2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
8 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/hash.h>
18 #include <linux/rbtree.h>
19 #include <linux/interrupt.h>
25 * See Documentation/block/as-iosched.txt
29 * max time before a read is submitted.
31 #define default_read_expire (HZ / 8)
34 * ditto for writes, these limits are not hard, even
35 * if the disk is capable of satisfying them.
37 #define default_write_expire (HZ / 4)
40 * read_batch_expire describes how long we will allow a stream of reads to
41 * persist before looking to see whether it is time to switch over to writes.
43 #define default_read_batch_expire (HZ / 2)
46 * write_batch_expire describes how long we want a stream of writes to run for.
47 * This is not a hard limit, but a target we set for the auto-tuning thingy.
48 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
49 * a short amount of time...
51 #define default_write_batch_expire (HZ / 8)
54 * max time we may wait to anticipate a read (default around 6ms)
56 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
59 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
60 * however huge values tend to interfere and not decay fast enough. A program
61 * might be in a non-io phase of operation. Waiting on user input for example,
62 * or doing a lengthy computation. A small penalty can be justified there, and
63 * will still catch out those processes that constantly have large thinktimes.
65 #define MAX_THINKTIME (HZ/50UL)
67 /* Bits in as_io_context.state */
69 AS_TASK_RUNNING
=0, /* Process has not exited */
70 AS_TASK_IOSTARTED
, /* Process has started some IO */
71 AS_TASK_IORUNNING
, /* Process has completed some IO */
74 enum anticipation_status
{
75 ANTIC_OFF
=0, /* Not anticipating (normal operation) */
76 ANTIC_WAIT_REQ
, /* The last read has not yet completed */
77 ANTIC_WAIT_NEXT
, /* Currently anticipating a request vs
78 last read (which has completed) */
79 ANTIC_FINISHED
, /* Anticipating but have found a candidate
88 struct request_queue
*q
; /* the "owner" queue */
91 * requests (as_rq s) are present on both sort_list and fifo_list
93 struct rb_root sort_list
[2];
94 struct list_head fifo_list
[2];
96 struct as_rq
*next_arq
[2]; /* next in sort order */
97 sector_t last_sector
[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
98 struct hlist_head
*hash
; /* request hash */
100 unsigned long exit_prob
; /* probability a task will exit while
102 unsigned long exit_no_coop
; /* probablility an exited task will
103 not be part of a later cooperating
105 unsigned long new_ttime_total
; /* mean thinktime on new proc */
106 unsigned long new_ttime_mean
;
107 u64 new_seek_total
; /* mean seek on new proc */
108 sector_t new_seek_mean
;
110 unsigned long current_batch_expires
;
111 unsigned long last_check_fifo
[2];
112 int changed_batch
; /* 1: waiting for old batch to end */
113 int new_batch
; /* 1: waiting on first read complete */
114 int batch_data_dir
; /* current batch REQ_SYNC / REQ_ASYNC */
115 int write_batch_count
; /* max # of reqs in a write batch */
116 int current_write_count
; /* how many requests left this batch */
117 int write_batch_idled
; /* has the write batch gone idle? */
120 enum anticipation_status antic_status
;
121 unsigned long antic_start
; /* jiffies: when it started */
122 struct timer_list antic_timer
; /* anticipatory scheduling timer */
123 struct work_struct antic_work
; /* Deferred unplugging */
124 struct io_context
*io_context
; /* Identify the expected process */
125 int ioc_finished
; /* IO associated with io_context is finished */
129 * settings that change how the i/o scheduler behaves
131 unsigned long fifo_expire
[2];
132 unsigned long batch_expire
[2];
133 unsigned long antic_expire
;
136 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
142 AS_RQ_NEW
=0, /* New - not referenced and not on any lists */
143 AS_RQ_QUEUED
, /* In the request queue. It belongs to the
145 AS_RQ_DISPATCHED
, /* On the dispatch list. It belongs to the
147 AS_RQ_PRESCHED
, /* Debug poisoning for requests being used */
150 AS_RQ_POSTSCHED
, /* when they shouldn't be */
155 * rbtree index, key is the starting offset
157 struct rb_node rb_node
;
160 struct request
*request
;
162 struct io_context
*io_context
; /* The submitting task */
165 * request hash, key is the ending offset (for back merge lookup)
167 struct hlist_node hash
;
172 struct list_head fifo
;
173 unsigned long expires
;
175 unsigned int is_sync
;
176 enum arq_state state
;
179 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
181 static kmem_cache_t
*arq_pool
;
183 static atomic_t ioc_count
= ATOMIC_INIT(0);
184 static struct completion
*ioc_gone
;
186 static void as_move_to_dispatch(struct as_data
*ad
, struct as_rq
*arq
);
187 static void as_antic_stop(struct as_data
*ad
);
190 * IO Context helper functions
193 /* Called to deallocate the as_io_context */
194 static void free_as_io_context(struct as_io_context
*aic
)
197 if (atomic_dec_and_test(&ioc_count
) && ioc_gone
)
201 static void as_trim(struct io_context
*ioc
)
204 free_as_io_context(ioc
->aic
);
208 /* Called when the task exits */
209 static void exit_as_io_context(struct as_io_context
*aic
)
211 WARN_ON(!test_bit(AS_TASK_RUNNING
, &aic
->state
));
212 clear_bit(AS_TASK_RUNNING
, &aic
->state
);
215 static struct as_io_context
*alloc_as_io_context(void)
217 struct as_io_context
*ret
;
219 ret
= kmalloc(sizeof(*ret
), GFP_ATOMIC
);
221 ret
->dtor
= free_as_io_context
;
222 ret
->exit
= exit_as_io_context
;
223 ret
->state
= 1 << AS_TASK_RUNNING
;
224 atomic_set(&ret
->nr_queued
, 0);
225 atomic_set(&ret
->nr_dispatched
, 0);
226 spin_lock_init(&ret
->lock
);
227 ret
->ttime_total
= 0;
228 ret
->ttime_samples
= 0;
231 ret
->seek_samples
= 0;
233 atomic_inc(&ioc_count
);
240 * If the current task has no AS IO context then create one and initialise it.
241 * Then take a ref on the task's io context and return it.
243 static struct io_context
*as_get_io_context(void)
245 struct io_context
*ioc
= get_io_context(GFP_ATOMIC
);
246 if (ioc
&& !ioc
->aic
) {
247 ioc
->aic
= alloc_as_io_context();
256 static void as_put_io_context(struct as_rq
*arq
)
258 struct as_io_context
*aic
;
260 if (unlikely(!arq
->io_context
))
263 aic
= arq
->io_context
->aic
;
265 if (arq
->is_sync
== REQ_SYNC
&& aic
) {
266 spin_lock(&aic
->lock
);
267 set_bit(AS_TASK_IORUNNING
, &aic
->state
);
268 aic
->last_end_request
= jiffies
;
269 spin_unlock(&aic
->lock
);
272 put_io_context(arq
->io_context
);
276 * the back merge hash support functions
278 static const int as_hash_shift
= 6;
279 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
280 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
281 #define AS_HASH_ENTRIES (1 << as_hash_shift)
282 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
284 static inline void __as_del_arq_hash(struct as_rq
*arq
)
286 hlist_del_init(&arq
->hash
);
289 static inline void as_del_arq_hash(struct as_rq
*arq
)
291 if (!hlist_unhashed(&arq
->hash
))
292 __as_del_arq_hash(arq
);
295 static void as_add_arq_hash(struct as_data
*ad
, struct as_rq
*arq
)
297 struct request
*rq
= arq
->request
;
299 BUG_ON(!hlist_unhashed(&arq
->hash
));
301 hlist_add_head(&arq
->hash
, &ad
->hash
[AS_HASH_FN(rq_hash_key(rq
))]);
305 * move hot entry to front of chain
307 static inline void as_hot_arq_hash(struct as_data
*ad
, struct as_rq
*arq
)
309 struct request
*rq
= arq
->request
;
310 struct hlist_head
*head
= &ad
->hash
[AS_HASH_FN(rq_hash_key(rq
))];
312 if (hlist_unhashed(&arq
->hash
)) {
317 if (&arq
->hash
!= head
->first
) {
318 hlist_del(&arq
->hash
);
319 hlist_add_head(&arq
->hash
, head
);
323 static struct request
*as_find_arq_hash(struct as_data
*ad
, sector_t offset
)
325 struct hlist_head
*hash_list
= &ad
->hash
[AS_HASH_FN(offset
)];
326 struct hlist_node
*entry
, *next
;
329 hlist_for_each_entry_safe(arq
, entry
, next
, hash_list
, hash
) {
330 struct request
*__rq
= arq
->request
;
332 BUG_ON(hlist_unhashed(&arq
->hash
));
334 if (!rq_mergeable(__rq
)) {
335 as_del_arq_hash(arq
);
339 if (rq_hash_key(__rq
) == offset
)
347 * rb tree support functions
349 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
350 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
351 #define rq_rb_key(rq) (rq)->sector
354 * as_find_first_arq finds the first (lowest sector numbered) request
355 * for the specified data_dir. Used to sweep back to the start of the disk
356 * (1-way elevator) after we process the last (highest sector) request.
358 static struct as_rq
*as_find_first_arq(struct as_data
*ad
, int data_dir
)
360 struct rb_node
*n
= ad
->sort_list
[data_dir
].rb_node
;
366 if (n
->rb_left
== NULL
)
367 return rb_entry_arq(n
);
374 * Add the request to the rb tree if it is unique. If there is an alias (an
375 * existing request against the same sector), which can happen when using
376 * direct IO, then return the alias.
378 static struct as_rq
*__as_add_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
380 struct rb_node
**p
= &ARQ_RB_ROOT(ad
, arq
)->rb_node
;
381 struct rb_node
*parent
= NULL
;
383 struct request
*rq
= arq
->request
;
385 arq
->rb_key
= rq_rb_key(rq
);
389 __arq
= rb_entry_arq(parent
);
391 if (arq
->rb_key
< __arq
->rb_key
)
393 else if (arq
->rb_key
> __arq
->rb_key
)
399 rb_link_node(&arq
->rb_node
, parent
, p
);
400 rb_insert_color(&arq
->rb_node
, ARQ_RB_ROOT(ad
, arq
));
405 static void as_add_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
409 while ((unlikely(alias
= __as_add_arq_rb(ad
, arq
)))) {
410 as_move_to_dispatch(ad
, alias
);
415 static inline void as_del_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
417 if (!RB_EMPTY_NODE(&arq
->rb_node
)) {
422 rb_erase(&arq
->rb_node
, ARQ_RB_ROOT(ad
, arq
));
423 RB_CLEAR_NODE(&arq
->rb_node
);
426 static struct request
*
427 as_find_arq_rb(struct as_data
*ad
, sector_t sector
, int data_dir
)
429 struct rb_node
*n
= ad
->sort_list
[data_dir
].rb_node
;
433 arq
= rb_entry_arq(n
);
435 if (sector
< arq
->rb_key
)
437 else if (sector
> arq
->rb_key
)
447 * IO Scheduler proper
450 #define MAXBACK (1024 * 1024) /*
451 * Maximum distance the disk will go backward
455 #define BACK_PENALTY 2
458 * as_choose_req selects the preferred one of two requests of the same data_dir
459 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
461 static struct as_rq
*
462 as_choose_req(struct as_data
*ad
, struct as_rq
*arq1
, struct as_rq
*arq2
)
465 sector_t last
, s1
, s2
, d1
, d2
;
466 int r1_wrap
=0, r2_wrap
=0; /* requests are behind the disk head */
467 const sector_t maxback
= MAXBACK
;
469 if (arq1
== NULL
|| arq1
== arq2
)
474 data_dir
= arq1
->is_sync
;
476 last
= ad
->last_sector
[data_dir
];
477 s1
= arq1
->request
->sector
;
478 s2
= arq2
->request
->sector
;
480 BUG_ON(data_dir
!= arq2
->is_sync
);
483 * Strict one way elevator _except_ in the case where we allow
484 * short backward seeks which are biased as twice the cost of a
485 * similar forward seek.
489 else if (s1
+maxback
>= last
)
490 d1
= (last
- s1
)*BACK_PENALTY
;
493 d1
= 0; /* shut up, gcc */
498 else if (s2
+maxback
>= last
)
499 d2
= (last
- s2
)*BACK_PENALTY
;
505 /* Found required data */
506 if (!r1_wrap
&& r2_wrap
)
508 else if (!r2_wrap
&& r1_wrap
)
510 else if (r1_wrap
&& r2_wrap
) {
511 /* both behind the head */
518 /* Both requests in front of the head */
532 * as_find_next_arq finds the next request after @prev in elevator order.
533 * this with as_choose_req form the basis for how the scheduler chooses
534 * what request to process next. Anticipation works on top of this.
536 static struct as_rq
*as_find_next_arq(struct as_data
*ad
, struct as_rq
*last
)
538 const int data_dir
= last
->is_sync
;
540 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
541 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
542 struct as_rq
*arq_next
, *arq_prev
;
544 BUG_ON(!RB_EMPTY_NODE(&last
->rb_node
));
547 arq_prev
= rb_entry_arq(rbprev
);
552 arq_next
= rb_entry_arq(rbnext
);
554 arq_next
= as_find_first_arq(ad
, data_dir
);
555 if (arq_next
== last
)
559 ret
= as_choose_req(ad
, arq_next
, arq_prev
);
565 * anticipatory scheduling functions follow
569 * as_antic_expired tells us when we have anticipated too long.
570 * The funny "absolute difference" math on the elapsed time is to handle
571 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
573 static int as_antic_expired(struct as_data
*ad
)
577 delta_jif
= jiffies
- ad
->antic_start
;
578 if (unlikely(delta_jif
< 0))
579 delta_jif
= -delta_jif
;
580 if (delta_jif
< ad
->antic_expire
)
587 * as_antic_waitnext starts anticipating that a nice request will soon be
588 * submitted. See also as_antic_waitreq
590 static void as_antic_waitnext(struct as_data
*ad
)
592 unsigned long timeout
;
594 BUG_ON(ad
->antic_status
!= ANTIC_OFF
595 && ad
->antic_status
!= ANTIC_WAIT_REQ
);
597 timeout
= ad
->antic_start
+ ad
->antic_expire
;
599 mod_timer(&ad
->antic_timer
, timeout
);
601 ad
->antic_status
= ANTIC_WAIT_NEXT
;
605 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
606 * until the request that we're anticipating on has finished. This means we
607 * are timing from when the candidate process wakes up hopefully.
609 static void as_antic_waitreq(struct as_data
*ad
)
611 BUG_ON(ad
->antic_status
== ANTIC_FINISHED
);
612 if (ad
->antic_status
== ANTIC_OFF
) {
613 if (!ad
->io_context
|| ad
->ioc_finished
)
614 as_antic_waitnext(ad
);
616 ad
->antic_status
= ANTIC_WAIT_REQ
;
621 * This is called directly by the functions in this file to stop anticipation.
622 * We kill the timer and schedule a call to the request_fn asap.
624 static void as_antic_stop(struct as_data
*ad
)
626 int status
= ad
->antic_status
;
628 if (status
== ANTIC_WAIT_REQ
|| status
== ANTIC_WAIT_NEXT
) {
629 if (status
== ANTIC_WAIT_NEXT
)
630 del_timer(&ad
->antic_timer
);
631 ad
->antic_status
= ANTIC_FINISHED
;
632 /* see as_work_handler */
633 kblockd_schedule_work(&ad
->antic_work
);
638 * as_antic_timeout is the timer function set by as_antic_waitnext.
640 static void as_antic_timeout(unsigned long data
)
642 struct request_queue
*q
= (struct request_queue
*)data
;
643 struct as_data
*ad
= q
->elevator
->elevator_data
;
646 spin_lock_irqsave(q
->queue_lock
, flags
);
647 if (ad
->antic_status
== ANTIC_WAIT_REQ
648 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
649 struct as_io_context
*aic
= ad
->io_context
->aic
;
651 ad
->antic_status
= ANTIC_FINISHED
;
652 kblockd_schedule_work(&ad
->antic_work
);
654 if (aic
->ttime_samples
== 0) {
655 /* process anticipated on has exited or timed out*/
656 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
658 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
659 /* process not "saved" by a cooperating request */
660 ad
->exit_no_coop
= (7*ad
->exit_no_coop
+ 256)/8;
663 spin_unlock_irqrestore(q
->queue_lock
, flags
);
666 static void as_update_thinktime(struct as_data
*ad
, struct as_io_context
*aic
,
669 /* fixed point: 1.0 == 1<<8 */
670 if (aic
->ttime_samples
== 0) {
671 ad
->new_ttime_total
= (7*ad
->new_ttime_total
+ 256*ttime
) / 8;
672 ad
->new_ttime_mean
= ad
->new_ttime_total
/ 256;
674 ad
->exit_prob
= (7*ad
->exit_prob
)/8;
676 aic
->ttime_samples
= (7*aic
->ttime_samples
+ 256) / 8;
677 aic
->ttime_total
= (7*aic
->ttime_total
+ 256*ttime
) / 8;
678 aic
->ttime_mean
= (aic
->ttime_total
+ 128) / aic
->ttime_samples
;
681 static void as_update_seekdist(struct as_data
*ad
, struct as_io_context
*aic
,
686 if (aic
->seek_samples
== 0) {
687 ad
->new_seek_total
= (7*ad
->new_seek_total
+ 256*(u64
)sdist
)/8;
688 ad
->new_seek_mean
= ad
->new_seek_total
/ 256;
692 * Don't allow the seek distance to get too large from the
693 * odd fragment, pagein, etc
695 if (aic
->seek_samples
<= 60) /* second&third seek */
696 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*1024);
698 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*64);
700 aic
->seek_samples
= (7*aic
->seek_samples
+ 256) / 8;
701 aic
->seek_total
= (7*aic
->seek_total
+ (u64
)256*sdist
) / 8;
702 total
= aic
->seek_total
+ (aic
->seek_samples
/2);
703 do_div(total
, aic
->seek_samples
);
704 aic
->seek_mean
= (sector_t
)total
;
708 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
709 * updates @aic->ttime_mean based on that. It is called when a new
712 static void as_update_iohist(struct as_data
*ad
, struct as_io_context
*aic
,
715 struct as_rq
*arq
= RQ_DATA(rq
);
716 int data_dir
= arq
->is_sync
;
717 unsigned long thinktime
= 0;
723 if (data_dir
== REQ_SYNC
) {
724 unsigned long in_flight
= atomic_read(&aic
->nr_queued
)
725 + atomic_read(&aic
->nr_dispatched
);
726 spin_lock(&aic
->lock
);
727 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
) ||
728 test_bit(AS_TASK_IOSTARTED
, &aic
->state
)) {
729 /* Calculate read -> read thinktime */
730 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
)
732 thinktime
= jiffies
- aic
->last_end_request
;
733 thinktime
= min(thinktime
, MAX_THINKTIME
-1);
735 as_update_thinktime(ad
, aic
, thinktime
);
737 /* Calculate read -> read seek distance */
738 if (aic
->last_request_pos
< rq
->sector
)
739 seek_dist
= rq
->sector
- aic
->last_request_pos
;
741 seek_dist
= aic
->last_request_pos
- rq
->sector
;
742 as_update_seekdist(ad
, aic
, seek_dist
);
744 aic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
745 set_bit(AS_TASK_IOSTARTED
, &aic
->state
);
746 spin_unlock(&aic
->lock
);
751 * as_close_req decides if one request is considered "close" to the
752 * previous one issued.
754 static int as_close_req(struct as_data
*ad
, struct as_io_context
*aic
,
757 unsigned long delay
; /* milliseconds */
758 sector_t last
= ad
->last_sector
[ad
->batch_data_dir
];
759 sector_t next
= arq
->request
->sector
;
760 sector_t delta
; /* acceptable close offset (in sectors) */
763 if (ad
->antic_status
== ANTIC_OFF
|| !ad
->ioc_finished
)
766 delay
= ((jiffies
- ad
->antic_start
) * 1000) / HZ
;
770 else if (delay
<= 20 && delay
<= ad
->antic_expire
)
771 delta
= 8192 << delay
;
775 if ((last
<= next
+ (delta
>>1)) && (next
<= last
+ delta
))
783 if (aic
->seek_samples
== 0) {
785 * Process has just started IO. Use past statistics to
786 * gauge success possibility
788 if (ad
->new_seek_mean
> s
) {
789 /* this request is better than what we're expecting */
794 if (aic
->seek_mean
> s
) {
795 /* this request is better than what we're expecting */
804 * as_can_break_anticipation returns true if we have been anticipating this
807 * It also returns true if the process against which we are anticipating
808 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
809 * dispatch it ASAP, because we know that application will not be submitting
812 * If the task which has submitted the request has exited, break anticipation.
814 * If this task has queued some other IO, do not enter enticipation.
816 static int as_can_break_anticipation(struct as_data
*ad
, struct as_rq
*arq
)
818 struct io_context
*ioc
;
819 struct as_io_context
*aic
;
821 ioc
= ad
->io_context
;
824 if (arq
&& ioc
== arq
->io_context
) {
825 /* request from same process */
829 if (ad
->ioc_finished
&& as_antic_expired(ad
)) {
831 * In this situation status should really be FINISHED,
832 * however the timer hasn't had the chance to run yet.
841 if (atomic_read(&aic
->nr_queued
) > 0) {
842 /* process has more requests queued */
846 if (atomic_read(&aic
->nr_dispatched
) > 0) {
847 /* process has more requests dispatched */
851 if (arq
&& arq
->is_sync
== REQ_SYNC
&& as_close_req(ad
, aic
, arq
)) {
853 * Found a close request that is not one of ours.
855 * This makes close requests from another process update
856 * our IO history. Is generally useful when there are
857 * two or more cooperating processes working in the same
860 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
861 if (aic
->ttime_samples
== 0)
862 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
864 ad
->exit_no_coop
= (7*ad
->exit_no_coop
)/8;
867 as_update_iohist(ad
, aic
, arq
->request
);
871 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
872 /* process anticipated on has exited */
873 if (aic
->ttime_samples
== 0)
874 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
876 if (ad
->exit_no_coop
> 128)
880 if (aic
->ttime_samples
== 0) {
881 if (ad
->new_ttime_mean
> ad
->antic_expire
)
883 if (ad
->exit_prob
* ad
->exit_no_coop
> 128*256)
885 } else if (aic
->ttime_mean
> ad
->antic_expire
) {
886 /* the process thinks too much between requests */
894 * as_can_anticipate indicates whether we should either run arq
895 * or keep anticipating a better request.
897 static int as_can_anticipate(struct as_data
*ad
, struct as_rq
*arq
)
901 * Last request submitted was a write
905 if (ad
->antic_status
== ANTIC_FINISHED
)
907 * Don't restart if we have just finished. Run the next request
911 if (as_can_break_anticipation(ad
, arq
))
913 * This request is a good candidate. Don't keep anticipating,
919 * OK from here, we haven't finished, and don't have a decent request!
920 * Status is either ANTIC_OFF so start waiting,
921 * ANTIC_WAIT_REQ so continue waiting for request to finish
922 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
929 * as_update_arq must be called whenever a request (arq) is added to
930 * the sort_list. This function keeps caches up to date, and checks if the
931 * request might be one we are "anticipating"
933 static void as_update_arq(struct as_data
*ad
, struct as_rq
*arq
)
935 const int data_dir
= arq
->is_sync
;
937 /* keep the next_arq cache up to date */
938 ad
->next_arq
[data_dir
] = as_choose_req(ad
, arq
, ad
->next_arq
[data_dir
]);
941 * have we been anticipating this request?
942 * or does it come from the same process as the one we are anticipating
945 if (ad
->antic_status
== ANTIC_WAIT_REQ
946 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
947 if (as_can_break_anticipation(ad
, arq
))
953 * Gathers timings and resizes the write batch automatically
955 static void update_write_batch(struct as_data
*ad
)
957 unsigned long batch
= ad
->batch_expire
[REQ_ASYNC
];
960 write_time
= (jiffies
- ad
->current_batch_expires
) + batch
;
964 if (write_time
> batch
&& !ad
->write_batch_idled
) {
965 if (write_time
> batch
* 3)
966 ad
->write_batch_count
/= 2;
968 ad
->write_batch_count
--;
969 } else if (write_time
< batch
&& ad
->current_write_count
== 0) {
970 if (batch
> write_time
* 3)
971 ad
->write_batch_count
*= 2;
973 ad
->write_batch_count
++;
976 if (ad
->write_batch_count
< 1)
977 ad
->write_batch_count
= 1;
981 * as_completed_request is to be called when a request has completed and
982 * returned something to the requesting process, be it an error or data.
984 static void as_completed_request(request_queue_t
*q
, struct request
*rq
)
986 struct as_data
*ad
= q
->elevator
->elevator_data
;
987 struct as_rq
*arq
= RQ_DATA(rq
);
989 WARN_ON(!list_empty(&rq
->queuelist
));
991 if (arq
->state
!= AS_RQ_REMOVED
) {
992 printk("arq->state %d\n", arq
->state
);
997 if (ad
->changed_batch
&& ad
->nr_dispatched
== 1) {
998 kblockd_schedule_work(&ad
->antic_work
);
999 ad
->changed_batch
= 0;
1001 if (ad
->batch_data_dir
== REQ_SYNC
)
1004 WARN_ON(ad
->nr_dispatched
== 0);
1005 ad
->nr_dispatched
--;
1008 * Start counting the batch from when a request of that direction is
1009 * actually serviced. This should help devices with big TCQ windows
1010 * and writeback caches
1012 if (ad
->new_batch
&& ad
->batch_data_dir
== arq
->is_sync
) {
1013 update_write_batch(ad
);
1014 ad
->current_batch_expires
= jiffies
+
1015 ad
->batch_expire
[REQ_SYNC
];
1019 if (ad
->io_context
== arq
->io_context
&& ad
->io_context
) {
1020 ad
->antic_start
= jiffies
;
1021 ad
->ioc_finished
= 1;
1022 if (ad
->antic_status
== ANTIC_WAIT_REQ
) {
1024 * We were waiting on this request, now anticipate
1027 as_antic_waitnext(ad
);
1031 as_put_io_context(arq
);
1033 arq
->state
= AS_RQ_POSTSCHED
;
1037 * as_remove_queued_request removes a request from the pre dispatch queue
1038 * without updating refcounts. It is expected the caller will drop the
1039 * reference unless it replaces the request at somepart of the elevator
1040 * (ie. the dispatch queue)
1042 static void as_remove_queued_request(request_queue_t
*q
, struct request
*rq
)
1044 struct as_rq
*arq
= RQ_DATA(rq
);
1045 const int data_dir
= arq
->is_sync
;
1046 struct as_data
*ad
= q
->elevator
->elevator_data
;
1048 WARN_ON(arq
->state
!= AS_RQ_QUEUED
);
1050 if (arq
->io_context
&& arq
->io_context
->aic
) {
1051 BUG_ON(!atomic_read(&arq
->io_context
->aic
->nr_queued
));
1052 atomic_dec(&arq
->io_context
->aic
->nr_queued
);
1056 * Update the "next_arq" cache if we are about to remove its
1059 if (ad
->next_arq
[data_dir
] == arq
)
1060 ad
->next_arq
[data_dir
] = as_find_next_arq(ad
, arq
);
1062 list_del_init(&arq
->fifo
);
1063 as_del_arq_hash(arq
);
1064 as_del_arq_rb(ad
, arq
);
1068 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1069 * 1 otherwise. It is ratelimited so that we only perform the check once per
1070 * `fifo_expire' interval. Otherwise a large number of expired requests
1071 * would create a hopeless seekstorm.
1073 * See as_antic_expired comment.
1075 static int as_fifo_expired(struct as_data
*ad
, int adir
)
1080 delta_jif
= jiffies
- ad
->last_check_fifo
[adir
];
1081 if (unlikely(delta_jif
< 0))
1082 delta_jif
= -delta_jif
;
1083 if (delta_jif
< ad
->fifo_expire
[adir
])
1086 ad
->last_check_fifo
[adir
] = jiffies
;
1088 if (list_empty(&ad
->fifo_list
[adir
]))
1091 arq
= list_entry_fifo(ad
->fifo_list
[adir
].next
);
1093 return time_after(jiffies
, arq
->expires
);
1097 * as_batch_expired returns true if the current batch has expired. A batch
1098 * is a set of reads or a set of writes.
1100 static inline int as_batch_expired(struct as_data
*ad
)
1102 if (ad
->changed_batch
|| ad
->new_batch
)
1105 if (ad
->batch_data_dir
== REQ_SYNC
)
1106 /* TODO! add a check so a complete fifo gets written? */
1107 return time_after(jiffies
, ad
->current_batch_expires
);
1109 return time_after(jiffies
, ad
->current_batch_expires
)
1110 || ad
->current_write_count
== 0;
1114 * move an entry to dispatch queue
1116 static void as_move_to_dispatch(struct as_data
*ad
, struct as_rq
*arq
)
1118 struct request
*rq
= arq
->request
;
1119 const int data_dir
= arq
->is_sync
;
1121 BUG_ON(!RB_EMPTY_NODE(&arq
->rb_node
));
1124 ad
->antic_status
= ANTIC_OFF
;
1127 * This has to be set in order to be correctly updated by
1130 ad
->last_sector
[data_dir
] = rq
->sector
+ rq
->nr_sectors
;
1132 if (data_dir
== REQ_SYNC
) {
1133 /* In case we have to anticipate after this */
1134 copy_io_context(&ad
->io_context
, &arq
->io_context
);
1136 if (ad
->io_context
) {
1137 put_io_context(ad
->io_context
);
1138 ad
->io_context
= NULL
;
1141 if (ad
->current_write_count
!= 0)
1142 ad
->current_write_count
--;
1144 ad
->ioc_finished
= 0;
1146 ad
->next_arq
[data_dir
] = as_find_next_arq(ad
, arq
);
1149 * take it off the sort and fifo list, add to dispatch queue
1151 as_remove_queued_request(ad
->q
, rq
);
1152 WARN_ON(arq
->state
!= AS_RQ_QUEUED
);
1154 elv_dispatch_sort(ad
->q
, rq
);
1156 arq
->state
= AS_RQ_DISPATCHED
;
1157 if (arq
->io_context
&& arq
->io_context
->aic
)
1158 atomic_inc(&arq
->io_context
->aic
->nr_dispatched
);
1159 ad
->nr_dispatched
++;
1163 * as_dispatch_request selects the best request according to
1164 * read/write expire, batch expire, etc, and moves it to the dispatch
1165 * queue. Returns 1 if a request was found, 0 otherwise.
1167 static int as_dispatch_request(request_queue_t
*q
, int force
)
1169 struct as_data
*ad
= q
->elevator
->elevator_data
;
1171 const int reads
= !list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1172 const int writes
= !list_empty(&ad
->fifo_list
[REQ_ASYNC
]);
1174 if (unlikely(force
)) {
1176 * Forced dispatch, accounting is useless. Reset
1177 * accounting states and dump fifo_lists. Note that
1178 * batch_data_dir is reset to REQ_SYNC to avoid
1179 * screwing write batch accounting as write batch
1180 * accounting occurs on W->R transition.
1184 ad
->batch_data_dir
= REQ_SYNC
;
1185 ad
->changed_batch
= 0;
1188 while (ad
->next_arq
[REQ_SYNC
]) {
1189 as_move_to_dispatch(ad
, ad
->next_arq
[REQ_SYNC
]);
1192 ad
->last_check_fifo
[REQ_SYNC
] = jiffies
;
1194 while (ad
->next_arq
[REQ_ASYNC
]) {
1195 as_move_to_dispatch(ad
, ad
->next_arq
[REQ_ASYNC
]);
1198 ad
->last_check_fifo
[REQ_ASYNC
] = jiffies
;
1203 /* Signal that the write batch was uncontended, so we can't time it */
1204 if (ad
->batch_data_dir
== REQ_ASYNC
&& !reads
) {
1205 if (ad
->current_write_count
== 0 || !writes
)
1206 ad
->write_batch_idled
= 1;
1209 if (!(reads
|| writes
)
1210 || ad
->antic_status
== ANTIC_WAIT_REQ
1211 || ad
->antic_status
== ANTIC_WAIT_NEXT
1212 || ad
->changed_batch
)
1215 if (!(reads
&& writes
&& as_batch_expired(ad
))) {
1217 * batch is still running or no reads or no writes
1219 arq
= ad
->next_arq
[ad
->batch_data_dir
];
1221 if (ad
->batch_data_dir
== REQ_SYNC
&& ad
->antic_expire
) {
1222 if (as_fifo_expired(ad
, REQ_SYNC
))
1225 if (as_can_anticipate(ad
, arq
)) {
1226 as_antic_waitreq(ad
);
1232 /* we have a "next request" */
1233 if (reads
&& !writes
)
1234 ad
->current_batch_expires
=
1235 jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1236 goto dispatch_request
;
1241 * at this point we are not running a batch. select the appropriate
1242 * data direction (read / write)
1246 BUG_ON(RB_EMPTY_ROOT(&ad
->sort_list
[REQ_SYNC
]));
1248 if (writes
&& ad
->batch_data_dir
== REQ_SYNC
)
1250 * Last batch was a read, switch to writes
1252 goto dispatch_writes
;
1254 if (ad
->batch_data_dir
== REQ_ASYNC
) {
1255 WARN_ON(ad
->new_batch
);
1256 ad
->changed_batch
= 1;
1258 ad
->batch_data_dir
= REQ_SYNC
;
1259 arq
= list_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1260 ad
->last_check_fifo
[ad
->batch_data_dir
] = jiffies
;
1261 goto dispatch_request
;
1265 * the last batch was a read
1270 BUG_ON(RB_EMPTY_ROOT(&ad
->sort_list
[REQ_ASYNC
]));
1272 if (ad
->batch_data_dir
== REQ_SYNC
) {
1273 ad
->changed_batch
= 1;
1276 * new_batch might be 1 when the queue runs out of
1277 * reads. A subsequent submission of a write might
1278 * cause a change of batch before the read is finished.
1282 ad
->batch_data_dir
= REQ_ASYNC
;
1283 ad
->current_write_count
= ad
->write_batch_count
;
1284 ad
->write_batch_idled
= 0;
1285 arq
= ad
->next_arq
[ad
->batch_data_dir
];
1286 goto dispatch_request
;
1294 * If a request has expired, service it.
1297 if (as_fifo_expired(ad
, ad
->batch_data_dir
)) {
1299 arq
= list_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1300 BUG_ON(arq
== NULL
);
1303 if (ad
->changed_batch
) {
1304 WARN_ON(ad
->new_batch
);
1306 if (ad
->nr_dispatched
)
1309 if (ad
->batch_data_dir
== REQ_ASYNC
)
1310 ad
->current_batch_expires
= jiffies
+
1311 ad
->batch_expire
[REQ_ASYNC
];
1315 ad
->changed_batch
= 0;
1319 * arq is the selected appropriate request.
1321 as_move_to_dispatch(ad
, arq
);
1327 * add arq to rbtree and fifo
1329 static void as_add_request(request_queue_t
*q
, struct request
*rq
)
1331 struct as_data
*ad
= q
->elevator
->elevator_data
;
1332 struct as_rq
*arq
= RQ_DATA(rq
);
1335 arq
->state
= AS_RQ_NEW
;
1337 if (rq_data_dir(arq
->request
) == READ
1338 || (arq
->request
->flags
& REQ_RW_SYNC
))
1342 data_dir
= arq
->is_sync
;
1344 arq
->io_context
= as_get_io_context();
1346 if (arq
->io_context
) {
1347 as_update_iohist(ad
, arq
->io_context
->aic
, arq
->request
);
1348 atomic_inc(&arq
->io_context
->aic
->nr_queued
);
1351 as_add_arq_rb(ad
, arq
);
1352 if (rq_mergeable(arq
->request
))
1353 as_add_arq_hash(ad
, arq
);
1356 * set expire time (only used for reads) and add to fifo list
1358 arq
->expires
= jiffies
+ ad
->fifo_expire
[data_dir
];
1359 list_add_tail(&arq
->fifo
, &ad
->fifo_list
[data_dir
]);
1361 as_update_arq(ad
, arq
); /* keep state machine up to date */
1362 arq
->state
= AS_RQ_QUEUED
;
1365 static void as_activate_request(request_queue_t
*q
, struct request
*rq
)
1367 struct as_rq
*arq
= RQ_DATA(rq
);
1369 WARN_ON(arq
->state
!= AS_RQ_DISPATCHED
);
1370 arq
->state
= AS_RQ_REMOVED
;
1371 if (arq
->io_context
&& arq
->io_context
->aic
)
1372 atomic_dec(&arq
->io_context
->aic
->nr_dispatched
);
1375 static void as_deactivate_request(request_queue_t
*q
, struct request
*rq
)
1377 struct as_rq
*arq
= RQ_DATA(rq
);
1379 WARN_ON(arq
->state
!= AS_RQ_REMOVED
);
1380 arq
->state
= AS_RQ_DISPATCHED
;
1381 if (arq
->io_context
&& arq
->io_context
->aic
)
1382 atomic_inc(&arq
->io_context
->aic
->nr_dispatched
);
1386 * as_queue_empty tells us if there are requests left in the device. It may
1387 * not be the case that a driver can get the next request even if the queue
1388 * is not empty - it is used in the block layer to check for plugging and
1389 * merging opportunities
1391 static int as_queue_empty(request_queue_t
*q
)
1393 struct as_data
*ad
= q
->elevator
->elevator_data
;
1395 return list_empty(&ad
->fifo_list
[REQ_ASYNC
])
1396 && list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1399 static struct request
*as_former_request(request_queue_t
*q
,
1402 struct as_rq
*arq
= RQ_DATA(rq
);
1403 struct rb_node
*rbprev
= rb_prev(&arq
->rb_node
);
1404 struct request
*ret
= NULL
;
1407 ret
= rb_entry_arq(rbprev
)->request
;
1412 static struct request
*as_latter_request(request_queue_t
*q
,
1415 struct as_rq
*arq
= RQ_DATA(rq
);
1416 struct rb_node
*rbnext
= rb_next(&arq
->rb_node
);
1417 struct request
*ret
= NULL
;
1420 ret
= rb_entry_arq(rbnext
)->request
;
1426 as_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
1428 struct as_data
*ad
= q
->elevator
->elevator_data
;
1429 sector_t rb_key
= bio
->bi_sector
+ bio_sectors(bio
);
1430 struct request
*__rq
;
1434 * see if the merge hash can satisfy a back merge
1436 __rq
= as_find_arq_hash(ad
, bio
->bi_sector
);
1438 BUG_ON(__rq
->sector
+ __rq
->nr_sectors
!= bio
->bi_sector
);
1440 if (elv_rq_merge_ok(__rq
, bio
)) {
1441 ret
= ELEVATOR_BACK_MERGE
;
1447 * check for front merge
1449 __rq
= as_find_arq_rb(ad
, rb_key
, bio_data_dir(bio
));
1451 BUG_ON(rb_key
!= rq_rb_key(__rq
));
1453 if (elv_rq_merge_ok(__rq
, bio
)) {
1454 ret
= ELEVATOR_FRONT_MERGE
;
1459 return ELEVATOR_NO_MERGE
;
1462 if (rq_mergeable(__rq
))
1463 as_hot_arq_hash(ad
, RQ_DATA(__rq
));
1469 static void as_merged_request(request_queue_t
*q
, struct request
*req
)
1471 struct as_data
*ad
= q
->elevator
->elevator_data
;
1472 struct as_rq
*arq
= RQ_DATA(req
);
1475 * hash always needs to be repositioned, key is end sector
1477 as_del_arq_hash(arq
);
1478 as_add_arq_hash(ad
, arq
);
1481 * if the merge was a front merge, we need to reposition request
1483 if (rq_rb_key(req
) != arq
->rb_key
) {
1484 as_del_arq_rb(ad
, arq
);
1485 as_add_arq_rb(ad
, arq
);
1487 * Note! At this stage of this and the next function, our next
1488 * request may not be optimal - eg the request may have "grown"
1489 * behind the disk head. We currently don't bother adjusting.
1494 static void as_merged_requests(request_queue_t
*q
, struct request
*req
,
1495 struct request
*next
)
1497 struct as_data
*ad
= q
->elevator
->elevator_data
;
1498 struct as_rq
*arq
= RQ_DATA(req
);
1499 struct as_rq
*anext
= RQ_DATA(next
);
1505 * reposition arq (this is the merged request) in hash, and in rbtree
1506 * in case of a front merge
1508 as_del_arq_hash(arq
);
1509 as_add_arq_hash(ad
, arq
);
1511 if (rq_rb_key(req
) != arq
->rb_key
) {
1512 as_del_arq_rb(ad
, arq
);
1513 as_add_arq_rb(ad
, arq
);
1517 * if anext expires before arq, assign its expire time to arq
1518 * and move into anext position (anext will be deleted) in fifo
1520 if (!list_empty(&arq
->fifo
) && !list_empty(&anext
->fifo
)) {
1521 if (time_before(anext
->expires
, arq
->expires
)) {
1522 list_move(&arq
->fifo
, &anext
->fifo
);
1523 arq
->expires
= anext
->expires
;
1525 * Don't copy here but swap, because when anext is
1526 * removed below, it must contain the unused context
1528 swap_io_context(&arq
->io_context
, &anext
->io_context
);
1533 * kill knowledge of next, this one is a goner
1535 as_remove_queued_request(q
, next
);
1536 as_put_io_context(anext
);
1538 anext
->state
= AS_RQ_MERGED
;
1542 * This is executed in a "deferred" process context, by kblockd. It calls the
1543 * driver's request_fn so the driver can submit that request.
1545 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1546 * state before calling, and don't rely on any state over calls.
1548 * FIXME! dispatch queue is not a queue at all!
1550 static void as_work_handler(void *data
)
1552 struct request_queue
*q
= data
;
1553 unsigned long flags
;
1555 spin_lock_irqsave(q
->queue_lock
, flags
);
1556 if (!as_queue_empty(q
))
1558 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1561 static void as_put_request(request_queue_t
*q
, struct request
*rq
)
1563 struct as_data
*ad
= q
->elevator
->elevator_data
;
1564 struct as_rq
*arq
= RQ_DATA(rq
);
1571 if (unlikely(arq
->state
!= AS_RQ_POSTSCHED
&&
1572 arq
->state
!= AS_RQ_PRESCHED
&&
1573 arq
->state
!= AS_RQ_MERGED
)) {
1574 printk("arq->state %d\n", arq
->state
);
1578 mempool_free(arq
, ad
->arq_pool
);
1579 rq
->elevator_private
= NULL
;
1582 static int as_set_request(request_queue_t
*q
, struct request
*rq
,
1583 struct bio
*bio
, gfp_t gfp_mask
)
1585 struct as_data
*ad
= q
->elevator
->elevator_data
;
1586 struct as_rq
*arq
= mempool_alloc(ad
->arq_pool
, gfp_mask
);
1589 memset(arq
, 0, sizeof(*arq
));
1590 RB_CLEAR_NODE(&arq
->rb_node
);
1592 arq
->state
= AS_RQ_PRESCHED
;
1593 arq
->io_context
= NULL
;
1594 INIT_HLIST_NODE(&arq
->hash
);
1595 INIT_LIST_HEAD(&arq
->fifo
);
1596 rq
->elevator_private
= arq
;
1603 static int as_may_queue(request_queue_t
*q
, int rw
, struct bio
*bio
)
1605 int ret
= ELV_MQUEUE_MAY
;
1606 struct as_data
*ad
= q
->elevator
->elevator_data
;
1607 struct io_context
*ioc
;
1608 if (ad
->antic_status
== ANTIC_WAIT_REQ
||
1609 ad
->antic_status
== ANTIC_WAIT_NEXT
) {
1610 ioc
= as_get_io_context();
1611 if (ad
->io_context
== ioc
)
1612 ret
= ELV_MQUEUE_MUST
;
1613 put_io_context(ioc
);
1619 static void as_exit_queue(elevator_t
*e
)
1621 struct as_data
*ad
= e
->elevator_data
;
1623 del_timer_sync(&ad
->antic_timer
);
1626 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_SYNC
]));
1627 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_ASYNC
]));
1629 mempool_destroy(ad
->arq_pool
);
1630 put_io_context(ad
->io_context
);
1636 * initialize elevator private data (as_data), and alloc a arq for
1637 * each request on the free lists
1639 static void *as_init_queue(request_queue_t
*q
, elevator_t
*e
)
1647 ad
= kmalloc_node(sizeof(*ad
), GFP_KERNEL
, q
->node
);
1650 memset(ad
, 0, sizeof(*ad
));
1652 ad
->q
= q
; /* Identify what queue the data belongs to */
1654 ad
->hash
= kmalloc_node(sizeof(struct hlist_head
)*AS_HASH_ENTRIES
,
1655 GFP_KERNEL
, q
->node
);
1661 ad
->arq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1662 mempool_free_slab
, arq_pool
, q
->node
);
1663 if (!ad
->arq_pool
) {
1669 /* anticipatory scheduling helpers */
1670 ad
->antic_timer
.function
= as_antic_timeout
;
1671 ad
->antic_timer
.data
= (unsigned long)q
;
1672 init_timer(&ad
->antic_timer
);
1673 INIT_WORK(&ad
->antic_work
, as_work_handler
, q
);
1675 for (i
= 0; i
< AS_HASH_ENTRIES
; i
++)
1676 INIT_HLIST_HEAD(&ad
->hash
[i
]);
1678 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_SYNC
]);
1679 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_ASYNC
]);
1680 ad
->sort_list
[REQ_SYNC
] = RB_ROOT
;
1681 ad
->sort_list
[REQ_ASYNC
] = RB_ROOT
;
1682 ad
->fifo_expire
[REQ_SYNC
] = default_read_expire
;
1683 ad
->fifo_expire
[REQ_ASYNC
] = default_write_expire
;
1684 ad
->antic_expire
= default_antic_expire
;
1685 ad
->batch_expire
[REQ_SYNC
] = default_read_batch_expire
;
1686 ad
->batch_expire
[REQ_ASYNC
] = default_write_batch_expire
;
1688 ad
->current_batch_expires
= jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1689 ad
->write_batch_count
= ad
->batch_expire
[REQ_ASYNC
] / 10;
1690 if (ad
->write_batch_count
< 2)
1691 ad
->write_batch_count
= 2;
1701 as_var_show(unsigned int var
, char *page
)
1703 return sprintf(page
, "%d\n", var
);
1707 as_var_store(unsigned long *var
, const char *page
, size_t count
)
1709 char *p
= (char *) page
;
1711 *var
= simple_strtoul(p
, &p
, 10);
1715 static ssize_t
est_time_show(elevator_t
*e
, char *page
)
1717 struct as_data
*ad
= e
->elevator_data
;
1720 pos
+= sprintf(page
+pos
, "%lu %% exit probability\n",
1721 100*ad
->exit_prob
/256);
1722 pos
+= sprintf(page
+pos
, "%lu %% probability of exiting without a "
1723 "cooperating process submitting IO\n",
1724 100*ad
->exit_no_coop
/256);
1725 pos
+= sprintf(page
+pos
, "%lu ms new thinktime\n", ad
->new_ttime_mean
);
1726 pos
+= sprintf(page
+pos
, "%llu sectors new seek distance\n",
1727 (unsigned long long)ad
->new_seek_mean
);
1732 #define SHOW_FUNCTION(__FUNC, __VAR) \
1733 static ssize_t __FUNC(elevator_t *e, char *page) \
1735 struct as_data *ad = e->elevator_data; \
1736 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1738 SHOW_FUNCTION(as_read_expire_show
, ad
->fifo_expire
[REQ_SYNC
]);
1739 SHOW_FUNCTION(as_write_expire_show
, ad
->fifo_expire
[REQ_ASYNC
]);
1740 SHOW_FUNCTION(as_antic_expire_show
, ad
->antic_expire
);
1741 SHOW_FUNCTION(as_read_batch_expire_show
, ad
->batch_expire
[REQ_SYNC
]);
1742 SHOW_FUNCTION(as_write_batch_expire_show
, ad
->batch_expire
[REQ_ASYNC
]);
1743 #undef SHOW_FUNCTION
1745 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1746 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1748 struct as_data *ad = e->elevator_data; \
1749 int ret = as_var_store(__PTR, (page), count); \
1750 if (*(__PTR) < (MIN)) \
1752 else if (*(__PTR) > (MAX)) \
1754 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1757 STORE_FUNCTION(as_read_expire_store
, &ad
->fifo_expire
[REQ_SYNC
], 0, INT_MAX
);
1758 STORE_FUNCTION(as_write_expire_store
, &ad
->fifo_expire
[REQ_ASYNC
], 0, INT_MAX
);
1759 STORE_FUNCTION(as_antic_expire_store
, &ad
->antic_expire
, 0, INT_MAX
);
1760 STORE_FUNCTION(as_read_batch_expire_store
,
1761 &ad
->batch_expire
[REQ_SYNC
], 0, INT_MAX
);
1762 STORE_FUNCTION(as_write_batch_expire_store
,
1763 &ad
->batch_expire
[REQ_ASYNC
], 0, INT_MAX
);
1764 #undef STORE_FUNCTION
1766 #define AS_ATTR(name) \
1767 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1769 static struct elv_fs_entry as_attrs
[] = {
1770 __ATTR_RO(est_time
),
1771 AS_ATTR(read_expire
),
1772 AS_ATTR(write_expire
),
1773 AS_ATTR(antic_expire
),
1774 AS_ATTR(read_batch_expire
),
1775 AS_ATTR(write_batch_expire
),
1779 static struct elevator_type iosched_as
= {
1781 .elevator_merge_fn
= as_merge
,
1782 .elevator_merged_fn
= as_merged_request
,
1783 .elevator_merge_req_fn
= as_merged_requests
,
1784 .elevator_dispatch_fn
= as_dispatch_request
,
1785 .elevator_add_req_fn
= as_add_request
,
1786 .elevator_activate_req_fn
= as_activate_request
,
1787 .elevator_deactivate_req_fn
= as_deactivate_request
,
1788 .elevator_queue_empty_fn
= as_queue_empty
,
1789 .elevator_completed_req_fn
= as_completed_request
,
1790 .elevator_former_req_fn
= as_former_request
,
1791 .elevator_latter_req_fn
= as_latter_request
,
1792 .elevator_set_req_fn
= as_set_request
,
1793 .elevator_put_req_fn
= as_put_request
,
1794 .elevator_may_queue_fn
= as_may_queue
,
1795 .elevator_init_fn
= as_init_queue
,
1796 .elevator_exit_fn
= as_exit_queue
,
1800 .elevator_attrs
= as_attrs
,
1801 .elevator_name
= "anticipatory",
1802 .elevator_owner
= THIS_MODULE
,
1805 static int __init
as_init(void)
1809 arq_pool
= kmem_cache_create("as_arq", sizeof(struct as_rq
),
1814 ret
= elv_register(&iosched_as
);
1817 * don't allow AS to get unregistered, since we would have
1818 * to browse all tasks in the system and release their
1819 * as_io_context first
1821 __module_get(THIS_MODULE
);
1825 kmem_cache_destroy(arq_pool
);
1829 static void __exit
as_exit(void)
1831 DECLARE_COMPLETION(all_gone
);
1832 elv_unregister(&iosched_as
);
1833 ioc_gone
= &all_gone
;
1834 /* ioc_gone's update must be visible before reading ioc_count */
1836 if (atomic_read(&ioc_count
))
1837 wait_for_completion(ioc_gone
);
1839 kmem_cache_destroy(arq_pool
);
1842 module_init(as_init
);
1843 module_exit(as_exit
);
1845 MODULE_AUTHOR("Nick Piggin");
1846 MODULE_LICENSE("GPL");
1847 MODULE_DESCRIPTION("anticipatory IO scheduler");