Merge branch 'batman-adv/next' of git://git.open-mesh.org/linux-merge
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / bnx2x / bnx2x_init.h
blobdf9f196dd6e854473a62a23ec99936d0ff1cb524
1 /* bnx2x_init.h: Broadcom Everest network driver.
2 * Structures and macroes needed during the initialization.
4 * Copyright (c) 2007-2011 Broadcom Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
10 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
11 * Written by: Eliezer Tamir
12 * Modified by: Vladislav Zolotarov <vladz@broadcom.com>
15 #ifndef BNX2X_INIT_H
16 #define BNX2X_INIT_H
18 /* Init operation types and structures */
19 enum {
20 OP_RD = 0x1, /* read a single register */
21 OP_WR, /* write a single register */
22 OP_SW, /* copy a string to the device */
23 OP_ZR, /* clear memory */
24 OP_ZP, /* unzip then copy with DMAE */
25 OP_WR_64, /* write 64 bit pattern */
26 OP_WB, /* copy a string using DMAE */
27 OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
28 /* Skip the following ops if all of the init modes don't match */
29 OP_IF_MODE_OR,
30 /* Skip the following ops if any of the init modes don't match */
31 OP_IF_MODE_AND,
32 OP_MAX
35 enum {
36 STAGE_START,
37 STAGE_END,
40 /* Returns the index of start or end of a specific block stage in ops array*/
41 #define BLOCK_OPS_IDX(block, stage, end) \
42 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
45 /* structs for the various opcodes */
46 struct raw_op {
47 u32 op:8;
48 u32 offset:24;
49 u32 raw_data;
52 struct op_read {
53 u32 op:8;
54 u32 offset:24;
55 u32 val;
58 struct op_write {
59 u32 op:8;
60 u32 offset:24;
61 u32 val;
64 struct op_arr_write {
65 u32 op:8;
66 u32 offset:24;
67 #ifdef __BIG_ENDIAN
68 u16 data_len;
69 u16 data_off;
70 #else /* __LITTLE_ENDIAN */
71 u16 data_off;
72 u16 data_len;
73 #endif
76 struct op_zero {
77 u32 op:8;
78 u32 offset:24;
79 u32 len;
82 struct op_if_mode {
83 u32 op:8;
84 u32 cmd_offset:24;
85 u32 mode_bit_map;
89 union init_op {
90 struct op_read read;
91 struct op_write write;
92 struct op_arr_write arr_wr;
93 struct op_zero zero;
94 struct raw_op raw;
95 struct op_if_mode if_mode;
99 /* Init Phases */
100 enum {
101 PHASE_COMMON,
102 PHASE_PORT0,
103 PHASE_PORT1,
104 PHASE_PF0,
105 PHASE_PF1,
106 PHASE_PF2,
107 PHASE_PF3,
108 PHASE_PF4,
109 PHASE_PF5,
110 PHASE_PF6,
111 PHASE_PF7,
112 NUM_OF_INIT_PHASES
115 /* Init Modes */
116 enum {
117 MODE_ASIC = 0x00000001,
118 MODE_FPGA = 0x00000002,
119 MODE_EMUL = 0x00000004,
120 MODE_E2 = 0x00000008,
121 MODE_E3 = 0x00000010,
122 MODE_PORT2 = 0x00000020,
123 MODE_PORT4 = 0x00000040,
124 MODE_SF = 0x00000080,
125 MODE_MF = 0x00000100,
126 MODE_MF_SD = 0x00000200,
127 MODE_MF_SI = 0x00000400,
128 MODE_MF_NIV = 0x00000800,
129 MODE_E3_A0 = 0x00001000,
130 MODE_E3_B0 = 0x00002000,
131 MODE_COS_BC = 0x00004000,
132 MODE_COS3 = 0x00008000,
133 MODE_COS6 = 0x00010000,
134 MODE_LITTLE_ENDIAN = 0x00020000,
135 MODE_BIG_ENDIAN = 0x00040000,
138 /* Init Blocks */
139 enum {
140 BLOCK_ATC,
141 BLOCK_BRB1,
142 BLOCK_CCM,
143 BLOCK_CDU,
144 BLOCK_CFC,
145 BLOCK_CSDM,
146 BLOCK_CSEM,
147 BLOCK_DBG,
148 BLOCK_DMAE,
149 BLOCK_DORQ,
150 BLOCK_HC,
151 BLOCK_IGU,
152 BLOCK_MISC,
153 BLOCK_NIG,
154 BLOCK_PBF,
155 BLOCK_PGLUE_B,
156 BLOCK_PRS,
157 BLOCK_PXP2,
158 BLOCK_PXP,
159 BLOCK_QM,
160 BLOCK_SRC,
161 BLOCK_TCM,
162 BLOCK_TM,
163 BLOCK_TSDM,
164 BLOCK_TSEM,
165 BLOCK_UCM,
166 BLOCK_UPB,
167 BLOCK_USDM,
168 BLOCK_USEM,
169 BLOCK_XCM,
170 BLOCK_XPB,
171 BLOCK_XSDM,
172 BLOCK_XSEM,
173 BLOCK_MISC_AEU,
174 NUM_OF_INIT_BLOCKS
177 /* QM queue numbers */
178 #define BNX2X_ETH_Q 0
179 #define BNX2X_TOE_Q 3
180 #define BNX2X_TOE_ACK_Q 6
181 #define BNX2X_ISCSI_Q 9
182 #define BNX2X_ISCSI_ACK_Q 8
183 #define BNX2X_FCOE_Q 10
185 /* Vnics per mode */
186 #define BNX2X_PORT2_MODE_NUM_VNICS 4
187 #define BNX2X_PORT4_MODE_NUM_VNICS 2
189 /* COS offset for port1 in E3 B0 4port mode */
190 #define BNX2X_E3B0_PORT1_COS_OFFSET 3
192 /* QM Register addresses */
193 #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
194 (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
195 #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
196 (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
197 #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
198 (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
200 /* extracts the QM queue number for the specified port and vnic */
201 #define BNX2X_PF_Q_NUM(q_num, port, vnic)\
202 ((((port) << 1) | (vnic)) * 16 + (q_num))
205 /* Maps the specified queue to the specified COS */
206 static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
208 /* find current COS mapping */
209 u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
211 /* check if queue->COS mapping has changed */
212 if (curr_cos != new_cos) {
213 u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
214 u32 reg_addr, reg_bit_map, vnic;
216 /* update parameters for 4port mode */
217 if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
218 num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
219 if (BP_PORT(bp)) {
220 curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
221 new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
225 /* change queue mapping for each VNIC */
226 for (vnic = 0; vnic < num_vnics; vnic++) {
227 u32 pf_q_num =
228 BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
229 u32 q_bit_map = 1 << (pf_q_num & 0x1f);
231 /* overwrite queue->VOQ mapping */
232 REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
234 /* clear queue bit from current COS bit map */
235 reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
236 reg_bit_map = REG_RD(bp, reg_addr);
237 REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
239 /* set queue bit in new COS bit map */
240 reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
241 reg_bit_map = REG_RD(bp, reg_addr);
242 REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
244 /* set/clear queue bit in command-queue bit map
245 (E2/E3A0 only, valid COS values are 0/1) */
246 if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
247 reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
248 reg_bit_map = REG_RD(bp, reg_addr);
249 q_bit_map = 1 << (2 * (pf_q_num & 0xf));
250 reg_bit_map = new_cos ?
251 (reg_bit_map | q_bit_map) :
252 (reg_bit_map & (~q_bit_map));
253 REG_WR(bp, reg_addr, reg_bit_map);
259 /* Configures the QM according to the specified per-traffic-type COSes */
260 static inline void bnx2x_dcb_config_qm(struct bnx2x *bp,
261 struct priority_cos *traffic_cos)
263 bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
264 traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
265 bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
266 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
267 if (INIT_MODE_FLAGS(bp) & MODE_COS_BC) {
268 /* required only in backward compatible COS mode */
269 bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
270 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
271 bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
272 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
273 bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
274 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
275 bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
276 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
281 /* Returns the index of start or end of a specific block stage in ops array*/
282 #define BLOCK_OPS_IDX(block, stage, end) \
283 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
286 #define INITOP_SET 0 /* set the HW directly */
287 #define INITOP_CLEAR 1 /* clear the HW directly */
288 #define INITOP_INIT 2 /* set the init-value array */
290 /****************************************************************************
291 * ILT management
292 ****************************************************************************/
293 struct ilt_line {
294 dma_addr_t page_mapping;
295 void *page;
296 u32 size;
299 struct ilt_client_info {
300 u32 page_size;
301 u16 start;
302 u16 end;
303 u16 client_num;
304 u16 flags;
305 #define ILT_CLIENT_SKIP_INIT 0x1
306 #define ILT_CLIENT_SKIP_MEM 0x2
309 struct bnx2x_ilt {
310 u32 start_line;
311 struct ilt_line *lines;
312 struct ilt_client_info clients[4];
313 #define ILT_CLIENT_CDU 0
314 #define ILT_CLIENT_QM 1
315 #define ILT_CLIENT_SRC 2
316 #define ILT_CLIENT_TM 3
319 /****************************************************************************
320 * SRC configuration
321 ****************************************************************************/
322 struct src_ent {
323 u8 opaque[56];
324 u64 next;
327 /****************************************************************************
328 * Parity configuration
329 ****************************************************************************/
330 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2) \
332 block##_REG_##block##_PRTY_MASK, \
333 block##_REG_##block##_PRTY_STS_CLR, \
334 en_mask, {m1, m1h, m2}, #block \
337 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2) \
339 block##_REG_##block##_PRTY_MASK_0, \
340 block##_REG_##block##_PRTY_STS_CLR_0, \
341 en_mask, {m1, m1h, m2}, #block"_0" \
344 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2) \
346 block##_REG_##block##_PRTY_MASK_1, \
347 block##_REG_##block##_PRTY_STS_CLR_1, \
348 en_mask, {m1, m1h, m2}, #block"_1" \
351 static const struct {
352 u32 mask_addr;
353 u32 sts_clr_addr;
354 u32 en_mask; /* Mask to enable parity attentions */
355 struct {
356 u32 e1; /* 57710 */
357 u32 e1h; /* 57711 */
358 u32 e2; /* 57712 */
359 } reg_mask; /* Register mask (all valid bits) */
360 char name[7]; /* Block's longest name is 6 characters long
361 * (name + suffix)
363 } bnx2x_blocks_parity_data[] = {
364 /* bit 19 masked */
365 /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
366 /* bit 5,18,20-31 */
367 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
368 /* bit 5 */
369 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
370 /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
371 /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
373 /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
374 * want to handle "system kill" flow at the moment.
376 BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff),
377 BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff),
378 BLOCK_PRTY_INFO_1(PXP2, 0x7ff, 0x7f, 0x7f, 0x7ff),
379 BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0),
380 BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0),
381 BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff),
382 BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xffff),
383 BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff),
384 BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1),
385 BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff),
386 BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3),
387 {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
388 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
389 {0xf, 0xf, 0xf}, "UPB"},
390 {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
391 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
392 {0xf, 0xf, 0xf}, "XPB"},
393 BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7),
394 BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f),
395 BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf),
396 BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1),
397 BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf),
398 BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf),
399 BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff),
400 BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffffff),
401 BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f),
402 BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff),
403 BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff),
404 BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff),
405 BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff),
406 BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff),
407 BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff),
408 BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff),
409 BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff),
410 BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
411 BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f),
412 BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
413 BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f),
414 BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
415 BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f),
416 BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
417 BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f),
421 /* [28] MCP Latched rom_parity
422 * [29] MCP Latched ump_rx_parity
423 * [30] MCP Latched ump_tx_parity
424 * [31] MCP Latched scpad_parity
426 #define MISC_AEU_ENABLE_MCP_PRTY_BITS \
427 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
428 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
429 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
430 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
432 /* Below registers control the MCP parity attention output. When
433 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
434 * enabled, when cleared - disabled.
436 static const u32 mcp_attn_ctl_regs[] = {
437 MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
438 MISC_REG_AEU_ENABLE4_NIG_0,
439 MISC_REG_AEU_ENABLE4_PXP_0,
440 MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
441 MISC_REG_AEU_ENABLE4_NIG_1,
442 MISC_REG_AEU_ENABLE4_PXP_1
445 static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
447 int i;
448 u32 reg_val;
450 for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
451 reg_val = REG_RD(bp, mcp_attn_ctl_regs[i]);
453 if (enable)
454 reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS;
455 else
456 reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS;
458 REG_WR(bp, mcp_attn_ctl_regs[i], reg_val);
462 static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
464 if (CHIP_IS_E1(bp))
465 return bnx2x_blocks_parity_data[idx].reg_mask.e1;
466 else if (CHIP_IS_E1H(bp))
467 return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
468 else
469 return bnx2x_blocks_parity_data[idx].reg_mask.e2;
472 static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
474 int i;
476 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
477 u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
479 if (dis_mask) {
480 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
481 dis_mask);
482 DP(NETIF_MSG_HW, "Setting parity mask "
483 "for %s to\t\t0x%x\n",
484 bnx2x_blocks_parity_data[i].name, dis_mask);
488 /* Disable MCP parity attentions */
489 bnx2x_set_mcp_parity(bp, false);
493 * Clear the parity error status registers.
495 static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
497 int i;
498 u32 reg_val, mcp_aeu_bits =
499 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
500 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
501 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
502 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
504 /* Clear SEM_FAST parities */
505 REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
506 REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
507 REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
508 REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
510 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
511 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
513 if (reg_mask) {
514 reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
515 sts_clr_addr);
516 if (reg_val & reg_mask)
517 DP(NETIF_MSG_HW,
518 "Parity errors in %s: 0x%x\n",
519 bnx2x_blocks_parity_data[i].name,
520 reg_val & reg_mask);
524 /* Check if there were parity attentions in MCP */
525 reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
526 if (reg_val & mcp_aeu_bits)
527 DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
528 reg_val & mcp_aeu_bits);
530 /* Clear parity attentions in MCP:
531 * [7] clears Latched rom_parity
532 * [8] clears Latched ump_rx_parity
533 * [9] clears Latched ump_tx_parity
534 * [10] clears Latched scpad_parity (both ports)
536 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
539 static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
541 int i;
543 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
544 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
546 if (reg_mask)
547 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
548 bnx2x_blocks_parity_data[i].en_mask & reg_mask);
551 /* Enable MCP parity attentions */
552 bnx2x_set_mcp_parity(bp, true);
556 #endif /* BNX2X_INIT_H */