2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity
= 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency
= 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield
;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity
= 10000000UL;
74 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
80 static inline struct task_struct
*task_of(struct sched_entity
*se
)
82 return container_of(se
, struct task_struct
, se
);
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
100 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
120 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
122 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
129 /* Do the two (enqueued) entities belong to the same group ? */
131 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
133 if (se
->cfs_rq
== pse
->cfs_rq
)
139 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
144 #else /* CONFIG_FAIR_GROUP_SCHED */
146 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
148 return container_of(cfs_rq
, struct rq
, cfs
);
151 #define entity_is_task(se) 1
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
156 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
158 return &task_rq(p
)->cfs
;
161 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
163 struct task_struct
*p
= task_of(se
);
164 struct rq
*rq
= task_rq(p
);
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
175 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
177 return &cpu_rq(this_cpu
)->cfs
;
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
184 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
189 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
201 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
203 s64 delta
= (s64
)(vruntime
- min_vruntime
);
205 min_vruntime
= vruntime
;
210 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
212 s64 delta
= (s64
)(vruntime
- min_vruntime
);
214 min_vruntime
= vruntime
;
219 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
221 return se
->vruntime
- cfs_rq
->min_vruntime
;
225 * Enqueue an entity into the rb-tree:
227 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
229 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
230 struct rb_node
*parent
= NULL
;
231 struct sched_entity
*entry
;
232 s64 key
= entity_key(cfs_rq
, se
);
236 * Find the right place in the rbtree:
240 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
245 if (key
< entity_key(cfs_rq
, entry
)) {
246 link
= &parent
->rb_left
;
248 link
= &parent
->rb_right
;
254 * Maintain a cache of leftmost tree entries (it is frequently
258 cfs_rq
->rb_leftmost
= &se
->run_node
;
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
263 cfs_rq
->min_vruntime
=
264 max_vruntime(cfs_rq
->min_vruntime
, se
->vruntime
);
267 rb_link_node(&se
->run_node
, parent
, link
);
268 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
271 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
273 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
274 struct rb_node
*next_node
;
275 struct sched_entity
*next
;
277 next_node
= rb_next(&se
->run_node
);
278 cfs_rq
->rb_leftmost
= next_node
;
281 next
= rb_entry(next_node
,
282 struct sched_entity
, run_node
);
283 cfs_rq
->min_vruntime
=
284 max_vruntime(cfs_rq
->min_vruntime
,
289 if (cfs_rq
->next
== se
)
292 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
295 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
297 return cfs_rq
->rb_leftmost
;
300 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
302 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
305 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
307 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
312 return rb_entry(last
, struct sched_entity
, run_node
);
315 /**************************************************************
316 * Scheduling class statistics methods:
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
321 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
324 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
329 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
330 sysctl_sched_min_granularity
);
339 static inline unsigned long
340 calc_delta_weight(unsigned long delta
, struct sched_entity
*se
)
342 for_each_sched_entity(se
) {
343 delta
= calc_delta_mine(delta
,
344 se
->load
.weight
, &cfs_rq_of(se
)->load
);
353 static inline unsigned long
354 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
356 for_each_sched_entity(se
) {
357 delta
= calc_delta_mine(delta
,
358 cfs_rq_of(se
)->load
.weight
, &se
->load
);
365 * The idea is to set a period in which each task runs once.
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
370 * p = (nr <= nl) ? l : l*nr/nl
372 static u64
__sched_period(unsigned long nr_running
)
374 u64 period
= sysctl_sched_latency
;
375 unsigned long nr_latency
= sched_nr_latency
;
377 if (unlikely(nr_running
> nr_latency
)) {
378 period
= sysctl_sched_min_granularity
;
379 period
*= nr_running
;
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
391 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
393 return calc_delta_weight(__sched_period(cfs_rq
->nr_running
), se
);
397 * We calculate the vruntime slice of a to be inserted task
401 static u64
sched_vslice_add(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
403 unsigned long nr_running
= cfs_rq
->nr_running
;
408 return __sched_period(nr_running
);
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
423 calc_delta_asym(unsigned long delta
, struct sched_entity
*se
)
425 struct load_weight lw
= {
426 .weight
= NICE_0_LOAD
,
427 .inv_weight
= 1UL << (WMULT_SHIFT
-NICE_0_SHIFT
)
430 for_each_sched_entity(se
) {
431 struct load_weight
*se_lw
= &se
->load
;
433 if (se
->load
.weight
< NICE_0_LOAD
)
436 delta
= calc_delta_mine(delta
,
437 cfs_rq_of(se
)->load
.weight
, se_lw
);
444 * Update the current task's runtime statistics. Skip current tasks that
445 * are not in our scheduling class.
448 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
449 unsigned long delta_exec
)
451 unsigned long delta_exec_weighted
;
453 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
455 curr
->sum_exec_runtime
+= delta_exec
;
456 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
457 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
458 curr
->vruntime
+= delta_exec_weighted
;
461 static void update_curr(struct cfs_rq
*cfs_rq
)
463 struct sched_entity
*curr
= cfs_rq
->curr
;
464 u64 now
= rq_of(cfs_rq
)->clock
;
465 unsigned long delta_exec
;
471 * Get the amount of time the current task was running
472 * since the last time we changed load (this cannot
473 * overflow on 32 bits):
475 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
477 __update_curr(cfs_rq
, curr
, delta_exec
);
478 curr
->exec_start
= now
;
480 if (entity_is_task(curr
)) {
481 struct task_struct
*curtask
= task_of(curr
);
483 cpuacct_charge(curtask
, delta_exec
);
488 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
490 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
494 * Task is being enqueued - update stats:
496 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
499 * Are we enqueueing a waiting task? (for current tasks
500 * a dequeue/enqueue event is a NOP)
502 if (se
!= cfs_rq
->curr
)
503 update_stats_wait_start(cfs_rq
, se
);
507 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
509 schedstat_set(se
->wait_max
, max(se
->wait_max
,
510 rq_of(cfs_rq
)->clock
- se
->wait_start
));
511 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
512 schedstat_set(se
->wait_sum
, se
->wait_sum
+
513 rq_of(cfs_rq
)->clock
- se
->wait_start
);
514 schedstat_set(se
->wait_start
, 0);
518 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
521 * Mark the end of the wait period if dequeueing a
524 if (se
!= cfs_rq
->curr
)
525 update_stats_wait_end(cfs_rq
, se
);
529 * We are picking a new current task - update its stats:
532 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
535 * We are starting a new run period:
537 se
->exec_start
= rq_of(cfs_rq
)->clock
;
540 /**************************************************
541 * Scheduling class queueing methods:
544 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
546 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
548 cfs_rq
->task_weight
+= weight
;
552 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
558 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
560 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
561 if (!parent_entity(se
))
562 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
563 if (entity_is_task(se
))
564 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
565 cfs_rq
->nr_running
++;
567 list_add(&se
->group_node
, &cfs_rq
->tasks
);
571 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
573 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
574 if (!parent_entity(se
))
575 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
576 if (entity_is_task(se
))
577 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
578 cfs_rq
->nr_running
--;
580 list_del_init(&se
->group_node
);
583 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
585 #ifdef CONFIG_SCHEDSTATS
586 if (se
->sleep_start
) {
587 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
588 struct task_struct
*tsk
= task_of(se
);
593 if (unlikely(delta
> se
->sleep_max
))
594 se
->sleep_max
= delta
;
597 se
->sum_sleep_runtime
+= delta
;
599 account_scheduler_latency(tsk
, delta
>> 10, 1);
601 if (se
->block_start
) {
602 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
603 struct task_struct
*tsk
= task_of(se
);
608 if (unlikely(delta
> se
->block_max
))
609 se
->block_max
= delta
;
612 se
->sum_sleep_runtime
+= delta
;
615 * Blocking time is in units of nanosecs, so shift by 20 to
616 * get a milliseconds-range estimation of the amount of
617 * time that the task spent sleeping:
619 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
621 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
624 account_scheduler_latency(tsk
, delta
>> 10, 0);
629 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
631 #ifdef CONFIG_SCHED_DEBUG
632 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
637 if (d
> 3*sysctl_sched_latency
)
638 schedstat_inc(cfs_rq
, nr_spread_over
);
643 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
647 if (first_fair(cfs_rq
)) {
648 vruntime
= min_vruntime(cfs_rq
->min_vruntime
,
649 __pick_next_entity(cfs_rq
)->vruntime
);
651 vruntime
= cfs_rq
->min_vruntime
;
654 * The 'current' period is already promised to the current tasks,
655 * however the extra weight of the new task will slow them down a
656 * little, place the new task so that it fits in the slot that
657 * stays open at the end.
659 if (initial
&& sched_feat(START_DEBIT
))
660 vruntime
+= sched_vslice_add(cfs_rq
, se
);
663 /* sleeps upto a single latency don't count. */
664 if (sched_feat(NEW_FAIR_SLEEPERS
)) {
665 unsigned long thresh
= sysctl_sched_latency
;
668 * convert the sleeper threshold into virtual time
670 if (sched_feat(NORMALIZED_SLEEPER
))
671 thresh
= calc_delta_fair(thresh
, se
);
676 /* ensure we never gain time by being placed backwards. */
677 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
680 se
->vruntime
= vruntime
;
684 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
687 * Update run-time statistics of the 'current'.
690 account_entity_enqueue(cfs_rq
, se
);
693 place_entity(cfs_rq
, se
, 0);
694 enqueue_sleeper(cfs_rq
, se
);
697 update_stats_enqueue(cfs_rq
, se
);
698 check_spread(cfs_rq
, se
);
699 if (se
!= cfs_rq
->curr
)
700 __enqueue_entity(cfs_rq
, se
);
703 static void update_avg(u64
*avg
, u64 sample
)
705 s64 diff
= sample
- *avg
;
709 static void update_avg_stats(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
711 if (!se
->last_wakeup
)
714 update_avg(&se
->avg_overlap
, se
->sum_exec_runtime
- se
->last_wakeup
);
719 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
722 * Update run-time statistics of the 'current'.
726 update_stats_dequeue(cfs_rq
, se
);
728 update_avg_stats(cfs_rq
, se
);
729 #ifdef CONFIG_SCHEDSTATS
730 if (entity_is_task(se
)) {
731 struct task_struct
*tsk
= task_of(se
);
733 if (tsk
->state
& TASK_INTERRUPTIBLE
)
734 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
735 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
736 se
->block_start
= rq_of(cfs_rq
)->clock
;
741 if (se
!= cfs_rq
->curr
)
742 __dequeue_entity(cfs_rq
, se
);
743 account_entity_dequeue(cfs_rq
, se
);
747 * Preempt the current task with a newly woken task if needed:
750 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
752 unsigned long ideal_runtime
, delta_exec
;
754 ideal_runtime
= sched_slice(cfs_rq
, curr
);
755 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
756 if (delta_exec
> ideal_runtime
)
757 resched_task(rq_of(cfs_rq
)->curr
);
761 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
763 /* 'current' is not kept within the tree. */
766 * Any task has to be enqueued before it get to execute on
767 * a CPU. So account for the time it spent waiting on the
770 update_stats_wait_end(cfs_rq
, se
);
771 __dequeue_entity(cfs_rq
, se
);
774 update_stats_curr_start(cfs_rq
, se
);
776 #ifdef CONFIG_SCHEDSTATS
778 * Track our maximum slice length, if the CPU's load is at
779 * least twice that of our own weight (i.e. dont track it
780 * when there are only lesser-weight tasks around):
782 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
783 se
->slice_max
= max(se
->slice_max
,
784 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
787 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
791 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
793 static struct sched_entity
*
794 pick_next(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
799 if (wakeup_preempt_entity(cfs_rq
->next
, se
) != 0)
805 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
807 struct sched_entity
*se
= NULL
;
809 if (first_fair(cfs_rq
)) {
810 se
= __pick_next_entity(cfs_rq
);
811 se
= pick_next(cfs_rq
, se
);
812 set_next_entity(cfs_rq
, se
);
818 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
821 * If still on the runqueue then deactivate_task()
822 * was not called and update_curr() has to be done:
827 check_spread(cfs_rq
, prev
);
829 update_stats_wait_start(cfs_rq
, prev
);
830 /* Put 'current' back into the tree. */
831 __enqueue_entity(cfs_rq
, prev
);
837 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
840 * Update run-time statistics of the 'current'.
844 #ifdef CONFIG_SCHED_HRTICK
846 * queued ticks are scheduled to match the slice, so don't bother
847 * validating it and just reschedule.
850 resched_task(rq_of(cfs_rq
)->curr
);
854 * don't let the period tick interfere with the hrtick preemption
856 if (!sched_feat(DOUBLE_TICK
) &&
857 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
861 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
862 check_preempt_tick(cfs_rq
, curr
);
865 /**************************************************
866 * CFS operations on tasks:
869 #ifdef CONFIG_SCHED_HRTICK
870 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
872 int requeue
= rq
->curr
== p
;
873 struct sched_entity
*se
= &p
->se
;
874 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
876 WARN_ON(task_rq(p
) != rq
);
878 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
879 u64 slice
= sched_slice(cfs_rq
, se
);
880 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
881 s64 delta
= slice
- ran
;
890 * Don't schedule slices shorter than 10000ns, that just
891 * doesn't make sense. Rely on vruntime for fairness.
894 delta
= max(10000LL, delta
);
896 hrtick_start(rq
, delta
, requeue
);
901 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
907 * The enqueue_task method is called before nr_running is
908 * increased. Here we update the fair scheduling stats and
909 * then put the task into the rbtree:
911 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
913 struct cfs_rq
*cfs_rq
;
914 struct sched_entity
*se
= &p
->se
;
916 for_each_sched_entity(se
) {
919 cfs_rq
= cfs_rq_of(se
);
920 enqueue_entity(cfs_rq
, se
, wakeup
);
924 hrtick_start_fair(rq
, rq
->curr
);
928 * The dequeue_task method is called before nr_running is
929 * decreased. We remove the task from the rbtree and
930 * update the fair scheduling stats:
932 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
934 struct cfs_rq
*cfs_rq
;
935 struct sched_entity
*se
= &p
->se
;
937 for_each_sched_entity(se
) {
938 cfs_rq
= cfs_rq_of(se
);
939 dequeue_entity(cfs_rq
, se
, sleep
);
940 /* Don't dequeue parent if it has other entities besides us */
941 if (cfs_rq
->load
.weight
)
946 hrtick_start_fair(rq
, rq
->curr
);
950 * sched_yield() support is very simple - we dequeue and enqueue.
952 * If compat_yield is turned on then we requeue to the end of the tree.
954 static void yield_task_fair(struct rq
*rq
)
956 struct task_struct
*curr
= rq
->curr
;
957 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
958 struct sched_entity
*rightmost
, *se
= &curr
->se
;
961 * Are we the only task in the tree?
963 if (unlikely(cfs_rq
->nr_running
== 1))
966 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
969 * Update run-time statistics of the 'current'.
976 * Find the rightmost entry in the rbtree:
978 rightmost
= __pick_last_entity(cfs_rq
);
980 * Already in the rightmost position?
982 if (unlikely(!rightmost
|| rightmost
->vruntime
< se
->vruntime
))
986 * Minimally necessary key value to be last in the tree:
987 * Upon rescheduling, sched_class::put_prev_task() will place
988 * 'current' within the tree based on its new key value.
990 se
->vruntime
= rightmost
->vruntime
+ 1;
994 * wake_idle() will wake a task on an idle cpu if task->cpu is
995 * not idle and an idle cpu is available. The span of cpus to
996 * search starts with cpus closest then further out as needed,
997 * so we always favor a closer, idle cpu.
999 * Returns the CPU we should wake onto.
1001 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1002 static int wake_idle(int cpu
, struct task_struct
*p
)
1005 struct sched_domain
*sd
;
1009 * If it is idle, then it is the best cpu to run this task.
1011 * This cpu is also the best, if it has more than one task already.
1012 * Siblings must be also busy(in most cases) as they didn't already
1013 * pickup the extra load from this cpu and hence we need not check
1014 * sibling runqueue info. This will avoid the checks and cache miss
1015 * penalities associated with that.
1017 if (idle_cpu(cpu
) || cpu_rq(cpu
)->cfs
.nr_running
> 1)
1020 for_each_domain(cpu
, sd
) {
1021 if ((sd
->flags
& SD_WAKE_IDLE
)
1022 || ((sd
->flags
& SD_WAKE_IDLE_FAR
)
1023 && !task_hot(p
, task_rq(p
)->clock
, sd
))) {
1024 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1025 for_each_cpu_mask(i
, tmp
) {
1027 if (i
!= task_cpu(p
)) {
1029 se
.nr_wakeups_idle
);
1041 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1049 static const struct sched_class fair_sched_class
;
1052 wake_affine(struct rq
*rq
, struct sched_domain
*this_sd
, struct rq
*this_rq
,
1053 struct task_struct
*p
, int prev_cpu
, int this_cpu
, int sync
,
1054 int idx
, unsigned long load
, unsigned long this_load
,
1055 unsigned int imbalance
)
1057 struct task_struct
*curr
= this_rq
->curr
;
1058 unsigned long tl
= this_load
;
1059 unsigned long tl_per_task
;
1061 if (!(this_sd
->flags
& SD_WAKE_AFFINE
))
1065 * If the currently running task will sleep within
1066 * a reasonable amount of time then attract this newly
1069 if (sync
&& curr
->sched_class
== &fair_sched_class
) {
1070 if (curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1071 p
->se
.avg_overlap
< sysctl_sched_migration_cost
)
1075 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1076 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1079 * If sync wakeup then subtract the (maximum possible)
1080 * effect of the currently running task from the load
1081 * of the current CPU:
1084 tl
-= current
->se
.load
.weight
;
1086 if ((tl
<= load
&& tl
+ target_load(prev_cpu
, idx
) <= tl_per_task
) ||
1087 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1089 * This domain has SD_WAKE_AFFINE and
1090 * p is cache cold in this domain, and
1091 * there is no bad imbalance.
1093 schedstat_inc(this_sd
, ttwu_move_affine
);
1094 schedstat_inc(p
, se
.nr_wakeups_affine
);
1101 static int select_task_rq_fair(struct task_struct
*p
, int sync
)
1103 struct sched_domain
*sd
, *this_sd
= NULL
;
1104 int prev_cpu
, this_cpu
, new_cpu
;
1105 unsigned long load
, this_load
;
1106 struct rq
*rq
, *this_rq
;
1107 unsigned int imbalance
;
1110 prev_cpu
= task_cpu(p
);
1112 this_cpu
= smp_processor_id();
1113 this_rq
= cpu_rq(this_cpu
);
1117 * 'this_sd' is the first domain that both
1118 * this_cpu and prev_cpu are present in:
1120 for_each_domain(this_cpu
, sd
) {
1121 if (cpu_isset(prev_cpu
, sd
->span
)) {
1127 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1131 * Check for affine wakeup and passive balancing possibilities.
1136 idx
= this_sd
->wake_idx
;
1138 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1140 load
= source_load(prev_cpu
, idx
);
1141 this_load
= target_load(this_cpu
, idx
);
1143 if (wake_affine(rq
, this_sd
, this_rq
, p
, prev_cpu
, this_cpu
, sync
, idx
,
1144 load
, this_load
, imbalance
))
1147 if (prev_cpu
== this_cpu
)
1151 * Start passive balancing when half the imbalance_pct
1154 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1155 if (imbalance
*this_load
<= 100*load
) {
1156 schedstat_inc(this_sd
, ttwu_move_balance
);
1157 schedstat_inc(p
, se
.nr_wakeups_passive
);
1163 return wake_idle(new_cpu
, p
);
1165 #endif /* CONFIG_SMP */
1167 static unsigned long wakeup_gran(struct sched_entity
*se
)
1169 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1172 * More easily preempt - nice tasks, while not making it harder for
1175 gran
= calc_delta_asym(sysctl_sched_wakeup_granularity
, se
);
1181 * Should 'se' preempt 'curr'.
1195 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1197 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1202 gran
= wakeup_gran(curr
);
1209 /* return depth at which a sched entity is present in the hierarchy */
1210 static inline int depth_se(struct sched_entity
*se
)
1214 for_each_sched_entity(se
)
1221 * Preempt the current task with a newly woken task if needed:
1223 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
)
1225 struct task_struct
*curr
= rq
->curr
;
1226 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1227 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1228 int se_depth
, pse_depth
;
1230 if (unlikely(rt_prio(p
->prio
))) {
1231 update_rq_clock(rq
);
1232 update_curr(cfs_rq
);
1237 se
->last_wakeup
= se
->sum_exec_runtime
;
1238 if (unlikely(se
== pse
))
1241 cfs_rq_of(pse
)->next
= pse
;
1244 * Batch tasks do not preempt (their preemption is driven by
1247 if (unlikely(p
->policy
== SCHED_BATCH
))
1250 if (!sched_feat(WAKEUP_PREEMPT
))
1254 * preemption test can be made between sibling entities who are in the
1255 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1256 * both tasks until we find their ancestors who are siblings of common
1260 /* First walk up until both entities are at same depth */
1261 se_depth
= depth_se(se
);
1262 pse_depth
= depth_se(pse
);
1264 while (se_depth
> pse_depth
) {
1266 se
= parent_entity(se
);
1269 while (pse_depth
> se_depth
) {
1271 pse
= parent_entity(pse
);
1274 while (!is_same_group(se
, pse
)) {
1275 se
= parent_entity(se
);
1276 pse
= parent_entity(pse
);
1279 if (wakeup_preempt_entity(se
, pse
) == 1)
1283 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1285 struct task_struct
*p
;
1286 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1287 struct sched_entity
*se
;
1289 if (unlikely(!cfs_rq
->nr_running
))
1293 se
= pick_next_entity(cfs_rq
);
1294 cfs_rq
= group_cfs_rq(se
);
1298 hrtick_start_fair(rq
, p
);
1304 * Account for a descheduled task:
1306 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1308 struct sched_entity
*se
= &prev
->se
;
1309 struct cfs_rq
*cfs_rq
;
1311 for_each_sched_entity(se
) {
1312 cfs_rq
= cfs_rq_of(se
);
1313 put_prev_entity(cfs_rq
, se
);
1318 /**************************************************
1319 * Fair scheduling class load-balancing methods:
1323 * Load-balancing iterator. Note: while the runqueue stays locked
1324 * during the whole iteration, the current task might be
1325 * dequeued so the iterator has to be dequeue-safe. Here we
1326 * achieve that by always pre-iterating before returning
1329 static struct task_struct
*
1330 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct list_head
*next
)
1332 struct task_struct
*p
= NULL
;
1333 struct sched_entity
*se
;
1335 if (next
== &cfs_rq
->tasks
)
1338 /* Skip over entities that are not tasks */
1340 se
= list_entry(next
, struct sched_entity
, group_node
);
1342 } while (next
!= &cfs_rq
->tasks
&& !entity_is_task(se
));
1344 if (next
== &cfs_rq
->tasks
)
1347 cfs_rq
->balance_iterator
= next
;
1349 if (entity_is_task(se
))
1355 static struct task_struct
*load_balance_start_fair(void *arg
)
1357 struct cfs_rq
*cfs_rq
= arg
;
1359 return __load_balance_iterator(cfs_rq
, cfs_rq
->tasks
.next
);
1362 static struct task_struct
*load_balance_next_fair(void *arg
)
1364 struct cfs_rq
*cfs_rq
= arg
;
1366 return __load_balance_iterator(cfs_rq
, cfs_rq
->balance_iterator
);
1369 static unsigned long
1370 __load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1371 unsigned long max_load_move
, struct sched_domain
*sd
,
1372 enum cpu_idle_type idle
, int *all_pinned
, int *this_best_prio
,
1373 struct cfs_rq
*cfs_rq
)
1375 struct rq_iterator cfs_rq_iterator
;
1377 cfs_rq_iterator
.start
= load_balance_start_fair
;
1378 cfs_rq_iterator
.next
= load_balance_next_fair
;
1379 cfs_rq_iterator
.arg
= cfs_rq
;
1381 return balance_tasks(this_rq
, this_cpu
, busiest
,
1382 max_load_move
, sd
, idle
, all_pinned
,
1383 this_best_prio
, &cfs_rq_iterator
);
1386 #ifdef CONFIG_FAIR_GROUP_SCHED
1387 static unsigned long
1388 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1389 unsigned long max_load_move
,
1390 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1391 int *all_pinned
, int *this_best_prio
)
1393 long rem_load_move
= max_load_move
;
1394 int busiest_cpu
= cpu_of(busiest
);
1395 struct task_group
*tg
;
1398 list_for_each_entry(tg
, &task_groups
, list
) {
1400 unsigned long this_weight
, busiest_weight
;
1401 long rem_load
, max_load
, moved_load
;
1406 if (!aggregate(tg
, sd
)->task_weight
)
1409 rem_load
= rem_load_move
* aggregate(tg
, sd
)->rq_weight
;
1410 rem_load
/= aggregate(tg
, sd
)->load
+ 1;
1412 this_weight
= tg
->cfs_rq
[this_cpu
]->task_weight
;
1413 busiest_weight
= tg
->cfs_rq
[busiest_cpu
]->task_weight
;
1415 imbalance
= (busiest_weight
- this_weight
) / 2;
1418 imbalance
= busiest_weight
;
1420 max_load
= max(rem_load
, imbalance
);
1421 moved_load
= __load_balance_fair(this_rq
, this_cpu
, busiest
,
1422 max_load
, sd
, idle
, all_pinned
, this_best_prio
,
1423 tg
->cfs_rq
[busiest_cpu
]);
1428 move_group_shares(tg
, sd
, busiest_cpu
, this_cpu
);
1430 moved_load
*= aggregate(tg
, sd
)->load
;
1431 moved_load
/= aggregate(tg
, sd
)->rq_weight
+ 1;
1433 rem_load_move
-= moved_load
;
1434 if (rem_load_move
< 0)
1439 return max_load_move
- rem_load_move
;
1442 static unsigned long
1443 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1444 unsigned long max_load_move
,
1445 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1446 int *all_pinned
, int *this_best_prio
)
1448 return __load_balance_fair(this_rq
, this_cpu
, busiest
,
1449 max_load_move
, sd
, idle
, all_pinned
,
1450 this_best_prio
, &busiest
->cfs
);
1455 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1456 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1458 struct cfs_rq
*busy_cfs_rq
;
1459 struct rq_iterator cfs_rq_iterator
;
1461 cfs_rq_iterator
.start
= load_balance_start_fair
;
1462 cfs_rq_iterator
.next
= load_balance_next_fair
;
1464 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1466 * pass busy_cfs_rq argument into
1467 * load_balance_[start|next]_fair iterators
1469 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1470 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1480 * scheduler tick hitting a task of our scheduling class:
1482 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1484 struct cfs_rq
*cfs_rq
;
1485 struct sched_entity
*se
= &curr
->se
;
1487 for_each_sched_entity(se
) {
1488 cfs_rq
= cfs_rq_of(se
);
1489 entity_tick(cfs_rq
, se
, queued
);
1493 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1496 * Share the fairness runtime between parent and child, thus the
1497 * total amount of pressure for CPU stays equal - new tasks
1498 * get a chance to run but frequent forkers are not allowed to
1499 * monopolize the CPU. Note: the parent runqueue is locked,
1500 * the child is not running yet.
1502 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1504 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1505 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1506 int this_cpu
= smp_processor_id();
1508 sched_info_queued(p
);
1510 update_curr(cfs_rq
);
1511 place_entity(cfs_rq
, se
, 1);
1513 /* 'curr' will be NULL if the child belongs to a different group */
1514 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1515 curr
&& curr
->vruntime
< se
->vruntime
) {
1517 * Upon rescheduling, sched_class::put_prev_task() will place
1518 * 'current' within the tree based on its new key value.
1520 swap(curr
->vruntime
, se
->vruntime
);
1523 enqueue_task_fair(rq
, p
, 0);
1524 resched_task(rq
->curr
);
1528 * Priority of the task has changed. Check to see if we preempt
1531 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1532 int oldprio
, int running
)
1535 * Reschedule if we are currently running on this runqueue and
1536 * our priority decreased, or if we are not currently running on
1537 * this runqueue and our priority is higher than the current's
1540 if (p
->prio
> oldprio
)
1541 resched_task(rq
->curr
);
1543 check_preempt_curr(rq
, p
);
1547 * We switched to the sched_fair class.
1549 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
1553 * We were most likely switched from sched_rt, so
1554 * kick off the schedule if running, otherwise just see
1555 * if we can still preempt the current task.
1558 resched_task(rq
->curr
);
1560 check_preempt_curr(rq
, p
);
1563 /* Account for a task changing its policy or group.
1565 * This routine is mostly called to set cfs_rq->curr field when a task
1566 * migrates between groups/classes.
1568 static void set_curr_task_fair(struct rq
*rq
)
1570 struct sched_entity
*se
= &rq
->curr
->se
;
1572 for_each_sched_entity(se
)
1573 set_next_entity(cfs_rq_of(se
), se
);
1576 #ifdef CONFIG_FAIR_GROUP_SCHED
1577 static void moved_group_fair(struct task_struct
*p
)
1579 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1581 update_curr(cfs_rq
);
1582 place_entity(cfs_rq
, &p
->se
, 1);
1587 * All the scheduling class methods:
1589 static const struct sched_class fair_sched_class
= {
1590 .next
= &idle_sched_class
,
1591 .enqueue_task
= enqueue_task_fair
,
1592 .dequeue_task
= dequeue_task_fair
,
1593 .yield_task
= yield_task_fair
,
1595 .select_task_rq
= select_task_rq_fair
,
1596 #endif /* CONFIG_SMP */
1598 .check_preempt_curr
= check_preempt_wakeup
,
1600 .pick_next_task
= pick_next_task_fair
,
1601 .put_prev_task
= put_prev_task_fair
,
1604 .load_balance
= load_balance_fair
,
1605 .move_one_task
= move_one_task_fair
,
1608 .set_curr_task
= set_curr_task_fair
,
1609 .task_tick
= task_tick_fair
,
1610 .task_new
= task_new_fair
,
1612 .prio_changed
= prio_changed_fair
,
1613 .switched_to
= switched_to_fair
,
1615 #ifdef CONFIG_FAIR_GROUP_SCHED
1616 .moved_group
= moved_group_fair
,
1620 #ifdef CONFIG_SCHED_DEBUG
1621 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1623 struct cfs_rq
*cfs_rq
;
1626 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1627 print_cfs_rq(m
, cpu
, cfs_rq
);