USB: isp1760: Support board-specific hardware configurations
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / mpage.c
blobdbcc7af76a15d483a5efc5c1a68aa11566072623
1 /*
2 * fs/mpage.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
9 * 15May2002 akpm@zip.com.au
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/bio.h>
20 #include <linux/fs.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/highmem.h>
24 #include <linux/prefetch.h>
25 #include <linux/mpage.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
31 * I/O completion handler for multipage BIOs.
33 * The mpage code never puts partial pages into a BIO (except for end-of-file).
34 * If a page does not map to a contiguous run of blocks then it simply falls
35 * back to block_read_full_page().
37 * Why is this? If a page's completion depends on a number of different BIOs
38 * which can complete in any order (or at the same time) then determining the
39 * status of that page is hard. See end_buffer_async_read() for the details.
40 * There is no point in duplicating all that complexity.
42 static void mpage_end_io_read(struct bio *bio, int err)
44 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
47 do {
48 struct page *page = bvec->bv_page;
50 if (--bvec >= bio->bi_io_vec)
51 prefetchw(&bvec->bv_page->flags);
53 if (uptodate) {
54 SetPageUptodate(page);
55 } else {
56 ClearPageUptodate(page);
57 SetPageError(page);
59 unlock_page(page);
60 } while (bvec >= bio->bi_io_vec);
61 bio_put(bio);
64 static void mpage_end_io_write(struct bio *bio, int err)
66 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
67 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
69 do {
70 struct page *page = bvec->bv_page;
72 if (--bvec >= bio->bi_io_vec)
73 prefetchw(&bvec->bv_page->flags);
75 if (!uptodate){
76 SetPageError(page);
77 if (page->mapping)
78 set_bit(AS_EIO, &page->mapping->flags);
80 end_page_writeback(page);
81 } while (bvec >= bio->bi_io_vec);
82 bio_put(bio);
85 struct bio *mpage_bio_submit(int rw, struct bio *bio)
87 bio->bi_end_io = mpage_end_io_read;
88 if (rw == WRITE)
89 bio->bi_end_io = mpage_end_io_write;
90 submit_bio(rw, bio);
91 return NULL;
93 EXPORT_SYMBOL(mpage_bio_submit);
95 static struct bio *
96 mpage_alloc(struct block_device *bdev,
97 sector_t first_sector, int nr_vecs,
98 gfp_t gfp_flags)
100 struct bio *bio;
102 bio = bio_alloc(gfp_flags, nr_vecs);
104 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
105 while (!bio && (nr_vecs /= 2))
106 bio = bio_alloc(gfp_flags, nr_vecs);
109 if (bio) {
110 bio->bi_bdev = bdev;
111 bio->bi_sector = first_sector;
113 return bio;
117 * support function for mpage_readpages. The fs supplied get_block might
118 * return an up to date buffer. This is used to map that buffer into
119 * the page, which allows readpage to avoid triggering a duplicate call
120 * to get_block.
122 * The idea is to avoid adding buffers to pages that don't already have
123 * them. So when the buffer is up to date and the page size == block size,
124 * this marks the page up to date instead of adding new buffers.
126 static void
127 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
129 struct inode *inode = page->mapping->host;
130 struct buffer_head *page_bh, *head;
131 int block = 0;
133 if (!page_has_buffers(page)) {
135 * don't make any buffers if there is only one buffer on
136 * the page and the page just needs to be set up to date
138 if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
139 buffer_uptodate(bh)) {
140 SetPageUptodate(page);
141 return;
143 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
145 head = page_buffers(page);
146 page_bh = head;
147 do {
148 if (block == page_block) {
149 page_bh->b_state = bh->b_state;
150 page_bh->b_bdev = bh->b_bdev;
151 page_bh->b_blocknr = bh->b_blocknr;
152 break;
154 page_bh = page_bh->b_this_page;
155 block++;
156 } while (page_bh != head);
160 * This is the worker routine which does all the work of mapping the disk
161 * blocks and constructs largest possible bios, submits them for IO if the
162 * blocks are not contiguous on the disk.
164 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
165 * represent the validity of its disk mapping and to decide when to do the next
166 * get_block() call.
168 static struct bio *
169 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
170 sector_t *last_block_in_bio, struct buffer_head *map_bh,
171 unsigned long *first_logical_block, get_block_t get_block)
173 struct inode *inode = page->mapping->host;
174 const unsigned blkbits = inode->i_blkbits;
175 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
176 const unsigned blocksize = 1 << blkbits;
177 sector_t block_in_file;
178 sector_t last_block;
179 sector_t last_block_in_file;
180 sector_t blocks[MAX_BUF_PER_PAGE];
181 unsigned page_block;
182 unsigned first_hole = blocks_per_page;
183 struct block_device *bdev = NULL;
184 int length;
185 int fully_mapped = 1;
186 unsigned nblocks;
187 unsigned relative_block;
189 if (page_has_buffers(page))
190 goto confused;
192 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
193 last_block = block_in_file + nr_pages * blocks_per_page;
194 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
195 if (last_block > last_block_in_file)
196 last_block = last_block_in_file;
197 page_block = 0;
200 * Map blocks using the result from the previous get_blocks call first.
202 nblocks = map_bh->b_size >> blkbits;
203 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
204 block_in_file < (*first_logical_block + nblocks)) {
205 unsigned map_offset = block_in_file - *first_logical_block;
206 unsigned last = nblocks - map_offset;
208 for (relative_block = 0; ; relative_block++) {
209 if (relative_block == last) {
210 clear_buffer_mapped(map_bh);
211 break;
213 if (page_block == blocks_per_page)
214 break;
215 blocks[page_block] = map_bh->b_blocknr + map_offset +
216 relative_block;
217 page_block++;
218 block_in_file++;
220 bdev = map_bh->b_bdev;
224 * Then do more get_blocks calls until we are done with this page.
226 map_bh->b_page = page;
227 while (page_block < blocks_per_page) {
228 map_bh->b_state = 0;
229 map_bh->b_size = 0;
231 if (block_in_file < last_block) {
232 map_bh->b_size = (last_block-block_in_file) << blkbits;
233 if (get_block(inode, block_in_file, map_bh, 0))
234 goto confused;
235 *first_logical_block = block_in_file;
238 if (!buffer_mapped(map_bh)) {
239 fully_mapped = 0;
240 if (first_hole == blocks_per_page)
241 first_hole = page_block;
242 page_block++;
243 block_in_file++;
244 clear_buffer_mapped(map_bh);
245 continue;
248 /* some filesystems will copy data into the page during
249 * the get_block call, in which case we don't want to
250 * read it again. map_buffer_to_page copies the data
251 * we just collected from get_block into the page's buffers
252 * so readpage doesn't have to repeat the get_block call
254 if (buffer_uptodate(map_bh)) {
255 map_buffer_to_page(page, map_bh, page_block);
256 goto confused;
259 if (first_hole != blocks_per_page)
260 goto confused; /* hole -> non-hole */
262 /* Contiguous blocks? */
263 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
264 goto confused;
265 nblocks = map_bh->b_size >> blkbits;
266 for (relative_block = 0; ; relative_block++) {
267 if (relative_block == nblocks) {
268 clear_buffer_mapped(map_bh);
269 break;
270 } else if (page_block == blocks_per_page)
271 break;
272 blocks[page_block] = map_bh->b_blocknr+relative_block;
273 page_block++;
274 block_in_file++;
276 bdev = map_bh->b_bdev;
279 if (first_hole != blocks_per_page) {
280 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
281 if (first_hole == 0) {
282 SetPageUptodate(page);
283 unlock_page(page);
284 goto out;
286 } else if (fully_mapped) {
287 SetPageMappedToDisk(page);
291 * This page will go to BIO. Do we need to send this BIO off first?
293 if (bio && (*last_block_in_bio != blocks[0] - 1))
294 bio = mpage_bio_submit(READ, bio);
296 alloc_new:
297 if (bio == NULL) {
298 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
299 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
300 GFP_KERNEL);
301 if (bio == NULL)
302 goto confused;
305 length = first_hole << blkbits;
306 if (bio_add_page(bio, page, length, 0) < length) {
307 bio = mpage_bio_submit(READ, bio);
308 goto alloc_new;
311 if (buffer_boundary(map_bh) || (first_hole != blocks_per_page))
312 bio = mpage_bio_submit(READ, bio);
313 else
314 *last_block_in_bio = blocks[blocks_per_page - 1];
315 out:
316 return bio;
318 confused:
319 if (bio)
320 bio = mpage_bio_submit(READ, bio);
321 if (!PageUptodate(page))
322 block_read_full_page(page, get_block);
323 else
324 unlock_page(page);
325 goto out;
329 * mpage_readpages - populate an address space with some pages & start reads against them
330 * @mapping: the address_space
331 * @pages: The address of a list_head which contains the target pages. These
332 * pages have their ->index populated and are otherwise uninitialised.
333 * The page at @pages->prev has the lowest file offset, and reads should be
334 * issued in @pages->prev to @pages->next order.
335 * @nr_pages: The number of pages at *@pages
336 * @get_block: The filesystem's block mapper function.
338 * This function walks the pages and the blocks within each page, building and
339 * emitting large BIOs.
341 * If anything unusual happens, such as:
343 * - encountering a page which has buffers
344 * - encountering a page which has a non-hole after a hole
345 * - encountering a page with non-contiguous blocks
347 * then this code just gives up and calls the buffer_head-based read function.
348 * It does handle a page which has holes at the end - that is a common case:
349 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
351 * BH_Boundary explanation:
353 * There is a problem. The mpage read code assembles several pages, gets all
354 * their disk mappings, and then submits them all. That's fine, but obtaining
355 * the disk mappings may require I/O. Reads of indirect blocks, for example.
357 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
358 * submitted in the following order:
359 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
361 * because the indirect block has to be read to get the mappings of blocks
362 * 13,14,15,16. Obviously, this impacts performance.
364 * So what we do it to allow the filesystem's get_block() function to set
365 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
366 * after this one will require I/O against a block which is probably close to
367 * this one. So you should push what I/O you have currently accumulated.
369 * This all causes the disk requests to be issued in the correct order.
372 mpage_readpages(struct address_space *mapping, struct list_head *pages,
373 unsigned nr_pages, get_block_t get_block)
375 struct bio *bio = NULL;
376 unsigned page_idx;
377 sector_t last_block_in_bio = 0;
378 struct buffer_head map_bh;
379 unsigned long first_logical_block = 0;
381 clear_buffer_mapped(&map_bh);
382 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
383 struct page *page = list_entry(pages->prev, struct page, lru);
385 prefetchw(&page->flags);
386 list_del(&page->lru);
387 if (!add_to_page_cache_lru(page, mapping,
388 page->index, GFP_KERNEL)) {
389 bio = do_mpage_readpage(bio, page,
390 nr_pages - page_idx,
391 &last_block_in_bio, &map_bh,
392 &first_logical_block,
393 get_block);
395 page_cache_release(page);
397 BUG_ON(!list_empty(pages));
398 if (bio)
399 mpage_bio_submit(READ, bio);
400 return 0;
402 EXPORT_SYMBOL(mpage_readpages);
405 * This isn't called much at all
407 int mpage_readpage(struct page *page, get_block_t get_block)
409 struct bio *bio = NULL;
410 sector_t last_block_in_bio = 0;
411 struct buffer_head map_bh;
412 unsigned long first_logical_block = 0;
414 clear_buffer_mapped(&map_bh);
415 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
416 &map_bh, &first_logical_block, get_block);
417 if (bio)
418 mpage_bio_submit(READ, bio);
419 return 0;
421 EXPORT_SYMBOL(mpage_readpage);
424 * Writing is not so simple.
426 * If the page has buffers then they will be used for obtaining the disk
427 * mapping. We only support pages which are fully mapped-and-dirty, with a
428 * special case for pages which are unmapped at the end: end-of-file.
430 * If the page has no buffers (preferred) then the page is mapped here.
432 * If all blocks are found to be contiguous then the page can go into the
433 * BIO. Otherwise fall back to the mapping's writepage().
435 * FIXME: This code wants an estimate of how many pages are still to be
436 * written, so it can intelligently allocate a suitably-sized BIO. For now,
437 * just allocate full-size (16-page) BIOs.
440 int __mpage_writepage(struct page *page, struct writeback_control *wbc,
441 void *data)
443 struct mpage_data *mpd = data;
444 struct bio *bio = mpd->bio;
445 struct address_space *mapping = page->mapping;
446 struct inode *inode = page->mapping->host;
447 const unsigned blkbits = inode->i_blkbits;
448 unsigned long end_index;
449 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
450 sector_t last_block;
451 sector_t block_in_file;
452 sector_t blocks[MAX_BUF_PER_PAGE];
453 unsigned page_block;
454 unsigned first_unmapped = blocks_per_page;
455 struct block_device *bdev = NULL;
456 int boundary = 0;
457 sector_t boundary_block = 0;
458 struct block_device *boundary_bdev = NULL;
459 int length;
460 struct buffer_head map_bh;
461 loff_t i_size = i_size_read(inode);
462 int ret = 0;
464 if (page_has_buffers(page)) {
465 struct buffer_head *head = page_buffers(page);
466 struct buffer_head *bh = head;
468 /* If they're all mapped and dirty, do it */
469 page_block = 0;
470 do {
471 BUG_ON(buffer_locked(bh));
472 if (!buffer_mapped(bh)) {
474 * unmapped dirty buffers are created by
475 * __set_page_dirty_buffers -> mmapped data
477 if (buffer_dirty(bh))
478 goto confused;
479 if (first_unmapped == blocks_per_page)
480 first_unmapped = page_block;
481 continue;
484 if (first_unmapped != blocks_per_page)
485 goto confused; /* hole -> non-hole */
487 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
488 goto confused;
489 if (page_block) {
490 if (bh->b_blocknr != blocks[page_block-1] + 1)
491 goto confused;
493 blocks[page_block++] = bh->b_blocknr;
494 boundary = buffer_boundary(bh);
495 if (boundary) {
496 boundary_block = bh->b_blocknr;
497 boundary_bdev = bh->b_bdev;
499 bdev = bh->b_bdev;
500 } while ((bh = bh->b_this_page) != head);
502 if (first_unmapped)
503 goto page_is_mapped;
506 * Page has buffers, but they are all unmapped. The page was
507 * created by pagein or read over a hole which was handled by
508 * block_read_full_page(). If this address_space is also
509 * using mpage_readpages then this can rarely happen.
511 goto confused;
515 * The page has no buffers: map it to disk
517 BUG_ON(!PageUptodate(page));
518 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
519 last_block = (i_size - 1) >> blkbits;
520 map_bh.b_page = page;
521 for (page_block = 0; page_block < blocks_per_page; ) {
523 map_bh.b_state = 0;
524 map_bh.b_size = 1 << blkbits;
525 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
526 goto confused;
527 if (buffer_new(&map_bh))
528 unmap_underlying_metadata(map_bh.b_bdev,
529 map_bh.b_blocknr);
530 if (buffer_boundary(&map_bh)) {
531 boundary_block = map_bh.b_blocknr;
532 boundary_bdev = map_bh.b_bdev;
534 if (page_block) {
535 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
536 goto confused;
538 blocks[page_block++] = map_bh.b_blocknr;
539 boundary = buffer_boundary(&map_bh);
540 bdev = map_bh.b_bdev;
541 if (block_in_file == last_block)
542 break;
543 block_in_file++;
545 BUG_ON(page_block == 0);
547 first_unmapped = page_block;
549 page_is_mapped:
550 end_index = i_size >> PAGE_CACHE_SHIFT;
551 if (page->index >= end_index) {
553 * The page straddles i_size. It must be zeroed out on each
554 * and every writepage invokation because it may be mmapped.
555 * "A file is mapped in multiples of the page size. For a file
556 * that is not a multiple of the page size, the remaining memory
557 * is zeroed when mapped, and writes to that region are not
558 * written out to the file."
560 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
562 if (page->index > end_index || !offset)
563 goto confused;
564 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
568 * This page will go to BIO. Do we need to send this BIO off first?
570 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
571 bio = mpage_bio_submit(WRITE, bio);
573 alloc_new:
574 if (bio == NULL) {
575 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
576 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
577 if (bio == NULL)
578 goto confused;
582 * Must try to add the page before marking the buffer clean or
583 * the confused fail path above (OOM) will be very confused when
584 * it finds all bh marked clean (i.e. it will not write anything)
586 length = first_unmapped << blkbits;
587 if (bio_add_page(bio, page, length, 0) < length) {
588 bio = mpage_bio_submit(WRITE, bio);
589 goto alloc_new;
593 * OK, we have our BIO, so we can now mark the buffers clean. Make
594 * sure to only clean buffers which we know we'll be writing.
596 if (page_has_buffers(page)) {
597 struct buffer_head *head = page_buffers(page);
598 struct buffer_head *bh = head;
599 unsigned buffer_counter = 0;
601 do {
602 if (buffer_counter++ == first_unmapped)
603 break;
604 clear_buffer_dirty(bh);
605 bh = bh->b_this_page;
606 } while (bh != head);
609 * we cannot drop the bh if the page is not uptodate
610 * or a concurrent readpage would fail to serialize with the bh
611 * and it would read from disk before we reach the platter.
613 if (buffer_heads_over_limit && PageUptodate(page))
614 try_to_free_buffers(page);
617 BUG_ON(PageWriteback(page));
618 set_page_writeback(page);
619 unlock_page(page);
620 if (boundary || (first_unmapped != blocks_per_page)) {
621 bio = mpage_bio_submit(WRITE, bio);
622 if (boundary_block) {
623 write_boundary_block(boundary_bdev,
624 boundary_block, 1 << blkbits);
626 } else {
627 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
629 goto out;
631 confused:
632 if (bio)
633 bio = mpage_bio_submit(WRITE, bio);
635 if (mpd->use_writepage) {
636 ret = mapping->a_ops->writepage(page, wbc);
637 } else {
638 ret = -EAGAIN;
639 goto out;
642 * The caller has a ref on the inode, so *mapping is stable
644 mapping_set_error(mapping, ret);
645 out:
646 mpd->bio = bio;
647 return ret;
649 EXPORT_SYMBOL(__mpage_writepage);
652 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
653 * @mapping: address space structure to write
654 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
655 * @get_block: the filesystem's block mapper function.
656 * If this is NULL then use a_ops->writepage. Otherwise, go
657 * direct-to-BIO.
659 * This is a library function, which implements the writepages()
660 * address_space_operation.
662 * If a page is already under I/O, generic_writepages() skips it, even
663 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
664 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
665 * and msync() need to guarantee that all the data which was dirty at the time
666 * the call was made get new I/O started against them. If wbc->sync_mode is
667 * WB_SYNC_ALL then we were called for data integrity and we must wait for
668 * existing IO to complete.
671 mpage_writepages(struct address_space *mapping,
672 struct writeback_control *wbc, get_block_t get_block)
674 int ret;
676 if (!get_block)
677 ret = generic_writepages(mapping, wbc);
678 else {
679 struct mpage_data mpd = {
680 .bio = NULL,
681 .last_block_in_bio = 0,
682 .get_block = get_block,
683 .use_writepage = 1,
686 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
687 if (mpd.bio)
688 mpage_bio_submit(WRITE, mpd.bio);
690 return ret;
692 EXPORT_SYMBOL(mpage_writepages);
694 int mpage_writepage(struct page *page, get_block_t get_block,
695 struct writeback_control *wbc)
697 struct mpage_data mpd = {
698 .bio = NULL,
699 .last_block_in_bio = 0,
700 .get_block = get_block,
701 .use_writepage = 0,
703 int ret = __mpage_writepage(page, wbc, &mpd);
704 if (mpd.bio)
705 mpage_bio_submit(WRITE, mpd.bio);
706 return ret;
708 EXPORT_SYMBOL(mpage_writepage);