xilinxfb:Remove __initdata from xilinx_fb_fix and xilinx_fb_var
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blobef8156a6aad519014c030f62e856302dacf045e7
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
51 return 0;
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
58 if (sigismember(&t->blocked, sig))
59 return 0;
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
73 unsigned long ready;
74 long i;
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
94 return ready != 0;
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 (freezing(t)) ||
103 PENDING(&t->pending, &t->blocked) ||
104 PENDING(&t->signal->shared_pending, &t->blocked)) {
105 set_tsk_thread_flag(t, TIF_SIGPENDING);
106 return 1;
109 * We must never clear the flag in another thread, or in current
110 * when it's possible the current syscall is returning -ERESTART*.
111 * So we don't clear it here, and only callers who know they should do.
113 return 0;
117 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
118 * This is superfluous when called on current, the wakeup is a harmless no-op.
120 void recalc_sigpending_and_wake(struct task_struct *t)
122 if (recalc_sigpending_tsk(t))
123 signal_wake_up(t, 0);
126 void recalc_sigpending(void)
128 if (!recalc_sigpending_tsk(current))
129 clear_thread_flag(TIF_SIGPENDING);
133 /* Given the mask, find the first available signal that should be serviced. */
135 int next_signal(struct sigpending *pending, sigset_t *mask)
137 unsigned long i, *s, *m, x;
138 int sig = 0;
140 s = pending->signal.sig;
141 m = mask->sig;
142 switch (_NSIG_WORDS) {
143 default:
144 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
145 if ((x = *s &~ *m) != 0) {
146 sig = ffz(~x) + i*_NSIG_BPW + 1;
147 break;
149 break;
151 case 2: if ((x = s[0] &~ m[0]) != 0)
152 sig = 1;
153 else if ((x = s[1] &~ m[1]) != 0)
154 sig = _NSIG_BPW + 1;
155 else
156 break;
157 sig += ffz(~x);
158 break;
160 case 1: if ((x = *s &~ *m) != 0)
161 sig = ffz(~x) + 1;
162 break;
165 return sig;
168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
169 int override_rlimit)
171 struct sigqueue *q = NULL;
172 struct user_struct *user;
175 * In order to avoid problems with "switch_user()", we want to make
176 * sure that the compiler doesn't re-load "t->user"
178 user = t->user;
179 barrier();
180 atomic_inc(&user->sigpending);
181 if (override_rlimit ||
182 atomic_read(&user->sigpending) <=
183 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
184 q = kmem_cache_alloc(sigqueue_cachep, flags);
185 if (unlikely(q == NULL)) {
186 atomic_dec(&user->sigpending);
187 } else {
188 INIT_LIST_HEAD(&q->list);
189 q->flags = 0;
190 q->user = get_uid(user);
192 return(q);
195 static void __sigqueue_free(struct sigqueue *q)
197 if (q->flags & SIGQUEUE_PREALLOC)
198 return;
199 atomic_dec(&q->user->sigpending);
200 free_uid(q->user);
201 kmem_cache_free(sigqueue_cachep, q);
204 void flush_sigqueue(struct sigpending *queue)
206 struct sigqueue *q;
208 sigemptyset(&queue->signal);
209 while (!list_empty(&queue->list)) {
210 q = list_entry(queue->list.next, struct sigqueue , list);
211 list_del_init(&q->list);
212 __sigqueue_free(q);
217 * Flush all pending signals for a task.
219 void flush_signals(struct task_struct *t)
221 unsigned long flags;
223 spin_lock_irqsave(&t->sighand->siglock, flags);
224 clear_tsk_thread_flag(t,TIF_SIGPENDING);
225 flush_sigqueue(&t->pending);
226 flush_sigqueue(&t->signal->shared_pending);
227 spin_unlock_irqrestore(&t->sighand->siglock, flags);
230 void ignore_signals(struct task_struct *t)
232 int i;
234 for (i = 0; i < _NSIG; ++i)
235 t->sighand->action[i].sa.sa_handler = SIG_IGN;
237 flush_signals(t);
241 * Flush all handlers for a task.
244 void
245 flush_signal_handlers(struct task_struct *t, int force_default)
247 int i;
248 struct k_sigaction *ka = &t->sighand->action[0];
249 for (i = _NSIG ; i != 0 ; i--) {
250 if (force_default || ka->sa.sa_handler != SIG_IGN)
251 ka->sa.sa_handler = SIG_DFL;
252 ka->sa.sa_flags = 0;
253 sigemptyset(&ka->sa.sa_mask);
254 ka++;
258 int unhandled_signal(struct task_struct *tsk, int sig)
260 if (is_init(tsk))
261 return 1;
262 if (tsk->ptrace & PT_PTRACED)
263 return 0;
264 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
265 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
269 /* Notify the system that a driver wants to block all signals for this
270 * process, and wants to be notified if any signals at all were to be
271 * sent/acted upon. If the notifier routine returns non-zero, then the
272 * signal will be acted upon after all. If the notifier routine returns 0,
273 * then then signal will be blocked. Only one block per process is
274 * allowed. priv is a pointer to private data that the notifier routine
275 * can use to determine if the signal should be blocked or not. */
277 void
278 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
280 unsigned long flags;
282 spin_lock_irqsave(&current->sighand->siglock, flags);
283 current->notifier_mask = mask;
284 current->notifier_data = priv;
285 current->notifier = notifier;
286 spin_unlock_irqrestore(&current->sighand->siglock, flags);
289 /* Notify the system that blocking has ended. */
291 void
292 unblock_all_signals(void)
294 unsigned long flags;
296 spin_lock_irqsave(&current->sighand->siglock, flags);
297 current->notifier = NULL;
298 current->notifier_data = NULL;
299 recalc_sigpending();
300 spin_unlock_irqrestore(&current->sighand->siglock, flags);
303 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
305 struct sigqueue *q, *first = NULL;
306 int still_pending = 0;
308 if (unlikely(!sigismember(&list->signal, sig)))
309 return 0;
312 * Collect the siginfo appropriate to this signal. Check if
313 * there is another siginfo for the same signal.
315 list_for_each_entry(q, &list->list, list) {
316 if (q->info.si_signo == sig) {
317 if (first) {
318 still_pending = 1;
319 break;
321 first = q;
324 if (first) {
325 list_del_init(&first->list);
326 copy_siginfo(info, &first->info);
327 __sigqueue_free(first);
328 if (!still_pending)
329 sigdelset(&list->signal, sig);
330 } else {
332 /* Ok, it wasn't in the queue. This must be
333 a fast-pathed signal or we must have been
334 out of queue space. So zero out the info.
336 sigdelset(&list->signal, sig);
337 info->si_signo = sig;
338 info->si_errno = 0;
339 info->si_code = 0;
340 info->si_pid = 0;
341 info->si_uid = 0;
343 return 1;
346 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
347 siginfo_t *info)
349 int sig = next_signal(pending, mask);
351 if (sig) {
352 if (current->notifier) {
353 if (sigismember(current->notifier_mask, sig)) {
354 if (!(current->notifier)(current->notifier_data)) {
355 clear_thread_flag(TIF_SIGPENDING);
356 return 0;
361 if (!collect_signal(sig, pending, info))
362 sig = 0;
365 return sig;
369 * Dequeue a signal and return the element to the caller, which is
370 * expected to free it.
372 * All callers have to hold the siglock.
374 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
376 int signr = 0;
378 /* We only dequeue private signals from ourselves, we don't let
379 * signalfd steal them
381 if (tsk == current)
382 signr = __dequeue_signal(&tsk->pending, mask, info);
383 if (!signr) {
384 signr = __dequeue_signal(&tsk->signal->shared_pending,
385 mask, info);
387 * itimer signal ?
389 * itimers are process shared and we restart periodic
390 * itimers in the signal delivery path to prevent DoS
391 * attacks in the high resolution timer case. This is
392 * compliant with the old way of self restarting
393 * itimers, as the SIGALRM is a legacy signal and only
394 * queued once. Changing the restart behaviour to
395 * restart the timer in the signal dequeue path is
396 * reducing the timer noise on heavy loaded !highres
397 * systems too.
399 if (unlikely(signr == SIGALRM)) {
400 struct hrtimer *tmr = &tsk->signal->real_timer;
402 if (!hrtimer_is_queued(tmr) &&
403 tsk->signal->it_real_incr.tv64 != 0) {
404 hrtimer_forward(tmr, tmr->base->get_time(),
405 tsk->signal->it_real_incr);
406 hrtimer_restart(tmr);
410 if (likely(tsk == current))
411 recalc_sigpending();
412 if (signr && unlikely(sig_kernel_stop(signr))) {
414 * Set a marker that we have dequeued a stop signal. Our
415 * caller might release the siglock and then the pending
416 * stop signal it is about to process is no longer in the
417 * pending bitmasks, but must still be cleared by a SIGCONT
418 * (and overruled by a SIGKILL). So those cases clear this
419 * shared flag after we've set it. Note that this flag may
420 * remain set after the signal we return is ignored or
421 * handled. That doesn't matter because its only purpose
422 * is to alert stop-signal processing code when another
423 * processor has come along and cleared the flag.
425 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
426 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
428 if ( signr &&
429 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
430 info->si_sys_private){
432 * Release the siglock to ensure proper locking order
433 * of timer locks outside of siglocks. Note, we leave
434 * irqs disabled here, since the posix-timers code is
435 * about to disable them again anyway.
437 spin_unlock(&tsk->sighand->siglock);
438 do_schedule_next_timer(info);
439 spin_lock(&tsk->sighand->siglock);
441 return signr;
445 * Tell a process that it has a new active signal..
447 * NOTE! we rely on the previous spin_lock to
448 * lock interrupts for us! We can only be called with
449 * "siglock" held, and the local interrupt must
450 * have been disabled when that got acquired!
452 * No need to set need_resched since signal event passing
453 * goes through ->blocked
455 void signal_wake_up(struct task_struct *t, int resume)
457 unsigned int mask;
459 set_tsk_thread_flag(t, TIF_SIGPENDING);
462 * For SIGKILL, we want to wake it up in the stopped/traced case.
463 * We don't check t->state here because there is a race with it
464 * executing another processor and just now entering stopped state.
465 * By using wake_up_state, we ensure the process will wake up and
466 * handle its death signal.
468 mask = TASK_INTERRUPTIBLE;
469 if (resume)
470 mask |= TASK_STOPPED | TASK_TRACED;
471 if (!wake_up_state(t, mask))
472 kick_process(t);
476 * Remove signals in mask from the pending set and queue.
477 * Returns 1 if any signals were found.
479 * All callers must be holding the siglock.
481 * This version takes a sigset mask and looks at all signals,
482 * not just those in the first mask word.
484 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
486 struct sigqueue *q, *n;
487 sigset_t m;
489 sigandsets(&m, mask, &s->signal);
490 if (sigisemptyset(&m))
491 return 0;
493 signandsets(&s->signal, &s->signal, mask);
494 list_for_each_entry_safe(q, n, &s->list, list) {
495 if (sigismember(mask, q->info.si_signo)) {
496 list_del_init(&q->list);
497 __sigqueue_free(q);
500 return 1;
503 * Remove signals in mask from the pending set and queue.
504 * Returns 1 if any signals were found.
506 * All callers must be holding the siglock.
508 static int rm_from_queue(unsigned long mask, struct sigpending *s)
510 struct sigqueue *q, *n;
512 if (!sigtestsetmask(&s->signal, mask))
513 return 0;
515 sigdelsetmask(&s->signal, mask);
516 list_for_each_entry_safe(q, n, &s->list, list) {
517 if (q->info.si_signo < SIGRTMIN &&
518 (mask & sigmask(q->info.si_signo))) {
519 list_del_init(&q->list);
520 __sigqueue_free(q);
523 return 1;
527 * Bad permissions for sending the signal
529 static int check_kill_permission(int sig, struct siginfo *info,
530 struct task_struct *t)
532 int error = -EINVAL;
533 if (!valid_signal(sig))
534 return error;
536 error = audit_signal_info(sig, t); /* Let audit system see the signal */
537 if (error)
538 return error;
540 error = -EPERM;
541 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
542 && ((sig != SIGCONT) ||
543 (process_session(current) != process_session(t)))
544 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
545 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
546 && !capable(CAP_KILL))
547 return error;
549 return security_task_kill(t, info, sig, 0);
552 /* forward decl */
553 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
556 * Handle magic process-wide effects of stop/continue signals.
557 * Unlike the signal actions, these happen immediately at signal-generation
558 * time regardless of blocking, ignoring, or handling. This does the
559 * actual continuing for SIGCONT, but not the actual stopping for stop
560 * signals. The process stop is done as a signal action for SIG_DFL.
562 static void handle_stop_signal(int sig, struct task_struct *p)
564 struct task_struct *t;
566 if (p->signal->flags & SIGNAL_GROUP_EXIT)
568 * The process is in the middle of dying already.
570 return;
572 if (sig_kernel_stop(sig)) {
574 * This is a stop signal. Remove SIGCONT from all queues.
576 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
577 t = p;
578 do {
579 rm_from_queue(sigmask(SIGCONT), &t->pending);
580 t = next_thread(t);
581 } while (t != p);
582 } else if (sig == SIGCONT) {
584 * Remove all stop signals from all queues,
585 * and wake all threads.
587 if (unlikely(p->signal->group_stop_count > 0)) {
589 * There was a group stop in progress. We'll
590 * pretend it finished before we got here. We are
591 * obliged to report it to the parent: if the
592 * SIGSTOP happened "after" this SIGCONT, then it
593 * would have cleared this pending SIGCONT. If it
594 * happened "before" this SIGCONT, then the parent
595 * got the SIGCHLD about the stop finishing before
596 * the continue happened. We do the notification
597 * now, and it's as if the stop had finished and
598 * the SIGCHLD was pending on entry to this kill.
600 p->signal->group_stop_count = 0;
601 p->signal->flags = SIGNAL_STOP_CONTINUED;
602 spin_unlock(&p->sighand->siglock);
603 do_notify_parent_cldstop(p, CLD_STOPPED);
604 spin_lock(&p->sighand->siglock);
606 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
607 t = p;
608 do {
609 unsigned int state;
610 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
613 * If there is a handler for SIGCONT, we must make
614 * sure that no thread returns to user mode before
615 * we post the signal, in case it was the only
616 * thread eligible to run the signal handler--then
617 * it must not do anything between resuming and
618 * running the handler. With the TIF_SIGPENDING
619 * flag set, the thread will pause and acquire the
620 * siglock that we hold now and until we've queued
621 * the pending signal.
623 * Wake up the stopped thread _after_ setting
624 * TIF_SIGPENDING
626 state = TASK_STOPPED;
627 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
628 set_tsk_thread_flag(t, TIF_SIGPENDING);
629 state |= TASK_INTERRUPTIBLE;
631 wake_up_state(t, state);
633 t = next_thread(t);
634 } while (t != p);
636 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
638 * We were in fact stopped, and are now continued.
639 * Notify the parent with CLD_CONTINUED.
641 p->signal->flags = SIGNAL_STOP_CONTINUED;
642 p->signal->group_exit_code = 0;
643 spin_unlock(&p->sighand->siglock);
644 do_notify_parent_cldstop(p, CLD_CONTINUED);
645 spin_lock(&p->sighand->siglock);
646 } else {
648 * We are not stopped, but there could be a stop
649 * signal in the middle of being processed after
650 * being removed from the queue. Clear that too.
652 p->signal->flags = 0;
654 } else if (sig == SIGKILL) {
656 * Make sure that any pending stop signal already dequeued
657 * is undone by the wakeup for SIGKILL.
659 p->signal->flags = 0;
663 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
664 struct sigpending *signals)
666 struct sigqueue * q = NULL;
667 int ret = 0;
670 * Deliver the signal to listening signalfds. This must be called
671 * with the sighand lock held.
673 signalfd_notify(t, sig);
676 * fast-pathed signals for kernel-internal things like SIGSTOP
677 * or SIGKILL.
679 if (info == SEND_SIG_FORCED)
680 goto out_set;
682 /* Real-time signals must be queued if sent by sigqueue, or
683 some other real-time mechanism. It is implementation
684 defined whether kill() does so. We attempt to do so, on
685 the principle of least surprise, but since kill is not
686 allowed to fail with EAGAIN when low on memory we just
687 make sure at least one signal gets delivered and don't
688 pass on the info struct. */
690 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
691 (is_si_special(info) ||
692 info->si_code >= 0)));
693 if (q) {
694 list_add_tail(&q->list, &signals->list);
695 switch ((unsigned long) info) {
696 case (unsigned long) SEND_SIG_NOINFO:
697 q->info.si_signo = sig;
698 q->info.si_errno = 0;
699 q->info.si_code = SI_USER;
700 q->info.si_pid = current->pid;
701 q->info.si_uid = current->uid;
702 break;
703 case (unsigned long) SEND_SIG_PRIV:
704 q->info.si_signo = sig;
705 q->info.si_errno = 0;
706 q->info.si_code = SI_KERNEL;
707 q->info.si_pid = 0;
708 q->info.si_uid = 0;
709 break;
710 default:
711 copy_siginfo(&q->info, info);
712 break;
714 } else if (!is_si_special(info)) {
715 if (sig >= SIGRTMIN && info->si_code != SI_USER)
717 * Queue overflow, abort. We may abort if the signal was rt
718 * and sent by user using something other than kill().
720 return -EAGAIN;
723 out_set:
724 sigaddset(&signals->signal, sig);
725 return ret;
728 #define LEGACY_QUEUE(sigptr, sig) \
729 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
731 int print_fatal_signals;
733 static void print_fatal_signal(struct pt_regs *regs, int signr)
735 printk("%s/%d: potentially unexpected fatal signal %d.\n",
736 current->comm, current->pid, signr);
738 #ifdef __i386__
739 printk("code at %08lx: ", regs->eip);
741 int i;
742 for (i = 0; i < 16; i++) {
743 unsigned char insn;
745 __get_user(insn, (unsigned char *)(regs->eip + i));
746 printk("%02x ", insn);
749 #endif
750 printk("\n");
751 show_regs(regs);
754 static int __init setup_print_fatal_signals(char *str)
756 get_option (&str, &print_fatal_signals);
758 return 1;
761 __setup("print-fatal-signals=", setup_print_fatal_signals);
763 static int
764 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
766 int ret = 0;
768 BUG_ON(!irqs_disabled());
769 assert_spin_locked(&t->sighand->siglock);
771 /* Short-circuit ignored signals. */
772 if (sig_ignored(t, sig))
773 goto out;
775 /* Support queueing exactly one non-rt signal, so that we
776 can get more detailed information about the cause of
777 the signal. */
778 if (LEGACY_QUEUE(&t->pending, sig))
779 goto out;
781 ret = send_signal(sig, info, t, &t->pending);
782 if (!ret && !sigismember(&t->blocked, sig))
783 signal_wake_up(t, sig == SIGKILL);
784 out:
785 return ret;
789 * Force a signal that the process can't ignore: if necessary
790 * we unblock the signal and change any SIG_IGN to SIG_DFL.
792 * Note: If we unblock the signal, we always reset it to SIG_DFL,
793 * since we do not want to have a signal handler that was blocked
794 * be invoked when user space had explicitly blocked it.
796 * We don't want to have recursive SIGSEGV's etc, for example.
799 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
801 unsigned long int flags;
802 int ret, blocked, ignored;
803 struct k_sigaction *action;
805 spin_lock_irqsave(&t->sighand->siglock, flags);
806 action = &t->sighand->action[sig-1];
807 ignored = action->sa.sa_handler == SIG_IGN;
808 blocked = sigismember(&t->blocked, sig);
809 if (blocked || ignored) {
810 action->sa.sa_handler = SIG_DFL;
811 if (blocked) {
812 sigdelset(&t->blocked, sig);
813 recalc_sigpending_and_wake(t);
816 ret = specific_send_sig_info(sig, info, t);
817 spin_unlock_irqrestore(&t->sighand->siglock, flags);
819 return ret;
822 void
823 force_sig_specific(int sig, struct task_struct *t)
825 force_sig_info(sig, SEND_SIG_FORCED, t);
829 * Test if P wants to take SIG. After we've checked all threads with this,
830 * it's equivalent to finding no threads not blocking SIG. Any threads not
831 * blocking SIG were ruled out because they are not running and already
832 * have pending signals. Such threads will dequeue from the shared queue
833 * as soon as they're available, so putting the signal on the shared queue
834 * will be equivalent to sending it to one such thread.
836 static inline int wants_signal(int sig, struct task_struct *p)
838 if (sigismember(&p->blocked, sig))
839 return 0;
840 if (p->flags & PF_EXITING)
841 return 0;
842 if (sig == SIGKILL)
843 return 1;
844 if (p->state & (TASK_STOPPED | TASK_TRACED))
845 return 0;
846 return task_curr(p) || !signal_pending(p);
849 static void
850 __group_complete_signal(int sig, struct task_struct *p)
852 struct task_struct *t;
855 * Now find a thread we can wake up to take the signal off the queue.
857 * If the main thread wants the signal, it gets first crack.
858 * Probably the least surprising to the average bear.
860 if (wants_signal(sig, p))
861 t = p;
862 else if (thread_group_empty(p))
864 * There is just one thread and it does not need to be woken.
865 * It will dequeue unblocked signals before it runs again.
867 return;
868 else {
870 * Otherwise try to find a suitable thread.
872 t = p->signal->curr_target;
873 if (t == NULL)
874 /* restart balancing at this thread */
875 t = p->signal->curr_target = p;
877 while (!wants_signal(sig, t)) {
878 t = next_thread(t);
879 if (t == p->signal->curr_target)
881 * No thread needs to be woken.
882 * Any eligible threads will see
883 * the signal in the queue soon.
885 return;
887 p->signal->curr_target = t;
891 * Found a killable thread. If the signal will be fatal,
892 * then start taking the whole group down immediately.
894 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
895 !sigismember(&t->real_blocked, sig) &&
896 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
898 * This signal will be fatal to the whole group.
900 if (!sig_kernel_coredump(sig)) {
902 * Start a group exit and wake everybody up.
903 * This way we don't have other threads
904 * running and doing things after a slower
905 * thread has the fatal signal pending.
907 p->signal->flags = SIGNAL_GROUP_EXIT;
908 p->signal->group_exit_code = sig;
909 p->signal->group_stop_count = 0;
910 t = p;
911 do {
912 sigaddset(&t->pending.signal, SIGKILL);
913 signal_wake_up(t, 1);
914 t = next_thread(t);
915 } while (t != p);
916 return;
920 * There will be a core dump. We make all threads other
921 * than the chosen one go into a group stop so that nothing
922 * happens until it gets scheduled, takes the signal off
923 * the shared queue, and does the core dump. This is a
924 * little more complicated than strictly necessary, but it
925 * keeps the signal state that winds up in the core dump
926 * unchanged from the death state, e.g. which thread had
927 * the core-dump signal unblocked.
929 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
930 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
931 p->signal->group_stop_count = 0;
932 p->signal->group_exit_task = t;
933 t = p;
934 do {
935 p->signal->group_stop_count++;
936 signal_wake_up(t, 0);
937 t = next_thread(t);
938 } while (t != p);
939 wake_up_process(p->signal->group_exit_task);
940 return;
944 * The signal is already in the shared-pending queue.
945 * Tell the chosen thread to wake up and dequeue it.
947 signal_wake_up(t, sig == SIGKILL);
948 return;
952 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
954 int ret = 0;
956 assert_spin_locked(&p->sighand->siglock);
957 handle_stop_signal(sig, p);
959 /* Short-circuit ignored signals. */
960 if (sig_ignored(p, sig))
961 return ret;
963 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
964 /* This is a non-RT signal and we already have one queued. */
965 return ret;
968 * Put this signal on the shared-pending queue, or fail with EAGAIN.
969 * We always use the shared queue for process-wide signals,
970 * to avoid several races.
972 ret = send_signal(sig, info, p, &p->signal->shared_pending);
973 if (unlikely(ret))
974 return ret;
976 __group_complete_signal(sig, p);
977 return 0;
981 * Nuke all other threads in the group.
983 void zap_other_threads(struct task_struct *p)
985 struct task_struct *t;
987 p->signal->flags = SIGNAL_GROUP_EXIT;
988 p->signal->group_stop_count = 0;
990 if (thread_group_empty(p))
991 return;
993 for (t = next_thread(p); t != p; t = next_thread(t)) {
995 * Don't bother with already dead threads
997 if (t->exit_state)
998 continue;
1000 /* SIGKILL will be handled before any pending SIGSTOP */
1001 sigaddset(&t->pending.signal, SIGKILL);
1002 signal_wake_up(t, 1);
1007 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1009 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1011 struct sighand_struct *sighand;
1013 for (;;) {
1014 sighand = rcu_dereference(tsk->sighand);
1015 if (unlikely(sighand == NULL))
1016 break;
1018 spin_lock_irqsave(&sighand->siglock, *flags);
1019 if (likely(sighand == tsk->sighand))
1020 break;
1021 spin_unlock_irqrestore(&sighand->siglock, *flags);
1024 return sighand;
1027 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1029 unsigned long flags;
1030 int ret;
1032 ret = check_kill_permission(sig, info, p);
1034 if (!ret && sig) {
1035 ret = -ESRCH;
1036 if (lock_task_sighand(p, &flags)) {
1037 ret = __group_send_sig_info(sig, info, p);
1038 unlock_task_sighand(p, &flags);
1042 return ret;
1046 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1047 * control characters do (^C, ^Z etc)
1050 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1052 struct task_struct *p = NULL;
1053 int retval, success;
1055 success = 0;
1056 retval = -ESRCH;
1057 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1058 int err = group_send_sig_info(sig, info, p);
1059 success |= !err;
1060 retval = err;
1061 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1062 return success ? 0 : retval;
1065 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1067 int retval;
1069 read_lock(&tasklist_lock);
1070 retval = __kill_pgrp_info(sig, info, pgrp);
1071 read_unlock(&tasklist_lock);
1073 return retval;
1076 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1078 int error;
1079 struct task_struct *p;
1081 rcu_read_lock();
1082 if (unlikely(sig_needs_tasklist(sig)))
1083 read_lock(&tasklist_lock);
1085 p = pid_task(pid, PIDTYPE_PID);
1086 error = -ESRCH;
1087 if (p)
1088 error = group_send_sig_info(sig, info, p);
1090 if (unlikely(sig_needs_tasklist(sig)))
1091 read_unlock(&tasklist_lock);
1092 rcu_read_unlock();
1093 return error;
1097 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1099 int error;
1100 rcu_read_lock();
1101 error = kill_pid_info(sig, info, find_pid(pid));
1102 rcu_read_unlock();
1103 return error;
1106 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1107 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1108 uid_t uid, uid_t euid, u32 secid)
1110 int ret = -EINVAL;
1111 struct task_struct *p;
1113 if (!valid_signal(sig))
1114 return ret;
1116 read_lock(&tasklist_lock);
1117 p = pid_task(pid, PIDTYPE_PID);
1118 if (!p) {
1119 ret = -ESRCH;
1120 goto out_unlock;
1122 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1123 && (euid != p->suid) && (euid != p->uid)
1124 && (uid != p->suid) && (uid != p->uid)) {
1125 ret = -EPERM;
1126 goto out_unlock;
1128 ret = security_task_kill(p, info, sig, secid);
1129 if (ret)
1130 goto out_unlock;
1131 if (sig && p->sighand) {
1132 unsigned long flags;
1133 spin_lock_irqsave(&p->sighand->siglock, flags);
1134 ret = __group_send_sig_info(sig, info, p);
1135 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1137 out_unlock:
1138 read_unlock(&tasklist_lock);
1139 return ret;
1141 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1144 * kill_something_info() interprets pid in interesting ways just like kill(2).
1146 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1147 * is probably wrong. Should make it like BSD or SYSV.
1150 static int kill_something_info(int sig, struct siginfo *info, int pid)
1152 int ret;
1153 rcu_read_lock();
1154 if (!pid) {
1155 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1156 } else if (pid == -1) {
1157 int retval = 0, count = 0;
1158 struct task_struct * p;
1160 read_lock(&tasklist_lock);
1161 for_each_process(p) {
1162 if (p->pid > 1 && p->tgid != current->tgid) {
1163 int err = group_send_sig_info(sig, info, p);
1164 ++count;
1165 if (err != -EPERM)
1166 retval = err;
1169 read_unlock(&tasklist_lock);
1170 ret = count ? retval : -ESRCH;
1171 } else if (pid < 0) {
1172 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1173 } else {
1174 ret = kill_pid_info(sig, info, find_pid(pid));
1176 rcu_read_unlock();
1177 return ret;
1181 * These are for backward compatibility with the rest of the kernel source.
1185 * These two are the most common entry points. They send a signal
1186 * just to the specific thread.
1189 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1191 int ret;
1192 unsigned long flags;
1195 * Make sure legacy kernel users don't send in bad values
1196 * (normal paths check this in check_kill_permission).
1198 if (!valid_signal(sig))
1199 return -EINVAL;
1202 * We need the tasklist lock even for the specific
1203 * thread case (when we don't need to follow the group
1204 * lists) in order to avoid races with "p->sighand"
1205 * going away or changing from under us.
1207 read_lock(&tasklist_lock);
1208 spin_lock_irqsave(&p->sighand->siglock, flags);
1209 ret = specific_send_sig_info(sig, info, p);
1210 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1211 read_unlock(&tasklist_lock);
1212 return ret;
1215 #define __si_special(priv) \
1216 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1219 send_sig(int sig, struct task_struct *p, int priv)
1221 return send_sig_info(sig, __si_special(priv), p);
1225 * This is the entry point for "process-wide" signals.
1226 * They will go to an appropriate thread in the thread group.
1229 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1231 int ret;
1232 read_lock(&tasklist_lock);
1233 ret = group_send_sig_info(sig, info, p);
1234 read_unlock(&tasklist_lock);
1235 return ret;
1238 void
1239 force_sig(int sig, struct task_struct *p)
1241 force_sig_info(sig, SEND_SIG_PRIV, p);
1245 * When things go south during signal handling, we
1246 * will force a SIGSEGV. And if the signal that caused
1247 * the problem was already a SIGSEGV, we'll want to
1248 * make sure we don't even try to deliver the signal..
1251 force_sigsegv(int sig, struct task_struct *p)
1253 if (sig == SIGSEGV) {
1254 unsigned long flags;
1255 spin_lock_irqsave(&p->sighand->siglock, flags);
1256 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1257 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1259 force_sig(SIGSEGV, p);
1260 return 0;
1263 int kill_pgrp(struct pid *pid, int sig, int priv)
1265 return kill_pgrp_info(sig, __si_special(priv), pid);
1267 EXPORT_SYMBOL(kill_pgrp);
1269 int kill_pid(struct pid *pid, int sig, int priv)
1271 return kill_pid_info(sig, __si_special(priv), pid);
1273 EXPORT_SYMBOL(kill_pid);
1276 kill_proc(pid_t pid, int sig, int priv)
1278 return kill_proc_info(sig, __si_special(priv), pid);
1282 * These functions support sending signals using preallocated sigqueue
1283 * structures. This is needed "because realtime applications cannot
1284 * afford to lose notifications of asynchronous events, like timer
1285 * expirations or I/O completions". In the case of Posix Timers
1286 * we allocate the sigqueue structure from the timer_create. If this
1287 * allocation fails we are able to report the failure to the application
1288 * with an EAGAIN error.
1291 struct sigqueue *sigqueue_alloc(void)
1293 struct sigqueue *q;
1295 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1296 q->flags |= SIGQUEUE_PREALLOC;
1297 return(q);
1300 void sigqueue_free(struct sigqueue *q)
1302 unsigned long flags;
1303 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1305 * If the signal is still pending remove it from the
1306 * pending queue.
1308 if (unlikely(!list_empty(&q->list))) {
1309 spinlock_t *lock = &current->sighand->siglock;
1310 read_lock(&tasklist_lock);
1311 spin_lock_irqsave(lock, flags);
1312 if (!list_empty(&q->list))
1313 list_del_init(&q->list);
1314 spin_unlock_irqrestore(lock, flags);
1315 read_unlock(&tasklist_lock);
1317 q->flags &= ~SIGQUEUE_PREALLOC;
1318 __sigqueue_free(q);
1321 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1323 unsigned long flags;
1324 int ret = 0;
1326 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1329 * The rcu based delayed sighand destroy makes it possible to
1330 * run this without tasklist lock held. The task struct itself
1331 * cannot go away as create_timer did get_task_struct().
1333 * We return -1, when the task is marked exiting, so
1334 * posix_timer_event can redirect it to the group leader
1336 rcu_read_lock();
1338 if (!likely(lock_task_sighand(p, &flags))) {
1339 ret = -1;
1340 goto out_err;
1343 if (unlikely(!list_empty(&q->list))) {
1345 * If an SI_TIMER entry is already queue just increment
1346 * the overrun count.
1348 BUG_ON(q->info.si_code != SI_TIMER);
1349 q->info.si_overrun++;
1350 goto out;
1352 /* Short-circuit ignored signals. */
1353 if (sig_ignored(p, sig)) {
1354 ret = 1;
1355 goto out;
1358 * Deliver the signal to listening signalfds. This must be called
1359 * with the sighand lock held.
1361 signalfd_notify(p, sig);
1363 list_add_tail(&q->list, &p->pending.list);
1364 sigaddset(&p->pending.signal, sig);
1365 if (!sigismember(&p->blocked, sig))
1366 signal_wake_up(p, sig == SIGKILL);
1368 out:
1369 unlock_task_sighand(p, &flags);
1370 out_err:
1371 rcu_read_unlock();
1373 return ret;
1377 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1379 unsigned long flags;
1380 int ret = 0;
1382 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1384 read_lock(&tasklist_lock);
1385 /* Since it_lock is held, p->sighand cannot be NULL. */
1386 spin_lock_irqsave(&p->sighand->siglock, flags);
1387 handle_stop_signal(sig, p);
1389 /* Short-circuit ignored signals. */
1390 if (sig_ignored(p, sig)) {
1391 ret = 1;
1392 goto out;
1395 if (unlikely(!list_empty(&q->list))) {
1397 * If an SI_TIMER entry is already queue just increment
1398 * the overrun count. Other uses should not try to
1399 * send the signal multiple times.
1401 BUG_ON(q->info.si_code != SI_TIMER);
1402 q->info.si_overrun++;
1403 goto out;
1406 * Deliver the signal to listening signalfds. This must be called
1407 * with the sighand lock held.
1409 signalfd_notify(p, sig);
1412 * Put this signal on the shared-pending queue.
1413 * We always use the shared queue for process-wide signals,
1414 * to avoid several races.
1416 list_add_tail(&q->list, &p->signal->shared_pending.list);
1417 sigaddset(&p->signal->shared_pending.signal, sig);
1419 __group_complete_signal(sig, p);
1420 out:
1421 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1422 read_unlock(&tasklist_lock);
1423 return ret;
1427 * Wake up any threads in the parent blocked in wait* syscalls.
1429 static inline void __wake_up_parent(struct task_struct *p,
1430 struct task_struct *parent)
1432 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1436 * Let a parent know about the death of a child.
1437 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1440 void do_notify_parent(struct task_struct *tsk, int sig)
1442 struct siginfo info;
1443 unsigned long flags;
1444 struct sighand_struct *psig;
1446 BUG_ON(sig == -1);
1448 /* do_notify_parent_cldstop should have been called instead. */
1449 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1451 BUG_ON(!tsk->ptrace &&
1452 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1454 info.si_signo = sig;
1455 info.si_errno = 0;
1456 info.si_pid = tsk->pid;
1457 info.si_uid = tsk->uid;
1459 /* FIXME: find out whether or not this is supposed to be c*time. */
1460 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1461 tsk->signal->utime));
1462 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1463 tsk->signal->stime));
1465 info.si_status = tsk->exit_code & 0x7f;
1466 if (tsk->exit_code & 0x80)
1467 info.si_code = CLD_DUMPED;
1468 else if (tsk->exit_code & 0x7f)
1469 info.si_code = CLD_KILLED;
1470 else {
1471 info.si_code = CLD_EXITED;
1472 info.si_status = tsk->exit_code >> 8;
1475 psig = tsk->parent->sighand;
1476 spin_lock_irqsave(&psig->siglock, flags);
1477 if (!tsk->ptrace && sig == SIGCHLD &&
1478 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1479 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1481 * We are exiting and our parent doesn't care. POSIX.1
1482 * defines special semantics for setting SIGCHLD to SIG_IGN
1483 * or setting the SA_NOCLDWAIT flag: we should be reaped
1484 * automatically and not left for our parent's wait4 call.
1485 * Rather than having the parent do it as a magic kind of
1486 * signal handler, we just set this to tell do_exit that we
1487 * can be cleaned up without becoming a zombie. Note that
1488 * we still call __wake_up_parent in this case, because a
1489 * blocked sys_wait4 might now return -ECHILD.
1491 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1492 * is implementation-defined: we do (if you don't want
1493 * it, just use SIG_IGN instead).
1495 tsk->exit_signal = -1;
1496 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1497 sig = 0;
1499 if (valid_signal(sig) && sig > 0)
1500 __group_send_sig_info(sig, &info, tsk->parent);
1501 __wake_up_parent(tsk, tsk->parent);
1502 spin_unlock_irqrestore(&psig->siglock, flags);
1505 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1507 struct siginfo info;
1508 unsigned long flags;
1509 struct task_struct *parent;
1510 struct sighand_struct *sighand;
1512 if (tsk->ptrace & PT_PTRACED)
1513 parent = tsk->parent;
1514 else {
1515 tsk = tsk->group_leader;
1516 parent = tsk->real_parent;
1519 info.si_signo = SIGCHLD;
1520 info.si_errno = 0;
1521 info.si_pid = tsk->pid;
1522 info.si_uid = tsk->uid;
1524 /* FIXME: find out whether or not this is supposed to be c*time. */
1525 info.si_utime = cputime_to_jiffies(tsk->utime);
1526 info.si_stime = cputime_to_jiffies(tsk->stime);
1528 info.si_code = why;
1529 switch (why) {
1530 case CLD_CONTINUED:
1531 info.si_status = SIGCONT;
1532 break;
1533 case CLD_STOPPED:
1534 info.si_status = tsk->signal->group_exit_code & 0x7f;
1535 break;
1536 case CLD_TRAPPED:
1537 info.si_status = tsk->exit_code & 0x7f;
1538 break;
1539 default:
1540 BUG();
1543 sighand = parent->sighand;
1544 spin_lock_irqsave(&sighand->siglock, flags);
1545 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1546 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1547 __group_send_sig_info(SIGCHLD, &info, parent);
1549 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1551 __wake_up_parent(tsk, parent);
1552 spin_unlock_irqrestore(&sighand->siglock, flags);
1555 static inline int may_ptrace_stop(void)
1557 if (!likely(current->ptrace & PT_PTRACED))
1558 return 0;
1560 if (unlikely(current->parent == current->real_parent &&
1561 (current->ptrace & PT_ATTACHED)))
1562 return 0;
1564 if (unlikely(current->signal == current->parent->signal) &&
1565 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1566 return 0;
1569 * Are we in the middle of do_coredump?
1570 * If so and our tracer is also part of the coredump stopping
1571 * is a deadlock situation, and pointless because our tracer
1572 * is dead so don't allow us to stop.
1573 * If SIGKILL was already sent before the caller unlocked
1574 * ->siglock we must see ->core_waiters != 0. Otherwise it
1575 * is safe to enter schedule().
1577 if (unlikely(current->mm->core_waiters) &&
1578 unlikely(current->mm == current->parent->mm))
1579 return 0;
1581 return 1;
1585 * This must be called with current->sighand->siglock held.
1587 * This should be the path for all ptrace stops.
1588 * We always set current->last_siginfo while stopped here.
1589 * That makes it a way to test a stopped process for
1590 * being ptrace-stopped vs being job-control-stopped.
1592 * If we actually decide not to stop at all because the tracer is gone,
1593 * we leave nostop_code in current->exit_code.
1595 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1598 * If there is a group stop in progress,
1599 * we must participate in the bookkeeping.
1601 if (current->signal->group_stop_count > 0)
1602 --current->signal->group_stop_count;
1604 current->last_siginfo = info;
1605 current->exit_code = exit_code;
1607 /* Let the debugger run. */
1608 set_current_state(TASK_TRACED);
1609 spin_unlock_irq(&current->sighand->siglock);
1610 try_to_freeze();
1611 read_lock(&tasklist_lock);
1612 if (may_ptrace_stop()) {
1613 do_notify_parent_cldstop(current, CLD_TRAPPED);
1614 read_unlock(&tasklist_lock);
1615 schedule();
1616 } else {
1618 * By the time we got the lock, our tracer went away.
1619 * Don't stop here.
1621 read_unlock(&tasklist_lock);
1622 set_current_state(TASK_RUNNING);
1623 current->exit_code = nostop_code;
1627 * We are back. Now reacquire the siglock before touching
1628 * last_siginfo, so that we are sure to have synchronized with
1629 * any signal-sending on another CPU that wants to examine it.
1631 spin_lock_irq(&current->sighand->siglock);
1632 current->last_siginfo = NULL;
1635 * Queued signals ignored us while we were stopped for tracing.
1636 * So check for any that we should take before resuming user mode.
1637 * This sets TIF_SIGPENDING, but never clears it.
1639 recalc_sigpending_tsk(current);
1642 void ptrace_notify(int exit_code)
1644 siginfo_t info;
1646 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1648 memset(&info, 0, sizeof info);
1649 info.si_signo = SIGTRAP;
1650 info.si_code = exit_code;
1651 info.si_pid = current->pid;
1652 info.si_uid = current->uid;
1654 /* Let the debugger run. */
1655 spin_lock_irq(&current->sighand->siglock);
1656 ptrace_stop(exit_code, 0, &info);
1657 spin_unlock_irq(&current->sighand->siglock);
1660 static void
1661 finish_stop(int stop_count)
1664 * If there are no other threads in the group, or if there is
1665 * a group stop in progress and we are the last to stop,
1666 * report to the parent. When ptraced, every thread reports itself.
1668 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1669 read_lock(&tasklist_lock);
1670 do_notify_parent_cldstop(current, CLD_STOPPED);
1671 read_unlock(&tasklist_lock);
1674 do {
1675 schedule();
1676 } while (try_to_freeze());
1678 * Now we don't run again until continued.
1680 current->exit_code = 0;
1684 * This performs the stopping for SIGSTOP and other stop signals.
1685 * We have to stop all threads in the thread group.
1686 * Returns nonzero if we've actually stopped and released the siglock.
1687 * Returns zero if we didn't stop and still hold the siglock.
1689 static int do_signal_stop(int signr)
1691 struct signal_struct *sig = current->signal;
1692 int stop_count;
1694 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1695 return 0;
1697 if (sig->group_stop_count > 0) {
1699 * There is a group stop in progress. We don't need to
1700 * start another one.
1702 stop_count = --sig->group_stop_count;
1703 } else {
1705 * There is no group stop already in progress.
1706 * We must initiate one now.
1708 struct task_struct *t;
1710 sig->group_exit_code = signr;
1712 stop_count = 0;
1713 for (t = next_thread(current); t != current; t = next_thread(t))
1715 * Setting state to TASK_STOPPED for a group
1716 * stop is always done with the siglock held,
1717 * so this check has no races.
1719 if (!t->exit_state &&
1720 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1721 stop_count++;
1722 signal_wake_up(t, 0);
1724 sig->group_stop_count = stop_count;
1727 if (stop_count == 0)
1728 sig->flags = SIGNAL_STOP_STOPPED;
1729 current->exit_code = sig->group_exit_code;
1730 __set_current_state(TASK_STOPPED);
1732 spin_unlock_irq(&current->sighand->siglock);
1733 finish_stop(stop_count);
1734 return 1;
1738 * Do appropriate magic when group_stop_count > 0.
1739 * We return nonzero if we stopped, after releasing the siglock.
1740 * We return zero if we still hold the siglock and should look
1741 * for another signal without checking group_stop_count again.
1743 static int handle_group_stop(void)
1745 int stop_count;
1747 if (current->signal->group_exit_task == current) {
1749 * Group stop is so we can do a core dump,
1750 * We are the initiating thread, so get on with it.
1752 current->signal->group_exit_task = NULL;
1753 return 0;
1756 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1758 * Group stop is so another thread can do a core dump,
1759 * or else we are racing against a death signal.
1760 * Just punt the stop so we can get the next signal.
1762 return 0;
1765 * There is a group stop in progress. We stop
1766 * without any associated signal being in our queue.
1768 stop_count = --current->signal->group_stop_count;
1769 if (stop_count == 0)
1770 current->signal->flags = SIGNAL_STOP_STOPPED;
1771 current->exit_code = current->signal->group_exit_code;
1772 set_current_state(TASK_STOPPED);
1773 spin_unlock_irq(&current->sighand->siglock);
1774 finish_stop(stop_count);
1775 return 1;
1778 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1779 struct pt_regs *regs, void *cookie)
1781 sigset_t *mask = &current->blocked;
1782 int signr = 0;
1784 try_to_freeze();
1786 relock:
1787 spin_lock_irq(&current->sighand->siglock);
1788 for (;;) {
1789 struct k_sigaction *ka;
1791 if (unlikely(current->signal->group_stop_count > 0) &&
1792 handle_group_stop())
1793 goto relock;
1795 signr = dequeue_signal(current, mask, info);
1797 if (!signr)
1798 break; /* will return 0 */
1800 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1801 ptrace_signal_deliver(regs, cookie);
1803 /* Let the debugger run. */
1804 ptrace_stop(signr, signr, info);
1806 /* We're back. Did the debugger cancel the sig? */
1807 signr = current->exit_code;
1808 if (signr == 0)
1809 continue;
1811 current->exit_code = 0;
1813 /* Update the siginfo structure if the signal has
1814 changed. If the debugger wanted something
1815 specific in the siginfo structure then it should
1816 have updated *info via PTRACE_SETSIGINFO. */
1817 if (signr != info->si_signo) {
1818 info->si_signo = signr;
1819 info->si_errno = 0;
1820 info->si_code = SI_USER;
1821 info->si_pid = current->parent->pid;
1822 info->si_uid = current->parent->uid;
1825 /* If the (new) signal is now blocked, requeue it. */
1826 if (sigismember(&current->blocked, signr)) {
1827 specific_send_sig_info(signr, info, current);
1828 continue;
1832 ka = &current->sighand->action[signr-1];
1833 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1834 continue;
1835 if (ka->sa.sa_handler != SIG_DFL) {
1836 /* Run the handler. */
1837 *return_ka = *ka;
1839 if (ka->sa.sa_flags & SA_ONESHOT)
1840 ka->sa.sa_handler = SIG_DFL;
1842 break; /* will return non-zero "signr" value */
1846 * Now we are doing the default action for this signal.
1848 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1849 continue;
1852 * Init of a pid space gets no signals it doesn't want from
1853 * within that pid space. It can of course get signals from
1854 * its parent pid space.
1856 if (current == child_reaper(current))
1857 continue;
1859 if (sig_kernel_stop(signr)) {
1861 * The default action is to stop all threads in
1862 * the thread group. The job control signals
1863 * do nothing in an orphaned pgrp, but SIGSTOP
1864 * always works. Note that siglock needs to be
1865 * dropped during the call to is_orphaned_pgrp()
1866 * because of lock ordering with tasklist_lock.
1867 * This allows an intervening SIGCONT to be posted.
1868 * We need to check for that and bail out if necessary.
1870 if (signr != SIGSTOP) {
1871 spin_unlock_irq(&current->sighand->siglock);
1873 /* signals can be posted during this window */
1875 if (is_current_pgrp_orphaned())
1876 goto relock;
1878 spin_lock_irq(&current->sighand->siglock);
1881 if (likely(do_signal_stop(signr))) {
1882 /* It released the siglock. */
1883 goto relock;
1887 * We didn't actually stop, due to a race
1888 * with SIGCONT or something like that.
1890 continue;
1893 spin_unlock_irq(&current->sighand->siglock);
1896 * Anything else is fatal, maybe with a core dump.
1898 current->flags |= PF_SIGNALED;
1899 if ((signr != SIGKILL) && print_fatal_signals)
1900 print_fatal_signal(regs, signr);
1901 if (sig_kernel_coredump(signr)) {
1903 * If it was able to dump core, this kills all
1904 * other threads in the group and synchronizes with
1905 * their demise. If we lost the race with another
1906 * thread getting here, it set group_exit_code
1907 * first and our do_group_exit call below will use
1908 * that value and ignore the one we pass it.
1910 do_coredump((long)signr, signr, regs);
1914 * Death signals, no core dump.
1916 do_group_exit(signr);
1917 /* NOTREACHED */
1919 spin_unlock_irq(&current->sighand->siglock);
1920 return signr;
1923 EXPORT_SYMBOL(recalc_sigpending);
1924 EXPORT_SYMBOL_GPL(dequeue_signal);
1925 EXPORT_SYMBOL(flush_signals);
1926 EXPORT_SYMBOL(force_sig);
1927 EXPORT_SYMBOL(kill_proc);
1928 EXPORT_SYMBOL(ptrace_notify);
1929 EXPORT_SYMBOL(send_sig);
1930 EXPORT_SYMBOL(send_sig_info);
1931 EXPORT_SYMBOL(sigprocmask);
1932 EXPORT_SYMBOL(block_all_signals);
1933 EXPORT_SYMBOL(unblock_all_signals);
1937 * System call entry points.
1940 asmlinkage long sys_restart_syscall(void)
1942 struct restart_block *restart = &current_thread_info()->restart_block;
1943 return restart->fn(restart);
1946 long do_no_restart_syscall(struct restart_block *param)
1948 return -EINTR;
1952 * We don't need to get the kernel lock - this is all local to this
1953 * particular thread.. (and that's good, because this is _heavily_
1954 * used by various programs)
1958 * This is also useful for kernel threads that want to temporarily
1959 * (or permanently) block certain signals.
1961 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1962 * interface happily blocks "unblockable" signals like SIGKILL
1963 * and friends.
1965 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1967 int error;
1969 spin_lock_irq(&current->sighand->siglock);
1970 if (oldset)
1971 *oldset = current->blocked;
1973 error = 0;
1974 switch (how) {
1975 case SIG_BLOCK:
1976 sigorsets(&current->blocked, &current->blocked, set);
1977 break;
1978 case SIG_UNBLOCK:
1979 signandsets(&current->blocked, &current->blocked, set);
1980 break;
1981 case SIG_SETMASK:
1982 current->blocked = *set;
1983 break;
1984 default:
1985 error = -EINVAL;
1987 recalc_sigpending();
1988 spin_unlock_irq(&current->sighand->siglock);
1990 return error;
1993 asmlinkage long
1994 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1996 int error = -EINVAL;
1997 sigset_t old_set, new_set;
1999 /* XXX: Don't preclude handling different sized sigset_t's. */
2000 if (sigsetsize != sizeof(sigset_t))
2001 goto out;
2003 if (set) {
2004 error = -EFAULT;
2005 if (copy_from_user(&new_set, set, sizeof(*set)))
2006 goto out;
2007 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2009 error = sigprocmask(how, &new_set, &old_set);
2010 if (error)
2011 goto out;
2012 if (oset)
2013 goto set_old;
2014 } else if (oset) {
2015 spin_lock_irq(&current->sighand->siglock);
2016 old_set = current->blocked;
2017 spin_unlock_irq(&current->sighand->siglock);
2019 set_old:
2020 error = -EFAULT;
2021 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2022 goto out;
2024 error = 0;
2025 out:
2026 return error;
2029 long do_sigpending(void __user *set, unsigned long sigsetsize)
2031 long error = -EINVAL;
2032 sigset_t pending;
2034 if (sigsetsize > sizeof(sigset_t))
2035 goto out;
2037 spin_lock_irq(&current->sighand->siglock);
2038 sigorsets(&pending, &current->pending.signal,
2039 &current->signal->shared_pending.signal);
2040 spin_unlock_irq(&current->sighand->siglock);
2042 /* Outside the lock because only this thread touches it. */
2043 sigandsets(&pending, &current->blocked, &pending);
2045 error = -EFAULT;
2046 if (!copy_to_user(set, &pending, sigsetsize))
2047 error = 0;
2049 out:
2050 return error;
2053 asmlinkage long
2054 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2056 return do_sigpending(set, sigsetsize);
2059 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2061 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2063 int err;
2065 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2066 return -EFAULT;
2067 if (from->si_code < 0)
2068 return __copy_to_user(to, from, sizeof(siginfo_t))
2069 ? -EFAULT : 0;
2071 * If you change siginfo_t structure, please be sure
2072 * this code is fixed accordingly.
2073 * Please remember to update the signalfd_copyinfo() function
2074 * inside fs/signalfd.c too, in case siginfo_t changes.
2075 * It should never copy any pad contained in the structure
2076 * to avoid security leaks, but must copy the generic
2077 * 3 ints plus the relevant union member.
2079 err = __put_user(from->si_signo, &to->si_signo);
2080 err |= __put_user(from->si_errno, &to->si_errno);
2081 err |= __put_user((short)from->si_code, &to->si_code);
2082 switch (from->si_code & __SI_MASK) {
2083 case __SI_KILL:
2084 err |= __put_user(from->si_pid, &to->si_pid);
2085 err |= __put_user(from->si_uid, &to->si_uid);
2086 break;
2087 case __SI_TIMER:
2088 err |= __put_user(from->si_tid, &to->si_tid);
2089 err |= __put_user(from->si_overrun, &to->si_overrun);
2090 err |= __put_user(from->si_ptr, &to->si_ptr);
2091 break;
2092 case __SI_POLL:
2093 err |= __put_user(from->si_band, &to->si_band);
2094 err |= __put_user(from->si_fd, &to->si_fd);
2095 break;
2096 case __SI_FAULT:
2097 err |= __put_user(from->si_addr, &to->si_addr);
2098 #ifdef __ARCH_SI_TRAPNO
2099 err |= __put_user(from->si_trapno, &to->si_trapno);
2100 #endif
2101 break;
2102 case __SI_CHLD:
2103 err |= __put_user(from->si_pid, &to->si_pid);
2104 err |= __put_user(from->si_uid, &to->si_uid);
2105 err |= __put_user(from->si_status, &to->si_status);
2106 err |= __put_user(from->si_utime, &to->si_utime);
2107 err |= __put_user(from->si_stime, &to->si_stime);
2108 break;
2109 case __SI_RT: /* This is not generated by the kernel as of now. */
2110 case __SI_MESGQ: /* But this is */
2111 err |= __put_user(from->si_pid, &to->si_pid);
2112 err |= __put_user(from->si_uid, &to->si_uid);
2113 err |= __put_user(from->si_ptr, &to->si_ptr);
2114 break;
2115 default: /* this is just in case for now ... */
2116 err |= __put_user(from->si_pid, &to->si_pid);
2117 err |= __put_user(from->si_uid, &to->si_uid);
2118 break;
2120 return err;
2123 #endif
2125 asmlinkage long
2126 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2127 siginfo_t __user *uinfo,
2128 const struct timespec __user *uts,
2129 size_t sigsetsize)
2131 int ret, sig;
2132 sigset_t these;
2133 struct timespec ts;
2134 siginfo_t info;
2135 long timeout = 0;
2137 /* XXX: Don't preclude handling different sized sigset_t's. */
2138 if (sigsetsize != sizeof(sigset_t))
2139 return -EINVAL;
2141 if (copy_from_user(&these, uthese, sizeof(these)))
2142 return -EFAULT;
2145 * Invert the set of allowed signals to get those we
2146 * want to block.
2148 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2149 signotset(&these);
2151 if (uts) {
2152 if (copy_from_user(&ts, uts, sizeof(ts)))
2153 return -EFAULT;
2154 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2155 || ts.tv_sec < 0)
2156 return -EINVAL;
2159 spin_lock_irq(&current->sighand->siglock);
2160 sig = dequeue_signal(current, &these, &info);
2161 if (!sig) {
2162 timeout = MAX_SCHEDULE_TIMEOUT;
2163 if (uts)
2164 timeout = (timespec_to_jiffies(&ts)
2165 + (ts.tv_sec || ts.tv_nsec));
2167 if (timeout) {
2168 /* None ready -- temporarily unblock those we're
2169 * interested while we are sleeping in so that we'll
2170 * be awakened when they arrive. */
2171 current->real_blocked = current->blocked;
2172 sigandsets(&current->blocked, &current->blocked, &these);
2173 recalc_sigpending();
2174 spin_unlock_irq(&current->sighand->siglock);
2176 timeout = schedule_timeout_interruptible(timeout);
2178 spin_lock_irq(&current->sighand->siglock);
2179 sig = dequeue_signal(current, &these, &info);
2180 current->blocked = current->real_blocked;
2181 siginitset(&current->real_blocked, 0);
2182 recalc_sigpending();
2185 spin_unlock_irq(&current->sighand->siglock);
2187 if (sig) {
2188 ret = sig;
2189 if (uinfo) {
2190 if (copy_siginfo_to_user(uinfo, &info))
2191 ret = -EFAULT;
2193 } else {
2194 ret = -EAGAIN;
2195 if (timeout)
2196 ret = -EINTR;
2199 return ret;
2202 asmlinkage long
2203 sys_kill(int pid, int sig)
2205 struct siginfo info;
2207 info.si_signo = sig;
2208 info.si_errno = 0;
2209 info.si_code = SI_USER;
2210 info.si_pid = current->tgid;
2211 info.si_uid = current->uid;
2213 return kill_something_info(sig, &info, pid);
2216 static int do_tkill(int tgid, int pid, int sig)
2218 int error;
2219 struct siginfo info;
2220 struct task_struct *p;
2222 error = -ESRCH;
2223 info.si_signo = sig;
2224 info.si_errno = 0;
2225 info.si_code = SI_TKILL;
2226 info.si_pid = current->tgid;
2227 info.si_uid = current->uid;
2229 read_lock(&tasklist_lock);
2230 p = find_task_by_pid(pid);
2231 if (p && (tgid <= 0 || p->tgid == tgid)) {
2232 error = check_kill_permission(sig, &info, p);
2234 * The null signal is a permissions and process existence
2235 * probe. No signal is actually delivered.
2237 if (!error && sig && p->sighand) {
2238 spin_lock_irq(&p->sighand->siglock);
2239 handle_stop_signal(sig, p);
2240 error = specific_send_sig_info(sig, &info, p);
2241 spin_unlock_irq(&p->sighand->siglock);
2244 read_unlock(&tasklist_lock);
2246 return error;
2250 * sys_tgkill - send signal to one specific thread
2251 * @tgid: the thread group ID of the thread
2252 * @pid: the PID of the thread
2253 * @sig: signal to be sent
2255 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2256 * exists but it's not belonging to the target process anymore. This
2257 * method solves the problem of threads exiting and PIDs getting reused.
2259 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2261 /* This is only valid for single tasks */
2262 if (pid <= 0 || tgid <= 0)
2263 return -EINVAL;
2265 return do_tkill(tgid, pid, sig);
2269 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2271 asmlinkage long
2272 sys_tkill(int pid, int sig)
2274 /* This is only valid for single tasks */
2275 if (pid <= 0)
2276 return -EINVAL;
2278 return do_tkill(0, pid, sig);
2281 asmlinkage long
2282 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2284 siginfo_t info;
2286 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2287 return -EFAULT;
2289 /* Not even root can pretend to send signals from the kernel.
2290 Nor can they impersonate a kill(), which adds source info. */
2291 if (info.si_code >= 0)
2292 return -EPERM;
2293 info.si_signo = sig;
2295 /* POSIX.1b doesn't mention process groups. */
2296 return kill_proc_info(sig, &info, pid);
2299 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2301 struct k_sigaction *k;
2302 sigset_t mask;
2304 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2305 return -EINVAL;
2307 k = &current->sighand->action[sig-1];
2309 spin_lock_irq(&current->sighand->siglock);
2310 if (signal_pending(current)) {
2312 * If there might be a fatal signal pending on multiple
2313 * threads, make sure we take it before changing the action.
2315 spin_unlock_irq(&current->sighand->siglock);
2316 return -ERESTARTNOINTR;
2319 if (oact)
2320 *oact = *k;
2322 if (act) {
2323 sigdelsetmask(&act->sa.sa_mask,
2324 sigmask(SIGKILL) | sigmask(SIGSTOP));
2325 *k = *act;
2327 * POSIX 3.3.1.3:
2328 * "Setting a signal action to SIG_IGN for a signal that is
2329 * pending shall cause the pending signal to be discarded,
2330 * whether or not it is blocked."
2332 * "Setting a signal action to SIG_DFL for a signal that is
2333 * pending and whose default action is to ignore the signal
2334 * (for example, SIGCHLD), shall cause the pending signal to
2335 * be discarded, whether or not it is blocked"
2337 if (act->sa.sa_handler == SIG_IGN ||
2338 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2339 struct task_struct *t = current;
2340 sigemptyset(&mask);
2341 sigaddset(&mask, sig);
2342 rm_from_queue_full(&mask, &t->signal->shared_pending);
2343 do {
2344 rm_from_queue_full(&mask, &t->pending);
2345 recalc_sigpending_and_wake(t);
2346 t = next_thread(t);
2347 } while (t != current);
2351 spin_unlock_irq(&current->sighand->siglock);
2352 return 0;
2355 int
2356 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2358 stack_t oss;
2359 int error;
2361 if (uoss) {
2362 oss.ss_sp = (void __user *) current->sas_ss_sp;
2363 oss.ss_size = current->sas_ss_size;
2364 oss.ss_flags = sas_ss_flags(sp);
2367 if (uss) {
2368 void __user *ss_sp;
2369 size_t ss_size;
2370 int ss_flags;
2372 error = -EFAULT;
2373 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2374 || __get_user(ss_sp, &uss->ss_sp)
2375 || __get_user(ss_flags, &uss->ss_flags)
2376 || __get_user(ss_size, &uss->ss_size))
2377 goto out;
2379 error = -EPERM;
2380 if (on_sig_stack(sp))
2381 goto out;
2383 error = -EINVAL;
2386 * Note - this code used to test ss_flags incorrectly
2387 * old code may have been written using ss_flags==0
2388 * to mean ss_flags==SS_ONSTACK (as this was the only
2389 * way that worked) - this fix preserves that older
2390 * mechanism
2392 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2393 goto out;
2395 if (ss_flags == SS_DISABLE) {
2396 ss_size = 0;
2397 ss_sp = NULL;
2398 } else {
2399 error = -ENOMEM;
2400 if (ss_size < MINSIGSTKSZ)
2401 goto out;
2404 current->sas_ss_sp = (unsigned long) ss_sp;
2405 current->sas_ss_size = ss_size;
2408 if (uoss) {
2409 error = -EFAULT;
2410 if (copy_to_user(uoss, &oss, sizeof(oss)))
2411 goto out;
2414 error = 0;
2415 out:
2416 return error;
2419 #ifdef __ARCH_WANT_SYS_SIGPENDING
2421 asmlinkage long
2422 sys_sigpending(old_sigset_t __user *set)
2424 return do_sigpending(set, sizeof(*set));
2427 #endif
2429 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2430 /* Some platforms have their own version with special arguments others
2431 support only sys_rt_sigprocmask. */
2433 asmlinkage long
2434 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2436 int error;
2437 old_sigset_t old_set, new_set;
2439 if (set) {
2440 error = -EFAULT;
2441 if (copy_from_user(&new_set, set, sizeof(*set)))
2442 goto out;
2443 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2445 spin_lock_irq(&current->sighand->siglock);
2446 old_set = current->blocked.sig[0];
2448 error = 0;
2449 switch (how) {
2450 default:
2451 error = -EINVAL;
2452 break;
2453 case SIG_BLOCK:
2454 sigaddsetmask(&current->blocked, new_set);
2455 break;
2456 case SIG_UNBLOCK:
2457 sigdelsetmask(&current->blocked, new_set);
2458 break;
2459 case SIG_SETMASK:
2460 current->blocked.sig[0] = new_set;
2461 break;
2464 recalc_sigpending();
2465 spin_unlock_irq(&current->sighand->siglock);
2466 if (error)
2467 goto out;
2468 if (oset)
2469 goto set_old;
2470 } else if (oset) {
2471 old_set = current->blocked.sig[0];
2472 set_old:
2473 error = -EFAULT;
2474 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2475 goto out;
2477 error = 0;
2478 out:
2479 return error;
2481 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2483 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2484 asmlinkage long
2485 sys_rt_sigaction(int sig,
2486 const struct sigaction __user *act,
2487 struct sigaction __user *oact,
2488 size_t sigsetsize)
2490 struct k_sigaction new_sa, old_sa;
2491 int ret = -EINVAL;
2493 /* XXX: Don't preclude handling different sized sigset_t's. */
2494 if (sigsetsize != sizeof(sigset_t))
2495 goto out;
2497 if (act) {
2498 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2499 return -EFAULT;
2502 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2504 if (!ret && oact) {
2505 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2506 return -EFAULT;
2508 out:
2509 return ret;
2511 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2513 #ifdef __ARCH_WANT_SYS_SGETMASK
2516 * For backwards compatibility. Functionality superseded by sigprocmask.
2518 asmlinkage long
2519 sys_sgetmask(void)
2521 /* SMP safe */
2522 return current->blocked.sig[0];
2525 asmlinkage long
2526 sys_ssetmask(int newmask)
2528 int old;
2530 spin_lock_irq(&current->sighand->siglock);
2531 old = current->blocked.sig[0];
2533 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2534 sigmask(SIGSTOP)));
2535 recalc_sigpending();
2536 spin_unlock_irq(&current->sighand->siglock);
2538 return old;
2540 #endif /* __ARCH_WANT_SGETMASK */
2542 #ifdef __ARCH_WANT_SYS_SIGNAL
2544 * For backwards compatibility. Functionality superseded by sigaction.
2546 asmlinkage unsigned long
2547 sys_signal(int sig, __sighandler_t handler)
2549 struct k_sigaction new_sa, old_sa;
2550 int ret;
2552 new_sa.sa.sa_handler = handler;
2553 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2554 sigemptyset(&new_sa.sa.sa_mask);
2556 ret = do_sigaction(sig, &new_sa, &old_sa);
2558 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2560 #endif /* __ARCH_WANT_SYS_SIGNAL */
2562 #ifdef __ARCH_WANT_SYS_PAUSE
2564 asmlinkage long
2565 sys_pause(void)
2567 current->state = TASK_INTERRUPTIBLE;
2568 schedule();
2569 return -ERESTARTNOHAND;
2572 #endif
2574 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2575 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2577 sigset_t newset;
2579 /* XXX: Don't preclude handling different sized sigset_t's. */
2580 if (sigsetsize != sizeof(sigset_t))
2581 return -EINVAL;
2583 if (copy_from_user(&newset, unewset, sizeof(newset)))
2584 return -EFAULT;
2585 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2587 spin_lock_irq(&current->sighand->siglock);
2588 current->saved_sigmask = current->blocked;
2589 current->blocked = newset;
2590 recalc_sigpending();
2591 spin_unlock_irq(&current->sighand->siglock);
2593 current->state = TASK_INTERRUPTIBLE;
2594 schedule();
2595 set_thread_flag(TIF_RESTORE_SIGMASK);
2596 return -ERESTARTNOHAND;
2598 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2600 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2602 return NULL;
2605 void __init signals_init(void)
2607 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);