
1172 newval = current->pid |
1173 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1175 inc_preempt_count();
1176 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1177 uval, newval);
1178 dec_preempt_count();
1180 if (unlikely(curval == -EFAULT))
1181 goto uaddr_faulted;
1182 if (unlikely(curval != uval))
1183 goto retry_locked;
1184 ret = 0;
1186 goto out_unlock_release_sem;
1190 * Only actually queue now that the atomic ops are done:
1192 __queue_me(&q, hb);
1195 * Now the futex is queued and we have checked the data, we
1196 * don't want to hold mmap_sem while we sleep.
1198 up_read(&curr->mm->mmap_sem);
1200 WARN_ON(!q.pi_state);
1202 * Block on the PI mutex:
1204 if (!trylock)
1205 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1206 else {
1207 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1208 /* Fixup the trylock return value: */
1209 ret = ret ? 0 : -EWOULDBLOCK;
1212 down_read(&curr->mm->mmap_sem);
1213 spin_lock(q.lock_ptr);
1216 * Got the lock. We might not be the anticipated owner if we
1217 * did a lock-steal - fix up the PI-state in that case.
1219 if (!ret && q.pi_state->owner != curr) {
1220 u32 newtid = current->pid | FUTEX_WAITERS;
1222 /* Owner died? */
1223 if (q.pi_state->owner != NULL) {
1224 spin_lock_irq(&q.pi_state->owner->pi_lock);
1225 list_del_init(&q.pi_state->list);
1226 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1227 } else
1228 newtid |= FUTEX_OWNER_DIED;
1230 q.pi_state->owner = current;
1232 spin_lock_irq(&current->pi_lock);
1233 list_add(&q.pi_state->list, &current->pi_state_list);
1234 spin_unlock_irq(&current->pi_lock);
1236 /* Unqueue and drop the lock */
1237 unqueue_me_pi(&q, hb);
1238 up_read(&curr->mm->mmap_sem);
1240 * We own it, so we have to replace the pending owner
1241 * TID. This must be atomic as we have preserve the
1242 * owner died bit here.
1244 ret = get_user(uval, uaddr);
1245 while (!ret) {
1246 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1247 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1248 uval, newval);
1249 if (curval == -EFAULT)
1250 ret = -EFAULT;
1251 if (curval == uval)
1252 break;
1253 uval = curval;
1255 } else {
1257 * Catch the rare case, where the lock was released
1258 * when we were on the way back before we locked
1259 * the hash bucket.
1261 if (ret && q.pi_state->owner == curr) {
1262 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1263 ret = 0;
1265 /* Unqueue and drop the lock */
1266 unqueue_me_pi(&q, hb);
1267 up_read(&curr->mm->mmap_sem);
1270 if (!detect && ret == -EDEADLK && 0)
1271 force_sig(SIGKILL, current);
1273 return ret;
1275 out_unlock_release_sem:
1276 queue_unlock(&q, hb);
1278 out_release_sem:
1279 up_read(&curr->mm->mmap_sem);
1280 return ret;
1282 uaddr_faulted:
1284 * We have to r/w *(int __user *)uaddr, but we can't modify it
1285 * non-atomically. Therefore, if get_user below is not
1286 * enough, we need to handle the fault ourselves, while
1287 * still holding the mmap_sem.
1289 if (attempt++) {
1290 if (futex_handle_fault((unsigned long)uaddr, attempt))
1291 goto out_unlock_release_sem;
1293 goto retry_locked;
1296 queue_unlock(&q, hb);
1297 up_read(&curr->mm->mmap_sem);
1299 ret = get_user(uval, uaddr);
1300 if (!ret && (uval != -EFAULT))
1301 goto retry;
1303 return ret;
1307 * Restart handler
1309 static long futex_lock_pi_restart(struct restart_block *restart)
1311 struct hrtimer_sleeper timeout, *to = NULL;
1312 int ret;
1314 restart->fn = do_no_restart_syscall;
1316 if (restart->arg2 || restart->arg3) {
1317 to = &timeout;
1318 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1319 hrtimer_init_sleeper(to, current);
1320 to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
1321 (u64) restart->arg0;
1324 pr_debug("lock_pi restart: %p, %d (%d)\n",
1325 (u32 __user *)restart->arg0, current->pid);
1327 ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
1328 0, to);
1330 if (ret != -EINTR)
1331 return ret;
1333 restart->fn = futex_lock_pi_restart;
1335 /* The other values are filled in */
1336 return -ERESTART_RESTARTBLOCK;
1340 * Called from the syscall entry below.
1342 static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1343 long nsec, int trylock)
1345 struct hrtimer_sleeper timeout, *to = NULL;
1346 struct restart_block *restart;
1347 int ret;
1349 if (sec != MAX_SCHEDULE_TIMEOUT) {
1350 to = &timeout;
1351 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1352 hrtimer_init_sleeper(to, current);
1353 to->timer.expires = ktime_set(sec, nsec);
1356 ret = do_futex_lock_pi(uaddr, detect, trylock, to);
1358 if (ret != -EINTR)
1359 return ret;
1361 pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
1363 restart = &current_thread_info()->restart_block;
1364 restart->fn = futex_lock_pi_restart;
1365 restart->arg0 = (unsigned long) uaddr;
1366 restart->arg1 = detect;
1367 if (to) {
1368 restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
1369 restart->arg3 = to->timer.expires.tv64 >> 32;
1370 } else
1371 restart->arg2 = restart->arg3 = 0;
1373 return -ERESTART_RESTARTBLOCK;
1377 * Userspace attempted a TID -> 0 atomic transition, and failed.
1378 * This is the in-kernel slowpath: we look up the PI state (if any),
1379 * and do the rt-mutex unlock.
1381 static int futex_unlock_pi(u32 __user *uaddr)
1383 struct futex_hash_bucket *hb;
1384 struct futex_q *this, *next;
1385 u32 uval;
1386 struct list_head *head;
1387 union futex_key key;
1388 int ret, attempt = 0;
1390 retry:
1391 if (get_user(uval, uaddr))
1392 return -EFAULT;
1394 * We release only a lock we actually own:
1396 if ((uval & FUTEX_TID_MASK) != current->pid)
1397 return -EPERM;
1399 * First take all the futex related locks:
1401 down_read(&current->mm->mmap_sem);
1403 ret = get_futex_key(uaddr, &key);
1404 if (unlikely(ret != 0))
1405 goto out;
1407 hb = hash_futex(&key);
1408 spin_lock(&hb->lock);
1410 retry_locked:
1412 * To avoid races, try to do the TID -> 0 atomic transition
1413 * again. If it succeeds then we can return without waking
1414 * anyone else up:
1416 inc_preempt_count();
1417 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1418 dec_preempt_count();
1420 if (unlikely(uval == -EFAULT))
1421 goto pi_faulted;
1423 * Rare case: we managed to release the lock atomically,
1424 * no need to wake anyone else up:
1426 if (unlikely(uval == current->pid))
1427 goto out_unlock;
1430 * Ok, other tasks may need to be woken up - check waiters
1431 * and do the wakeup if necessary:
1433 head = &hb->chain;
1435 list_for_each_entry_safe(this, next, head, list) {
1436 if (!match_futex (&this->key, &key))
1437 continue;
1438 ret = wake_futex_pi(uaddr, uval, this);
1440 * The atomic access to the futex value
1441 * generated a pagefault, so retry the
1442 * user-access and the wakeup:
1444 if (ret == -EFAULT)
1445 goto pi_faulted;
1446 goto out_unlock;
1449 * No waiters - kernel unlocks the futex:
1451 ret = unlock_futex_pi(uaddr, uval);
1452 if (ret == -EFAULT)
1453 goto pi_faulted;
1455 out_unlock:
1456 spin_unlock(&hb->lock);
1457 out:
1458 up_read(&current->mm->mmap_sem);
1460 return ret;
1462 pi_faulted:
1464 * We have to r/w *(int __user *)uaddr, but we can't modify it
1465 * non-atomically. Therefore, if get_user below is not
1466 * enough, we need to handle the fault ourselves, while
1467 * still holding the mmap_sem.
1469 if (attempt++) {
1470 if (futex_handle_fault((unsigned long)uaddr, attempt))
1471 goto out_unlock;
1473 goto retry_locked;
1476 spin_unlock(&hb->lock);
1477 up_read(&current->mm->mmap_sem);
1479 ret = get_user(uval, uaddr);
1480 if (!ret && (uval != -EFAULT))
1481 goto retry;
1483 return ret;
1486 static int futex_close(struct inode *inode, struct file *filp)
1488 struct futex_q *q = filp->private_data;
1490 unqueue_me(q);
1491 kfree(q);
1493 return 0;
1496 /* This is one-shot: once it's gone off you need a new fd */
1497 static unsigned int futex_poll(struct file *filp,
1498 struct poll_table_struct *wait)
1500 struct futex_q *q = filp->private_data;
1501 int ret = 0;
1503 poll_wait(filp, &q->waiters, wait);
1506 * list_empty() is safe here without any lock.
1507 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1509 if (list_empty(&q->list))
1510 ret = POLLIN | POLLRDNORM;
1512 return ret;
1515 static struct file_operations futex_fops = {
1516 .release = futex_close,
1517 .poll = futex_poll,
1521 * Signal allows caller to avoid the race which would occur if they
1522 * set the sigio stuff up afterwards.
1524 static int futex_fd(u32 __user *uaddr, int signal)
1526 struct futex_q *q;
1527 struct file *filp;
1528 int ret, err;
1530 ret = -EINVAL;
1531 if (!valid_signal(signal))
1532 goto out;
1534 ret = get_unused_fd();
1535 if (ret < 0)
1536 goto out;
1537 filp = get_empty_filp();
1538 if (!filp) {
1539 put_unused_fd(ret);
1540 ret = -ENFILE;
1541 goto out;
1543 filp->f_op = &futex_fops;
1544 filp->f_vfsmnt = mntget(futex_mnt);
1545 filp->f_dentry = dget(futex_mnt->mnt_root);
1546 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
1548 if (signal) {
1549 err = f_setown(filp, current->pid, 1);
1550 if (err < 0) {
1551 goto error;
1553 filp->f_owner.signum = signal;
1556 q = kmalloc(sizeof(*q), GFP_KERNEL);
1557 if (!q) {
1558 err = -ENOMEM;
1559 goto error;
1561 q->pi_state = NULL;
1563 down_read(&current->mm->mmap_sem);
1564 err = get_futex_key(uaddr, &q->key);
1566 if (unlikely(err != 0)) {
1567 up_read(&current->mm->mmap_sem);
1568 kfree(q);
1569 goto error;
1573 * queue_me() must be called before releasing mmap_sem, because
1574 * key->shared.inode needs to be referenced while holding it.
1576 filp->private_data = q;
1578 queue_me(q, ret, filp);
1579 up_read(&current->mm->mmap_sem);
1581 /* Now we map fd to filp, so userspace can access it */
1582 fd_install(ret, filp);
1583 out:
1584 return ret;
1585 error:
1586 put_unused_fd(ret);
1587 put_filp(filp);
1588 ret = err;
1589 goto out;
1593 * Support for robust futexes: the kernel cleans up held futexes at
1594 * thread exit time.
1596 * Implementation: user-space maintains a per-thread list of locks it
1597 * is holding. Upon do_exit(), the kernel carefully walks this list,
1598 * and marks all locks that are owned by this thread with the
1599 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1600 * always manipulated with the lock held, so the list is private and
1601 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1602 * field, to allow the kernel to clean up if the thread dies after
1603 * acquiring the lock, but just before it could have added itself to
1604 * the list. There can only be one such pending lock.
1608 * sys_set_robust_list - set the robust-futex list head of a task
1609 * @head: pointer to the list-head
1610 * @len: length of the list-head, as userspace expects
1612 asmlinkage long
1613 sys_set_robust_list(struct robust_list_head __user *head,
1614 size_t len)
1617 * The kernel knows only one size for now:
1619 if (unlikely(len != sizeof(*head)))
1620 return -EINVAL;
1622 current->robust_list = head;
1624 return 0;
1628 * sys_get_robust_list - get the robust-futex list head of a task
1629 * @pid: pid of the process [zero for current task]
1630 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1631 * @len_ptr: pointer to a length field, the kernel fills in the header size
1633 asmlinkage long
1634 sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
1635 size_t __user *len_ptr)
1637 struct robust_list_head *head;
1638 unsigned long ret;
1640 if (!pid)
1641 head = current->robust_list;
1642 else {
1643 struct task_struct *p;
1645 ret = -ESRCH;
1646 read_lock(&tasklist_lock);
1647 p = find_task_by_pid(pid);
1648 if (!p)
1649 goto err_unlock;
1650 ret = -EPERM;
1651 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1652 !capable(CAP_SYS_PTRACE))
1653 goto err_unlock;
1654 head = p->robust_list;
1655 read_unlock(&tasklist_lock);
1658 if (put_user(sizeof(*head), len_ptr))
1659 return -EFAULT;
1660 return put_user(head, head_ptr);
1662 err_unlock:
1663 read_unlock(&tasklist_lock);
1665 return ret;
1669 * Process a futex-list entry, check whether it's owned by the
1670 * dying task, and do notification if so:
1672 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
1674 u32 uval, nval;
1676 retry:
1677 if (get_user(uval, uaddr))
1678 return -1;
1680 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1682 * Ok, this dying thread is truly holding a futex
1683 * of interest. Set the OWNER_DIED bit atomically
1684 * via cmpxchg, and if the value had FUTEX_WAITERS
1685 * set, wake up a waiter (if any). (We have to do a
1686 * futex_wake() even if OWNER_DIED is already set -
1687 * to handle the rare but possible case of recursive
1688 * thread-death.) The rest of the cleanup is done in
1689 * userspace.
1691 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
1692 uval | FUTEX_OWNER_DIED);
1693 if (nval == -EFAULT)
1694 return -1;
1696 if (nval != uval)
1697 goto retry;
1699 if (uval & FUTEX_WAITERS)
1700 futex_wake(uaddr, 1);
1702 return 0;
1706 * Walk curr->robust_list (very carefully, it's a userspace list!)
1707 * and mark any locks found there dead, and notify any waiters.
1709 * We silently return on any sign of list-walking problem.
1711 void exit_robust_list(struct task_struct *curr)
1713 struct robust_list_head __user *head = curr->robust_list;
1714 struct robust_list __user *entry, *pending;
1715 unsigned int limit = ROBUST_LIST_LIMIT;
1716 unsigned long futex_offset;
1719 * Fetch the list head (which was registered earlier, via
1720 * sys_set_robust_list()):
1722 if (get_user(entry, &head->list.next))
1723 return;
1725 * Fetch the relative futex offset:
1727 if (get_user(futex_offset, &head->futex_offset))
1728 return;
1730 * Fetch any possibly pending lock-add first, and handle it
1731 * if it exists:
1733 if (get_user(pending, &head->list_op_pending))
1734 return;
1735 if (pending)
1736 handle_futex_death((void *)pending + futex_offset, curr);
1738 while (entry != &head->list) {
1740 * A pending lock might already be on the list, so
1741 * don't process it twice:
1743 if (entry != pending)
1744 if (handle_futex_death((void *)entry + futex_offset,
1745 curr))
1746 return;
1748 * Fetch the next entry in the list:
1750 if (get_user(entry, &entry->next))
1751 return;
1753 * Avoid excessively long or circular lists:
1755 if (!--limit)
1756 break;
1758 cond_resched();
1762 long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1763 u32 __user *uaddr2, u32 val2, u32 val3)
1765 int ret;
1767 switch (op) {
1768 case FUTEX_WAIT:
1769 ret = futex_wait(uaddr, val, timeout);
1770 break;
1771 case FUTEX_WAKE:
1772 ret = futex_wake(uaddr, val);
1773 break;
1774 case FUTEX_FD:
1775 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1776 ret = futex_fd(uaddr, val);
1777 break;
1778 case FUTEX_REQUEUE:
1779 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1780 break;
1781 case FUTEX_CMP_REQUEUE:
1782 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1783 break;
1784 case FUTEX_WAKE_OP:
1785 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1786 break;
1787 case FUTEX_LOCK_PI:
1788 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1789 break;
1790 case FUTEX_UNLOCK_PI:
1791 ret = futex_unlock_pi(uaddr);
1792 break;
1793 case FUTEX_TRYLOCK_PI:
1794 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1795 break;
1796 default:
1797 ret = -ENOSYS;
1799 return ret;
1803 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1804 struct timespec __user *utime, u32 __user *uaddr2,
1805 u32 val3)
1807 struct timespec t;
1808 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1809 u32 val2 = 0;
1811 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1812 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1813 return -EFAULT;
1814 if (!timespec_valid(&t))
1815 return -EINVAL;
1816 if (op == FUTEX_WAIT)
1817 timeout = timespec_to_jiffies(&t) + 1;
1818 else {
1819 timeout = t.tv_sec;
1820 val2 = t.tv_nsec;
1824 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1826 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1827 val2 = (u32) (unsigned long) utime;
1829 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1832 static int futexfs_get_sb(struct file_system_type *fs_type,
1833 int flags, const char *dev_name, void *data,
1834 struct vfsmount *mnt)
1836 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1839 static struct file_system_type futex_fs_type = {
1840 .name = "futexfs",
1841 .get_sb = futexfs_get_sb,
1842 .kill_sb = kill_anon_super,
1845 static int __init init(void)
1847 unsigned int i;
1849 register_filesystem(&futex_fs_type);
1850 futex_mnt = kern_mount(&futex_fs_type);
1852 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1853 INIT_LIST_HEAD(&futex_queues[i].chain);
1854 spin_lock_init(&futex_queues[i].lock);
1856 return 0;
1858 __initcall(init);