ext4: cleanup in ext4_discard_allocated_blocks()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / PCI / pci.txt
blobaa09e5476bba2c1a6ff53223312bc8d11ed23aea
2                         How To Write Linux PCI Drivers
4                 by Martin Mares <mj@ucw.cz> on 07-Feb-2000
5         updated by Grant Grundler <grundler@parisc-linux.org> on 23-Dec-2006
7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 The world of PCI is vast and full of (mostly unpleasant) surprises.
9 Since each CPU architecture implements different chip-sets and PCI devices
10 have different requirements (erm, "features"), the result is the PCI support
11 in the Linux kernel is not as trivial as one would wish. This short paper
12 tries to introduce all potential driver authors to Linux APIs for
13 PCI device drivers.
15 A more complete resource is the third edition of "Linux Device Drivers"
16 by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.
17 LDD3 is available for free (under Creative Commons License) from:
19         http://lwn.net/Kernel/LDD3/
21 However, keep in mind that all documents are subject to "bit rot".
22 Refer to the source code if things are not working as described here.
24 Please send questions/comments/patches about Linux PCI API to the
25 "Linux PCI" <linux-pci@atrey.karlin.mff.cuni.cz> mailing list.
29 0. Structure of PCI drivers
30 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 PCI drivers "discover" PCI devices in a system via pci_register_driver().
32 Actually, it's the other way around. When the PCI generic code discovers
33 a new device, the driver with a matching "description" will be notified.
34 Details on this below.
36 pci_register_driver() leaves most of the probing for devices to
37 the PCI layer and supports online insertion/removal of devices [thus
38 supporting hot-pluggable PCI, CardBus, and Express-Card in a single driver].
39 pci_register_driver() call requires passing in a table of function
40 pointers and thus dictates the high level structure of a driver.
42 Once the driver knows about a PCI device and takes ownership, the
43 driver generally needs to perform the following initialization:
45         Enable the device
46         Request MMIO/IOP resources
47         Set the DMA mask size (for both coherent and streaming DMA)
48         Allocate and initialize shared control data (pci_allocate_coherent())
49         Access device configuration space (if needed)
50         Register IRQ handler (request_irq())
51         Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
52         Enable DMA/processing engines
54 When done using the device, and perhaps the module needs to be unloaded,
55 the driver needs to take the follow steps:
56         Disable the device from generating IRQs
57         Release the IRQ (free_irq())
58         Stop all DMA activity
59         Release DMA buffers (both streaming and coherent)
60         Unregister from other subsystems (e.g. scsi or netdev)
61         Release MMIO/IOP resources
62         Disable the device
64 Most of these topics are covered in the following sections.
65 For the rest look at LDD3 or <linux/pci.h> .
67 If the PCI subsystem is not configured (CONFIG_PCI is not set), most of
68 the PCI functions described below are defined as inline functions either
69 completely empty or just returning an appropriate error codes to avoid
70 lots of ifdefs in the drivers.
74 1. pci_register_driver() call
75 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
77 PCI device drivers call pci_register_driver() during their
78 initialization with a pointer to a structure describing the driver
79 (struct pci_driver):
81         field name      Description
82         ----------      ------------------------------------------------------
83         id_table        Pointer to table of device ID's the driver is
84                         interested in.  Most drivers should export this
85                         table using MODULE_DEVICE_TABLE(pci,...).
87         probe           This probing function gets called (during execution
88                         of pci_register_driver() for already existing
89                         devices or later if a new device gets inserted) for
90                         all PCI devices which match the ID table and are not
91                         "owned" by the other drivers yet. This function gets
92                         passed a "struct pci_dev *" for each device whose
93                         entry in the ID table matches the device. The probe
94                         function returns zero when the driver chooses to
95                         take "ownership" of the device or an error code
96                         (negative number) otherwise.
97                         The probe function always gets called from process
98                         context, so it can sleep.
100         remove          The remove() function gets called whenever a device
101                         being handled by this driver is removed (either during
102                         deregistration of the driver or when it's manually
103                         pulled out of a hot-pluggable slot).
104                         The remove function always gets called from process
105                         context, so it can sleep.
107         suspend         Put device into low power state.
108         suspend_late    Put device into low power state.
110         resume_early    Wake device from low power state.
111         resume          Wake device from low power state.
113                 (Please see Documentation/power/pci.txt for descriptions
114                 of PCI Power Management and the related functions.)
116         shutdown        Hook into reboot_notifier_list (kernel/sys.c).
117                         Intended to stop any idling DMA operations.
118                         Useful for enabling wake-on-lan (NIC) or changing
119                         the power state of a device before reboot.
120                         e.g. drivers/net/e100.c.
122         err_handler     See Documentation/PCI/pci-error-recovery.txt
125 The ID table is an array of struct pci_device_id entries ending with an
126 all-zero entry; use of the macro DEFINE_PCI_DEVICE_TABLE is the preferred
127 method of declaring the table.  Each entry consists of:
129         vendor,device   Vendor and device ID to match (or PCI_ANY_ID)
131         subvendor,      Subsystem vendor and device ID to match (or PCI_ANY_ID)
132         subdevice,
134         class           Device class, subclass, and "interface" to match.
135                         See Appendix D of the PCI Local Bus Spec or
136                         include/linux/pci_ids.h for a full list of classes.
137                         Most drivers do not need to specify class/class_mask
138                         as vendor/device is normally sufficient.
140         class_mask      limit which sub-fields of the class field are compared.
141                         See drivers/scsi/sym53c8xx_2/ for example of usage.
143         driver_data     Data private to the driver.
144                         Most drivers don't need to use driver_data field.
145                         Best practice is to use driver_data as an index
146                         into a static list of equivalent device types,
147                         instead of using it as a pointer.
150 Most drivers only need PCI_DEVICE() or PCI_DEVICE_CLASS() to set up
151 a pci_device_id table.
153 New PCI IDs may be added to a device driver pci_ids table at runtime
154 as shown below:
156 echo "vendor device subvendor subdevice class class_mask driver_data" > \
157 /sys/bus/pci/drivers/{driver}/new_id
159 All fields are passed in as hexadecimal values (no leading 0x).
160 The vendor and device fields are mandatory, the others are optional. Users
161 need pass only as many optional fields as necessary:
162         o subvendor and subdevice fields default to PCI_ANY_ID (FFFFFFFF)
163         o class and classmask fields default to 0
164         o driver_data defaults to 0UL.
166 Note that driver_data must match the value used by any of the pci_device_id
167 entries defined in the driver. This makes the driver_data field mandatory
168 if all the pci_device_id entries have a non-zero driver_data value.
170 Once added, the driver probe routine will be invoked for any unclaimed
171 PCI devices listed in its (newly updated) pci_ids list.
173 When the driver exits, it just calls pci_unregister_driver() and the PCI layer
174 automatically calls the remove hook for all devices handled by the driver.
177 1.1 "Attributes" for driver functions/data
179 Please mark the initialization and cleanup functions where appropriate
180 (the corresponding macros are defined in <linux/init.h>):
182         __init          Initialization code. Thrown away after the driver
183                         initializes.
184         __exit          Exit code. Ignored for non-modular drivers.
187         __devinit       Device initialization code.
188                         Identical to __init if the kernel is not compiled
189                         with CONFIG_HOTPLUG, normal function otherwise.
190         __devexit       The same for __exit.
192 Tips on when/where to use the above attributes:
193         o The module_init()/module_exit() functions (and all
194           initialization functions called _only_ from these)
195           should be marked __init/__exit.
197         o Do not mark the struct pci_driver.
199         o The ID table array should be marked __devinitconst; this is done
200           automatically if the table is declared with DEFINE_PCI_DEVICE_TABLE().
202         o The probe() and remove() functions should be marked __devinit
203           and __devexit respectively.  All initialization functions
204           exclusively called by the probe() routine, can be marked __devinit.
205           Ditto for remove() and __devexit.
207         o If mydriver_remove() is marked with __devexit(), then all address
208           references to mydriver_remove must use __devexit_p(mydriver_remove)
209           (in the struct pci_driver declaration for example).
210           __devexit_p() will generate the function name _or_ NULL if the
211           function will be discarded.  For an example, see drivers/net/tg3.c.
213         o Do NOT mark a function if you are not sure which mark to use.
214           Better to not mark the function than mark the function wrong.
218 2. How to find PCI devices manually
219 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
221 PCI drivers should have a really good reason for not using the
222 pci_register_driver() interface to search for PCI devices.
223 The main reason PCI devices are controlled by multiple drivers
224 is because one PCI device implements several different HW services.
225 E.g. combined serial/parallel port/floppy controller.
227 A manual search may be performed using the following constructs:
229 Searching by vendor and device ID:
231         struct pci_dev *dev = NULL;
232         while (dev = pci_get_device(VENDOR_ID, DEVICE_ID, dev))
233                 configure_device(dev);
235 Searching by class ID (iterate in a similar way):
237         pci_get_class(CLASS_ID, dev)
239 Searching by both vendor/device and subsystem vendor/device ID:
241         pci_get_subsys(VENDOR_ID,DEVICE_ID, SUBSYS_VENDOR_ID, SUBSYS_DEVICE_ID, dev).
243 You can use the constant PCI_ANY_ID as a wildcard replacement for
244 VENDOR_ID or DEVICE_ID.  This allows searching for any device from a
245 specific vendor, for example.
247 These functions are hotplug-safe. They increment the reference count on
248 the pci_dev that they return. You must eventually (possibly at module unload)
249 decrement the reference count on these devices by calling pci_dev_put().
253 3. Device Initialization Steps
254 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
256 As noted in the introduction, most PCI drivers need the following steps
257 for device initialization:
259         Enable the device
260         Request MMIO/IOP resources
261         Set the DMA mask size (for both coherent and streaming DMA)
262         Allocate and initialize shared control data (pci_allocate_coherent())
263         Access device configuration space (if needed)
264         Register IRQ handler (request_irq())
265         Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
266         Enable DMA/processing engines.
268 The driver can access PCI config space registers at any time.
269 (Well, almost. When running BIST, config space can go away...but
270 that will just result in a PCI Bus Master Abort and config reads
271 will return garbage).
274 3.1 Enable the PCI device
275 ~~~~~~~~~~~~~~~~~~~~~~~~~
276 Before touching any device registers, the driver needs to enable
277 the PCI device by calling pci_enable_device(). This will:
278         o wake up the device if it was in suspended state,
279         o allocate I/O and memory regions of the device (if BIOS did not),
280         o allocate an IRQ (if BIOS did not).
282 NOTE: pci_enable_device() can fail! Check the return value.
284 [ OS BUG: we don't check resource allocations before enabling those
285   resources. The sequence would make more sense if we called
286   pci_request_resources() before calling pci_enable_device().
287   Currently, the device drivers can't detect the bug when when two
288   devices have been allocated the same range. This is not a common
289   problem and unlikely to get fixed soon.
291   This has been discussed before but not changed as of 2.6.19:
292         http://lkml.org/lkml/2006/3/2/194
295 pci_set_master() will enable DMA by setting the bus master bit
296 in the PCI_COMMAND register. It also fixes the latency timer value if
297 it's set to something bogus by the BIOS.  pci_clear_master() will
298 disable DMA by clearing the bus master bit.
300 If the PCI device can use the PCI Memory-Write-Invalidate transaction,
301 call pci_set_mwi().  This enables the PCI_COMMAND bit for Mem-Wr-Inval
302 and also ensures that the cache line size register is set correctly.
303 Check the return value of pci_set_mwi() as not all architectures
304 or chip-sets may support Memory-Write-Invalidate.  Alternatively,
305 if Mem-Wr-Inval would be nice to have but is not required, call
306 pci_try_set_mwi() to have the system do its best effort at enabling
307 Mem-Wr-Inval.
310 3.2 Request MMIO/IOP resources
311 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
312 Memory (MMIO), and I/O port addresses should NOT be read directly
313 from the PCI device config space. Use the values in the pci_dev structure
314 as the PCI "bus address" might have been remapped to a "host physical"
315 address by the arch/chip-set specific kernel support.
317 See Documentation/io-mapping.txt for how to access device registers
318 or device memory.
320 The device driver needs to call pci_request_region() to verify
321 no other device is already using the same address resource.
322 Conversely, drivers should call pci_release_region() AFTER
323 calling pci_disable_device().
324 The idea is to prevent two devices colliding on the same address range.
326 [ See OS BUG comment above. Currently (2.6.19), The driver can only
327   determine MMIO and IO Port resource availability _after_ calling
328   pci_enable_device(). ]
330 Generic flavors of pci_request_region() are request_mem_region()
331 (for MMIO ranges) and request_region() (for IO Port ranges).
332 Use these for address resources that are not described by "normal" PCI
333 BARs.
335 Also see pci_request_selected_regions() below.
338 3.3 Set the DMA mask size
339 ~~~~~~~~~~~~~~~~~~~~~~~~~
340 [ If anything below doesn't make sense, please refer to
341   Documentation/DMA-API.txt. This section is just a reminder that
342   drivers need to indicate DMA capabilities of the device and is not
343   an authoritative source for DMA interfaces. ]
345 While all drivers should explicitly indicate the DMA capability
346 (e.g. 32 or 64 bit) of the PCI bus master, devices with more than
347 32-bit bus master capability for streaming data need the driver
348 to "register" this capability by calling pci_set_dma_mask() with
349 appropriate parameters.  In general this allows more efficient DMA
350 on systems where System RAM exists above 4G _physical_ address.
352 Drivers for all PCI-X and PCIe compliant devices must call
353 pci_set_dma_mask() as they are 64-bit DMA devices.
355 Similarly, drivers must also "register" this capability if the device
356 can directly address "consistent memory" in System RAM above 4G physical
357 address by calling pci_set_consistent_dma_mask().
358 Again, this includes drivers for all PCI-X and PCIe compliant devices.
359 Many 64-bit "PCI" devices (before PCI-X) and some PCI-X devices are
360 64-bit DMA capable for payload ("streaming") data but not control
361 ("consistent") data.
364 3.4 Setup shared control data
365 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
366 Once the DMA masks are set, the driver can allocate "consistent" (a.k.a. shared)
367 memory.  See Documentation/DMA-API.txt for a full description of
368 the DMA APIs. This section is just a reminder that it needs to be done
369 before enabling DMA on the device.
372 3.5 Initialize device registers
373 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
374 Some drivers will need specific "capability" fields programmed
375 or other "vendor specific" register initialized or reset.
376 E.g. clearing pending interrupts.
379 3.6 Register IRQ handler
380 ~~~~~~~~~~~~~~~~~~~~~~~~
381 While calling request_irq() is the last step described here,
382 this is often just another intermediate step to initialize a device.
383 This step can often be deferred until the device is opened for use.
385 All interrupt handlers for IRQ lines should be registered with IRQF_SHARED
386 and use the devid to map IRQs to devices (remember that all PCI IRQ lines
387 can be shared).
389 request_irq() will associate an interrupt handler and device handle
390 with an interrupt number. Historically interrupt numbers represent
391 IRQ lines which run from the PCI device to the Interrupt controller.
392 With MSI and MSI-X (more below) the interrupt number is a CPU "vector".
394 request_irq() also enables the interrupt. Make sure the device is
395 quiesced and does not have any interrupts pending before registering
396 the interrupt handler.
398 MSI and MSI-X are PCI capabilities. Both are "Message Signaled Interrupts"
399 which deliver interrupts to the CPU via a DMA write to a Local APIC.
400 The fundamental difference between MSI and MSI-X is how multiple
401 "vectors" get allocated. MSI requires contiguous blocks of vectors
402 while MSI-X can allocate several individual ones.
404 MSI capability can be enabled by calling pci_enable_msi() or
405 pci_enable_msix() before calling request_irq(). This causes
406 the PCI support to program CPU vector data into the PCI device
407 capability registers.
409 If your PCI device supports both, try to enable MSI-X first.
410 Only one can be enabled at a time.  Many architectures, chip-sets,
411 or BIOSes do NOT support MSI or MSI-X and the call to pci_enable_msi/msix
412 will fail. This is important to note since many drivers have
413 two (or more) interrupt handlers: one for MSI/MSI-X and another for IRQs.
414 They choose which handler to register with request_irq() based on the
415 return value from pci_enable_msi/msix().
417 There are (at least) two really good reasons for using MSI:
418 1) MSI is an exclusive interrupt vector by definition.
419    This means the interrupt handler doesn't have to verify
420    its device caused the interrupt.
422 2) MSI avoids DMA/IRQ race conditions. DMA to host memory is guaranteed
423    to be visible to the host CPU(s) when the MSI is delivered. This
424    is important for both data coherency and avoiding stale control data.
425    This guarantee allows the driver to omit MMIO reads to flush
426    the DMA stream.
428 See drivers/infiniband/hw/mthca/ or drivers/net/tg3.c for examples
429 of MSI/MSI-X usage.
433 4. PCI device shutdown
434 ~~~~~~~~~~~~~~~~~~~~~~~
436 When a PCI device driver is being unloaded, most of the following
437 steps need to be performed:
439         Disable the device from generating IRQs
440         Release the IRQ (free_irq())
441         Stop all DMA activity
442         Release DMA buffers (both streaming and consistent)
443         Unregister from other subsystems (e.g. scsi or netdev)
444         Disable device from responding to MMIO/IO Port addresses
445         Release MMIO/IO Port resource(s)
448 4.1 Stop IRQs on the device
449 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
450 How to do this is chip/device specific. If it's not done, it opens
451 the possibility of a "screaming interrupt" if (and only if)
452 the IRQ is shared with another device.
454 When the shared IRQ handler is "unhooked", the remaining devices
455 using the same IRQ line will still need the IRQ enabled. Thus if the
456 "unhooked" device asserts IRQ line, the system will respond assuming
457 it was one of the remaining devices asserted the IRQ line. Since none
458 of the other devices will handle the IRQ, the system will "hang" until
459 it decides the IRQ isn't going to get handled and masks the IRQ (100,000
460 iterations later). Once the shared IRQ is masked, the remaining devices
461 will stop functioning properly. Not a nice situation.
463 This is another reason to use MSI or MSI-X if it's available.
464 MSI and MSI-X are defined to be exclusive interrupts and thus
465 are not susceptible to the "screaming interrupt" problem.
468 4.2 Release the IRQ
469 ~~~~~~~~~~~~~~~~~~~
470 Once the device is quiesced (no more IRQs), one can call free_irq().
471 This function will return control once any pending IRQs are handled,
472 "unhook" the drivers IRQ handler from that IRQ, and finally release
473 the IRQ if no one else is using it.
476 4.3 Stop all DMA activity
477 ~~~~~~~~~~~~~~~~~~~~~~~~~
478 It's extremely important to stop all DMA operations BEFORE attempting
479 to deallocate DMA control data. Failure to do so can result in memory
480 corruption, hangs, and on some chip-sets a hard crash.
482 Stopping DMA after stopping the IRQs can avoid races where the
483 IRQ handler might restart DMA engines.
485 While this step sounds obvious and trivial, several "mature" drivers
486 didn't get this step right in the past.
489 4.4 Release DMA buffers
490 ~~~~~~~~~~~~~~~~~~~~~~~
491 Once DMA is stopped, clean up streaming DMA first.
492 I.e. unmap data buffers and return buffers to "upstream"
493 owners if there is one.
495 Then clean up "consistent" buffers which contain the control data.
497 See Documentation/DMA-API.txt for details on unmapping interfaces.
500 4.5 Unregister from other subsystems
501 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
502 Most low level PCI device drivers support some other subsystem
503 like USB, ALSA, SCSI, NetDev, Infiniband, etc. Make sure your
504 driver isn't losing resources from that other subsystem.
505 If this happens, typically the symptom is an Oops (panic) when
506 the subsystem attempts to call into a driver that has been unloaded.
509 4.6 Disable Device from responding to MMIO/IO Port addresses
510 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
511 io_unmap() MMIO or IO Port resources and then call pci_disable_device().
512 This is the symmetric opposite of pci_enable_device().
513 Do not access device registers after calling pci_disable_device().
516 4.7 Release MMIO/IO Port Resource(s)
517 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
518 Call pci_release_region() to mark the MMIO or IO Port range as available.
519 Failure to do so usually results in the inability to reload the driver.
523 5. How to access PCI config space
524 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
526 You can use pci_(read|write)_config_(byte|word|dword) to access the config
527 space of a device represented by struct pci_dev *. All these functions return 0
528 when successful or an error code (PCIBIOS_...) which can be translated to a text
529 string by pcibios_strerror. Most drivers expect that accesses to valid PCI
530 devices don't fail.
532 If you don't have a struct pci_dev available, you can call
533 pci_bus_(read|write)_config_(byte|word|dword) to access a given device
534 and function on that bus.
536 If you access fields in the standard portion of the config header, please
537 use symbolic names of locations and bits declared in <linux/pci.h>.
539 If you need to access Extended PCI Capability registers, just call
540 pci_find_capability() for the particular capability and it will find the
541 corresponding register block for you.
545 6. Other interesting functions
546 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
548 pci_find_slot()                 Find pci_dev corresponding to given bus and
549                                 slot numbers.
550 pci_set_power_state()           Set PCI Power Management state (0=D0 ... 3=D3)
551 pci_find_capability()           Find specified capability in device's capability
552                                 list.
553 pci_resource_start()            Returns bus start address for a given PCI region
554 pci_resource_end()              Returns bus end address for a given PCI region
555 pci_resource_len()              Returns the byte length of a PCI region
556 pci_set_drvdata()               Set private driver data pointer for a pci_dev
557 pci_get_drvdata()               Return private driver data pointer for a pci_dev
558 pci_set_mwi()                   Enable Memory-Write-Invalidate transactions.
559 pci_clear_mwi()                 Disable Memory-Write-Invalidate transactions.
563 7. Miscellaneous hints
564 ~~~~~~~~~~~~~~~~~~~~~~
566 When displaying PCI device names to the user (for example when a driver wants
567 to tell the user what card has it found), please use pci_name(pci_dev).
569 Always refer to the PCI devices by a pointer to the pci_dev structure.
570 All PCI layer functions use this identification and it's the only
571 reasonable one. Don't use bus/slot/function numbers except for very
572 special purposes -- on systems with multiple primary buses their semantics
573 can be pretty complex.
575 Don't try to turn on Fast Back to Back writes in your driver.  All devices
576 on the bus need to be capable of doing it, so this is something which needs
577 to be handled by platform and generic code, not individual drivers.
581 8. Vendor and device identifications
582 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
584 One is not required to add new device ids to include/linux/pci_ids.h.
585 Please add PCI_VENDOR_ID_xxx for vendors and a hex constant for device ids.
587 PCI_VENDOR_ID_xxx constants are re-used. The device ids are arbitrary
588 hex numbers (vendor controlled) and normally used only in a single
589 location, the pci_device_id table.
591 Please DO submit new vendor/device ids to pciids.sourceforge.net project.
595 9. Obsolete functions
596 ~~~~~~~~~~~~~~~~~~~~~
598 There are several functions which you might come across when trying to
599 port an old driver to the new PCI interface.  They are no longer present
600 in the kernel as they aren't compatible with hotplug or PCI domains or
601 having sane locking.
603 pci_find_device()       Superseded by pci_get_device()
604 pci_find_subsys()       Superseded by pci_get_subsys()
605 pci_find_slot()         Superseded by pci_get_slot()
608 The alternative is the traditional PCI device driver that walks PCI
609 device lists. This is still possible but discouraged.
613 10. MMIO Space and "Write Posting"
614 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
616 Converting a driver from using I/O Port space to using MMIO space
617 often requires some additional changes. Specifically, "write posting"
618 needs to be handled. Many drivers (e.g. tg3, acenic, sym53c8xx_2)
619 already do this. I/O Port space guarantees write transactions reach the PCI
620 device before the CPU can continue. Writes to MMIO space allow the CPU
621 to continue before the transaction reaches the PCI device. HW weenies
622 call this "Write Posting" because the write completion is "posted" to
623 the CPU before the transaction has reached its destination.
625 Thus, timing sensitive code should add readl() where the CPU is
626 expected to wait before doing other work.  The classic "bit banging"
627 sequence works fine for I/O Port space:
629        for (i = 8; --i; val >>= 1) {
630                outb(val & 1, ioport_reg);      /* write bit */
631                udelay(10);
632        }
634 The same sequence for MMIO space should be:
636        for (i = 8; --i; val >>= 1) {
637                writeb(val & 1, mmio_reg);      /* write bit */
638                readb(safe_mmio_reg);           /* flush posted write */
639                udelay(10);
640        }
642 It is important that "safe_mmio_reg" not have any side effects that
643 interferes with the correct operation of the device.
645 Another case to watch out for is when resetting a PCI device. Use PCI
646 Configuration space reads to flush the writel(). This will gracefully
647 handle the PCI master abort on all platforms if the PCI device is
648 expected to not respond to a readl().  Most x86 platforms will allow
649 MMIO reads to master abort (a.k.a. "Soft Fail") and return garbage
650 (e.g. ~0). But many RISC platforms will crash (a.k.a."Hard Fail").