[SCSI] sym53c8xx: Use scmd_printk where appropriate
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
blob13fd5b2c56fc0c621e5cc650fc4ed5cb5abab787
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
19 * Other major contributions:
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24 *-----------------------------------------------------------------------------
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
41 #include <linux/slab.h>
42 #include <asm/param.h> /* for timeouts in units of HZ */
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
52 * Needed function prototypes.
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir(struct sym_hcb *);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
64 * Print a buffer in hexadecimal format with a ".\n" at end.
66 static void sym_printl_hex(u_char *p, int n)
68 while (n-- > 0)
69 printf (" %x", *p++);
70 printf (".\n");
73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
75 if (label)
76 sym_print_addr(cp->cmd, "%s: ", label);
77 else
78 sym_print_addr(cp->cmd, "");
80 spi_print_msg(msg);
81 printf("\n");
84 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
86 struct sym_tcb *tp = &np->target[target];
87 dev_info(&tp->starget->dev, "%s: ", label);
89 spi_print_msg(msg);
90 printf("\n");
94 * Print something that tells about extended errors.
96 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
98 if (x_status & XE_PARITY_ERR) {
99 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
101 if (x_status & XE_EXTRA_DATA) {
102 sym_print_addr(cmd, "extraneous data discarded.\n");
104 if (x_status & XE_BAD_PHASE) {
105 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
107 if (x_status & XE_SODL_UNRUN) {
108 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
110 if (x_status & XE_SWIDE_OVRUN) {
111 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
116 * Return a string for SCSI BUS mode.
118 static char *sym_scsi_bus_mode(int mode)
120 switch(mode) {
121 case SMODE_HVD: return "HVD";
122 case SMODE_SE: return "SE";
123 case SMODE_LVD: return "LVD";
125 return "??";
129 * Soft reset the chip.
131 * Raising SRST when the chip is running may cause
132 * problems on dual function chips (see below).
133 * On the other hand, LVD devices need some delay
134 * to settle and report actual BUS mode in STEST4.
136 static void sym_chip_reset (struct sym_hcb *np)
138 OUTB(np, nc_istat, SRST);
139 INB(np, nc_mbox1);
140 udelay(10);
141 OUTB(np, nc_istat, 0);
142 INB(np, nc_mbox1);
143 udelay(2000); /* For BUS MODE to settle */
147 * Really soft reset the chip.:)
149 * Some 896 and 876 chip revisions may hang-up if we set
150 * the SRST (soft reset) bit at the wrong time when SCRIPTS
151 * are running.
152 * So, we need to abort the current operation prior to
153 * soft resetting the chip.
155 static void sym_soft_reset (struct sym_hcb *np)
157 u_char istat = 0;
158 int i;
160 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 goto do_chip_reset;
163 OUTB(np, nc_istat, CABRT);
164 for (i = 100000 ; i ; --i) {
165 istat = INB(np, nc_istat);
166 if (istat & SIP) {
167 INW(np, nc_sist);
169 else if (istat & DIP) {
170 if (INB(np, nc_dstat) & ABRT)
171 break;
173 udelay(5);
175 OUTB(np, nc_istat, 0);
176 if (!i)
177 printf("%s: unable to abort current chip operation, "
178 "ISTAT=0x%02x.\n", sym_name(np), istat);
179 do_chip_reset:
180 sym_chip_reset(np);
184 * Start reset process.
186 * The interrupt handler will reinitialize the chip.
188 static void sym_start_reset(struct sym_hcb *np)
190 sym_reset_scsi_bus(np, 1);
193 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
195 u32 term;
196 int retv = 0;
198 sym_soft_reset(np); /* Soft reset the chip */
199 if (enab_int)
200 OUTW(np, nc_sien, RST);
202 * Enable Tolerant, reset IRQD if present and
203 * properly set IRQ mode, prior to resetting the bus.
205 OUTB(np, nc_stest3, TE);
206 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 OUTB(np, nc_scntl1, CRST);
208 INB(np, nc_mbox1);
209 udelay(200);
211 if (!SYM_SETUP_SCSI_BUS_CHECK)
212 goto out;
214 * Check for no terminators or SCSI bus shorts to ground.
215 * Read SCSI data bus, data parity bits and control signals.
216 * We are expecting RESET to be TRUE and other signals to be
217 * FALSE.
219 term = INB(np, nc_sstat0);
220 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
221 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
222 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
223 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
224 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
226 if (!np->maxwide)
227 term &= 0x3ffff;
229 if (term != (2<<7)) {
230 printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 sym_name(np));
232 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 "0x%lx, expecting 0x%lx\n",
234 sym_name(np),
235 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 (u_long)term, (u_long)(2<<7));
237 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 retv = 1;
240 out:
241 OUTB(np, nc_scntl1, 0);
242 return retv;
246 * Select SCSI clock frequency
248 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
251 * If multiplier not present or not selected, leave here.
253 if (np->multiplier <= 1) {
254 OUTB(np, nc_scntl3, scntl3);
255 return;
258 if (sym_verbose >= 2)
259 printf ("%s: enabling clock multiplier\n", sym_name(np));
261 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
263 * Wait for the LCKFRQ bit to be set if supported by the chip.
264 * Otherwise wait 50 micro-seconds (at least).
266 if (np->features & FE_LCKFRQ) {
267 int i = 20;
268 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 udelay(20);
270 if (!i)
271 printf("%s: the chip cannot lock the frequency\n",
272 sym_name(np));
273 } else {
274 INB(np, nc_mbox1);
275 udelay(50+10);
277 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
278 OUTB(np, nc_scntl3, scntl3);
279 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
280 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
285 * Determine the chip's clock frequency.
287 * This is essential for the negotiation of the synchronous
288 * transfer rate.
290 * Note: we have to return the correct value.
291 * THERE IS NO SAFE DEFAULT VALUE.
293 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294 * 53C860 and 53C875 rev. 1 support fast20 transfers but
295 * do not have a clock doubler and so are provided with a
296 * 80 MHz clock. All other fast20 boards incorporate a doubler
297 * and so should be delivered with a 40 MHz clock.
298 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299 * clock and provide a clock quadrupler (160 Mhz).
303 * calculate SCSI clock frequency (in KHz)
305 static unsigned getfreq (struct sym_hcb *np, int gen)
307 unsigned int ms = 0;
308 unsigned int f;
311 * Measure GEN timer delay in order
312 * to calculate SCSI clock frequency
314 * This code will never execute too
315 * many loop iterations (if DELAY is
316 * reasonably correct). It could get
317 * too low a delay (too high a freq.)
318 * if the CPU is slow executing the
319 * loop for some reason (an NMI, for
320 * example). For this reason we will
321 * if multiple measurements are to be
322 * performed trust the higher delay
323 * (lower frequency returned).
325 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
326 INW(np, nc_sist); /* clear pending scsi interrupt */
327 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
328 INW(np, nc_sist); /* another one, just to be sure :) */
330 * The C1010-33 core does not report GEN in SIST,
331 * if this interrupt is masked in SIEN.
332 * I don't know yet if the C1010-66 behaves the same way.
334 if (np->features & FE_C10) {
335 OUTW(np, nc_sien, GEN);
336 OUTB(np, nc_istat1, SIRQD);
338 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
339 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
340 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
341 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 udelay(1000/4); /* count in 1/4 of ms */
343 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
345 * Undo C1010-33 specific settings.
347 if (np->features & FE_C10) {
348 OUTW(np, nc_sien, 0);
349 OUTB(np, nc_istat1, 0);
352 * set prescaler to divide by whatever 0 means
353 * 0 ought to choose divide by 2, but appears
354 * to set divide by 3.5 mode in my 53c810 ...
356 OUTB(np, nc_scntl3, 0);
359 * adjust for prescaler, and convert into KHz
361 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
364 * The C1010-33 result is biased by a factor
365 * of 2/3 compared to earlier chips.
367 if (np->features & FE_C10)
368 f = (f * 2) / 3;
370 if (sym_verbose >= 2)
371 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 sym_name(np), gen, ms/4, f);
374 return f;
377 static unsigned sym_getfreq (struct sym_hcb *np)
379 u_int f1, f2;
380 int gen = 8;
382 getfreq (np, gen); /* throw away first result */
383 f1 = getfreq (np, gen);
384 f2 = getfreq (np, gen);
385 if (f1 > f2) f1 = f2; /* trust lower result */
386 return f1;
390 * Get/probe chip SCSI clock frequency
392 static void sym_getclock (struct sym_hcb *np, int mult)
394 unsigned char scntl3 = np->sv_scntl3;
395 unsigned char stest1 = np->sv_stest1;
396 unsigned f1;
398 np->multiplier = 1;
399 f1 = 40000;
401 * True with 875/895/896/895A with clock multiplier selected
403 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 if (sym_verbose >= 2)
405 printf ("%s: clock multiplier found\n", sym_name(np));
406 np->multiplier = mult;
410 * If multiplier not found or scntl3 not 7,5,3,
411 * reset chip and get frequency from general purpose timer.
412 * Otherwise trust scntl3 BIOS setting.
414 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
416 f1 = sym_getfreq (np);
418 if (sym_verbose)
419 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
421 if (f1 < 45000) f1 = 40000;
422 else if (f1 < 55000) f1 = 50000;
423 else f1 = 80000;
425 if (f1 < 80000 && mult > 1) {
426 if (sym_verbose >= 2)
427 printf ("%s: clock multiplier assumed\n",
428 sym_name(np));
429 np->multiplier = mult;
431 } else {
432 if ((scntl3 & 7) == 3) f1 = 40000;
433 else if ((scntl3 & 7) == 5) f1 = 80000;
434 else f1 = 160000;
436 f1 /= np->multiplier;
440 * Compute controller synchronous parameters.
442 f1 *= np->multiplier;
443 np->clock_khz = f1;
447 * Get/probe PCI clock frequency
449 static int sym_getpciclock (struct sym_hcb *np)
451 int f = 0;
454 * For now, we only need to know about the actual
455 * PCI BUS clock frequency for C1010-66 chips.
457 #if 1
458 if (np->features & FE_66MHZ) {
459 #else
460 if (1) {
461 #endif
462 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 f = sym_getfreq(np);
464 OUTB(np, nc_stest1, 0);
466 np->pciclk_khz = f;
468 return f;
472 * SYMBIOS chip clock divisor table.
474 * Divisors are multiplied by 10,000,000 in order to make
475 * calculations more simple.
477 #define _5M 5000000
478 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
481 * Get clock factor and sync divisor for a given
482 * synchronous factor period.
484 static int
485 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
487 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
488 int div = np->clock_divn; /* Number of divisors supported */
489 u32 fak; /* Sync factor in sxfer */
490 u32 per; /* Period in tenths of ns */
491 u32 kpc; /* (per * clk) */
492 int ret;
495 * Compute the synchronous period in tenths of nano-seconds
497 if (dt && sfac <= 9) per = 125;
498 else if (sfac <= 10) per = 250;
499 else if (sfac == 11) per = 303;
500 else if (sfac == 12) per = 500;
501 else per = 40 * sfac;
502 ret = per;
504 kpc = per * clk;
505 if (dt)
506 kpc <<= 1;
509 * For earliest C10 revision 0, we cannot use extra
510 * clocks for the setting of the SCSI clocking.
511 * Note that this limits the lowest sync data transfer
512 * to 5 Mega-transfers per second and may result in
513 * using higher clock divisors.
515 #if 1
516 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
518 * Look for the lowest clock divisor that allows an
519 * output speed not faster than the period.
521 while (div > 0) {
522 --div;
523 if (kpc > (div_10M[div] << 2)) {
524 ++div;
525 break;
528 fak = 0; /* No extra clocks */
529 if (div == np->clock_divn) { /* Are we too fast ? */
530 ret = -1;
532 *divp = div;
533 *fakp = fak;
534 return ret;
536 #endif
539 * Look for the greatest clock divisor that allows an
540 * input speed faster than the period.
542 while (div-- > 0)
543 if (kpc >= (div_10M[div] << 2)) break;
546 * Calculate the lowest clock factor that allows an output
547 * speed not faster than the period, and the max output speed.
548 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
551 if (dt) {
552 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 } else {
555 fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
560 * Check against our hardware limits, or bugs :).
562 if (fak > 2) {
563 fak = 2;
564 ret = -1;
568 * Compute and return sync parameters.
570 *divp = div;
571 *fakp = fak;
573 return ret;
577 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578 * 128 transfers. All chips support at least 16 transfers
579 * bursts. The 825A, 875 and 895 chips support bursts of up
580 * to 128 transfers and the 895A and 896 support bursts of up
581 * to 64 transfers. All other chips support up to 16
582 * transfers bursts.
584 * For PCI 32 bit data transfers each transfer is a DWORD.
585 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
587 * We use log base 2 (burst length) as internal code, with
588 * value 0 meaning "burst disabled".
592 * Burst length from burst code.
594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
597 * Burst code from io register bits.
599 #define burst_code(dmode, ctest4, ctest5) \
600 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
603 * Set initial io register bits from burst code.
605 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
607 np->rv_ctest4 &= ~0x80;
608 np->rv_dmode &= ~(0x3 << 6);
609 np->rv_ctest5 &= ~0x4;
611 if (!bc) {
612 np->rv_ctest4 |= 0x80;
614 else {
615 --bc;
616 np->rv_dmode |= ((bc & 0x3) << 6);
617 np->rv_ctest5 |= (bc & 0x4);
622 * Save initial settings of some IO registers.
623 * Assumed to have been set by BIOS.
624 * We cannot reset the chip prior to reading the
625 * IO registers, since informations will be lost.
626 * Since the SCRIPTS processor may be running, this
627 * is not safe on paper, but it seems to work quite
628 * well. :)
630 static void sym_save_initial_setting (struct sym_hcb *np)
632 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
633 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
634 np->sv_dmode = INB(np, nc_dmode) & 0xce;
635 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
636 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
637 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
638 np->sv_gpcntl = INB(np, nc_gpcntl);
639 np->sv_stest1 = INB(np, nc_stest1);
640 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
641 np->sv_stest4 = INB(np, nc_stest4);
642 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
643 np->sv_scntl4 = INB(np, nc_scntl4);
644 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
646 else
647 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
651 * Set SCSI BUS mode.
652 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
653 * through the STEST4 IO register.
654 * - For previous generation chips (825/825A/875), the user has to tell us
655 * how to check against HVD, since a 100% safe algorithm is not possible.
657 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
659 if (np->scsi_mode)
660 return;
662 np->scsi_mode = SMODE_SE;
663 if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 np->scsi_mode = (np->sv_stest4 & SMODE);
665 else if (np->features & FE_DIFF) {
666 if (SYM_SETUP_SCSI_DIFF == 1) {
667 if (np->sv_scntl3) {
668 if (np->sv_stest2 & 0x20)
669 np->scsi_mode = SMODE_HVD;
670 } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 if (!(INB(np, nc_gpreg) & 0x08))
672 np->scsi_mode = SMODE_HVD;
674 } else if (SYM_SETUP_SCSI_DIFF == 2)
675 np->scsi_mode = SMODE_HVD;
677 if (np->scsi_mode == SMODE_HVD)
678 np->rv_stest2 |= 0x20;
682 * Prepare io register values used by sym_start_up()
683 * according to selected and supported features.
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
687 u_char burst_max;
688 u32 period;
689 int i;
691 np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
694 * Guess the frequency of the chip's clock.
696 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
697 np->clock_khz = 160000;
698 else if (np->features & FE_ULTRA)
699 np->clock_khz = 80000;
700 else
701 np->clock_khz = 40000;
704 * Get the clock multiplier factor.
706 if (np->features & FE_QUAD)
707 np->multiplier = 4;
708 else if (np->features & FE_DBLR)
709 np->multiplier = 2;
710 else
711 np->multiplier = 1;
714 * Measure SCSI clock frequency for chips
715 * it may vary from assumed one.
717 if (np->features & FE_VARCLK)
718 sym_getclock(np, np->multiplier);
721 * Divisor to be used for async (timer pre-scaler).
723 i = np->clock_divn - 1;
724 while (--i >= 0) {
725 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
726 ++i;
727 break;
730 np->rv_scntl3 = i+1;
733 * The C1010 uses hardwired divisors for async.
734 * So, we just throw away, the async. divisor.:-)
736 if (np->features & FE_C10)
737 np->rv_scntl3 = 0;
740 * Minimum synchronous period factor supported by the chip.
741 * Btw, 'period' is in tenths of nanoseconds.
743 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
745 if (period <= 250) np->minsync = 10;
746 else if (period <= 303) np->minsync = 11;
747 else if (period <= 500) np->minsync = 12;
748 else np->minsync = (period + 40 - 1) / 40;
751 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
753 if (np->minsync < 25 &&
754 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
755 np->minsync = 25;
756 else if (np->minsync < 12 &&
757 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
758 np->minsync = 12;
761 * Maximum synchronous period factor supported by the chip.
763 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
764 np->maxsync = period > 2540 ? 254 : period / 10;
767 * If chip is a C1010, guess the sync limits in DT mode.
769 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
770 if (np->clock_khz == 160000) {
771 np->minsync_dt = 9;
772 np->maxsync_dt = 50;
773 np->maxoffs_dt = nvram->type ? 62 : 31;
778 * 64 bit addressing (895A/896/1010) ?
780 if (np->features & FE_DAC) {
781 if (!use_dac(np))
782 np->rv_ccntl1 |= (DDAC);
783 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
784 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
785 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
786 np->rv_ccntl1 |= (0 | EXTIBMV);
790 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
792 if (np->features & FE_NOPM)
793 np->rv_ccntl0 |= (ENPMJ);
796 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
797 * In dual channel mode, contention occurs if internal cycles
798 * are used. Disable internal cycles.
800 if (np->s.device->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
801 np->s.device->revision < 0x1)
802 np->rv_ccntl0 |= DILS;
805 * Select burst length (dwords)
807 burst_max = SYM_SETUP_BURST_ORDER;
808 if (burst_max == 255)
809 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
810 np->sv_ctest5);
811 if (burst_max > 7)
812 burst_max = 7;
813 if (burst_max > np->maxburst)
814 burst_max = np->maxburst;
817 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
818 * This chip and the 860 Rev 1 may wrongly use PCI cache line
819 * based transactions on LOAD/STORE instructions. So we have
820 * to prevent these chips from using such PCI transactions in
821 * this driver. The generic ncr driver that does not use
822 * LOAD/STORE instructions does not need this work-around.
824 if ((np->s.device->device == PCI_DEVICE_ID_NCR_53C810 &&
825 np->s.device->revision >= 0x10 && np->s.device->revision <= 0x11) ||
826 (np->s.device->device == PCI_DEVICE_ID_NCR_53C860 &&
827 np->s.device->revision <= 0x1))
828 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
831 * Select all supported special features.
832 * If we are using on-board RAM for scripts, prefetch (PFEN)
833 * does not help, but burst op fetch (BOF) does.
834 * Disabling PFEN makes sure BOF will be used.
836 if (np->features & FE_ERL)
837 np->rv_dmode |= ERL; /* Enable Read Line */
838 if (np->features & FE_BOF)
839 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
840 if (np->features & FE_ERMP)
841 np->rv_dmode |= ERMP; /* Enable Read Multiple */
842 #if 1
843 if ((np->features & FE_PFEN) && !np->ram_ba)
844 #else
845 if (np->features & FE_PFEN)
846 #endif
847 np->rv_dcntl |= PFEN; /* Prefetch Enable */
848 if (np->features & FE_CLSE)
849 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
850 if (np->features & FE_WRIE)
851 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
852 if (np->features & FE_DFS)
853 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
856 * Select some other
858 np->rv_ctest4 |= MPEE; /* Master parity checking */
859 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
862 * Get parity checking, host ID and verbose mode from NVRAM
864 np->myaddr = 255;
865 np->scsi_mode = 0;
866 sym_nvram_setup_host(shost, np, nvram);
869 * Get SCSI addr of host adapter (set by bios?).
871 if (np->myaddr == 255) {
872 np->myaddr = INB(np, nc_scid) & 0x07;
873 if (!np->myaddr)
874 np->myaddr = SYM_SETUP_HOST_ID;
878 * Prepare initial io register bits for burst length
880 sym_init_burst(np, burst_max);
882 sym_set_bus_mode(np, nvram);
885 * Set LED support from SCRIPTS.
886 * Ignore this feature for boards known to use a
887 * specific GPIO wiring and for the 895A, 896
888 * and 1010 that drive the LED directly.
890 if ((SYM_SETUP_SCSI_LED ||
891 (nvram->type == SYM_SYMBIOS_NVRAM ||
892 (nvram->type == SYM_TEKRAM_NVRAM &&
893 np->s.device->device == PCI_DEVICE_ID_NCR_53C895))) &&
894 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
895 np->features |= FE_LED0;
898 * Set irq mode.
900 switch(SYM_SETUP_IRQ_MODE & 3) {
901 case 2:
902 np->rv_dcntl |= IRQM;
903 break;
904 case 1:
905 np->rv_dcntl |= (np->sv_dcntl & IRQM);
906 break;
907 default:
908 break;
912 * Configure targets according to driver setup.
913 * If NVRAM present get targets setup from NVRAM.
915 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
916 struct sym_tcb *tp = &np->target[i];
918 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
919 tp->usrtags = SYM_SETUP_MAX_TAG;
920 tp->usr_width = np->maxwide;
921 tp->usr_period = 9;
923 sym_nvram_setup_target(tp, i, nvram);
925 if (!tp->usrtags)
926 tp->usrflags &= ~SYM_TAGS_ENABLED;
930 * Let user know about the settings.
932 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
933 sym_nvram_type(nvram), np->myaddr,
934 (np->features & FE_ULTRA3) ? 80 :
935 (np->features & FE_ULTRA2) ? 40 :
936 (np->features & FE_ULTRA) ? 20 : 10,
937 sym_scsi_bus_mode(np->scsi_mode),
938 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
940 * Tell him more on demand.
942 if (sym_verbose) {
943 printf("%s: %s IRQ line driver%s\n",
944 sym_name(np),
945 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
946 np->ram_ba ? ", using on-chip SRAM" : "");
947 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
948 if (np->features & FE_NOPM)
949 printf("%s: handling phase mismatch from SCRIPTS.\n",
950 sym_name(np));
953 * And still more.
955 if (sym_verbose >= 2) {
956 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
957 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
958 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
959 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
961 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
962 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
963 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
964 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
967 return 0;
971 * Test the pci bus snoop logic :-(
973 * Has to be called with interrupts disabled.
975 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
976 static int sym_regtest(struct sym_hcb *np)
978 register volatile u32 data;
980 * chip registers may NOT be cached.
981 * write 0xffffffff to a read only register area,
982 * and try to read it back.
984 data = 0xffffffff;
985 OUTL(np, nc_dstat, data);
986 data = INL(np, nc_dstat);
987 #if 1
988 if (data == 0xffffffff) {
989 #else
990 if ((data & 0xe2f0fffd) != 0x02000080) {
991 #endif
992 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
993 (unsigned) data);
994 return 0x10;
996 return 0;
998 #else
999 static inline int sym_regtest(struct sym_hcb *np)
1001 return 0;
1003 #endif
1005 static int sym_snooptest(struct sym_hcb *np)
1007 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1008 int i, err;
1010 err = sym_regtest(np);
1011 if (err)
1012 return err;
1013 restart_test:
1015 * Enable Master Parity Checking as we intend
1016 * to enable it for normal operations.
1018 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1020 * init
1022 pc = SCRIPTZ_BA(np, snooptest);
1023 host_wr = 1;
1024 sym_wr = 2;
1026 * Set memory and register.
1028 np->scratch = cpu_to_scr(host_wr);
1029 OUTL(np, nc_temp, sym_wr);
1031 * Start script (exchange values)
1033 OUTL(np, nc_dsa, np->hcb_ba);
1034 OUTL_DSP(np, pc);
1036 * Wait 'til done (with timeout)
1038 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1039 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1040 break;
1041 if (i>=SYM_SNOOP_TIMEOUT) {
1042 printf ("CACHE TEST FAILED: timeout.\n");
1043 return (0x20);
1046 * Check for fatal DMA errors.
1048 dstat = INB(np, nc_dstat);
1049 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1050 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1051 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1052 "DISABLING MASTER DATA PARITY CHECKING.\n",
1053 sym_name(np));
1054 np->rv_ctest4 &= ~MPEE;
1055 goto restart_test;
1057 #endif
1058 if (dstat & (MDPE|BF|IID)) {
1059 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1060 return (0x80);
1063 * Save termination position.
1065 pc = INL(np, nc_dsp);
1067 * Read memory and register.
1069 host_rd = scr_to_cpu(np->scratch);
1070 sym_rd = INL(np, nc_scratcha);
1071 sym_bk = INL(np, nc_temp);
1073 * Check termination position.
1075 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1076 printf ("CACHE TEST FAILED: script execution failed.\n");
1077 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1078 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1079 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1080 return (0x40);
1083 * Show results.
1085 if (host_wr != sym_rd) {
1086 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1087 (int) host_wr, (int) sym_rd);
1088 err |= 1;
1090 if (host_rd != sym_wr) {
1091 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1092 (int) sym_wr, (int) host_rd);
1093 err |= 2;
1095 if (sym_bk != sym_wr) {
1096 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1097 (int) sym_wr, (int) sym_bk);
1098 err |= 4;
1101 return err;
1105 * log message for real hard errors
1107 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1108 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1110 * exception register:
1111 * ds: dstat
1112 * si: sist
1114 * SCSI bus lines:
1115 * so: control lines as driven by chip.
1116 * si: control lines as seen by chip.
1117 * sd: scsi data lines as seen by chip.
1119 * wide/fastmode:
1120 * sx: sxfer (see the manual)
1121 * s3: scntl3 (see the manual)
1122 * s4: scntl4 (see the manual)
1124 * current script command:
1125 * dsp: script address (relative to start of script).
1126 * dbc: first word of script command.
1128 * First 24 register of the chip:
1129 * r0..rf
1131 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1133 u32 dsp;
1134 int script_ofs;
1135 int script_size;
1136 char *script_name;
1137 u_char *script_base;
1138 int i;
1140 dsp = INL(np, nc_dsp);
1142 if (dsp > np->scripta_ba &&
1143 dsp <= np->scripta_ba + np->scripta_sz) {
1144 script_ofs = dsp - np->scripta_ba;
1145 script_size = np->scripta_sz;
1146 script_base = (u_char *) np->scripta0;
1147 script_name = "scripta";
1149 else if (np->scriptb_ba < dsp &&
1150 dsp <= np->scriptb_ba + np->scriptb_sz) {
1151 script_ofs = dsp - np->scriptb_ba;
1152 script_size = np->scriptb_sz;
1153 script_base = (u_char *) np->scriptb0;
1154 script_name = "scriptb";
1155 } else {
1156 script_ofs = dsp;
1157 script_size = 0;
1158 script_base = NULL;
1159 script_name = "mem";
1162 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1163 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1164 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1165 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1166 (unsigned)INB(np, nc_scntl3),
1167 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1168 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1170 if (((script_ofs & 3) == 0) &&
1171 (unsigned)script_ofs < script_size) {
1172 printf ("%s: script cmd = %08x\n", sym_name(np),
1173 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1176 printf("%s: regdump:", sym_name(np));
1177 for (i = 0; i < 24; i++)
1178 printf(" %02x", (unsigned)INB_OFF(np, i));
1179 printf(".\n");
1182 * PCI BUS error.
1184 if (dstat & (MDPE|BF))
1185 sym_log_bus_error(np);
1188 void sym_dump_registers(struct sym_hcb *np)
1190 u_short sist;
1191 u_char dstat;
1193 sist = INW(np, nc_sist);
1194 dstat = INB(np, nc_dstat);
1195 sym_log_hard_error(np, sist, dstat);
1198 static struct sym_chip sym_dev_table[] = {
1199 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1200 FE_ERL}
1202 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1203 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1204 FE_BOF}
1206 #else
1207 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1208 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1210 #endif
1211 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1212 FE_BOF|FE_ERL}
1214 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1215 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1217 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1218 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1220 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1221 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1223 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1224 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1225 FE_RAM|FE_DIFF|FE_VARCLK}
1227 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1228 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1229 FE_RAM|FE_DIFF|FE_VARCLK}
1231 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1232 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233 FE_RAM|FE_DIFF|FE_VARCLK}
1235 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1236 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237 FE_RAM|FE_DIFF|FE_VARCLK}
1239 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1240 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1241 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1242 FE_RAM|FE_LCKFRQ}
1244 #else
1245 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1246 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1247 FE_RAM|FE_LCKFRQ}
1249 #endif
1250 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1251 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1252 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1254 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1255 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1256 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1258 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1259 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1260 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1262 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1263 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1264 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1265 FE_C10}
1267 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1268 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1269 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1270 FE_C10|FE_U3EN}
1272 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1273 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1274 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1275 FE_C10|FE_U3EN}
1277 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1278 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1279 FE_RAM|FE_IO256|FE_LEDC}
1282 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1285 * Look up the chip table.
1287 * Return a pointer to the chip entry if found,
1288 * zero otherwise.
1290 struct sym_chip *
1291 sym_lookup_chip_table (u_short device_id, u_char revision)
1293 struct sym_chip *chip;
1294 int i;
1296 for (i = 0; i < sym_num_devs; i++) {
1297 chip = &sym_dev_table[i];
1298 if (device_id != chip->device_id)
1299 continue;
1300 if (revision > chip->revision_id)
1301 continue;
1302 return chip;
1305 return NULL;
1308 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1310 * Lookup the 64 bit DMA segments map.
1311 * This is only used if the direct mapping
1312 * has been unsuccessful.
1314 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1316 int i;
1318 if (!use_dac(np))
1319 goto weird;
1321 /* Look up existing mappings */
1322 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1323 if (h == np->dmap_bah[i])
1324 return i;
1326 /* If direct mapping is free, get it */
1327 if (!np->dmap_bah[s])
1328 goto new;
1329 /* Collision -> lookup free mappings */
1330 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1331 if (!np->dmap_bah[s])
1332 goto new;
1334 weird:
1335 panic("sym: ran out of 64 bit DMA segment registers");
1336 return -1;
1337 new:
1338 np->dmap_bah[s] = h;
1339 np->dmap_dirty = 1;
1340 return s;
1344 * Update IO registers scratch C..R so they will be
1345 * in sync. with queued CCB expectations.
1347 static void sym_update_dmap_regs(struct sym_hcb *np)
1349 int o, i;
1351 if (!np->dmap_dirty)
1352 return;
1353 o = offsetof(struct sym_reg, nc_scrx[0]);
1354 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1355 OUTL_OFF(np, o, np->dmap_bah[i]);
1356 o += 4;
1358 np->dmap_dirty = 0;
1360 #endif
1362 /* Enforce all the fiddly SPI rules and the chip limitations */
1363 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1364 struct sym_trans *goal)
1366 if (!spi_support_wide(starget))
1367 goal->width = 0;
1369 if (!spi_support_sync(starget)) {
1370 goal->iu = 0;
1371 goal->dt = 0;
1372 goal->qas = 0;
1373 goal->offset = 0;
1374 return;
1377 if (spi_support_dt(starget)) {
1378 if (spi_support_dt_only(starget))
1379 goal->dt = 1;
1381 if (goal->offset == 0)
1382 goal->dt = 0;
1383 } else {
1384 goal->dt = 0;
1387 /* Some targets fail to properly negotiate DT in SE mode */
1388 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1389 goal->dt = 0;
1391 if (goal->dt) {
1392 /* all DT transfers must be wide */
1393 goal->width = 1;
1394 if (goal->offset > np->maxoffs_dt)
1395 goal->offset = np->maxoffs_dt;
1396 if (goal->period < np->minsync_dt)
1397 goal->period = np->minsync_dt;
1398 if (goal->period > np->maxsync_dt)
1399 goal->period = np->maxsync_dt;
1400 } else {
1401 goal->iu = goal->qas = 0;
1402 if (goal->offset > np->maxoffs)
1403 goal->offset = np->maxoffs;
1404 if (goal->period < np->minsync)
1405 goal->period = np->minsync;
1406 if (goal->period > np->maxsync)
1407 goal->period = np->maxsync;
1412 * Prepare the next negotiation message if needed.
1414 * Fill in the part of message buffer that contains the
1415 * negotiation and the nego_status field of the CCB.
1416 * Returns the size of the message in bytes.
1418 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1420 struct sym_tcb *tp = &np->target[cp->target];
1421 struct scsi_target *starget = tp->starget;
1422 struct sym_trans *goal = &tp->tgoal;
1423 int msglen = 0;
1424 int nego;
1426 sym_check_goals(np, starget, goal);
1429 * Many devices implement PPR in a buggy way, so only use it if we
1430 * really want to.
1432 if (goal->offset &&
1433 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
1434 nego = NS_PPR;
1435 } else if (spi_width(starget) != goal->width) {
1436 nego = NS_WIDE;
1437 } else if (spi_period(starget) != goal->period ||
1438 spi_offset(starget) != goal->offset) {
1439 nego = NS_SYNC;
1440 } else {
1441 goal->check_nego = 0;
1442 nego = 0;
1445 switch (nego) {
1446 case NS_SYNC:
1447 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1448 goal->offset);
1449 break;
1450 case NS_WIDE:
1451 msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1452 break;
1453 case NS_PPR:
1454 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1455 goal->offset, goal->width,
1456 (goal->iu ? PPR_OPT_IU : 0) |
1457 (goal->dt ? PPR_OPT_DT : 0) |
1458 (goal->qas ? PPR_OPT_QAS : 0));
1459 break;
1462 cp->nego_status = nego;
1464 if (nego) {
1465 tp->nego_cp = cp; /* Keep track a nego will be performed */
1466 if (DEBUG_FLAGS & DEBUG_NEGO) {
1467 sym_print_nego_msg(np, cp->target,
1468 nego == NS_SYNC ? "sync msgout" :
1469 nego == NS_WIDE ? "wide msgout" :
1470 "ppr msgout", msgptr);
1474 return msglen;
1478 * Insert a job into the start queue.
1480 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1482 u_short qidx;
1484 #ifdef SYM_CONF_IARB_SUPPORT
1486 * If the previously queued CCB is not yet done,
1487 * set the IARB hint. The SCRIPTS will go with IARB
1488 * for this job when starting the previous one.
1489 * We leave devices a chance to win arbitration by
1490 * not using more than 'iarb_max' consecutive
1491 * immediate arbitrations.
1493 if (np->last_cp && np->iarb_count < np->iarb_max) {
1494 np->last_cp->host_flags |= HF_HINT_IARB;
1495 ++np->iarb_count;
1497 else
1498 np->iarb_count = 0;
1499 np->last_cp = cp;
1500 #endif
1502 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1504 * Make SCRIPTS aware of the 64 bit DMA
1505 * segment registers not being up-to-date.
1507 if (np->dmap_dirty)
1508 cp->host_xflags |= HX_DMAP_DIRTY;
1509 #endif
1512 * Insert first the idle task and then our job.
1513 * The MBs should ensure proper ordering.
1515 qidx = np->squeueput + 2;
1516 if (qidx >= MAX_QUEUE*2) qidx = 0;
1518 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1519 MEMORY_WRITE_BARRIER();
1520 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1522 np->squeueput = qidx;
1524 if (DEBUG_FLAGS & DEBUG_QUEUE)
1525 scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1526 np->squeueput);
1529 * Script processor may be waiting for reselect.
1530 * Wake it up.
1532 MEMORY_WRITE_BARRIER();
1533 OUTB(np, nc_istat, SIGP|np->istat_sem);
1536 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1538 * Start next ready-to-start CCBs.
1540 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1542 SYM_QUEHEAD *qp;
1543 struct sym_ccb *cp;
1546 * Paranoia, as usual. :-)
1548 assert(!lp->started_tags || !lp->started_no_tag);
1551 * Try to start as many commands as asked by caller.
1552 * Prevent from having both tagged and untagged
1553 * commands queued to the device at the same time.
1555 while (maxn--) {
1556 qp = sym_remque_head(&lp->waiting_ccbq);
1557 if (!qp)
1558 break;
1559 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1560 if (cp->tag != NO_TAG) {
1561 if (lp->started_no_tag ||
1562 lp->started_tags >= lp->started_max) {
1563 sym_insque_head(qp, &lp->waiting_ccbq);
1564 break;
1566 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1567 lp->head.resel_sa =
1568 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1569 ++lp->started_tags;
1570 } else {
1571 if (lp->started_no_tag || lp->started_tags) {
1572 sym_insque_head(qp, &lp->waiting_ccbq);
1573 break;
1575 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1576 lp->head.resel_sa =
1577 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1578 ++lp->started_no_tag;
1580 cp->started = 1;
1581 sym_insque_tail(qp, &lp->started_ccbq);
1582 sym_put_start_queue(np, cp);
1585 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1588 * The chip may have completed jobs. Look at the DONE QUEUE.
1590 * On paper, memory read barriers may be needed here to
1591 * prevent out of order LOADs by the CPU from having
1592 * prefetched stale data prior to DMA having occurred.
1594 static int sym_wakeup_done (struct sym_hcb *np)
1596 struct sym_ccb *cp;
1597 int i, n;
1598 u32 dsa;
1600 n = 0;
1601 i = np->dqueueget;
1603 /* MEMORY_READ_BARRIER(); */
1604 while (1) {
1605 dsa = scr_to_cpu(np->dqueue[i]);
1606 if (!dsa)
1607 break;
1608 np->dqueue[i] = 0;
1609 if ((i = i+2) >= MAX_QUEUE*2)
1610 i = 0;
1612 cp = sym_ccb_from_dsa(np, dsa);
1613 if (cp) {
1614 MEMORY_READ_BARRIER();
1615 sym_complete_ok (np, cp);
1616 ++n;
1618 else
1619 printf ("%s: bad DSA (%x) in done queue.\n",
1620 sym_name(np), (u_int) dsa);
1622 np->dqueueget = i;
1624 return n;
1628 * Complete all CCBs queued to the COMP queue.
1630 * These CCBs are assumed:
1631 * - Not to be referenced either by devices or
1632 * SCRIPTS-related queues and datas.
1633 * - To have to be completed with an error condition
1634 * or requeued.
1636 * The device queue freeze count is incremented
1637 * for each CCB that does not prevent this.
1638 * This function is called when all CCBs involved
1639 * in error handling/recovery have been reaped.
1641 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1643 SYM_QUEHEAD *qp;
1644 struct sym_ccb *cp;
1646 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1647 struct scsi_cmnd *cmd;
1648 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1649 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1650 /* Leave quiet CCBs waiting for resources */
1651 if (cp->host_status == HS_WAIT)
1652 continue;
1653 cmd = cp->cmd;
1654 if (cam_status)
1655 sym_set_cam_status(cmd, cam_status);
1656 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1657 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1658 struct sym_tcb *tp = &np->target[cp->target];
1659 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1660 if (lp) {
1661 sym_remque(&cp->link2_ccbq);
1662 sym_insque_tail(&cp->link2_ccbq,
1663 &lp->waiting_ccbq);
1664 if (cp->started) {
1665 if (cp->tag != NO_TAG)
1666 --lp->started_tags;
1667 else
1668 --lp->started_no_tag;
1671 cp->started = 0;
1672 continue;
1674 #endif
1675 sym_free_ccb(np, cp);
1676 sym_xpt_done(np, cmd);
1681 * Complete all active CCBs with error.
1682 * Used on CHIP/SCSI RESET.
1684 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1687 * Move all active CCBs to the COMP queue
1688 * and flush this queue.
1690 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1691 sym_que_init(&np->busy_ccbq);
1692 sym_flush_comp_queue(np, cam_status);
1696 * Start chip.
1698 * 'reason' means:
1699 * 0: initialisation.
1700 * 1: SCSI BUS RESET delivered or received.
1701 * 2: SCSI BUS MODE changed.
1703 void sym_start_up (struct sym_hcb *np, int reason)
1705 int i;
1706 u32 phys;
1709 * Reset chip if asked, otherwise just clear fifos.
1711 if (reason == 1)
1712 sym_soft_reset(np);
1713 else {
1714 OUTB(np, nc_stest3, TE|CSF);
1715 OUTONB(np, nc_ctest3, CLF);
1719 * Clear Start Queue
1721 phys = np->squeue_ba;
1722 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1723 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1724 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1726 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1729 * Start at first entry.
1731 np->squeueput = 0;
1734 * Clear Done Queue
1736 phys = np->dqueue_ba;
1737 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1738 np->dqueue[i] = 0;
1739 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1741 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1744 * Start at first entry.
1746 np->dqueueget = 0;
1749 * Install patches in scripts.
1750 * This also let point to first position the start
1751 * and done queue pointers used from SCRIPTS.
1753 np->fw_patch(np);
1756 * Wakeup all pending jobs.
1758 sym_flush_busy_queue(np, DID_RESET);
1761 * Init chip.
1763 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
1764 INB(np, nc_mbox1);
1765 udelay(2000); /* The 895 needs time for the bus mode to settle */
1767 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1768 /* full arb., ena parity, par->ATN */
1769 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1771 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1773 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1774 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1775 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1776 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1777 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1779 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1780 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1781 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1783 /* Extended Sreq/Sack filtering not supported on the C10 */
1784 if (np->features & FE_C10)
1785 OUTB(np, nc_stest2, np->rv_stest2);
1786 else
1787 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1789 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1790 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1793 * For now, disable AIP generation on C1010-66.
1795 if (np->s.device->device == PCI_DEVICE_ID_LSI_53C1010_66)
1796 OUTB(np, nc_aipcntl1, DISAIP);
1799 * C10101 rev. 0 errata.
1800 * Errant SGE's when in narrow. Write bits 4 & 5 of
1801 * STEST1 register to disable SGE. We probably should do
1802 * that from SCRIPTS for each selection/reselection, but
1803 * I just don't want. :)
1805 if (np->s.device->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1806 np->s.device->revision < 1)
1807 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1810 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1811 * Disable overlapped arbitration for some dual function devices,
1812 * regardless revision id (kind of post-chip-design feature. ;-))
1814 if (np->s.device->device == PCI_DEVICE_ID_NCR_53C875)
1815 OUTB(np, nc_ctest0, (1<<5));
1816 else if (np->s.device->device == PCI_DEVICE_ID_NCR_53C896)
1817 np->rv_ccntl0 |= DPR;
1820 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1821 * and/or hardware phase mismatch, since only such chips
1822 * seem to support those IO registers.
1824 if (np->features & (FE_DAC|FE_NOPM)) {
1825 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1826 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1829 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1831 * Set up scratch C and DRS IO registers to map the 32 bit
1832 * DMA address range our data structures are located in.
1834 if (use_dac(np)) {
1835 np->dmap_bah[0] = 0; /* ??? */
1836 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1837 OUTL(np, nc_drs, np->dmap_bah[0]);
1839 #endif
1842 * If phase mismatch handled by scripts (895A/896/1010),
1843 * set PM jump addresses.
1845 if (np->features & FE_NOPM) {
1846 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1847 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1851 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1852 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1854 if (np->features & FE_LED0)
1855 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1856 else if (np->features & FE_LEDC)
1857 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1860 * enable ints
1862 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1863 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1866 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1867 * Try to eat the spurious SBMC interrupt that may occur when
1868 * we reset the chip but not the SCSI BUS (at initialization).
1870 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1871 OUTONW(np, nc_sien, SBMC);
1872 if (reason == 0) {
1873 INB(np, nc_mbox1);
1874 mdelay(100);
1875 INW(np, nc_sist);
1877 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1881 * Fill in target structure.
1882 * Reinitialize usrsync.
1883 * Reinitialize usrwide.
1884 * Prepare sync negotiation according to actual SCSI bus mode.
1886 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1887 struct sym_tcb *tp = &np->target[i];
1889 tp->to_reset = 0;
1890 tp->head.sval = 0;
1891 tp->head.wval = np->rv_scntl3;
1892 tp->head.uval = 0;
1896 * Download SCSI SCRIPTS to on-chip RAM if present,
1897 * and start script processor.
1898 * We do the download preferently from the CPU.
1899 * For platforms that may not support PCI memory mapping,
1900 * we use simple SCRIPTS that performs MEMORY MOVEs.
1902 phys = SCRIPTA_BA(np, init);
1903 if (np->ram_ba) {
1904 if (sym_verbose >= 2)
1905 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1906 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1907 if (np->features & FE_RAM8K) {
1908 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1909 phys = scr_to_cpu(np->scr_ram_seg);
1910 OUTL(np, nc_mmws, phys);
1911 OUTL(np, nc_mmrs, phys);
1912 OUTL(np, nc_sfs, phys);
1913 phys = SCRIPTB_BA(np, start64);
1917 np->istat_sem = 0;
1919 OUTL(np, nc_dsa, np->hcb_ba);
1920 OUTL_DSP(np, phys);
1923 * Notify the XPT about the RESET condition.
1925 if (reason != 0)
1926 sym_xpt_async_bus_reset(np);
1930 * Switch trans mode for current job and its target.
1932 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1933 u_char per, u_char wide, u_char div, u_char fak)
1935 SYM_QUEHEAD *qp;
1936 u_char sval, wval, uval;
1937 struct sym_tcb *tp = &np->target[target];
1939 assert(target == (INB(np, nc_sdid) & 0x0f));
1941 sval = tp->head.sval;
1942 wval = tp->head.wval;
1943 uval = tp->head.uval;
1945 #if 0
1946 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1947 sval, wval, uval, np->rv_scntl3);
1948 #endif
1950 * Set the offset.
1952 if (!(np->features & FE_C10))
1953 sval = (sval & ~0x1f) | ofs;
1954 else
1955 sval = (sval & ~0x3f) | ofs;
1958 * Set the sync divisor and extra clock factor.
1960 if (ofs != 0) {
1961 wval = (wval & ~0x70) | ((div+1) << 4);
1962 if (!(np->features & FE_C10))
1963 sval = (sval & ~0xe0) | (fak << 5);
1964 else {
1965 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1966 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1967 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1972 * Set the bus width.
1974 wval = wval & ~EWS;
1975 if (wide != 0)
1976 wval |= EWS;
1979 * Set misc. ultra enable bits.
1981 if (np->features & FE_C10) {
1982 uval = uval & ~(U3EN|AIPCKEN);
1983 if (opts) {
1984 assert(np->features & FE_U3EN);
1985 uval |= U3EN;
1987 } else {
1988 wval = wval & ~ULTRA;
1989 if (per <= 12) wval |= ULTRA;
1993 * Stop there if sync parameters are unchanged.
1995 if (tp->head.sval == sval &&
1996 tp->head.wval == wval &&
1997 tp->head.uval == uval)
1998 return;
1999 tp->head.sval = sval;
2000 tp->head.wval = wval;
2001 tp->head.uval = uval;
2004 * Disable extended Sreq/Sack filtering if per < 50.
2005 * Not supported on the C1010.
2007 if (per < 50 && !(np->features & FE_C10))
2008 OUTOFFB(np, nc_stest2, EXT);
2011 * set actual value and sync_status
2013 OUTB(np, nc_sxfer, tp->head.sval);
2014 OUTB(np, nc_scntl3, tp->head.wval);
2016 if (np->features & FE_C10) {
2017 OUTB(np, nc_scntl4, tp->head.uval);
2021 * patch ALL busy ccbs of this target.
2023 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2024 struct sym_ccb *cp;
2025 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2026 if (cp->target != target)
2027 continue;
2028 cp->phys.select.sel_scntl3 = tp->head.wval;
2029 cp->phys.select.sel_sxfer = tp->head.sval;
2030 if (np->features & FE_C10) {
2031 cp->phys.select.sel_scntl4 = tp->head.uval;
2037 * We received a WDTR.
2038 * Let everything be aware of the changes.
2040 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2042 struct sym_tcb *tp = &np->target[target];
2043 struct scsi_target *starget = tp->starget;
2045 if (spi_width(starget) == wide)
2046 return;
2048 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2050 tp->tgoal.width = wide;
2051 spi_offset(starget) = 0;
2052 spi_period(starget) = 0;
2053 spi_width(starget) = wide;
2054 spi_iu(starget) = 0;
2055 spi_dt(starget) = 0;
2056 spi_qas(starget) = 0;
2058 if (sym_verbose >= 3)
2059 spi_display_xfer_agreement(starget);
2063 * We received a SDTR.
2064 * Let everything be aware of the changes.
2066 static void
2067 sym_setsync(struct sym_hcb *np, int target,
2068 u_char ofs, u_char per, u_char div, u_char fak)
2070 struct sym_tcb *tp = &np->target[target];
2071 struct scsi_target *starget = tp->starget;
2072 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2074 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2076 spi_period(starget) = per;
2077 spi_offset(starget) = ofs;
2078 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2080 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2081 tp->tgoal.period = per;
2082 tp->tgoal.offset = ofs;
2083 tp->tgoal.check_nego = 0;
2086 spi_display_xfer_agreement(starget);
2090 * We received a PPR.
2091 * Let everything be aware of the changes.
2093 static void
2094 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2095 u_char per, u_char wide, u_char div, u_char fak)
2097 struct sym_tcb *tp = &np->target[target];
2098 struct scsi_target *starget = tp->starget;
2100 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2102 spi_width(starget) = tp->tgoal.width = wide;
2103 spi_period(starget) = tp->tgoal.period = per;
2104 spi_offset(starget) = tp->tgoal.offset = ofs;
2105 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2106 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2107 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2108 tp->tgoal.check_nego = 0;
2110 spi_display_xfer_agreement(starget);
2114 * generic recovery from scsi interrupt
2116 * The doc says that when the chip gets an SCSI interrupt,
2117 * it tries to stop in an orderly fashion, by completing
2118 * an instruction fetch that had started or by flushing
2119 * the DMA fifo for a write to memory that was executing.
2120 * Such a fashion is not enough to know if the instruction
2121 * that was just before the current DSP value has been
2122 * executed or not.
2124 * There are some small SCRIPTS sections that deal with
2125 * the start queue and the done queue that may break any
2126 * assomption from the C code if we are interrupted
2127 * inside, so we reset if this happens. Btw, since these
2128 * SCRIPTS sections are executed while the SCRIPTS hasn't
2129 * started SCSI operations, it is very unlikely to happen.
2131 * All the driver data structures are supposed to be
2132 * allocated from the same 4 GB memory window, so there
2133 * is a 1 to 1 relationship between DSA and driver data
2134 * structures. Since we are careful :) to invalidate the
2135 * DSA when we complete a command or when the SCRIPTS
2136 * pushes a DSA into a queue, we can trust it when it
2137 * points to a CCB.
2139 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2141 u32 dsp = INL(np, nc_dsp);
2142 u32 dsa = INL(np, nc_dsa);
2143 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2146 * If we haven't been interrupted inside the SCRIPTS
2147 * critical pathes, we can safely restart the SCRIPTS
2148 * and trust the DSA value if it matches a CCB.
2150 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2151 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2152 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2153 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2154 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2155 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2156 (!(dsp > SCRIPTA_BA(np, done) &&
2157 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2158 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2159 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2161 * If we have a CCB, let the SCRIPTS call us back for
2162 * the handling of the error with SCRATCHA filled with
2163 * STARTPOS. This way, we will be able to freeze the
2164 * device queue and requeue awaiting IOs.
2166 if (cp) {
2167 cp->host_status = hsts;
2168 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2171 * Otherwise just restart the SCRIPTS.
2173 else {
2174 OUTL(np, nc_dsa, 0xffffff);
2175 OUTL_DSP(np, SCRIPTA_BA(np, start));
2178 else
2179 goto reset_all;
2181 return;
2183 reset_all:
2184 sym_start_reset(np);
2188 * chip exception handler for selection timeout
2190 static void sym_int_sto (struct sym_hcb *np)
2192 u32 dsp = INL(np, nc_dsp);
2194 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2196 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2197 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2198 else
2199 sym_start_reset(np);
2203 * chip exception handler for unexpected disconnect
2205 static void sym_int_udc (struct sym_hcb *np)
2207 printf ("%s: unexpected disconnect\n", sym_name(np));
2208 sym_recover_scsi_int(np, HS_UNEXPECTED);
2212 * chip exception handler for SCSI bus mode change
2214 * spi2-r12 11.2.3 says a transceiver mode change must
2215 * generate a reset event and a device that detects a reset
2216 * event shall initiate a hard reset. It says also that a
2217 * device that detects a mode change shall set data transfer
2218 * mode to eight bit asynchronous, etc...
2219 * So, just reinitializing all except chip should be enough.
2221 static void sym_int_sbmc (struct sym_hcb *np)
2223 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2226 * Notify user.
2228 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2229 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2232 * Should suspend command processing for a few seconds and
2233 * reinitialize all except the chip.
2235 sym_start_up (np, 2);
2239 * chip exception handler for SCSI parity error.
2241 * When the chip detects a SCSI parity error and is
2242 * currently executing a (CH)MOV instruction, it does
2243 * not interrupt immediately, but tries to finish the
2244 * transfer of the current scatter entry before
2245 * interrupting. The following situations may occur:
2247 * - The complete scatter entry has been transferred
2248 * without the device having changed phase.
2249 * The chip will then interrupt with the DSP pointing
2250 * to the instruction that follows the MOV.
2252 * - A phase mismatch occurs before the MOV finished
2253 * and phase errors are to be handled by the C code.
2254 * The chip will then interrupt with both PAR and MA
2255 * conditions set.
2257 * - A phase mismatch occurs before the MOV finished and
2258 * phase errors are to be handled by SCRIPTS.
2259 * The chip will load the DSP with the phase mismatch
2260 * JUMP address and interrupt the host processor.
2262 static void sym_int_par (struct sym_hcb *np, u_short sist)
2264 u_char hsts = INB(np, HS_PRT);
2265 u32 dsp = INL(np, nc_dsp);
2266 u32 dbc = INL(np, nc_dbc);
2267 u32 dsa = INL(np, nc_dsa);
2268 u_char sbcl = INB(np, nc_sbcl);
2269 u_char cmd = dbc >> 24;
2270 int phase = cmd & 7;
2271 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2273 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2274 sym_name(np), hsts, dbc, sbcl);
2277 * Check that the chip is connected to the SCSI BUS.
2279 if (!(INB(np, nc_scntl1) & ISCON)) {
2280 sym_recover_scsi_int(np, HS_UNEXPECTED);
2281 return;
2285 * If the nexus is not clearly identified, reset the bus.
2286 * We will try to do better later.
2288 if (!cp)
2289 goto reset_all;
2292 * Check instruction was a MOV, direction was INPUT and
2293 * ATN is asserted.
2295 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2296 goto reset_all;
2299 * Keep track of the parity error.
2301 OUTONB(np, HF_PRT, HF_EXT_ERR);
2302 cp->xerr_status |= XE_PARITY_ERR;
2305 * Prepare the message to send to the device.
2307 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2310 * If the old phase was DATA IN phase, we have to deal with
2311 * the 3 situations described above.
2312 * For other input phases (MSG IN and STATUS), the device
2313 * must resend the whole thing that failed parity checking
2314 * or signal error. So, jumping to dispatcher should be OK.
2316 if (phase == 1 || phase == 5) {
2317 /* Phase mismatch handled by SCRIPTS */
2318 if (dsp == SCRIPTB_BA(np, pm_handle))
2319 OUTL_DSP(np, dsp);
2320 /* Phase mismatch handled by the C code */
2321 else if (sist & MA)
2322 sym_int_ma (np);
2323 /* No phase mismatch occurred */
2324 else {
2325 sym_set_script_dp (np, cp, dsp);
2326 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2329 else if (phase == 7) /* We definitely cannot handle parity errors */
2330 #if 1 /* in message-in phase due to the relection */
2331 goto reset_all; /* path and various message anticipations. */
2332 #else
2333 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2334 #endif
2335 else
2336 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2337 return;
2339 reset_all:
2340 sym_start_reset(np);
2341 return;
2345 * chip exception handler for phase errors.
2347 * We have to construct a new transfer descriptor,
2348 * to transfer the rest of the current block.
2350 static void sym_int_ma (struct sym_hcb *np)
2352 u32 dbc;
2353 u32 rest;
2354 u32 dsp;
2355 u32 dsa;
2356 u32 nxtdsp;
2357 u32 *vdsp;
2358 u32 oadr, olen;
2359 u32 *tblp;
2360 u32 newcmd;
2361 u_int delta;
2362 u_char cmd;
2363 u_char hflags, hflags0;
2364 struct sym_pmc *pm;
2365 struct sym_ccb *cp;
2367 dsp = INL(np, nc_dsp);
2368 dbc = INL(np, nc_dbc);
2369 dsa = INL(np, nc_dsa);
2371 cmd = dbc >> 24;
2372 rest = dbc & 0xffffff;
2373 delta = 0;
2376 * locate matching cp if any.
2378 cp = sym_ccb_from_dsa(np, dsa);
2381 * Donnot take into account dma fifo and various buffers in
2382 * INPUT phase since the chip flushes everything before
2383 * raising the MA interrupt for interrupted INPUT phases.
2384 * For DATA IN phase, we will check for the SWIDE later.
2386 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2387 u_char ss0, ss2;
2389 if (np->features & FE_DFBC)
2390 delta = INW(np, nc_dfbc);
2391 else {
2392 u32 dfifo;
2395 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2397 dfifo = INL(np, nc_dfifo);
2400 * Calculate remaining bytes in DMA fifo.
2401 * (CTEST5 = dfifo >> 16)
2403 if (dfifo & (DFS << 16))
2404 delta = ((((dfifo >> 8) & 0x300) |
2405 (dfifo & 0xff)) - rest) & 0x3ff;
2406 else
2407 delta = ((dfifo & 0xff) - rest) & 0x7f;
2411 * The data in the dma fifo has not been transfered to
2412 * the target -> add the amount to the rest
2413 * and clear the data.
2414 * Check the sstat2 register in case of wide transfer.
2416 rest += delta;
2417 ss0 = INB(np, nc_sstat0);
2418 if (ss0 & OLF) rest++;
2419 if (!(np->features & FE_C10))
2420 if (ss0 & ORF) rest++;
2421 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2422 ss2 = INB(np, nc_sstat2);
2423 if (ss2 & OLF1) rest++;
2424 if (!(np->features & FE_C10))
2425 if (ss2 & ORF1) rest++;
2429 * Clear fifos.
2431 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2432 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2436 * log the information
2438 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2439 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2440 (unsigned) rest, (unsigned) delta);
2443 * try to find the interrupted script command,
2444 * and the address at which to continue.
2446 vdsp = NULL;
2447 nxtdsp = 0;
2448 if (dsp > np->scripta_ba &&
2449 dsp <= np->scripta_ba + np->scripta_sz) {
2450 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2451 nxtdsp = dsp;
2453 else if (dsp > np->scriptb_ba &&
2454 dsp <= np->scriptb_ba + np->scriptb_sz) {
2455 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2456 nxtdsp = dsp;
2460 * log the information
2462 if (DEBUG_FLAGS & DEBUG_PHASE) {
2463 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2464 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2467 if (!vdsp) {
2468 printf ("%s: interrupted SCRIPT address not found.\n",
2469 sym_name (np));
2470 goto reset_all;
2473 if (!cp) {
2474 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2475 sym_name (np));
2476 goto reset_all;
2480 * get old startaddress and old length.
2482 oadr = scr_to_cpu(vdsp[1]);
2484 if (cmd & 0x10) { /* Table indirect */
2485 tblp = (u32 *) ((char*) &cp->phys + oadr);
2486 olen = scr_to_cpu(tblp[0]);
2487 oadr = scr_to_cpu(tblp[1]);
2488 } else {
2489 tblp = (u32 *) 0;
2490 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2493 if (DEBUG_FLAGS & DEBUG_PHASE) {
2494 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2495 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2496 tblp,
2497 (unsigned) olen,
2498 (unsigned) oadr);
2502 * check cmd against assumed interrupted script command.
2503 * If dt data phase, the MOVE instruction hasn't bit 4 of
2504 * the phase.
2506 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2507 sym_print_addr(cp->cmd,
2508 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2509 cmd, scr_to_cpu(vdsp[0]) >> 24);
2511 goto reset_all;
2515 * if old phase not dataphase, leave here.
2517 if (cmd & 2) {
2518 sym_print_addr(cp->cmd,
2519 "phase change %x-%x %d@%08x resid=%d.\n",
2520 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2521 (unsigned)oadr, (unsigned)rest);
2522 goto unexpected_phase;
2526 * Choose the correct PM save area.
2528 * Look at the PM_SAVE SCRIPT if you want to understand
2529 * this stuff. The equivalent code is implemented in
2530 * SCRIPTS for the 895A, 896 and 1010 that are able to
2531 * handle PM from the SCRIPTS processor.
2533 hflags0 = INB(np, HF_PRT);
2534 hflags = hflags0;
2536 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2537 if (hflags & HF_IN_PM0)
2538 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2539 else if (hflags & HF_IN_PM1)
2540 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2542 if (hflags & HF_DP_SAVED)
2543 hflags ^= HF_ACT_PM;
2546 if (!(hflags & HF_ACT_PM)) {
2547 pm = &cp->phys.pm0;
2548 newcmd = SCRIPTA_BA(np, pm0_data);
2550 else {
2551 pm = &cp->phys.pm1;
2552 newcmd = SCRIPTA_BA(np, pm1_data);
2555 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2556 if (hflags != hflags0)
2557 OUTB(np, HF_PRT, hflags);
2560 * fillin the phase mismatch context
2562 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2563 pm->sg.size = cpu_to_scr(rest);
2564 pm->ret = cpu_to_scr(nxtdsp);
2567 * If we have a SWIDE,
2568 * - prepare the address to write the SWIDE from SCRIPTS,
2569 * - compute the SCRIPTS address to restart from,
2570 * - move current data pointer context by one byte.
2572 nxtdsp = SCRIPTA_BA(np, dispatch);
2573 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2574 (INB(np, nc_scntl2) & WSR)) {
2575 u32 tmp;
2578 * Set up the table indirect for the MOVE
2579 * of the residual byte and adjust the data
2580 * pointer context.
2582 tmp = scr_to_cpu(pm->sg.addr);
2583 cp->phys.wresid.addr = cpu_to_scr(tmp);
2584 pm->sg.addr = cpu_to_scr(tmp + 1);
2585 tmp = scr_to_cpu(pm->sg.size);
2586 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2587 pm->sg.size = cpu_to_scr(tmp - 1);
2590 * If only the residual byte is to be moved,
2591 * no PM context is needed.
2593 if ((tmp&0xffffff) == 1)
2594 newcmd = pm->ret;
2597 * Prepare the address of SCRIPTS that will
2598 * move the residual byte to memory.
2600 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2603 if (DEBUG_FLAGS & DEBUG_PHASE) {
2604 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2605 hflags0, hflags, newcmd,
2606 (unsigned)scr_to_cpu(pm->sg.addr),
2607 (unsigned)scr_to_cpu(pm->sg.size),
2608 (unsigned)scr_to_cpu(pm->ret));
2612 * Restart the SCRIPTS processor.
2614 sym_set_script_dp (np, cp, newcmd);
2615 OUTL_DSP(np, nxtdsp);
2616 return;
2619 * Unexpected phase changes that occurs when the current phase
2620 * is not a DATA IN or DATA OUT phase are due to error conditions.
2621 * Such event may only happen when the SCRIPTS is using a
2622 * multibyte SCSI MOVE.
2624 * Phase change Some possible cause
2626 * COMMAND --> MSG IN SCSI parity error detected by target.
2627 * COMMAND --> STATUS Bad command or refused by target.
2628 * MSG OUT --> MSG IN Message rejected by target.
2629 * MSG OUT --> COMMAND Bogus target that discards extended
2630 * negotiation messages.
2632 * The code below does not care of the new phase and so
2633 * trusts the target. Why to annoy it ?
2634 * If the interrupted phase is COMMAND phase, we restart at
2635 * dispatcher.
2636 * If a target does not get all the messages after selection,
2637 * the code assumes blindly that the target discards extended
2638 * messages and clears the negotiation status.
2639 * If the target does not want all our response to negotiation,
2640 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2641 * bloat for such a should_not_happen situation).
2642 * In all other situation, we reset the BUS.
2643 * Are these assumptions reasonnable ? (Wait and see ...)
2645 unexpected_phase:
2646 dsp -= 8;
2647 nxtdsp = 0;
2649 switch (cmd & 7) {
2650 case 2: /* COMMAND phase */
2651 nxtdsp = SCRIPTA_BA(np, dispatch);
2652 break;
2653 #if 0
2654 case 3: /* STATUS phase */
2655 nxtdsp = SCRIPTA_BA(np, dispatch);
2656 break;
2657 #endif
2658 case 6: /* MSG OUT phase */
2660 * If the device may want to use untagged when we want
2661 * tagged, we prepare an IDENTIFY without disc. granted,
2662 * since we will not be able to handle reselect.
2663 * Otherwise, we just don't care.
2665 if (dsp == SCRIPTA_BA(np, send_ident)) {
2666 if (cp->tag != NO_TAG && olen - rest <= 3) {
2667 cp->host_status = HS_BUSY;
2668 np->msgout[0] = IDENTIFY(0, cp->lun);
2669 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2671 else
2672 nxtdsp = SCRIPTB_BA(np, ident_break);
2674 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2675 dsp == SCRIPTB_BA(np, send_sdtr) ||
2676 dsp == SCRIPTB_BA(np, send_ppr)) {
2677 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2678 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2679 struct scsi_device *dev = cp->cmd->device;
2680 dev->ppr = 0;
2683 break;
2684 #if 0
2685 case 7: /* MSG IN phase */
2686 nxtdsp = SCRIPTA_BA(np, clrack);
2687 break;
2688 #endif
2691 if (nxtdsp) {
2692 OUTL_DSP(np, nxtdsp);
2693 return;
2696 reset_all:
2697 sym_start_reset(np);
2701 * chip interrupt handler
2703 * In normal situations, interrupt conditions occur one at
2704 * a time. But when something bad happens on the SCSI BUS,
2705 * the chip may raise several interrupt flags before
2706 * stopping and interrupting the CPU. The additionnal
2707 * interrupt flags are stacked in some extra registers
2708 * after the SIP and/or DIP flag has been raised in the
2709 * ISTAT. After the CPU has read the interrupt condition
2710 * flag from SIST or DSTAT, the chip unstacks the other
2711 * interrupt flags and sets the corresponding bits in
2712 * SIST or DSTAT. Since the chip starts stacking once the
2713 * SIP or DIP flag is set, there is a small window of time
2714 * where the stacking does not occur.
2716 * Typically, multiple interrupt conditions may happen in
2717 * the following situations:
2719 * - SCSI parity error + Phase mismatch (PAR|MA)
2720 * When an parity error is detected in input phase
2721 * and the device switches to msg-in phase inside a
2722 * block MOV.
2723 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2724 * When a stupid device does not want to handle the
2725 * recovery of an SCSI parity error.
2726 * - Some combinations of STO, PAR, UDC, ...
2727 * When using non compliant SCSI stuff, when user is
2728 * doing non compliant hot tampering on the BUS, when
2729 * something really bad happens to a device, etc ...
2731 * The heuristic suggested by SYMBIOS to handle
2732 * multiple interrupts is to try unstacking all
2733 * interrupts conditions and to handle them on some
2734 * priority based on error severity.
2735 * This will work when the unstacking has been
2736 * successful, but we cannot be 100 % sure of that,
2737 * since the CPU may have been faster to unstack than
2738 * the chip is able to stack. Hmmm ... But it seems that
2739 * such a situation is very unlikely to happen.
2741 * If this happen, for example STO caught by the CPU
2742 * then UDC happenning before the CPU have restarted
2743 * the SCRIPTS, the driver may wrongly complete the
2744 * same command on UDC, since the SCRIPTS didn't restart
2745 * and the DSA still points to the same command.
2746 * We avoid this situation by setting the DSA to an
2747 * invalid value when the CCB is completed and before
2748 * restarting the SCRIPTS.
2750 * Another issue is that we need some section of our
2751 * recovery procedures to be somehow uninterruptible but
2752 * the SCRIPTS processor does not provides such a
2753 * feature. For this reason, we handle recovery preferently
2754 * from the C code and check against some SCRIPTS critical
2755 * sections from the C code.
2757 * Hopefully, the interrupt handling of the driver is now
2758 * able to resist to weird BUS error conditions, but donnot
2759 * ask me for any guarantee that it will never fail. :-)
2760 * Use at your own decision and risk.
2763 void sym_interrupt (struct sym_hcb *np)
2765 u_char istat, istatc;
2766 u_char dstat;
2767 u_short sist;
2770 * interrupt on the fly ?
2771 * (SCRIPTS may still be running)
2773 * A `dummy read' is needed to ensure that the
2774 * clear of the INTF flag reaches the device
2775 * and that posted writes are flushed to memory
2776 * before the scanning of the DONE queue.
2777 * Note that SCRIPTS also (dummy) read to memory
2778 * prior to deliver the INTF interrupt condition.
2780 istat = INB(np, nc_istat);
2781 if (istat & INTF) {
2782 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2783 istat = INB(np, nc_istat); /* DUMMY READ */
2784 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2785 sym_wakeup_done(np);
2788 if (!(istat & (SIP|DIP)))
2789 return;
2791 #if 0 /* We should never get this one */
2792 if (istat & CABRT)
2793 OUTB(np, nc_istat, CABRT);
2794 #endif
2797 * PAR and MA interrupts may occur at the same time,
2798 * and we need to know of both in order to handle
2799 * this situation properly. We try to unstack SCSI
2800 * interrupts for that reason. BTW, I dislike a LOT
2801 * such a loop inside the interrupt routine.
2802 * Even if DMA interrupt stacking is very unlikely to
2803 * happen, we also try unstacking these ones, since
2804 * this has no performance impact.
2806 sist = 0;
2807 dstat = 0;
2808 istatc = istat;
2809 do {
2810 if (istatc & SIP)
2811 sist |= INW(np, nc_sist);
2812 if (istatc & DIP)
2813 dstat |= INB(np, nc_dstat);
2814 istatc = INB(np, nc_istat);
2815 istat |= istatc;
2817 /* Prevent deadlock waiting on a condition that may
2818 * never clear. */
2819 if (unlikely(sist == 0xffff && dstat == 0xff)) {
2820 if (pci_channel_offline(np->s.device))
2821 return;
2823 } while (istatc & (SIP|DIP));
2825 if (DEBUG_FLAGS & DEBUG_TINY)
2826 printf ("<%d|%x:%x|%x:%x>",
2827 (int)INB(np, nc_scr0),
2828 dstat,sist,
2829 (unsigned)INL(np, nc_dsp),
2830 (unsigned)INL(np, nc_dbc));
2832 * On paper, a memory read barrier may be needed here to
2833 * prevent out of order LOADs by the CPU from having
2834 * prefetched stale data prior to DMA having occurred.
2835 * And since we are paranoid ... :)
2837 MEMORY_READ_BARRIER();
2840 * First, interrupts we want to service cleanly.
2842 * Phase mismatch (MA) is the most frequent interrupt
2843 * for chip earlier than the 896 and so we have to service
2844 * it as quickly as possible.
2845 * A SCSI parity error (PAR) may be combined with a phase
2846 * mismatch condition (MA).
2847 * Programmed interrupts (SIR) are used to call the C code
2848 * from SCRIPTS.
2849 * The single step interrupt (SSI) is not used in this
2850 * driver.
2852 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2853 !(dstat & (MDPE|BF|ABRT|IID))) {
2854 if (sist & PAR) sym_int_par (np, sist);
2855 else if (sist & MA) sym_int_ma (np);
2856 else if (dstat & SIR) sym_int_sir(np);
2857 else if (dstat & SSI) OUTONB_STD();
2858 else goto unknown_int;
2859 return;
2863 * Now, interrupts that donnot happen in normal
2864 * situations and that we may need to recover from.
2866 * On SCSI RESET (RST), we reset everything.
2867 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2868 * active CCBs with RESET status, prepare all devices
2869 * for negotiating again and restart the SCRIPTS.
2870 * On STO and UDC, we complete the CCB with the corres-
2871 * ponding status and restart the SCRIPTS.
2873 if (sist & RST) {
2874 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2875 sym_start_up (np, 1);
2876 return;
2879 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2880 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2882 if (!(sist & (GEN|HTH|SGE)) &&
2883 !(dstat & (MDPE|BF|ABRT|IID))) {
2884 if (sist & SBMC) sym_int_sbmc (np);
2885 else if (sist & STO) sym_int_sto (np);
2886 else if (sist & UDC) sym_int_udc (np);
2887 else goto unknown_int;
2888 return;
2892 * Now, interrupts we are not able to recover cleanly.
2894 * Log message for hard errors.
2895 * Reset everything.
2898 sym_log_hard_error(np, sist, dstat);
2900 if ((sist & (GEN|HTH|SGE)) ||
2901 (dstat & (MDPE|BF|ABRT|IID))) {
2902 sym_start_reset(np);
2903 return;
2906 unknown_int:
2908 * We just miss the cause of the interrupt. :(
2909 * Print a message. The timeout will do the real work.
2911 printf( "%s: unknown interrupt(s) ignored, "
2912 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2913 sym_name(np), istat, dstat, sist);
2917 * Dequeue from the START queue all CCBs that match
2918 * a given target/lun/task condition (-1 means all),
2919 * and move them from the BUSY queue to the COMP queue
2920 * with DID_SOFT_ERROR status condition.
2921 * This function is used during error handling/recovery.
2922 * It is called with SCRIPTS not running.
2924 static int
2925 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2927 int j;
2928 struct sym_ccb *cp;
2931 * Make sure the starting index is within range.
2933 assert((i >= 0) && (i < 2*MAX_QUEUE));
2936 * Walk until end of START queue and dequeue every job
2937 * that matches the target/lun/task condition.
2939 j = i;
2940 while (i != np->squeueput) {
2941 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2942 assert(cp);
2943 #ifdef SYM_CONF_IARB_SUPPORT
2944 /* Forget hints for IARB, they may be no longer relevant */
2945 cp->host_flags &= ~HF_HINT_IARB;
2946 #endif
2947 if ((target == -1 || cp->target == target) &&
2948 (lun == -1 || cp->lun == lun) &&
2949 (task == -1 || cp->tag == task)) {
2950 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2951 sym_remque(&cp->link_ccbq);
2952 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2954 else {
2955 if (i != j)
2956 np->squeue[j] = np->squeue[i];
2957 if ((j += 2) >= MAX_QUEUE*2) j = 0;
2959 if ((i += 2) >= MAX_QUEUE*2) i = 0;
2961 if (i != j) /* Copy back the idle task if needed */
2962 np->squeue[j] = np->squeue[i];
2963 np->squeueput = j; /* Update our current start queue pointer */
2965 return (i - j) / 2;
2969 * chip handler for bad SCSI status condition
2971 * In case of bad SCSI status, we unqueue all the tasks
2972 * currently queued to the controller but not yet started
2973 * and then restart the SCRIPTS processor immediately.
2975 * QUEUE FULL and BUSY conditions are handled the same way.
2976 * Basically all the not yet started tasks are requeued in
2977 * device queue and the queue is frozen until a completion.
2979 * For CHECK CONDITION and COMMAND TERMINATED status, we use
2980 * the CCB of the failed command to prepare a REQUEST SENSE
2981 * SCSI command and queue it to the controller queue.
2983 * SCRATCHA is assumed to have been loaded with STARTPOS
2984 * before the SCRIPTS called the C code.
2986 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
2988 u32 startp;
2989 u_char s_status = cp->ssss_status;
2990 u_char h_flags = cp->host_flags;
2991 int msglen;
2992 int i;
2995 * Compute the index of the next job to start from SCRIPTS.
2997 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3000 * The last CCB queued used for IARB hint may be
3001 * no longer relevant. Forget it.
3003 #ifdef SYM_CONF_IARB_SUPPORT
3004 if (np->last_cp)
3005 np->last_cp = 0;
3006 #endif
3009 * Now deal with the SCSI status.
3011 switch(s_status) {
3012 case S_BUSY:
3013 case S_QUEUE_FULL:
3014 if (sym_verbose >= 2) {
3015 sym_print_addr(cp->cmd, "%s\n",
3016 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3018 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3019 sym_complete_error (np, cp);
3020 break;
3021 case S_TERMINATED:
3022 case S_CHECK_COND:
3024 * If we get an SCSI error when requesting sense, give up.
3026 if (h_flags & HF_SENSE) {
3027 sym_complete_error (np, cp);
3028 break;
3032 * Dequeue all queued CCBs for that device not yet started,
3033 * and restart the SCRIPTS processor immediately.
3035 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3036 OUTL_DSP(np, SCRIPTA_BA(np, start));
3039 * Save some info of the actual IO.
3040 * Compute the data residual.
3042 cp->sv_scsi_status = cp->ssss_status;
3043 cp->sv_xerr_status = cp->xerr_status;
3044 cp->sv_resid = sym_compute_residual(np, cp);
3047 * Prepare all needed data structures for
3048 * requesting sense data.
3051 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3052 msglen = 1;
3055 * If we are currently using anything different from
3056 * async. 8 bit data transfers with that target,
3057 * start a negotiation, since the device may want
3058 * to report us a UNIT ATTENTION condition due to
3059 * a cause we currently ignore, and we donnot want
3060 * to be stuck with WIDE and/or SYNC data transfer.
3062 * cp->nego_status is filled by sym_prepare_nego().
3064 cp->nego_status = 0;
3065 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3067 * Message table indirect structure.
3069 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
3070 cp->phys.smsg.size = cpu_to_scr(msglen);
3073 * sense command
3075 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
3076 cp->phys.cmd.size = cpu_to_scr(6);
3079 * patch requested size into sense command
3081 cp->sensecmd[0] = REQUEST_SENSE;
3082 cp->sensecmd[1] = 0;
3083 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3084 cp->sensecmd[1] = cp->lun << 5;
3085 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3086 cp->data_len = SYM_SNS_BBUF_LEN;
3089 * sense data
3091 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3092 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
3093 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3096 * requeue the command.
3098 startp = SCRIPTB_BA(np, sdata_in);
3100 cp->phys.head.savep = cpu_to_scr(startp);
3101 cp->phys.head.lastp = cpu_to_scr(startp);
3102 cp->startp = cpu_to_scr(startp);
3103 cp->goalp = cpu_to_scr(startp + 16);
3105 cp->host_xflags = 0;
3106 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3107 cp->ssss_status = S_ILLEGAL;
3108 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3109 cp->xerr_status = 0;
3110 cp->extra_bytes = 0;
3112 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3115 * Requeue the command.
3117 sym_put_start_queue(np, cp);
3120 * Give back to upper layer everything we have dequeued.
3122 sym_flush_comp_queue(np, 0);
3123 break;
3128 * After a device has accepted some management message
3129 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3130 * a device signals a UNIT ATTENTION condition, some
3131 * tasks are thrown away by the device. We are required
3132 * to reflect that on our tasks list since the device
3133 * will never complete these tasks.
3135 * This function move from the BUSY queue to the COMP
3136 * queue all disconnected CCBs for a given target that
3137 * match the following criteria:
3138 * - lun=-1 means any logical UNIT otherwise a given one.
3139 * - task=-1 means any task, otherwise a given one.
3141 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3143 SYM_QUEHEAD qtmp, *qp;
3144 int i = 0;
3145 struct sym_ccb *cp;
3148 * Move the entire BUSY queue to our temporary queue.
3150 sym_que_init(&qtmp);
3151 sym_que_splice(&np->busy_ccbq, &qtmp);
3152 sym_que_init(&np->busy_ccbq);
3155 * Put all CCBs that matches our criteria into
3156 * the COMP queue and put back other ones into
3157 * the BUSY queue.
3159 while ((qp = sym_remque_head(&qtmp)) != 0) {
3160 struct scsi_cmnd *cmd;
3161 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3162 cmd = cp->cmd;
3163 if (cp->host_status != HS_DISCONNECT ||
3164 cp->target != target ||
3165 (lun != -1 && cp->lun != lun) ||
3166 (task != -1 &&
3167 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3168 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3169 continue;
3171 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3173 /* Preserve the software timeout condition */
3174 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3175 sym_set_cam_status(cmd, cam_status);
3176 ++i;
3177 #if 0
3178 printf("XXXX TASK @%p CLEARED\n", cp);
3179 #endif
3181 return i;
3185 * chip handler for TASKS recovery
3187 * We cannot safely abort a command, while the SCRIPTS
3188 * processor is running, since we just would be in race
3189 * with it.
3191 * As long as we have tasks to abort, we keep the SEM
3192 * bit set in the ISTAT. When this bit is set, the
3193 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3194 * each time it enters the scheduler.
3196 * If we have to reset a target, clear tasks of a unit,
3197 * or to perform the abort of a disconnected job, we
3198 * restart the SCRIPTS for selecting the target. Once
3199 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3200 * If it loses arbitration, the SCRIPTS will interrupt again
3201 * the next time it will enter its scheduler, and so on ...
3203 * On SIR_TARGET_SELECTED, we scan for the more
3204 * appropriate thing to do:
3206 * - If nothing, we just sent a M_ABORT message to the
3207 * target to get rid of the useless SCSI bus ownership.
3208 * According to the specs, no tasks shall be affected.
3209 * - If the target is to be reset, we send it a M_RESET
3210 * message.
3211 * - If a logical UNIT is to be cleared , we send the
3212 * IDENTIFY(lun) + M_ABORT.
3213 * - If an untagged task is to be aborted, we send the
3214 * IDENTIFY(lun) + M_ABORT.
3215 * - If a tagged task is to be aborted, we send the
3216 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3218 * Once our 'kiss of death' :) message has been accepted
3219 * by the target, the SCRIPTS interrupts again
3220 * (SIR_ABORT_SENT). On this interrupt, we complete
3221 * all the CCBs that should have been aborted by the
3222 * target according to our message.
3224 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3226 SYM_QUEHEAD *qp;
3227 struct sym_ccb *cp;
3228 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3229 struct scsi_target *starget;
3230 int target=-1, lun=-1, task;
3231 int i, k;
3233 switch(num) {
3235 * The SCRIPTS processor stopped before starting
3236 * the next command in order to allow us to perform
3237 * some task recovery.
3239 case SIR_SCRIPT_STOPPED:
3241 * Do we have any target to reset or unit to clear ?
3243 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3244 tp = &np->target[i];
3245 if (tp->to_reset ||
3246 (tp->lun0p && tp->lun0p->to_clear)) {
3247 target = i;
3248 break;
3250 if (!tp->lunmp)
3251 continue;
3252 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3253 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3254 target = i;
3255 break;
3258 if (target != -1)
3259 break;
3263 * If not, walk the busy queue for any
3264 * disconnected CCB to be aborted.
3266 if (target == -1) {
3267 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3268 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3269 if (cp->host_status != HS_DISCONNECT)
3270 continue;
3271 if (cp->to_abort) {
3272 target = cp->target;
3273 break;
3279 * If some target is to be selected,
3280 * prepare and start the selection.
3282 if (target != -1) {
3283 tp = &np->target[target];
3284 np->abrt_sel.sel_id = target;
3285 np->abrt_sel.sel_scntl3 = tp->head.wval;
3286 np->abrt_sel.sel_sxfer = tp->head.sval;
3287 OUTL(np, nc_dsa, np->hcb_ba);
3288 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3289 return;
3293 * Now look for a CCB to abort that haven't started yet.
3294 * Btw, the SCRIPTS processor is still stopped, so
3295 * we are not in race.
3297 i = 0;
3298 cp = NULL;
3299 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3300 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3301 if (cp->host_status != HS_BUSY &&
3302 cp->host_status != HS_NEGOTIATE)
3303 continue;
3304 if (!cp->to_abort)
3305 continue;
3306 #ifdef SYM_CONF_IARB_SUPPORT
3308 * If we are using IMMEDIATE ARBITRATION, we donnot
3309 * want to cancel the last queued CCB, since the
3310 * SCRIPTS may have anticipated the selection.
3312 if (cp == np->last_cp) {
3313 cp->to_abort = 0;
3314 continue;
3316 #endif
3317 i = 1; /* Means we have found some */
3318 break;
3320 if (!i) {
3322 * We are done, so we donnot need
3323 * to synchronize with the SCRIPTS anylonger.
3324 * Remove the SEM flag from the ISTAT.
3326 np->istat_sem = 0;
3327 OUTB(np, nc_istat, SIGP);
3328 break;
3331 * Compute index of next position in the start
3332 * queue the SCRIPTS intends to start and dequeue
3333 * all CCBs for that device that haven't been started.
3335 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3336 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3339 * Make sure at least our IO to abort has been dequeued.
3341 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3342 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3343 #else
3344 sym_remque(&cp->link_ccbq);
3345 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3346 #endif
3348 * Keep track in cam status of the reason of the abort.
3350 if (cp->to_abort == 2)
3351 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3352 else
3353 sym_set_cam_status(cp->cmd, DID_ABORT);
3356 * Complete with error everything that we have dequeued.
3358 sym_flush_comp_queue(np, 0);
3359 break;
3361 * The SCRIPTS processor has selected a target
3362 * we may have some manual recovery to perform for.
3364 case SIR_TARGET_SELECTED:
3365 target = INB(np, nc_sdid) & 0xf;
3366 tp = &np->target[target];
3368 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3371 * If the target is to be reset, prepare a
3372 * M_RESET message and clear the to_reset flag
3373 * since we donnot expect this operation to fail.
3375 if (tp->to_reset) {
3376 np->abrt_msg[0] = M_RESET;
3377 np->abrt_tbl.size = 1;
3378 tp->to_reset = 0;
3379 break;
3383 * Otherwise, look for some logical unit to be cleared.
3385 if (tp->lun0p && tp->lun0p->to_clear)
3386 lun = 0;
3387 else if (tp->lunmp) {
3388 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3389 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3390 lun = k;
3391 break;
3397 * If a logical unit is to be cleared, prepare
3398 * an IDENTIFY(lun) + ABORT MESSAGE.
3400 if (lun != -1) {
3401 struct sym_lcb *lp = sym_lp(tp, lun);
3402 lp->to_clear = 0; /* We don't expect to fail here */
3403 np->abrt_msg[0] = IDENTIFY(0, lun);
3404 np->abrt_msg[1] = M_ABORT;
3405 np->abrt_tbl.size = 2;
3406 break;
3410 * Otherwise, look for some disconnected job to
3411 * abort for this target.
3413 i = 0;
3414 cp = NULL;
3415 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3416 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3417 if (cp->host_status != HS_DISCONNECT)
3418 continue;
3419 if (cp->target != target)
3420 continue;
3421 if (!cp->to_abort)
3422 continue;
3423 i = 1; /* Means we have some */
3424 break;
3428 * If we have none, probably since the device has
3429 * completed the command before we won abitration,
3430 * send a M_ABORT message without IDENTIFY.
3431 * According to the specs, the device must just
3432 * disconnect the BUS and not abort any task.
3434 if (!i) {
3435 np->abrt_msg[0] = M_ABORT;
3436 np->abrt_tbl.size = 1;
3437 break;
3441 * We have some task to abort.
3442 * Set the IDENTIFY(lun)
3444 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3447 * If we want to abort an untagged command, we
3448 * will send a IDENTIFY + M_ABORT.
3449 * Otherwise (tagged command), we will send
3450 * a IDENTITFY + task attributes + ABORT TAG.
3452 if (cp->tag == NO_TAG) {
3453 np->abrt_msg[1] = M_ABORT;
3454 np->abrt_tbl.size = 2;
3455 } else {
3456 np->abrt_msg[1] = cp->scsi_smsg[1];
3457 np->abrt_msg[2] = cp->scsi_smsg[2];
3458 np->abrt_msg[3] = M_ABORT_TAG;
3459 np->abrt_tbl.size = 4;
3462 * Keep track of software timeout condition, since the
3463 * peripheral driver may not count retries on abort
3464 * conditions not due to timeout.
3466 if (cp->to_abort == 2)
3467 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3468 cp->to_abort = 0; /* We donnot expect to fail here */
3469 break;
3472 * The target has accepted our message and switched
3473 * to BUS FREE phase as we expected.
3475 case SIR_ABORT_SENT:
3476 target = INB(np, nc_sdid) & 0xf;
3477 tp = &np->target[target];
3478 starget = tp->starget;
3481 ** If we didn't abort anything, leave here.
3483 if (np->abrt_msg[0] == M_ABORT)
3484 break;
3487 * If we sent a M_RESET, then a hardware reset has
3488 * been performed by the target.
3489 * - Reset everything to async 8 bit
3490 * - Tell ourself to negotiate next time :-)
3491 * - Prepare to clear all disconnected CCBs for
3492 * this target from our task list (lun=task=-1)
3494 lun = -1;
3495 task = -1;
3496 if (np->abrt_msg[0] == M_RESET) {
3497 tp->head.sval = 0;
3498 tp->head.wval = np->rv_scntl3;
3499 tp->head.uval = 0;
3500 spi_period(starget) = 0;
3501 spi_offset(starget) = 0;
3502 spi_width(starget) = 0;
3503 spi_iu(starget) = 0;
3504 spi_dt(starget) = 0;
3505 spi_qas(starget) = 0;
3506 tp->tgoal.check_nego = 1;
3510 * Otherwise, check for the LUN and TASK(s)
3511 * concerned by the cancelation.
3512 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3513 * or an ABORT message :-)
3515 else {
3516 lun = np->abrt_msg[0] & 0x3f;
3517 if (np->abrt_msg[1] == M_ABORT_TAG)
3518 task = np->abrt_msg[2];
3522 * Complete all the CCBs the device should have
3523 * aborted due to our 'kiss of death' message.
3525 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3526 sym_dequeue_from_squeue(np, i, target, lun, -1);
3527 sym_clear_tasks(np, DID_ABORT, target, lun, task);
3528 sym_flush_comp_queue(np, 0);
3531 * If we sent a BDR, make upper layer aware of that.
3533 if (np->abrt_msg[0] == M_RESET)
3534 sym_xpt_async_sent_bdr(np, target);
3535 break;
3539 * Print to the log the message we intend to send.
3541 if (num == SIR_TARGET_SELECTED) {
3542 dev_info(&tp->starget->dev, "control msgout:");
3543 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3544 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3548 * Let the SCRIPTS processor continue.
3550 OUTONB_STD();
3554 * Gerard's alchemy:) that deals with with the data
3555 * pointer for both MDP and the residual calculation.
3557 * I didn't want to bloat the code by more than 200
3558 * lines for the handling of both MDP and the residual.
3559 * This has been achieved by using a data pointer
3560 * representation consisting in an index in the data
3561 * array (dp_sg) and a negative offset (dp_ofs) that
3562 * have the following meaning:
3564 * - dp_sg = SYM_CONF_MAX_SG
3565 * we are at the end of the data script.
3566 * - dp_sg < SYM_CONF_MAX_SG
3567 * dp_sg points to the next entry of the scatter array
3568 * we want to transfer.
3569 * - dp_ofs < 0
3570 * dp_ofs represents the residual of bytes of the
3571 * previous entry scatter entry we will send first.
3572 * - dp_ofs = 0
3573 * no residual to send first.
3575 * The function sym_evaluate_dp() accepts an arbitray
3576 * offset (basically from the MDP message) and returns
3577 * the corresponding values of dp_sg and dp_ofs.
3580 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3582 u32 dp_scr;
3583 int dp_ofs, dp_sg, dp_sgmin;
3584 int tmp;
3585 struct sym_pmc *pm;
3588 * Compute the resulted data pointer in term of a script
3589 * address within some DATA script and a signed byte offset.
3591 dp_scr = scr;
3592 dp_ofs = *ofs;
3593 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3594 pm = &cp->phys.pm0;
3595 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3596 pm = &cp->phys.pm1;
3597 else
3598 pm = NULL;
3600 if (pm) {
3601 dp_scr = scr_to_cpu(pm->ret);
3602 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3606 * If we are auto-sensing, then we are done.
3608 if (cp->host_flags & HF_SENSE) {
3609 *ofs = dp_ofs;
3610 return 0;
3614 * Deduce the index of the sg entry.
3615 * Keep track of the index of the first valid entry.
3616 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3617 * end of the data.
3619 tmp = scr_to_cpu(cp->goalp);
3620 dp_sg = SYM_CONF_MAX_SG;
3621 if (dp_scr != tmp)
3622 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3623 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3626 * Move to the sg entry the data pointer belongs to.
3628 * If we are inside the data area, we expect result to be:
3630 * Either,
3631 * dp_ofs = 0 and dp_sg is the index of the sg entry
3632 * the data pointer belongs to (or the end of the data)
3633 * Or,
3634 * dp_ofs < 0 and dp_sg is the index of the sg entry
3635 * the data pointer belongs to + 1.
3637 if (dp_ofs < 0) {
3638 int n;
3639 while (dp_sg > dp_sgmin) {
3640 --dp_sg;
3641 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3642 n = dp_ofs + (tmp & 0xffffff);
3643 if (n > 0) {
3644 ++dp_sg;
3645 break;
3647 dp_ofs = n;
3650 else if (dp_ofs > 0) {
3651 while (dp_sg < SYM_CONF_MAX_SG) {
3652 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3653 dp_ofs -= (tmp & 0xffffff);
3654 ++dp_sg;
3655 if (dp_ofs <= 0)
3656 break;
3661 * Make sure the data pointer is inside the data area.
3662 * If not, return some error.
3664 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3665 goto out_err;
3666 else if (dp_sg > SYM_CONF_MAX_SG ||
3667 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3668 goto out_err;
3671 * Save the extreme pointer if needed.
3673 if (dp_sg > cp->ext_sg ||
3674 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3675 cp->ext_sg = dp_sg;
3676 cp->ext_ofs = dp_ofs;
3680 * Return data.
3682 *ofs = dp_ofs;
3683 return dp_sg;
3685 out_err:
3686 return -1;
3690 * chip handler for MODIFY DATA POINTER MESSAGE
3692 * We also call this function on IGNORE WIDE RESIDUE
3693 * messages that do not match a SWIDE full condition.
3694 * Btw, we assume in that situation that such a message
3695 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3698 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3700 int dp_ofs = ofs;
3701 u32 dp_scr = sym_get_script_dp (np, cp);
3702 u32 dp_ret;
3703 u32 tmp;
3704 u_char hflags;
3705 int dp_sg;
3706 struct sym_pmc *pm;
3709 * Not supported for auto-sense.
3711 if (cp->host_flags & HF_SENSE)
3712 goto out_reject;
3715 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3716 * to the resulted data pointer.
3718 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3719 if (dp_sg < 0)
3720 goto out_reject;
3723 * And our alchemy:) allows to easily calculate the data
3724 * script address we want to return for the next data phase.
3726 dp_ret = cpu_to_scr(cp->goalp);
3727 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3730 * If offset / scatter entry is zero we donnot need
3731 * a context for the new current data pointer.
3733 if (dp_ofs == 0) {
3734 dp_scr = dp_ret;
3735 goto out_ok;
3739 * Get a context for the new current data pointer.
3741 hflags = INB(np, HF_PRT);
3743 if (hflags & HF_DP_SAVED)
3744 hflags ^= HF_ACT_PM;
3746 if (!(hflags & HF_ACT_PM)) {
3747 pm = &cp->phys.pm0;
3748 dp_scr = SCRIPTA_BA(np, pm0_data);
3750 else {
3751 pm = &cp->phys.pm1;
3752 dp_scr = SCRIPTA_BA(np, pm1_data);
3755 hflags &= ~(HF_DP_SAVED);
3757 OUTB(np, HF_PRT, hflags);
3760 * Set up the new current data pointer.
3761 * ofs < 0 there, and for the next data phase, we
3762 * want to transfer part of the data of the sg entry
3763 * corresponding to index dp_sg-1 prior to returning
3764 * to the main data script.
3766 pm->ret = cpu_to_scr(dp_ret);
3767 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3768 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3769 pm->sg.addr = cpu_to_scr(tmp);
3770 pm->sg.size = cpu_to_scr(-dp_ofs);
3772 out_ok:
3773 sym_set_script_dp (np, cp, dp_scr);
3774 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3775 return;
3777 out_reject:
3778 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3783 * chip calculation of the data residual.
3785 * As I used to say, the requirement of data residual
3786 * in SCSI is broken, useless and cannot be achieved
3787 * without huge complexity.
3788 * But most OSes and even the official CAM require it.
3789 * When stupidity happens to be so widely spread inside
3790 * a community, it gets hard to convince.
3792 * Anyway, I don't care, since I am not going to use
3793 * any software that considers this data residual as
3794 * a relevant information. :)
3797 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3799 int dp_sg, dp_sgmin, resid = 0;
3800 int dp_ofs = 0;
3803 * Check for some data lost or just thrown away.
3804 * We are not required to be quite accurate in this
3805 * situation. Btw, if we are odd for output and the
3806 * device claims some more data, it may well happen
3807 * than our residual be zero. :-)
3809 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3810 if (cp->xerr_status & XE_EXTRA_DATA)
3811 resid -= cp->extra_bytes;
3812 if (cp->xerr_status & XE_SODL_UNRUN)
3813 ++resid;
3814 if (cp->xerr_status & XE_SWIDE_OVRUN)
3815 --resid;
3819 * If all data has been transferred,
3820 * there is no residual.
3822 if (cp->phys.head.lastp == cp->goalp)
3823 return resid;
3826 * If no data transfer occurs, or if the data
3827 * pointer is weird, return full residual.
3829 if (cp->startp == cp->phys.head.lastp ||
3830 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3831 &dp_ofs) < 0) {
3832 return cp->data_len;
3836 * If we were auto-sensing, then we are done.
3838 if (cp->host_flags & HF_SENSE) {
3839 return -dp_ofs;
3843 * We are now full comfortable in the computation
3844 * of the data residual (2's complement).
3846 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3847 resid = -cp->ext_ofs;
3848 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3849 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3850 resid += (tmp & 0xffffff);
3853 resid -= cp->odd_byte_adjustment;
3856 * Hopefully, the result is not too wrong.
3858 return resid;
3862 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3864 * When we try to negotiate, we append the negotiation message
3865 * to the identify and (maybe) simple tag message.
3866 * The host status field is set to HS_NEGOTIATE to mark this
3867 * situation.
3869 * If the target doesn't answer this message immediately
3870 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3871 * will be raised eventually.
3872 * The handler removes the HS_NEGOTIATE status, and sets the
3873 * negotiated value to the default (async / nowide).
3875 * If we receive a matching answer immediately, we check it
3876 * for validity, and set the values.
3878 * If we receive a Reject message immediately, we assume the
3879 * negotiation has failed, and fall back to standard values.
3881 * If we receive a negotiation message while not in HS_NEGOTIATE
3882 * state, it's a target initiated negotiation. We prepare a
3883 * (hopefully) valid answer, set our parameters, and send back
3884 * this answer to the target.
3886 * If the target doesn't fetch the answer (no message out phase),
3887 * we assume the negotiation has failed, and fall back to default
3888 * settings (SIR_NEGO_PROTO interrupt).
3890 * When we set the values, we adjust them in all ccbs belonging
3891 * to this target, in the controller's register, and in the "phys"
3892 * field of the controller's struct sym_hcb.
3896 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3898 static int
3899 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3901 int target = cp->target;
3902 u_char chg, ofs, per, fak, div;
3904 if (DEBUG_FLAGS & DEBUG_NEGO) {
3905 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3909 * Get requested values.
3911 chg = 0;
3912 per = np->msgin[3];
3913 ofs = np->msgin[4];
3916 * Check values against our limits.
3918 if (ofs) {
3919 if (ofs > np->maxoffs)
3920 {chg = 1; ofs = np->maxoffs;}
3923 if (ofs) {
3924 if (per < np->minsync)
3925 {chg = 1; per = np->minsync;}
3929 * Get new chip synchronous parameters value.
3931 div = fak = 0;
3932 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3933 goto reject_it;
3935 if (DEBUG_FLAGS & DEBUG_NEGO) {
3936 sym_print_addr(cp->cmd,
3937 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3938 ofs, per, div, fak, chg);
3942 * If it was an answer we want to change,
3943 * then it isn't acceptable. Reject it.
3945 if (!req && chg)
3946 goto reject_it;
3949 * Apply new values.
3951 sym_setsync (np, target, ofs, per, div, fak);
3954 * It was an answer. We are done.
3956 if (!req)
3957 return 0;
3960 * It was a request. Prepare an answer message.
3962 spi_populate_sync_msg(np->msgout, per, ofs);
3964 if (DEBUG_FLAGS & DEBUG_NEGO) {
3965 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3968 np->msgin [0] = M_NOOP;
3970 return 0;
3972 reject_it:
3973 sym_setsync (np, target, 0, 0, 0, 0);
3974 return -1;
3977 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
3979 int req = 1;
3980 int result;
3983 * Request or answer ?
3985 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
3986 OUTB(np, HS_PRT, HS_BUSY);
3987 if (cp->nego_status && cp->nego_status != NS_SYNC)
3988 goto reject_it;
3989 req = 0;
3993 * Check and apply new values.
3995 result = sym_sync_nego_check(np, req, cp);
3996 if (result) /* Not acceptable, reject it */
3997 goto reject_it;
3998 if (req) { /* Was a request, send response. */
3999 cp->nego_status = NS_SYNC;
4000 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4002 else /* Was a response, we are done. */
4003 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4004 return;
4006 reject_it:
4007 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4011 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4013 static int
4014 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4016 struct sym_tcb *tp = &np->target[target];
4017 unsigned char fak, div;
4018 int dt, chg = 0;
4020 unsigned char per = np->msgin[3];
4021 unsigned char ofs = np->msgin[5];
4022 unsigned char wide = np->msgin[6];
4023 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4025 if (DEBUG_FLAGS & DEBUG_NEGO) {
4026 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4030 * Check values against our limits.
4032 if (wide > np->maxwide) {
4033 chg = 1;
4034 wide = np->maxwide;
4036 if (!wide || !(np->features & FE_U3EN))
4037 opts = 0;
4039 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4040 chg = 1;
4042 dt = opts & PPR_OPT_DT;
4044 if (ofs) {
4045 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4046 if (ofs > maxoffs) {
4047 chg = 1;
4048 ofs = maxoffs;
4052 if (ofs) {
4053 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4054 if (per < minsync) {
4055 chg = 1;
4056 per = minsync;
4061 * Get new chip synchronous parameters value.
4063 div = fak = 0;
4064 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4065 goto reject_it;
4068 * If it was an answer we want to change,
4069 * then it isn't acceptable. Reject it.
4071 if (!req && chg)
4072 goto reject_it;
4075 * Apply new values.
4077 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4080 * It was an answer. We are done.
4082 if (!req)
4083 return 0;
4086 * It was a request. Prepare an answer message.
4088 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4090 if (DEBUG_FLAGS & DEBUG_NEGO) {
4091 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4094 np->msgin [0] = M_NOOP;
4096 return 0;
4098 reject_it:
4099 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4101 * If it is a device response that should result in
4102 * ST, we may want to try a legacy negotiation later.
4104 if (!req && !opts) {
4105 tp->tgoal.period = per;
4106 tp->tgoal.offset = ofs;
4107 tp->tgoal.width = wide;
4108 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4109 tp->tgoal.check_nego = 1;
4111 return -1;
4114 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4116 int req = 1;
4117 int result;
4120 * Request or answer ?
4122 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4123 OUTB(np, HS_PRT, HS_BUSY);
4124 if (cp->nego_status && cp->nego_status != NS_PPR)
4125 goto reject_it;
4126 req = 0;
4130 * Check and apply new values.
4132 result = sym_ppr_nego_check(np, req, cp->target);
4133 if (result) /* Not acceptable, reject it */
4134 goto reject_it;
4135 if (req) { /* Was a request, send response. */
4136 cp->nego_status = NS_PPR;
4137 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4139 else /* Was a response, we are done. */
4140 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4141 return;
4143 reject_it:
4144 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4148 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4150 static int
4151 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4153 int target = cp->target;
4154 u_char chg, wide;
4156 if (DEBUG_FLAGS & DEBUG_NEGO) {
4157 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4161 * Get requested values.
4163 chg = 0;
4164 wide = np->msgin[3];
4167 * Check values against our limits.
4169 if (wide > np->maxwide) {
4170 chg = 1;
4171 wide = np->maxwide;
4174 if (DEBUG_FLAGS & DEBUG_NEGO) {
4175 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4176 wide, chg);
4180 * If it was an answer we want to change,
4181 * then it isn't acceptable. Reject it.
4183 if (!req && chg)
4184 goto reject_it;
4187 * Apply new values.
4189 sym_setwide (np, target, wide);
4192 * It was an answer. We are done.
4194 if (!req)
4195 return 0;
4198 * It was a request. Prepare an answer message.
4200 spi_populate_width_msg(np->msgout, wide);
4202 np->msgin [0] = M_NOOP;
4204 if (DEBUG_FLAGS & DEBUG_NEGO) {
4205 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4208 return 0;
4210 reject_it:
4211 return -1;
4214 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4216 int req = 1;
4217 int result;
4220 * Request or answer ?
4222 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4223 OUTB(np, HS_PRT, HS_BUSY);
4224 if (cp->nego_status && cp->nego_status != NS_WIDE)
4225 goto reject_it;
4226 req = 0;
4230 * Check and apply new values.
4232 result = sym_wide_nego_check(np, req, cp);
4233 if (result) /* Not acceptable, reject it */
4234 goto reject_it;
4235 if (req) { /* Was a request, send response. */
4236 cp->nego_status = NS_WIDE;
4237 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4238 } else { /* Was a response. */
4240 * Negotiate for SYNC immediately after WIDE response.
4241 * This allows to negotiate for both WIDE and SYNC on
4242 * a single SCSI command (Suggested by Justin Gibbs).
4244 if (tp->tgoal.offset) {
4245 spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4246 tp->tgoal.offset);
4248 if (DEBUG_FLAGS & DEBUG_NEGO) {
4249 sym_print_nego_msg(np, cp->target,
4250 "sync msgout", np->msgout);
4253 cp->nego_status = NS_SYNC;
4254 OUTB(np, HS_PRT, HS_NEGOTIATE);
4255 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4256 return;
4257 } else
4258 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4261 return;
4263 reject_it:
4264 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4268 * Reset DT, SYNC or WIDE to default settings.
4270 * Called when a negotiation does not succeed either
4271 * on rejection or on protocol error.
4273 * A target that understands a PPR message should never
4274 * reject it, and messing with it is very unlikely.
4275 * So, if a PPR makes problems, we may just want to
4276 * try a legacy negotiation later.
4278 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4280 switch (cp->nego_status) {
4281 case NS_PPR:
4282 #if 0
4283 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4284 #else
4285 if (tp->tgoal.period < np->minsync)
4286 tp->tgoal.period = np->minsync;
4287 if (tp->tgoal.offset > np->maxoffs)
4288 tp->tgoal.offset = np->maxoffs;
4289 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4290 tp->tgoal.check_nego = 1;
4291 #endif
4292 break;
4293 case NS_SYNC:
4294 sym_setsync (np, cp->target, 0, 0, 0, 0);
4295 break;
4296 case NS_WIDE:
4297 sym_setwide (np, cp->target, 0);
4298 break;
4300 np->msgin [0] = M_NOOP;
4301 np->msgout[0] = M_NOOP;
4302 cp->nego_status = 0;
4306 * chip handler for MESSAGE REJECT received in response to
4307 * PPR, WIDE or SYNCHRONOUS negotiation.
4309 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4311 sym_nego_default(np, tp, cp);
4312 OUTB(np, HS_PRT, HS_BUSY);
4316 * chip exception handler for programmed interrupts.
4318 static void sym_int_sir(struct sym_hcb *np)
4320 u_char num = INB(np, nc_dsps);
4321 u32 dsa = INL(np, nc_dsa);
4322 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4323 u_char target = INB(np, nc_sdid) & 0x0f;
4324 struct sym_tcb *tp = &np->target[target];
4325 int tmp;
4327 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4329 switch (num) {
4330 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4332 * SCRIPTS tell us that we may have to update
4333 * 64 bit DMA segment registers.
4335 case SIR_DMAP_DIRTY:
4336 sym_update_dmap_regs(np);
4337 goto out;
4338 #endif
4340 * Command has been completed with error condition
4341 * or has been auto-sensed.
4343 case SIR_COMPLETE_ERROR:
4344 sym_complete_error(np, cp);
4345 return;
4347 * The C code is currently trying to recover from something.
4348 * Typically, user want to abort some command.
4350 case SIR_SCRIPT_STOPPED:
4351 case SIR_TARGET_SELECTED:
4352 case SIR_ABORT_SENT:
4353 sym_sir_task_recovery(np, num);
4354 return;
4356 * The device didn't go to MSG OUT phase after having
4357 * been selected with ATN. We do not want to handle that.
4359 case SIR_SEL_ATN_NO_MSG_OUT:
4360 scmd_printk(KERN_WARNING, cp->cmd,
4361 "No MSG OUT phase after selection with ATN\n");
4362 goto out_stuck;
4364 * The device didn't switch to MSG IN phase after
4365 * having reselected the initiator.
4367 case SIR_RESEL_NO_MSG_IN:
4368 scmd_printk(KERN_WARNING, cp->cmd,
4369 "No MSG IN phase after reselection\n");
4370 goto out_stuck;
4372 * After reselection, the device sent a message that wasn't
4373 * an IDENTIFY.
4375 case SIR_RESEL_NO_IDENTIFY:
4376 scmd_printk(KERN_WARNING, cp->cmd,
4377 "No IDENTIFY after reselection\n");
4378 goto out_stuck;
4380 * The device reselected a LUN we do not know about.
4382 case SIR_RESEL_BAD_LUN:
4383 np->msgout[0] = M_RESET;
4384 goto out;
4386 * The device reselected for an untagged nexus and we
4387 * haven't any.
4389 case SIR_RESEL_BAD_I_T_L:
4390 np->msgout[0] = M_ABORT;
4391 goto out;
4393 * The device reselected for a tagged nexus that we do not have.
4395 case SIR_RESEL_BAD_I_T_L_Q:
4396 np->msgout[0] = M_ABORT_TAG;
4397 goto out;
4399 * The SCRIPTS let us know that the device has grabbed
4400 * our message and will abort the job.
4402 case SIR_RESEL_ABORTED:
4403 np->lastmsg = np->msgout[0];
4404 np->msgout[0] = M_NOOP;
4405 scmd_printk(KERN_WARNING, cp->cmd,
4406 "message %x sent on bad reselection\n", np->lastmsg);
4407 goto out;
4409 * The SCRIPTS let us know that a message has been
4410 * successfully sent to the device.
4412 case SIR_MSG_OUT_DONE:
4413 np->lastmsg = np->msgout[0];
4414 np->msgout[0] = M_NOOP;
4415 /* Should we really care of that */
4416 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4417 if (cp) {
4418 cp->xerr_status &= ~XE_PARITY_ERR;
4419 if (!cp->xerr_status)
4420 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4423 goto out;
4425 * The device didn't send a GOOD SCSI status.
4426 * We may have some work to do prior to allow
4427 * the SCRIPTS processor to continue.
4429 case SIR_BAD_SCSI_STATUS:
4430 if (!cp)
4431 goto out;
4432 sym_sir_bad_scsi_status(np, num, cp);
4433 return;
4435 * We are asked by the SCRIPTS to prepare a
4436 * REJECT message.
4438 case SIR_REJECT_TO_SEND:
4439 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4440 np->msgout[0] = M_REJECT;
4441 goto out;
4443 * We have been ODD at the end of a DATA IN
4444 * transfer and the device didn't send a
4445 * IGNORE WIDE RESIDUE message.
4446 * It is a data overrun condition.
4448 case SIR_SWIDE_OVERRUN:
4449 if (cp) {
4450 OUTONB(np, HF_PRT, HF_EXT_ERR);
4451 cp->xerr_status |= XE_SWIDE_OVRUN;
4453 goto out;
4455 * We have been ODD at the end of a DATA OUT
4456 * transfer.
4457 * It is a data underrun condition.
4459 case SIR_SODL_UNDERRUN:
4460 if (cp) {
4461 OUTONB(np, HF_PRT, HF_EXT_ERR);
4462 cp->xerr_status |= XE_SODL_UNRUN;
4464 goto out;
4466 * The device wants us to tranfer more data than
4467 * expected or in the wrong direction.
4468 * The number of extra bytes is in scratcha.
4469 * It is a data overrun condition.
4471 case SIR_DATA_OVERRUN:
4472 if (cp) {
4473 OUTONB(np, HF_PRT, HF_EXT_ERR);
4474 cp->xerr_status |= XE_EXTRA_DATA;
4475 cp->extra_bytes += INL(np, nc_scratcha);
4477 goto out;
4479 * The device switched to an illegal phase (4/5).
4481 case SIR_BAD_PHASE:
4482 if (cp) {
4483 OUTONB(np, HF_PRT, HF_EXT_ERR);
4484 cp->xerr_status |= XE_BAD_PHASE;
4486 goto out;
4488 * We received a message.
4490 case SIR_MSG_RECEIVED:
4491 if (!cp)
4492 goto out_stuck;
4493 switch (np->msgin [0]) {
4495 * We received an extended message.
4496 * We handle MODIFY DATA POINTER, SDTR, WDTR
4497 * and reject all other extended messages.
4499 case M_EXTENDED:
4500 switch (np->msgin [2]) {
4501 case M_X_MODIFY_DP:
4502 if (DEBUG_FLAGS & DEBUG_POINTER)
4503 sym_print_msg(cp, NULL, np->msgin);
4504 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4505 (np->msgin[5]<<8) + (np->msgin[6]);
4506 sym_modify_dp(np, tp, cp, tmp);
4507 return;
4508 case M_X_SYNC_REQ:
4509 sym_sync_nego(np, tp, cp);
4510 return;
4511 case M_X_PPR_REQ:
4512 sym_ppr_nego(np, tp, cp);
4513 return;
4514 case M_X_WIDE_REQ:
4515 sym_wide_nego(np, tp, cp);
4516 return;
4517 default:
4518 goto out_reject;
4520 break;
4522 * We received a 1/2 byte message not handled from SCRIPTS.
4523 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4524 * RESIDUE messages that haven't been anticipated by
4525 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4526 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4528 case M_IGN_RESIDUE:
4529 if (DEBUG_FLAGS & DEBUG_POINTER)
4530 sym_print_msg(cp, NULL, np->msgin);
4531 if (cp->host_flags & HF_SENSE)
4532 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4533 else
4534 sym_modify_dp(np, tp, cp, -1);
4535 return;
4536 case M_REJECT:
4537 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4538 sym_nego_rejected(np, tp, cp);
4539 else {
4540 sym_print_addr(cp->cmd,
4541 "M_REJECT received (%x:%x).\n",
4542 scr_to_cpu(np->lastmsg), np->msgout[0]);
4544 goto out_clrack;
4545 break;
4546 default:
4547 goto out_reject;
4549 break;
4551 * We received an unknown message.
4552 * Ignore all MSG IN phases and reject it.
4554 case SIR_MSG_WEIRD:
4555 sym_print_msg(cp, "WEIRD message received", np->msgin);
4556 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4557 return;
4559 * Negotiation failed.
4560 * Target does not send us the reply.
4561 * Remove the HS_NEGOTIATE status.
4563 case SIR_NEGO_FAILED:
4564 OUTB(np, HS_PRT, HS_BUSY);
4566 * Negotiation failed.
4567 * Target does not want answer message.
4569 case SIR_NEGO_PROTO:
4570 sym_nego_default(np, tp, cp);
4571 goto out;
4574 out:
4575 OUTONB_STD();
4576 return;
4577 out_reject:
4578 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4579 return;
4580 out_clrack:
4581 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4582 return;
4583 out_stuck:
4584 return;
4588 * Acquire a control block
4590 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4592 u_char tn = cmd->device->id;
4593 u_char ln = cmd->device->lun;
4594 struct sym_tcb *tp = &np->target[tn];
4595 struct sym_lcb *lp = sym_lp(tp, ln);
4596 u_short tag = NO_TAG;
4597 SYM_QUEHEAD *qp;
4598 struct sym_ccb *cp = NULL;
4601 * Look for a free CCB
4603 if (sym_que_empty(&np->free_ccbq))
4604 sym_alloc_ccb(np);
4605 qp = sym_remque_head(&np->free_ccbq);
4606 if (!qp)
4607 goto out;
4608 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4612 * If we have been asked for a tagged command.
4614 if (tag_order) {
4616 * Debugging purpose.
4618 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4619 if (lp->busy_itl != 0)
4620 goto out_free;
4621 #endif
4623 * Allocate resources for tags if not yet.
4625 if (!lp->cb_tags) {
4626 sym_alloc_lcb_tags(np, tn, ln);
4627 if (!lp->cb_tags)
4628 goto out_free;
4631 * Get a tag for this SCSI IO and set up
4632 * the CCB bus address for reselection,
4633 * and count it for this LUN.
4634 * Toggle reselect path to tagged.
4636 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4637 tag = lp->cb_tags[lp->ia_tag];
4638 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4639 lp->ia_tag = 0;
4640 ++lp->busy_itlq;
4641 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4642 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4643 lp->head.resel_sa =
4644 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4645 #endif
4646 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4647 cp->tags_si = lp->tags_si;
4648 ++lp->tags_sum[cp->tags_si];
4649 ++lp->tags_since;
4650 #endif
4652 else
4653 goto out_free;
4656 * This command will not be tagged.
4657 * If we already have either a tagged or untagged
4658 * one, refuse to overlap this untagged one.
4660 else {
4662 * Debugging purpose.
4664 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4665 if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4666 goto out_free;
4667 #endif
4669 * Count this nexus for this LUN.
4670 * Set up the CCB bus address for reselection.
4671 * Toggle reselect path to untagged.
4673 ++lp->busy_itl;
4674 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4675 if (lp->busy_itl == 1) {
4676 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4677 lp->head.resel_sa =
4678 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4680 else
4681 goto out_free;
4682 #endif
4686 * Put the CCB into the busy queue.
4688 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4689 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4690 if (lp) {
4691 sym_remque(&cp->link2_ccbq);
4692 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4695 #endif
4696 cp->to_abort = 0;
4697 cp->odd_byte_adjustment = 0;
4698 cp->tag = tag;
4699 cp->order = tag_order;
4700 cp->target = tn;
4701 cp->lun = ln;
4703 if (DEBUG_FLAGS & DEBUG_TAGS) {
4704 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4707 out:
4708 return cp;
4709 out_free:
4710 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4711 return NULL;
4715 * Release one control block
4717 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4719 struct sym_tcb *tp = &np->target[cp->target];
4720 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4722 if (DEBUG_FLAGS & DEBUG_TAGS) {
4723 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4724 cp, cp->tag);
4728 * If LCB available,
4730 if (lp) {
4732 * If tagged, release the tag, set the relect path
4734 if (cp->tag != NO_TAG) {
4735 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4736 --lp->tags_sum[cp->tags_si];
4737 #endif
4739 * Free the tag value.
4741 lp->cb_tags[lp->if_tag] = cp->tag;
4742 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4743 lp->if_tag = 0;
4745 * Make the reselect path invalid,
4746 * and uncount this CCB.
4748 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4749 --lp->busy_itlq;
4750 } else { /* Untagged */
4752 * Make the reselect path invalid,
4753 * and uncount this CCB.
4755 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4756 --lp->busy_itl;
4759 * If no JOB active, make the LUN reselect path invalid.
4761 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4762 lp->head.resel_sa =
4763 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4767 * We donnot queue more than 1 ccb per target
4768 * with negotiation at any time. If this ccb was
4769 * used for negotiation, clear this info in the tcb.
4771 if (cp == tp->nego_cp)
4772 tp->nego_cp = NULL;
4774 #ifdef SYM_CONF_IARB_SUPPORT
4776 * If we just complete the last queued CCB,
4777 * clear this info that is no longer relevant.
4779 if (cp == np->last_cp)
4780 np->last_cp = 0;
4781 #endif
4784 * Make this CCB available.
4786 cp->cmd = NULL;
4787 cp->host_status = HS_IDLE;
4788 sym_remque(&cp->link_ccbq);
4789 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4791 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4792 if (lp) {
4793 sym_remque(&cp->link2_ccbq);
4794 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4795 if (cp->started) {
4796 if (cp->tag != NO_TAG)
4797 --lp->started_tags;
4798 else
4799 --lp->started_no_tag;
4802 cp->started = 0;
4803 #endif
4807 * Allocate a CCB from memory and initialize its fixed part.
4809 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4811 struct sym_ccb *cp = NULL;
4812 int hcode;
4815 * Prevent from allocating more CCBs than we can
4816 * queue to the controller.
4818 if (np->actccbs >= SYM_CONF_MAX_START)
4819 return NULL;
4822 * Allocate memory for this CCB.
4824 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4825 if (!cp)
4826 goto out_free;
4829 * Count it.
4831 np->actccbs++;
4834 * Compute the bus address of this ccb.
4836 cp->ccb_ba = vtobus(cp);
4839 * Insert this ccb into the hashed list.
4841 hcode = CCB_HASH_CODE(cp->ccb_ba);
4842 cp->link_ccbh = np->ccbh[hcode];
4843 np->ccbh[hcode] = cp;
4846 * Initialyze the start and restart actions.
4848 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4849 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4852 * Initilialyze some other fields.
4854 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4857 * Chain into free ccb queue.
4859 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4862 * Chain into optionnal lists.
4864 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4865 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4866 #endif
4867 return cp;
4868 out_free:
4869 if (cp)
4870 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4871 return NULL;
4875 * Look up a CCB from a DSA value.
4877 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4879 int hcode;
4880 struct sym_ccb *cp;
4882 hcode = CCB_HASH_CODE(dsa);
4883 cp = np->ccbh[hcode];
4884 while (cp) {
4885 if (cp->ccb_ba == dsa)
4886 break;
4887 cp = cp->link_ccbh;
4890 return cp;
4894 * Target control block initialisation.
4895 * Nothing important to do at the moment.
4897 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4899 #if 0 /* Hmmm... this checking looks paranoid. */
4901 * Check some alignments required by the chip.
4903 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4904 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4905 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4906 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4907 #endif
4911 * Lun control block allocation and initialization.
4913 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4915 struct sym_tcb *tp = &np->target[tn];
4916 struct sym_lcb *lp = NULL;
4919 * Initialize the target control block if not yet.
4921 sym_init_tcb (np, tn);
4924 * Allocate the LCB bus address array.
4925 * Compute the bus address of this table.
4927 if (ln && !tp->luntbl) {
4928 int i;
4930 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4931 if (!tp->luntbl)
4932 goto fail;
4933 for (i = 0 ; i < 64 ; i++)
4934 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4935 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4939 * Allocate the table of pointers for LUN(s) > 0, if needed.
4941 if (ln && !tp->lunmp) {
4942 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4943 GFP_KERNEL);
4944 if (!tp->lunmp)
4945 goto fail;
4949 * Allocate the lcb.
4950 * Make it available to the chip.
4952 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
4953 if (!lp)
4954 goto fail;
4955 if (ln) {
4956 tp->lunmp[ln] = lp;
4957 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
4959 else {
4960 tp->lun0p = lp;
4961 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
4965 * Let the itl task point to error handling.
4967 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4970 * Set the reselect pattern to our default. :)
4972 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4975 * Set user capabilities.
4977 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4979 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4981 * Initialize device queueing.
4983 sym_que_init(&lp->waiting_ccbq);
4984 sym_que_init(&lp->started_ccbq);
4985 lp->started_max = SYM_CONF_MAX_TASK;
4986 lp->started_limit = SYM_CONF_MAX_TASK;
4987 #endif
4989 fail:
4990 return lp;
4994 * Allocate LCB resources for tagged command queuing.
4996 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
4998 struct sym_tcb *tp = &np->target[tn];
4999 struct sym_lcb *lp = sym_lp(tp, ln);
5000 int i;
5003 * Allocate the task table and and the tag allocation
5004 * circular buffer. We want both or none.
5006 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5007 if (!lp->itlq_tbl)
5008 goto fail;
5009 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5010 if (!lp->cb_tags) {
5011 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5012 lp->itlq_tbl = NULL;
5013 goto fail;
5017 * Initialize the task table with invalid entries.
5019 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5020 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5023 * Fill up the tag buffer with tag numbers.
5025 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5026 lp->cb_tags[i] = i;
5029 * Make the task table available to SCRIPTS,
5030 * And accept tagged commands now.
5032 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5034 return;
5035 fail:
5036 return;
5040 * Queue a SCSI IO to the controller.
5042 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5044 struct scsi_device *sdev = cmd->device;
5045 struct sym_tcb *tp;
5046 struct sym_lcb *lp;
5047 u_char *msgptr;
5048 u_int msglen;
5049 int can_disconnect;
5052 * Keep track of the IO in our CCB.
5054 cp->cmd = cmd;
5057 * Retrieve the target descriptor.
5059 tp = &np->target[cp->target];
5062 * Retrieve the lun descriptor.
5064 lp = sym_lp(tp, sdev->lun);
5066 can_disconnect = (cp->tag != NO_TAG) ||
5067 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5069 msgptr = cp->scsi_smsg;
5070 msglen = 0;
5071 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5074 * Build the tag message if present.
5076 if (cp->tag != NO_TAG) {
5077 u_char order = cp->order;
5079 switch(order) {
5080 case M_ORDERED_TAG:
5081 break;
5082 case M_HEAD_TAG:
5083 break;
5084 default:
5085 order = M_SIMPLE_TAG;
5087 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5089 * Avoid too much reordering of SCSI commands.
5090 * The algorithm tries to prevent completion of any
5091 * tagged command from being delayed against more
5092 * than 3 times the max number of queued commands.
5094 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5095 lp->tags_si = !(lp->tags_si);
5096 if (lp->tags_sum[lp->tags_si]) {
5097 order = M_ORDERED_TAG;
5098 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5099 sym_print_addr(cmd,
5100 "ordered tag forced.\n");
5103 lp->tags_since = 0;
5105 #endif
5106 msgptr[msglen++] = order;
5109 * For less than 128 tags, actual tags are numbered
5110 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5111 * with devices that have problems with #TAG 0 or too
5112 * great #TAG numbers. For more tags (up to 256),
5113 * we use directly our tag number.
5115 #if SYM_CONF_MAX_TASK > (512/4)
5116 msgptr[msglen++] = cp->tag;
5117 #else
5118 msgptr[msglen++] = (cp->tag << 1) + 1;
5119 #endif
5123 * Build a negotiation message if needed.
5124 * (nego_status is filled by sym_prepare_nego())
5126 cp->nego_status = 0;
5127 if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5128 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5132 * Startqueue
5134 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5135 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5138 * select
5140 cp->phys.select.sel_id = cp->target;
5141 cp->phys.select.sel_scntl3 = tp->head.wval;
5142 cp->phys.select.sel_sxfer = tp->head.sval;
5143 cp->phys.select.sel_scntl4 = tp->head.uval;
5146 * message
5148 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
5149 cp->phys.smsg.size = cpu_to_scr(msglen);
5152 * status
5154 cp->host_xflags = 0;
5155 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5156 cp->ssss_status = S_ILLEGAL;
5157 cp->xerr_status = 0;
5158 cp->host_flags = 0;
5159 cp->extra_bytes = 0;
5162 * extreme data pointer.
5163 * shall be positive, so -1 is lower than lowest.:)
5165 cp->ext_sg = -1;
5166 cp->ext_ofs = 0;
5169 * Build the CDB and DATA descriptor block
5170 * and start the IO.
5172 return sym_setup_data_and_start(np, cmd, cp);
5176 * Reset a SCSI target (all LUNs of this target).
5178 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5180 struct sym_tcb *tp;
5182 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5183 return -1;
5185 tp = &np->target[target];
5186 tp->to_reset = 1;
5188 np->istat_sem = SEM;
5189 OUTB(np, nc_istat, SIGP|SEM);
5191 return 0;
5195 * Abort a SCSI IO.
5197 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5200 * Check that the IO is active.
5202 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5203 return -1;
5206 * If a previous abort didn't succeed in time,
5207 * perform a BUS reset.
5209 if (cp->to_abort) {
5210 sym_reset_scsi_bus(np, 1);
5211 return 0;
5215 * Mark the CCB for abort and allow time for.
5217 cp->to_abort = timed_out ? 2 : 1;
5220 * Tell the SCRIPTS processor to stop and synchronize with us.
5222 np->istat_sem = SEM;
5223 OUTB(np, nc_istat, SIGP|SEM);
5224 return 0;
5227 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5229 struct sym_ccb *cp;
5230 SYM_QUEHEAD *qp;
5233 * Look up our CCB control block.
5235 cp = NULL;
5236 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5237 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5238 if (cp2->cmd == cmd) {
5239 cp = cp2;
5240 break;
5244 return sym_abort_ccb(np, cp, timed_out);
5248 * Complete execution of a SCSI command with extended
5249 * error, SCSI status error, or having been auto-sensed.
5251 * The SCRIPTS processor is not running there, so we
5252 * can safely access IO registers and remove JOBs from
5253 * the START queue.
5254 * SCRATCHA is assumed to have been loaded with STARTPOS
5255 * before the SCRIPTS called the C code.
5257 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5259 struct scsi_device *sdev;
5260 struct scsi_cmnd *cmd;
5261 struct sym_tcb *tp;
5262 struct sym_lcb *lp;
5263 int resid;
5264 int i;
5267 * Paranoid check. :)
5269 if (!cp || !cp->cmd)
5270 return;
5272 cmd = cp->cmd;
5273 sdev = cmd->device;
5274 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5275 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5276 cp->host_status, cp->ssss_status, cp->host_flags);
5280 * Get target and lun pointers.
5282 tp = &np->target[cp->target];
5283 lp = sym_lp(tp, sdev->lun);
5286 * Check for extended errors.
5288 if (cp->xerr_status) {
5289 if (sym_verbose)
5290 sym_print_xerr(cmd, cp->xerr_status);
5291 if (cp->host_status == HS_COMPLETE)
5292 cp->host_status = HS_COMP_ERR;
5296 * Calculate the residual.
5298 resid = sym_compute_residual(np, cp);
5300 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5301 resid = 0; /* throw them away. :) */
5302 cp->sv_resid = 0;
5304 #ifdef DEBUG_2_0_X
5305 if (resid)
5306 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5307 #endif
5310 * Dequeue all queued CCBs for that device
5311 * not yet started by SCRIPTS.
5313 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5314 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5317 * Restart the SCRIPTS processor.
5319 OUTL_DSP(np, SCRIPTA_BA(np, start));
5321 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5322 if (cp->host_status == HS_COMPLETE &&
5323 cp->ssss_status == S_QUEUE_FULL) {
5324 if (!lp || lp->started_tags - i < 2)
5325 goto weirdness;
5327 * Decrease queue depth as needed.
5329 lp->started_max = lp->started_tags - i - 1;
5330 lp->num_sgood = 0;
5332 if (sym_verbose >= 2) {
5333 sym_print_addr(cmd, " queue depth is now %d\n",
5334 lp->started_max);
5338 * Repair the CCB.
5340 cp->host_status = HS_BUSY;
5341 cp->ssss_status = S_ILLEGAL;
5344 * Let's requeue it to device.
5346 sym_set_cam_status(cmd, DID_SOFT_ERROR);
5347 goto finish;
5349 weirdness:
5350 #endif
5352 * Build result in CAM ccb.
5354 sym_set_cam_result_error(np, cp, resid);
5356 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5357 finish:
5358 #endif
5360 * Add this one to the COMP queue.
5362 sym_remque(&cp->link_ccbq);
5363 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5366 * Complete all those commands with either error
5367 * or requeue condition.
5369 sym_flush_comp_queue(np, 0);
5371 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5373 * Donnot start more than 1 command after an error.
5375 sym_start_next_ccbs(np, lp, 1);
5376 #endif
5380 * Complete execution of a successful SCSI command.
5382 * Only successful commands go to the DONE queue,
5383 * since we need to have the SCRIPTS processor
5384 * stopped on any error condition.
5385 * The SCRIPTS processor is running while we are
5386 * completing successful commands.
5388 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5390 struct sym_tcb *tp;
5391 struct sym_lcb *lp;
5392 struct scsi_cmnd *cmd;
5393 int resid;
5396 * Paranoid check. :)
5398 if (!cp || !cp->cmd)
5399 return;
5400 assert (cp->host_status == HS_COMPLETE);
5403 * Get user command.
5405 cmd = cp->cmd;
5408 * Get target and lun pointers.
5410 tp = &np->target[cp->target];
5411 lp = sym_lp(tp, cp->lun);
5414 * If all data have been transferred, given than no
5415 * extended error did occur, there is no residual.
5417 resid = 0;
5418 if (cp->phys.head.lastp != cp->goalp)
5419 resid = sym_compute_residual(np, cp);
5422 * Wrong transfer residuals may be worse than just always
5423 * returning zero. User can disable this feature in
5424 * sym53c8xx.h. Residual support is enabled by default.
5426 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5427 resid = 0;
5428 #ifdef DEBUG_2_0_X
5429 if (resid)
5430 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5431 #endif
5434 * Build result in CAM ccb.
5436 sym_set_cam_result_ok(cp, cmd, resid);
5438 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5440 * If max number of started ccbs had been reduced,
5441 * increase it if 200 good status received.
5443 if (lp && lp->started_max < lp->started_limit) {
5444 ++lp->num_sgood;
5445 if (lp->num_sgood >= 200) {
5446 lp->num_sgood = 0;
5447 ++lp->started_max;
5448 if (sym_verbose >= 2) {
5449 sym_print_addr(cmd, " queue depth is now %d\n",
5450 lp->started_max);
5454 #endif
5457 * Free our CCB.
5459 sym_free_ccb (np, cp);
5461 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5463 * Requeue a couple of awaiting scsi commands.
5465 if (!sym_que_empty(&lp->waiting_ccbq))
5466 sym_start_next_ccbs(np, lp, 2);
5467 #endif
5469 * Complete the command.
5471 sym_xpt_done(np, cmd);
5475 * Soft-attach the controller.
5477 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5479 struct sym_hcb *np = sym_get_hcb(shost);
5480 int i;
5483 * Get some info about the firmware.
5485 np->scripta_sz = fw->a_size;
5486 np->scriptb_sz = fw->b_size;
5487 np->scriptz_sz = fw->z_size;
5488 np->fw_setup = fw->setup;
5489 np->fw_patch = fw->patch;
5490 np->fw_name = fw->name;
5493 * Save setting of some IO registers, so we will
5494 * be able to probe specific implementations.
5496 sym_save_initial_setting (np);
5499 * Reset the chip now, since it has been reported
5500 * that SCSI clock calibration may not work properly
5501 * if the chip is currently active.
5503 sym_chip_reset(np);
5506 * Prepare controller and devices settings, according
5507 * to chip features, user set-up and driver set-up.
5509 sym_prepare_setting(shost, np, nvram);
5512 * Check the PCI clock frequency.
5513 * Must be performed after prepare_setting since it destroys
5514 * STEST1 that is used to probe for the clock doubler.
5516 i = sym_getpciclock(np);
5517 if (i > 37000 && !(np->features & FE_66MHZ))
5518 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5519 sym_name(np), i);
5522 * Allocate the start queue.
5524 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5525 if (!np->squeue)
5526 goto attach_failed;
5527 np->squeue_ba = vtobus(np->squeue);
5530 * Allocate the done queue.
5532 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5533 if (!np->dqueue)
5534 goto attach_failed;
5535 np->dqueue_ba = vtobus(np->dqueue);
5538 * Allocate the target bus address array.
5540 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5541 if (!np->targtbl)
5542 goto attach_failed;
5543 np->targtbl_ba = vtobus(np->targtbl);
5546 * Allocate SCRIPTS areas.
5548 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5549 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5550 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5551 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5552 goto attach_failed;
5555 * Allocate the array of lists of CCBs hashed by DSA.
5557 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5558 if (!np->ccbh)
5559 goto attach_failed;
5562 * Initialyze the CCB free and busy queues.
5564 sym_que_init(&np->free_ccbq);
5565 sym_que_init(&np->busy_ccbq);
5566 sym_que_init(&np->comp_ccbq);
5569 * Initialization for optional handling
5570 * of device queueing.
5572 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5573 sym_que_init(&np->dummy_ccbq);
5574 #endif
5576 * Allocate some CCB. We need at least ONE.
5578 if (!sym_alloc_ccb(np))
5579 goto attach_failed;
5582 * Calculate BUS addresses where we are going
5583 * to load the SCRIPTS.
5585 np->scripta_ba = vtobus(np->scripta0);
5586 np->scriptb_ba = vtobus(np->scriptb0);
5587 np->scriptz_ba = vtobus(np->scriptz0);
5589 if (np->ram_ba) {
5590 np->scripta_ba = np->ram_ba;
5591 if (np->features & FE_RAM8K) {
5592 np->scriptb_ba = np->scripta_ba + 4096;
5593 #if 0 /* May get useful for 64 BIT PCI addressing */
5594 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5595 #endif
5600 * Copy scripts to controller instance.
5602 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5603 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5604 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5607 * Setup variable parts in scripts and compute
5608 * scripts bus addresses used from the C code.
5610 np->fw_setup(np, fw);
5613 * Bind SCRIPTS with physical addresses usable by the
5614 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5616 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5617 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5618 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5620 #ifdef SYM_CONF_IARB_SUPPORT
5622 * If user wants IARB to be set when we win arbitration
5623 * and have other jobs, compute the max number of consecutive
5624 * settings of IARB hints before we leave devices a chance to
5625 * arbitrate for reselection.
5627 #ifdef SYM_SETUP_IARB_MAX
5628 np->iarb_max = SYM_SETUP_IARB_MAX;
5629 #else
5630 np->iarb_max = 4;
5631 #endif
5632 #endif
5635 * Prepare the idle and invalid task actions.
5637 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5638 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5639 np->idletask_ba = vtobus(&np->idletask);
5641 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5642 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5643 np->notask_ba = vtobus(&np->notask);
5645 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5646 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5647 np->bad_itl_ba = vtobus(&np->bad_itl);
5649 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5650 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5651 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5654 * Allocate and prepare the lun JUMP table that is used
5655 * for a target prior the probing of devices (bad lun table).
5656 * A private table will be allocated for the target on the
5657 * first INQUIRY response received.
5659 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5660 if (!np->badluntbl)
5661 goto attach_failed;
5663 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5664 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5665 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5668 * Prepare the bus address array that contains the bus
5669 * address of each target control block.
5670 * For now, assume all logical units are wrong. :)
5672 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5673 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5674 np->target[i].head.luntbl_sa =
5675 cpu_to_scr(vtobus(np->badluntbl));
5676 np->target[i].head.lun0_sa =
5677 cpu_to_scr(vtobus(&np->badlun_sa));
5681 * Now check the cache handling of the pci chipset.
5683 if (sym_snooptest (np)) {
5684 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5685 goto attach_failed;
5689 * Sigh! we are done.
5691 return 0;
5693 attach_failed:
5694 return -ENXIO;
5698 * Free everything that has been allocated for this device.
5700 void sym_hcb_free(struct sym_hcb *np)
5702 SYM_QUEHEAD *qp;
5703 struct sym_ccb *cp;
5704 struct sym_tcb *tp;
5705 int target;
5707 if (np->scriptz0)
5708 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5709 if (np->scriptb0)
5710 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5711 if (np->scripta0)
5712 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5713 if (np->squeue)
5714 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5715 if (np->dqueue)
5716 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5718 if (np->actccbs) {
5719 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5720 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5721 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5724 kfree(np->ccbh);
5726 if (np->badluntbl)
5727 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5729 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5730 tp = &np->target[target];
5731 #if SYM_CONF_MAX_LUN > 1
5732 kfree(tp->lunmp);
5733 #endif
5735 if (np->targtbl)
5736 sym_mfree_dma(np->targtbl, 256, "TARGTBL");