USB: Check bandwidth when switching alt settings.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / core / message.c
blobed83f2b1d551ec529e7e4ff27129bf2d1389d5d1
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <asm/byteorder.h>
19 #include "hcd.h" /* for usbcore internals */
20 #include "usb.h"
22 static void cancel_async_set_config(struct usb_device *udev);
24 struct api_context {
25 struct completion done;
26 int status;
29 static void usb_api_blocking_completion(struct urb *urb)
31 struct api_context *ctx = urb->context;
33 ctx->status = urb->status;
34 complete(&ctx->done);
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71 out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
75 usb_free_urb(urb);
76 return retval;
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
86 struct urb *urb;
87 int retv;
88 int length;
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
117 * Context: !in_interrupt ()
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
136 struct usb_ctrlrequest *dr;
137 int ret;
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
149 /* dbg("usb_control_msg"); */
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 kfree(dr);
155 return ret;
157 EXPORT_SYMBOL_GPL(usb_control_msg);
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
170 * Context: !in_interrupt ()
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
183 * the request.
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
203 * Context: !in_interrupt ()
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
216 * the request.
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
229 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
230 [usb_pipeendpoint(pipe)];
231 if (!ep || len < 0)
232 return -EINVAL;
234 urb = usb_alloc_urb(0, GFP_KERNEL);
235 if (!urb)
236 return -ENOMEM;
238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 USB_ENDPOINT_XFER_INT) {
240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 usb_api_blocking_completion, NULL,
243 ep->desc.bInterval);
244 } else
245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL);
248 return usb_start_wait_urb(urb, timeout, actual_length);
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
252 /*-------------------------------------------------------------------*/
254 static void sg_clean(struct usb_sg_request *io)
256 if (io->urbs) {
257 while (io->entries--)
258 usb_free_urb(io->urbs [io->entries]);
259 kfree(io->urbs);
260 io->urbs = NULL;
262 if (io->dev->dev.dma_mask != NULL)
263 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
264 io->sg, io->nents);
265 io->dev = NULL;
268 static void sg_complete(struct urb *urb)
270 struct usb_sg_request *io = urb->context;
271 int status = urb->status;
273 spin_lock(&io->lock);
275 /* In 2.5 we require hcds' endpoint queues not to progress after fault
276 * reports, until the completion callback (this!) returns. That lets
277 * device driver code (like this routine) unlink queued urbs first,
278 * if it needs to, since the HC won't work on them at all. So it's
279 * not possible for page N+1 to overwrite page N, and so on.
281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 * complete before the HCD can get requests away from hardware,
283 * though never during cleanup after a hard fault.
285 if (io->status
286 && (io->status != -ECONNRESET
287 || status != -ECONNRESET)
288 && urb->actual_length) {
289 dev_err(io->dev->bus->controller,
290 "dev %s ep%d%s scatterlist error %d/%d\n",
291 io->dev->devpath,
292 usb_endpoint_num(&urb->ep->desc),
293 usb_urb_dir_in(urb) ? "in" : "out",
294 status, io->status);
295 /* BUG (); */
298 if (io->status == 0 && status && status != -ECONNRESET) {
299 int i, found, retval;
301 io->status = status;
303 /* the previous urbs, and this one, completed already.
304 * unlink pending urbs so they won't rx/tx bad data.
305 * careful: unlink can sometimes be synchronous...
307 spin_unlock(&io->lock);
308 for (i = 0, found = 0; i < io->entries; i++) {
309 if (!io->urbs [i] || !io->urbs [i]->dev)
310 continue;
311 if (found) {
312 retval = usb_unlink_urb(io->urbs [i]);
313 if (retval != -EINPROGRESS &&
314 retval != -ENODEV &&
315 retval != -EBUSY)
316 dev_err(&io->dev->dev,
317 "%s, unlink --> %d\n",
318 __func__, retval);
319 } else if (urb == io->urbs [i])
320 found = 1;
322 spin_lock(&io->lock);
324 urb->dev = NULL;
326 /* on the last completion, signal usb_sg_wait() */
327 io->bytes += urb->actual_length;
328 io->count--;
329 if (!io->count)
330 complete(&io->complete);
332 spin_unlock(&io->lock);
337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338 * @io: request block being initialized. until usb_sg_wait() returns,
339 * treat this as a pointer to an opaque block of memory,
340 * @dev: the usb device that will send or receive the data
341 * @pipe: endpoint "pipe" used to transfer the data
342 * @period: polling rate for interrupt endpoints, in frames or
343 * (for high speed endpoints) microframes; ignored for bulk
344 * @sg: scatterlist entries
345 * @nents: how many entries in the scatterlist
346 * @length: how many bytes to send from the scatterlist, or zero to
347 * send every byte identified in the list.
348 * @mem_flags: SLAB_* flags affecting memory allocations in this call
350 * Returns zero for success, else a negative errno value. This initializes a
351 * scatter/gather request, allocating resources such as I/O mappings and urb
352 * memory (except maybe memory used by USB controller drivers).
354 * The request must be issued using usb_sg_wait(), which waits for the I/O to
355 * complete (or to be canceled) and then cleans up all resources allocated by
356 * usb_sg_init().
358 * The request may be canceled with usb_sg_cancel(), either before or after
359 * usb_sg_wait() is called.
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 unsigned pipe, unsigned period, struct scatterlist *sg,
363 int nents, size_t length, gfp_t mem_flags)
365 int i;
366 int urb_flags;
367 int dma;
368 int use_sg;
370 if (!io || !dev || !sg
371 || usb_pipecontrol(pipe)
372 || usb_pipeisoc(pipe)
373 || nents <= 0)
374 return -EINVAL;
376 spin_lock_init(&io->lock);
377 io->dev = dev;
378 io->pipe = pipe;
379 io->sg = sg;
380 io->nents = nents;
382 /* not all host controllers use DMA (like the mainstream pci ones);
383 * they can use PIO (sl811) or be software over another transport.
385 dma = (dev->dev.dma_mask != NULL);
386 if (dma)
387 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
388 sg, nents);
389 else
390 io->entries = nents;
392 /* initialize all the urbs we'll use */
393 if (io->entries <= 0)
394 return io->entries;
396 if (dev->bus->sg_tablesize > 0) {
397 io->urbs = kmalloc(sizeof *io->urbs, mem_flags);
398 use_sg = true;
399 } else {
400 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
401 use_sg = false;
403 if (!io->urbs)
404 goto nomem;
406 urb_flags = 0;
407 if (dma)
408 urb_flags |= URB_NO_TRANSFER_DMA_MAP;
409 if (usb_pipein(pipe))
410 urb_flags |= URB_SHORT_NOT_OK;
412 if (use_sg) {
413 io->urbs[0] = usb_alloc_urb(0, mem_flags);
414 if (!io->urbs[0]) {
415 io->entries = 0;
416 goto nomem;
419 io->urbs[0]->dev = NULL;
420 io->urbs[0]->pipe = pipe;
421 io->urbs[0]->interval = period;
422 io->urbs[0]->transfer_flags = urb_flags;
424 io->urbs[0]->complete = sg_complete;
425 io->urbs[0]->context = io;
426 /* A length of zero means transfer the whole sg list */
427 io->urbs[0]->transfer_buffer_length = length;
428 if (length == 0) {
429 for_each_sg(sg, sg, io->entries, i) {
430 io->urbs[0]->transfer_buffer_length +=
431 sg_dma_len(sg);
434 io->urbs[0]->sg = io;
435 io->urbs[0]->num_sgs = io->entries;
436 io->entries = 1;
437 } else {
438 urb_flags |= URB_NO_INTERRUPT;
439 for_each_sg(sg, sg, io->entries, i) {
440 unsigned len;
442 io->urbs[i] = usb_alloc_urb(0, mem_flags);
443 if (!io->urbs[i]) {
444 io->entries = i;
445 goto nomem;
448 io->urbs[i]->dev = NULL;
449 io->urbs[i]->pipe = pipe;
450 io->urbs[i]->interval = period;
451 io->urbs[i]->transfer_flags = urb_flags;
453 io->urbs[i]->complete = sg_complete;
454 io->urbs[i]->context = io;
457 * Some systems need to revert to PIO when DMA is temporarily
458 * unavailable. For their sakes, both transfer_buffer and
459 * transfer_dma are set when possible.
461 * Note that if IOMMU coalescing occurred, we cannot
462 * trust sg_page anymore, so check if S/G list shrunk.
464 if (io->nents == io->entries && !PageHighMem(sg_page(sg)))
465 io->urbs[i]->transfer_buffer = sg_virt(sg);
466 else
467 io->urbs[i]->transfer_buffer = NULL;
469 if (dma) {
470 io->urbs[i]->transfer_dma = sg_dma_address(sg);
471 len = sg_dma_len(sg);
472 } else {
473 /* hc may use _only_ transfer_buffer */
474 len = sg->length;
477 if (length) {
478 len = min_t(unsigned, len, length);
479 length -= len;
480 if (length == 0)
481 io->entries = i + 1;
483 io->urbs[i]->transfer_buffer_length = len;
485 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
488 /* transaction state */
489 io->count = io->entries;
490 io->status = 0;
491 io->bytes = 0;
492 init_completion(&io->complete);
493 return 0;
495 nomem:
496 sg_clean(io);
497 return -ENOMEM;
499 EXPORT_SYMBOL_GPL(usb_sg_init);
502 * usb_sg_wait - synchronously execute scatter/gather request
503 * @io: request block handle, as initialized with usb_sg_init().
504 * some fields become accessible when this call returns.
505 * Context: !in_interrupt ()
507 * This function blocks until the specified I/O operation completes. It
508 * leverages the grouping of the related I/O requests to get good transfer
509 * rates, by queueing the requests. At higher speeds, such queuing can
510 * significantly improve USB throughput.
512 * There are three kinds of completion for this function.
513 * (1) success, where io->status is zero. The number of io->bytes
514 * transferred is as requested.
515 * (2) error, where io->status is a negative errno value. The number
516 * of io->bytes transferred before the error is usually less
517 * than requested, and can be nonzero.
518 * (3) cancellation, a type of error with status -ECONNRESET that
519 * is initiated by usb_sg_cancel().
521 * When this function returns, all memory allocated through usb_sg_init() or
522 * this call will have been freed. The request block parameter may still be
523 * passed to usb_sg_cancel(), or it may be freed. It could also be
524 * reinitialized and then reused.
526 * Data Transfer Rates:
528 * Bulk transfers are valid for full or high speed endpoints.
529 * The best full speed data rate is 19 packets of 64 bytes each
530 * per frame, or 1216 bytes per millisecond.
531 * The best high speed data rate is 13 packets of 512 bytes each
532 * per microframe, or 52 KBytes per millisecond.
534 * The reason to use interrupt transfers through this API would most likely
535 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
536 * could be transferred. That capability is less useful for low or full
537 * speed interrupt endpoints, which allow at most one packet per millisecond,
538 * of at most 8 or 64 bytes (respectively).
540 * It is not necessary to call this function to reserve bandwidth for devices
541 * under an xHCI host controller, as the bandwidth is reserved when the
542 * configuration or interface alt setting is selected.
544 void usb_sg_wait(struct usb_sg_request *io)
546 int i;
547 int entries = io->entries;
549 /* queue the urbs. */
550 spin_lock_irq(&io->lock);
551 i = 0;
552 while (i < entries && !io->status) {
553 int retval;
555 io->urbs[i]->dev = io->dev;
556 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
558 /* after we submit, let completions or cancelations fire;
559 * we handshake using io->status.
561 spin_unlock_irq(&io->lock);
562 switch (retval) {
563 /* maybe we retrying will recover */
564 case -ENXIO: /* hc didn't queue this one */
565 case -EAGAIN:
566 case -ENOMEM:
567 io->urbs[i]->dev = NULL;
568 retval = 0;
569 yield();
570 break;
572 /* no error? continue immediately.
574 * NOTE: to work better with UHCI (4K I/O buffer may
575 * need 3K of TDs) it may be good to limit how many
576 * URBs are queued at once; N milliseconds?
578 case 0:
579 ++i;
580 cpu_relax();
581 break;
583 /* fail any uncompleted urbs */
584 default:
585 io->urbs[i]->dev = NULL;
586 io->urbs[i]->status = retval;
587 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
588 __func__, retval);
589 usb_sg_cancel(io);
591 spin_lock_irq(&io->lock);
592 if (retval && (io->status == 0 || io->status == -ECONNRESET))
593 io->status = retval;
595 io->count -= entries - i;
596 if (io->count == 0)
597 complete(&io->complete);
598 spin_unlock_irq(&io->lock);
600 /* OK, yes, this could be packaged as non-blocking.
601 * So could the submit loop above ... but it's easier to
602 * solve neither problem than to solve both!
604 wait_for_completion(&io->complete);
606 sg_clean(io);
608 EXPORT_SYMBOL_GPL(usb_sg_wait);
611 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
612 * @io: request block, initialized with usb_sg_init()
614 * This stops a request after it has been started by usb_sg_wait().
615 * It can also prevents one initialized by usb_sg_init() from starting,
616 * so that call just frees resources allocated to the request.
618 void usb_sg_cancel(struct usb_sg_request *io)
620 unsigned long flags;
622 spin_lock_irqsave(&io->lock, flags);
624 /* shut everything down, if it didn't already */
625 if (!io->status) {
626 int i;
628 io->status = -ECONNRESET;
629 spin_unlock(&io->lock);
630 for (i = 0; i < io->entries; i++) {
631 int retval;
633 if (!io->urbs [i]->dev)
634 continue;
635 retval = usb_unlink_urb(io->urbs [i]);
636 if (retval != -EINPROGRESS && retval != -EBUSY)
637 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
638 __func__, retval);
640 spin_lock(&io->lock);
642 spin_unlock_irqrestore(&io->lock, flags);
644 EXPORT_SYMBOL_GPL(usb_sg_cancel);
646 /*-------------------------------------------------------------------*/
649 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
650 * @dev: the device whose descriptor is being retrieved
651 * @type: the descriptor type (USB_DT_*)
652 * @index: the number of the descriptor
653 * @buf: where to put the descriptor
654 * @size: how big is "buf"?
655 * Context: !in_interrupt ()
657 * Gets a USB descriptor. Convenience functions exist to simplify
658 * getting some types of descriptors. Use
659 * usb_get_string() or usb_string() for USB_DT_STRING.
660 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
661 * are part of the device structure.
662 * In addition to a number of USB-standard descriptors, some
663 * devices also use class-specific or vendor-specific descriptors.
665 * This call is synchronous, and may not be used in an interrupt context.
667 * Returns the number of bytes received on success, or else the status code
668 * returned by the underlying usb_control_msg() call.
670 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
671 unsigned char index, void *buf, int size)
673 int i;
674 int result;
676 memset(buf, 0, size); /* Make sure we parse really received data */
678 for (i = 0; i < 3; ++i) {
679 /* retry on length 0 or error; some devices are flakey */
680 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
681 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
682 (type << 8) + index, 0, buf, size,
683 USB_CTRL_GET_TIMEOUT);
684 if (result <= 0 && result != -ETIMEDOUT)
685 continue;
686 if (result > 1 && ((u8 *)buf)[1] != type) {
687 result = -ENODATA;
688 continue;
690 break;
692 return result;
694 EXPORT_SYMBOL_GPL(usb_get_descriptor);
697 * usb_get_string - gets a string descriptor
698 * @dev: the device whose string descriptor is being retrieved
699 * @langid: code for language chosen (from string descriptor zero)
700 * @index: the number of the descriptor
701 * @buf: where to put the string
702 * @size: how big is "buf"?
703 * Context: !in_interrupt ()
705 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
706 * in little-endian byte order).
707 * The usb_string() function will often be a convenient way to turn
708 * these strings into kernel-printable form.
710 * Strings may be referenced in device, configuration, interface, or other
711 * descriptors, and could also be used in vendor-specific ways.
713 * This call is synchronous, and may not be used in an interrupt context.
715 * Returns the number of bytes received on success, or else the status code
716 * returned by the underlying usb_control_msg() call.
718 static int usb_get_string(struct usb_device *dev, unsigned short langid,
719 unsigned char index, void *buf, int size)
721 int i;
722 int result;
724 for (i = 0; i < 3; ++i) {
725 /* retry on length 0 or stall; some devices are flakey */
726 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
727 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
728 (USB_DT_STRING << 8) + index, langid, buf, size,
729 USB_CTRL_GET_TIMEOUT);
730 if (result == 0 || result == -EPIPE)
731 continue;
732 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
733 result = -ENODATA;
734 continue;
736 break;
738 return result;
741 static void usb_try_string_workarounds(unsigned char *buf, int *length)
743 int newlength, oldlength = *length;
745 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
746 if (!isprint(buf[newlength]) || buf[newlength + 1])
747 break;
749 if (newlength > 2) {
750 buf[0] = newlength;
751 *length = newlength;
755 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
756 unsigned int index, unsigned char *buf)
758 int rc;
760 /* Try to read the string descriptor by asking for the maximum
761 * possible number of bytes */
762 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
763 rc = -EIO;
764 else
765 rc = usb_get_string(dev, langid, index, buf, 255);
767 /* If that failed try to read the descriptor length, then
768 * ask for just that many bytes */
769 if (rc < 2) {
770 rc = usb_get_string(dev, langid, index, buf, 2);
771 if (rc == 2)
772 rc = usb_get_string(dev, langid, index, buf, buf[0]);
775 if (rc >= 2) {
776 if (!buf[0] && !buf[1])
777 usb_try_string_workarounds(buf, &rc);
779 /* There might be extra junk at the end of the descriptor */
780 if (buf[0] < rc)
781 rc = buf[0];
783 rc = rc - (rc & 1); /* force a multiple of two */
786 if (rc < 2)
787 rc = (rc < 0 ? rc : -EINVAL);
789 return rc;
792 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
794 int err;
796 if (dev->have_langid)
797 return 0;
799 if (dev->string_langid < 0)
800 return -EPIPE;
802 err = usb_string_sub(dev, 0, 0, tbuf);
804 /* If the string was reported but is malformed, default to english
805 * (0x0409) */
806 if (err == -ENODATA || (err > 0 && err < 4)) {
807 dev->string_langid = 0x0409;
808 dev->have_langid = 1;
809 dev_err(&dev->dev,
810 "string descriptor 0 malformed (err = %d), "
811 "defaulting to 0x%04x\n",
812 err, dev->string_langid);
813 return 0;
816 /* In case of all other errors, we assume the device is not able to
817 * deal with strings at all. Set string_langid to -1 in order to
818 * prevent any string to be retrieved from the device */
819 if (err < 0) {
820 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
821 err);
822 dev->string_langid = -1;
823 return -EPIPE;
826 /* always use the first langid listed */
827 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
828 dev->have_langid = 1;
829 dev_dbg(&dev->dev, "default language 0x%04x\n",
830 dev->string_langid);
831 return 0;
835 * usb_string - returns UTF-8 version of a string descriptor
836 * @dev: the device whose string descriptor is being retrieved
837 * @index: the number of the descriptor
838 * @buf: where to put the string
839 * @size: how big is "buf"?
840 * Context: !in_interrupt ()
842 * This converts the UTF-16LE encoded strings returned by devices, from
843 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
844 * that are more usable in most kernel contexts. Note that this function
845 * chooses strings in the first language supported by the device.
847 * This call is synchronous, and may not be used in an interrupt context.
849 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
851 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
853 unsigned char *tbuf;
854 int err;
856 if (dev->state == USB_STATE_SUSPENDED)
857 return -EHOSTUNREACH;
858 if (size <= 0 || !buf || !index)
859 return -EINVAL;
860 buf[0] = 0;
861 tbuf = kmalloc(256, GFP_NOIO);
862 if (!tbuf)
863 return -ENOMEM;
865 err = usb_get_langid(dev, tbuf);
866 if (err < 0)
867 goto errout;
869 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
870 if (err < 0)
871 goto errout;
873 size--; /* leave room for trailing NULL char in output buffer */
874 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
875 UTF16_LITTLE_ENDIAN, buf, size);
876 buf[err] = 0;
878 if (tbuf[1] != USB_DT_STRING)
879 dev_dbg(&dev->dev,
880 "wrong descriptor type %02x for string %d (\"%s\")\n",
881 tbuf[1], index, buf);
883 errout:
884 kfree(tbuf);
885 return err;
887 EXPORT_SYMBOL_GPL(usb_string);
889 /* one UTF-8-encoded 16-bit character has at most three bytes */
890 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
893 * usb_cache_string - read a string descriptor and cache it for later use
894 * @udev: the device whose string descriptor is being read
895 * @index: the descriptor index
897 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
898 * or NULL if the index is 0 or the string could not be read.
900 char *usb_cache_string(struct usb_device *udev, int index)
902 char *buf;
903 char *smallbuf = NULL;
904 int len;
906 if (index <= 0)
907 return NULL;
909 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL);
910 if (buf) {
911 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
912 if (len > 0) {
913 smallbuf = kmalloc(++len, GFP_KERNEL);
914 if (!smallbuf)
915 return buf;
916 memcpy(smallbuf, buf, len);
918 kfree(buf);
920 return smallbuf;
924 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
925 * @dev: the device whose device descriptor is being updated
926 * @size: how much of the descriptor to read
927 * Context: !in_interrupt ()
929 * Updates the copy of the device descriptor stored in the device structure,
930 * which dedicates space for this purpose.
932 * Not exported, only for use by the core. If drivers really want to read
933 * the device descriptor directly, they can call usb_get_descriptor() with
934 * type = USB_DT_DEVICE and index = 0.
936 * This call is synchronous, and may not be used in an interrupt context.
938 * Returns the number of bytes received on success, or else the status code
939 * returned by the underlying usb_control_msg() call.
941 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
943 struct usb_device_descriptor *desc;
944 int ret;
946 if (size > sizeof(*desc))
947 return -EINVAL;
948 desc = kmalloc(sizeof(*desc), GFP_NOIO);
949 if (!desc)
950 return -ENOMEM;
952 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
953 if (ret >= 0)
954 memcpy(&dev->descriptor, desc, size);
955 kfree(desc);
956 return ret;
960 * usb_get_status - issues a GET_STATUS call
961 * @dev: the device whose status is being checked
962 * @type: USB_RECIP_*; for device, interface, or endpoint
963 * @target: zero (for device), else interface or endpoint number
964 * @data: pointer to two bytes of bitmap data
965 * Context: !in_interrupt ()
967 * Returns device, interface, or endpoint status. Normally only of
968 * interest to see if the device is self powered, or has enabled the
969 * remote wakeup facility; or whether a bulk or interrupt endpoint
970 * is halted ("stalled").
972 * Bits in these status bitmaps are set using the SET_FEATURE request,
973 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
974 * function should be used to clear halt ("stall") status.
976 * This call is synchronous, and may not be used in an interrupt context.
978 * Returns the number of bytes received on success, or else the status code
979 * returned by the underlying usb_control_msg() call.
981 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
983 int ret;
984 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
986 if (!status)
987 return -ENOMEM;
989 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
990 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
991 sizeof(*status), USB_CTRL_GET_TIMEOUT);
993 *(u16 *)data = *status;
994 kfree(status);
995 return ret;
997 EXPORT_SYMBOL_GPL(usb_get_status);
1000 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1001 * @dev: device whose endpoint is halted
1002 * @pipe: endpoint "pipe" being cleared
1003 * Context: !in_interrupt ()
1005 * This is used to clear halt conditions for bulk and interrupt endpoints,
1006 * as reported by URB completion status. Endpoints that are halted are
1007 * sometimes referred to as being "stalled". Such endpoints are unable
1008 * to transmit or receive data until the halt status is cleared. Any URBs
1009 * queued for such an endpoint should normally be unlinked by the driver
1010 * before clearing the halt condition, as described in sections 5.7.5
1011 * and 5.8.5 of the USB 2.0 spec.
1013 * Note that control and isochronous endpoints don't halt, although control
1014 * endpoints report "protocol stall" (for unsupported requests) using the
1015 * same status code used to report a true stall.
1017 * This call is synchronous, and may not be used in an interrupt context.
1019 * Returns zero on success, or else the status code returned by the
1020 * underlying usb_control_msg() call.
1022 int usb_clear_halt(struct usb_device *dev, int pipe)
1024 int result;
1025 int endp = usb_pipeendpoint(pipe);
1027 if (usb_pipein(pipe))
1028 endp |= USB_DIR_IN;
1030 /* we don't care if it wasn't halted first. in fact some devices
1031 * (like some ibmcam model 1 units) seem to expect hosts to make
1032 * this request for iso endpoints, which can't halt!
1034 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1035 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1036 USB_ENDPOINT_HALT, endp, NULL, 0,
1037 USB_CTRL_SET_TIMEOUT);
1039 /* don't un-halt or force to DATA0 except on success */
1040 if (result < 0)
1041 return result;
1043 /* NOTE: seems like Microsoft and Apple don't bother verifying
1044 * the clear "took", so some devices could lock up if you check...
1045 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1047 * NOTE: make sure the logic here doesn't diverge much from
1048 * the copy in usb-storage, for as long as we need two copies.
1051 usb_reset_endpoint(dev, endp);
1053 return 0;
1055 EXPORT_SYMBOL_GPL(usb_clear_halt);
1057 static int create_intf_ep_devs(struct usb_interface *intf)
1059 struct usb_device *udev = interface_to_usbdev(intf);
1060 struct usb_host_interface *alt = intf->cur_altsetting;
1061 int i;
1063 if (intf->ep_devs_created || intf->unregistering)
1064 return 0;
1066 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1067 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1068 intf->ep_devs_created = 1;
1069 return 0;
1072 static void remove_intf_ep_devs(struct usb_interface *intf)
1074 struct usb_host_interface *alt = intf->cur_altsetting;
1075 int i;
1077 if (!intf->ep_devs_created)
1078 return;
1080 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1081 usb_remove_ep_devs(&alt->endpoint[i]);
1082 intf->ep_devs_created = 0;
1086 * usb_disable_endpoint -- Disable an endpoint by address
1087 * @dev: the device whose endpoint is being disabled
1088 * @epaddr: the endpoint's address. Endpoint number for output,
1089 * endpoint number + USB_DIR_IN for input
1090 * @reset_hardware: flag to erase any endpoint state stored in the
1091 * controller hardware
1093 * Disables the endpoint for URB submission and nukes all pending URBs.
1094 * If @reset_hardware is set then also deallocates hcd/hardware state
1095 * for the endpoint.
1097 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1098 bool reset_hardware)
1100 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101 struct usb_host_endpoint *ep;
1103 if (!dev)
1104 return;
1106 if (usb_endpoint_out(epaddr)) {
1107 ep = dev->ep_out[epnum];
1108 if (reset_hardware)
1109 dev->ep_out[epnum] = NULL;
1110 } else {
1111 ep = dev->ep_in[epnum];
1112 if (reset_hardware)
1113 dev->ep_in[epnum] = NULL;
1115 if (ep) {
1116 ep->enabled = 0;
1117 usb_hcd_flush_endpoint(dev, ep);
1118 if (reset_hardware)
1119 usb_hcd_disable_endpoint(dev, ep);
1124 * usb_reset_endpoint - Reset an endpoint's state.
1125 * @dev: the device whose endpoint is to be reset
1126 * @epaddr: the endpoint's address. Endpoint number for output,
1127 * endpoint number + USB_DIR_IN for input
1129 * Resets any host-side endpoint state such as the toggle bit,
1130 * sequence number or current window.
1132 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1134 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1135 struct usb_host_endpoint *ep;
1137 if (usb_endpoint_out(epaddr))
1138 ep = dev->ep_out[epnum];
1139 else
1140 ep = dev->ep_in[epnum];
1141 if (ep)
1142 usb_hcd_reset_endpoint(dev, ep);
1144 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1148 * usb_disable_interface -- Disable all endpoints for an interface
1149 * @dev: the device whose interface is being disabled
1150 * @intf: pointer to the interface descriptor
1151 * @reset_hardware: flag to erase any endpoint state stored in the
1152 * controller hardware
1154 * Disables all the endpoints for the interface's current altsetting.
1156 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1157 bool reset_hardware)
1159 struct usb_host_interface *alt = intf->cur_altsetting;
1160 int i;
1162 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1163 usb_disable_endpoint(dev,
1164 alt->endpoint[i].desc.bEndpointAddress,
1165 reset_hardware);
1170 * usb_disable_device - Disable all the endpoints for a USB device
1171 * @dev: the device whose endpoints are being disabled
1172 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1174 * Disables all the device's endpoints, potentially including endpoint 0.
1175 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1176 * pending urbs) and usbcore state for the interfaces, so that usbcore
1177 * must usb_set_configuration() before any interfaces could be used.
1179 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1181 int i;
1183 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1184 skip_ep0 ? "non-ep0" : "all");
1185 for (i = skip_ep0; i < 16; ++i) {
1186 usb_disable_endpoint(dev, i, true);
1187 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1190 /* getting rid of interfaces will disconnect
1191 * any drivers bound to them (a key side effect)
1193 if (dev->actconfig) {
1194 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1195 struct usb_interface *interface;
1197 /* remove this interface if it has been registered */
1198 interface = dev->actconfig->interface[i];
1199 if (!device_is_registered(&interface->dev))
1200 continue;
1201 dev_dbg(&dev->dev, "unregistering interface %s\n",
1202 dev_name(&interface->dev));
1203 interface->unregistering = 1;
1204 remove_intf_ep_devs(interface);
1205 device_del(&interface->dev);
1208 /* Now that the interfaces are unbound, nobody should
1209 * try to access them.
1211 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1212 put_device(&dev->actconfig->interface[i]->dev);
1213 dev->actconfig->interface[i] = NULL;
1215 dev->actconfig = NULL;
1216 if (dev->state == USB_STATE_CONFIGURED)
1217 usb_set_device_state(dev, USB_STATE_ADDRESS);
1222 * usb_enable_endpoint - Enable an endpoint for USB communications
1223 * @dev: the device whose interface is being enabled
1224 * @ep: the endpoint
1225 * @reset_ep: flag to reset the endpoint state
1227 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1228 * For control endpoints, both the input and output sides are handled.
1230 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1231 bool reset_ep)
1233 int epnum = usb_endpoint_num(&ep->desc);
1234 int is_out = usb_endpoint_dir_out(&ep->desc);
1235 int is_control = usb_endpoint_xfer_control(&ep->desc);
1237 if (reset_ep)
1238 usb_hcd_reset_endpoint(dev, ep);
1239 if (is_out || is_control)
1240 dev->ep_out[epnum] = ep;
1241 if (!is_out || is_control)
1242 dev->ep_in[epnum] = ep;
1243 ep->enabled = 1;
1247 * usb_enable_interface - Enable all the endpoints for an interface
1248 * @dev: the device whose interface is being enabled
1249 * @intf: pointer to the interface descriptor
1250 * @reset_eps: flag to reset the endpoints' state
1252 * Enables all the endpoints for the interface's current altsetting.
1254 void usb_enable_interface(struct usb_device *dev,
1255 struct usb_interface *intf, bool reset_eps)
1257 struct usb_host_interface *alt = intf->cur_altsetting;
1258 int i;
1260 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1261 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1265 * usb_set_interface - Makes a particular alternate setting be current
1266 * @dev: the device whose interface is being updated
1267 * @interface: the interface being updated
1268 * @alternate: the setting being chosen.
1269 * Context: !in_interrupt ()
1271 * This is used to enable data transfers on interfaces that may not
1272 * be enabled by default. Not all devices support such configurability.
1273 * Only the driver bound to an interface may change its setting.
1275 * Within any given configuration, each interface may have several
1276 * alternative settings. These are often used to control levels of
1277 * bandwidth consumption. For example, the default setting for a high
1278 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1279 * while interrupt transfers of up to 3KBytes per microframe are legal.
1280 * Also, isochronous endpoints may never be part of an
1281 * interface's default setting. To access such bandwidth, alternate
1282 * interface settings must be made current.
1284 * Note that in the Linux USB subsystem, bandwidth associated with
1285 * an endpoint in a given alternate setting is not reserved until an URB
1286 * is submitted that needs that bandwidth. Some other operating systems
1287 * allocate bandwidth early, when a configuration is chosen.
1289 * This call is synchronous, and may not be used in an interrupt context.
1290 * Also, drivers must not change altsettings while urbs are scheduled for
1291 * endpoints in that interface; all such urbs must first be completed
1292 * (perhaps forced by unlinking).
1294 * Returns zero on success, or else the status code returned by the
1295 * underlying usb_control_msg() call.
1297 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1299 struct usb_interface *iface;
1300 struct usb_host_interface *alt;
1301 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1302 int ret;
1303 int manual = 0;
1304 unsigned int epaddr;
1305 unsigned int pipe;
1307 if (dev->state == USB_STATE_SUSPENDED)
1308 return -EHOSTUNREACH;
1310 iface = usb_ifnum_to_if(dev, interface);
1311 if (!iface) {
1312 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1313 interface);
1314 return -EINVAL;
1317 alt = usb_altnum_to_altsetting(iface, alternate);
1318 if (!alt) {
1319 dev_warn(&dev->dev, "selecting invalid altsetting %d",
1320 alternate);
1321 return -EINVAL;
1324 /* Make sure we have enough bandwidth for this alternate interface.
1325 * Remove the current alt setting and add the new alt setting.
1327 mutex_lock(&hcd->bandwidth_mutex);
1328 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1329 if (ret < 0) {
1330 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1331 alternate);
1332 mutex_unlock(&hcd->bandwidth_mutex);
1333 return ret;
1336 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1337 ret = -EPIPE;
1338 else
1339 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1340 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1341 alternate, interface, NULL, 0, 5000);
1343 /* 9.4.10 says devices don't need this and are free to STALL the
1344 * request if the interface only has one alternate setting.
1346 if (ret == -EPIPE && iface->num_altsetting == 1) {
1347 dev_dbg(&dev->dev,
1348 "manual set_interface for iface %d, alt %d\n",
1349 interface, alternate);
1350 manual = 1;
1351 } else if (ret < 0) {
1352 /* Re-instate the old alt setting */
1353 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1354 mutex_unlock(&hcd->bandwidth_mutex);
1355 return ret;
1357 mutex_unlock(&hcd->bandwidth_mutex);
1359 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1360 * when they implement async or easily-killable versions of this or
1361 * other "should-be-internal" functions (like clear_halt).
1362 * should hcd+usbcore postprocess control requests?
1365 /* prevent submissions using previous endpoint settings */
1366 if (iface->cur_altsetting != alt) {
1367 remove_intf_ep_devs(iface);
1368 usb_remove_sysfs_intf_files(iface);
1370 usb_disable_interface(dev, iface, true);
1372 iface->cur_altsetting = alt;
1374 /* If the interface only has one altsetting and the device didn't
1375 * accept the request, we attempt to carry out the equivalent action
1376 * by manually clearing the HALT feature for each endpoint in the
1377 * new altsetting.
1379 if (manual) {
1380 int i;
1382 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1383 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1384 pipe = __create_pipe(dev,
1385 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1386 (usb_endpoint_out(epaddr) ?
1387 USB_DIR_OUT : USB_DIR_IN);
1389 usb_clear_halt(dev, pipe);
1393 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1395 * Note:
1396 * Despite EP0 is always present in all interfaces/AS, the list of
1397 * endpoints from the descriptor does not contain EP0. Due to its
1398 * omnipresence one might expect EP0 being considered "affected" by
1399 * any SetInterface request and hence assume toggles need to be reset.
1400 * However, EP0 toggles are re-synced for every individual transfer
1401 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1402 * (Likewise, EP0 never "halts" on well designed devices.)
1404 usb_enable_interface(dev, iface, true);
1405 if (device_is_registered(&iface->dev)) {
1406 usb_create_sysfs_intf_files(iface);
1407 create_intf_ep_devs(iface);
1409 return 0;
1411 EXPORT_SYMBOL_GPL(usb_set_interface);
1414 * usb_reset_configuration - lightweight device reset
1415 * @dev: the device whose configuration is being reset
1417 * This issues a standard SET_CONFIGURATION request to the device using
1418 * the current configuration. The effect is to reset most USB-related
1419 * state in the device, including interface altsettings (reset to zero),
1420 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1421 * endpoints). Other usbcore state is unchanged, including bindings of
1422 * usb device drivers to interfaces.
1424 * Because this affects multiple interfaces, avoid using this with composite
1425 * (multi-interface) devices. Instead, the driver for each interface may
1426 * use usb_set_interface() on the interfaces it claims. Be careful though;
1427 * some devices don't support the SET_INTERFACE request, and others won't
1428 * reset all the interface state (notably endpoint state). Resetting the whole
1429 * configuration would affect other drivers' interfaces.
1431 * The caller must own the device lock.
1433 * Returns zero on success, else a negative error code.
1435 int usb_reset_configuration(struct usb_device *dev)
1437 int i, retval;
1438 struct usb_host_config *config;
1439 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1441 if (dev->state == USB_STATE_SUSPENDED)
1442 return -EHOSTUNREACH;
1444 /* caller must have locked the device and must own
1445 * the usb bus readlock (so driver bindings are stable);
1446 * calls during probe() are fine
1449 for (i = 1; i < 16; ++i) {
1450 usb_disable_endpoint(dev, i, true);
1451 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1454 config = dev->actconfig;
1455 retval = 0;
1456 mutex_lock(&hcd->bandwidth_mutex);
1457 /* Make sure we have enough bandwidth for each alternate setting 0 */
1458 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1459 struct usb_interface *intf = config->interface[i];
1460 struct usb_host_interface *alt;
1462 alt = usb_altnum_to_altsetting(intf, 0);
1463 if (!alt)
1464 alt = &intf->altsetting[0];
1465 if (alt != intf->cur_altsetting)
1466 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1467 intf->cur_altsetting, alt);
1468 if (retval < 0)
1469 break;
1471 /* If not, reinstate the old alternate settings */
1472 if (retval < 0) {
1473 reset_old_alts:
1474 for (; i >= 0; i--) {
1475 struct usb_interface *intf = config->interface[i];
1476 struct usb_host_interface *alt;
1478 alt = usb_altnum_to_altsetting(intf, 0);
1479 if (!alt)
1480 alt = &intf->altsetting[0];
1481 if (alt != intf->cur_altsetting)
1482 usb_hcd_alloc_bandwidth(dev, NULL,
1483 alt, intf->cur_altsetting);
1485 mutex_unlock(&hcd->bandwidth_mutex);
1486 return retval;
1488 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1489 USB_REQ_SET_CONFIGURATION, 0,
1490 config->desc.bConfigurationValue, 0,
1491 NULL, 0, USB_CTRL_SET_TIMEOUT);
1492 if (retval < 0)
1493 goto reset_old_alts;
1494 mutex_unlock(&hcd->bandwidth_mutex);
1496 /* re-init hc/hcd interface/endpoint state */
1497 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1498 struct usb_interface *intf = config->interface[i];
1499 struct usb_host_interface *alt;
1501 alt = usb_altnum_to_altsetting(intf, 0);
1503 /* No altsetting 0? We'll assume the first altsetting.
1504 * We could use a GetInterface call, but if a device is
1505 * so non-compliant that it doesn't have altsetting 0
1506 * then I wouldn't trust its reply anyway.
1508 if (!alt)
1509 alt = &intf->altsetting[0];
1511 if (alt != intf->cur_altsetting) {
1512 remove_intf_ep_devs(intf);
1513 usb_remove_sysfs_intf_files(intf);
1515 intf->cur_altsetting = alt;
1516 usb_enable_interface(dev, intf, true);
1517 if (device_is_registered(&intf->dev)) {
1518 usb_create_sysfs_intf_files(intf);
1519 create_intf_ep_devs(intf);
1522 return 0;
1524 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1526 static void usb_release_interface(struct device *dev)
1528 struct usb_interface *intf = to_usb_interface(dev);
1529 struct usb_interface_cache *intfc =
1530 altsetting_to_usb_interface_cache(intf->altsetting);
1532 kref_put(&intfc->ref, usb_release_interface_cache);
1533 kfree(intf);
1536 #ifdef CONFIG_HOTPLUG
1537 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1539 struct usb_device *usb_dev;
1540 struct usb_interface *intf;
1541 struct usb_host_interface *alt;
1543 intf = to_usb_interface(dev);
1544 usb_dev = interface_to_usbdev(intf);
1545 alt = intf->cur_altsetting;
1547 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1548 alt->desc.bInterfaceClass,
1549 alt->desc.bInterfaceSubClass,
1550 alt->desc.bInterfaceProtocol))
1551 return -ENOMEM;
1553 if (add_uevent_var(env,
1554 "MODALIAS=usb:"
1555 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1556 le16_to_cpu(usb_dev->descriptor.idVendor),
1557 le16_to_cpu(usb_dev->descriptor.idProduct),
1558 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1559 usb_dev->descriptor.bDeviceClass,
1560 usb_dev->descriptor.bDeviceSubClass,
1561 usb_dev->descriptor.bDeviceProtocol,
1562 alt->desc.bInterfaceClass,
1563 alt->desc.bInterfaceSubClass,
1564 alt->desc.bInterfaceProtocol))
1565 return -ENOMEM;
1567 return 0;
1570 #else
1572 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1574 return -ENODEV;
1576 #endif /* CONFIG_HOTPLUG */
1578 struct device_type usb_if_device_type = {
1579 .name = "usb_interface",
1580 .release = usb_release_interface,
1581 .uevent = usb_if_uevent,
1584 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1585 struct usb_host_config *config,
1586 u8 inum)
1588 struct usb_interface_assoc_descriptor *retval = NULL;
1589 struct usb_interface_assoc_descriptor *intf_assoc;
1590 int first_intf;
1591 int last_intf;
1592 int i;
1594 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1595 intf_assoc = config->intf_assoc[i];
1596 if (intf_assoc->bInterfaceCount == 0)
1597 continue;
1599 first_intf = intf_assoc->bFirstInterface;
1600 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1601 if (inum >= first_intf && inum <= last_intf) {
1602 if (!retval)
1603 retval = intf_assoc;
1604 else
1605 dev_err(&dev->dev, "Interface #%d referenced"
1606 " by multiple IADs\n", inum);
1610 return retval;
1615 * Internal function to queue a device reset
1617 * This is initialized into the workstruct in 'struct
1618 * usb_device->reset_ws' that is launched by
1619 * message.c:usb_set_configuration() when initializing each 'struct
1620 * usb_interface'.
1622 * It is safe to get the USB device without reference counts because
1623 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1624 * this function will be ran only if @iface is alive (and before
1625 * freeing it any scheduled instances of it will have been cancelled).
1627 * We need to set a flag (usb_dev->reset_running) because when we call
1628 * the reset, the interfaces might be unbound. The current interface
1629 * cannot try to remove the queued work as it would cause a deadlock
1630 * (you cannot remove your work from within your executing
1631 * workqueue). This flag lets it know, so that
1632 * usb_cancel_queued_reset() doesn't try to do it.
1634 * See usb_queue_reset_device() for more details
1636 void __usb_queue_reset_device(struct work_struct *ws)
1638 int rc;
1639 struct usb_interface *iface =
1640 container_of(ws, struct usb_interface, reset_ws);
1641 struct usb_device *udev = interface_to_usbdev(iface);
1643 rc = usb_lock_device_for_reset(udev, iface);
1644 if (rc >= 0) {
1645 iface->reset_running = 1;
1646 usb_reset_device(udev);
1647 iface->reset_running = 0;
1648 usb_unlock_device(udev);
1654 * usb_set_configuration - Makes a particular device setting be current
1655 * @dev: the device whose configuration is being updated
1656 * @configuration: the configuration being chosen.
1657 * Context: !in_interrupt(), caller owns the device lock
1659 * This is used to enable non-default device modes. Not all devices
1660 * use this kind of configurability; many devices only have one
1661 * configuration.
1663 * @configuration is the value of the configuration to be installed.
1664 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1665 * must be non-zero; a value of zero indicates that the device in
1666 * unconfigured. However some devices erroneously use 0 as one of their
1667 * configuration values. To help manage such devices, this routine will
1668 * accept @configuration = -1 as indicating the device should be put in
1669 * an unconfigured state.
1671 * USB device configurations may affect Linux interoperability,
1672 * power consumption and the functionality available. For example,
1673 * the default configuration is limited to using 100mA of bus power,
1674 * so that when certain device functionality requires more power,
1675 * and the device is bus powered, that functionality should be in some
1676 * non-default device configuration. Other device modes may also be
1677 * reflected as configuration options, such as whether two ISDN
1678 * channels are available independently; and choosing between open
1679 * standard device protocols (like CDC) or proprietary ones.
1681 * Note that a non-authorized device (dev->authorized == 0) will only
1682 * be put in unconfigured mode.
1684 * Note that USB has an additional level of device configurability,
1685 * associated with interfaces. That configurability is accessed using
1686 * usb_set_interface().
1688 * This call is synchronous. The calling context must be able to sleep,
1689 * must own the device lock, and must not hold the driver model's USB
1690 * bus mutex; usb interface driver probe() methods cannot use this routine.
1692 * Returns zero on success, or else the status code returned by the
1693 * underlying call that failed. On successful completion, each interface
1694 * in the original device configuration has been destroyed, and each one
1695 * in the new configuration has been probed by all relevant usb device
1696 * drivers currently known to the kernel.
1698 int usb_set_configuration(struct usb_device *dev, int configuration)
1700 int i, ret;
1701 struct usb_host_config *cp = NULL;
1702 struct usb_interface **new_interfaces = NULL;
1703 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1704 int n, nintf;
1706 if (dev->authorized == 0 || configuration == -1)
1707 configuration = 0;
1708 else {
1709 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1710 if (dev->config[i].desc.bConfigurationValue ==
1711 configuration) {
1712 cp = &dev->config[i];
1713 break;
1717 if ((!cp && configuration != 0))
1718 return -EINVAL;
1720 /* The USB spec says configuration 0 means unconfigured.
1721 * But if a device includes a configuration numbered 0,
1722 * we will accept it as a correctly configured state.
1723 * Use -1 if you really want to unconfigure the device.
1725 if (cp && configuration == 0)
1726 dev_warn(&dev->dev, "config 0 descriptor??\n");
1728 /* Allocate memory for new interfaces before doing anything else,
1729 * so that if we run out then nothing will have changed. */
1730 n = nintf = 0;
1731 if (cp) {
1732 nintf = cp->desc.bNumInterfaces;
1733 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1734 GFP_KERNEL);
1735 if (!new_interfaces) {
1736 dev_err(&dev->dev, "Out of memory\n");
1737 return -ENOMEM;
1740 for (; n < nintf; ++n) {
1741 new_interfaces[n] = kzalloc(
1742 sizeof(struct usb_interface),
1743 GFP_KERNEL);
1744 if (!new_interfaces[n]) {
1745 dev_err(&dev->dev, "Out of memory\n");
1746 ret = -ENOMEM;
1747 free_interfaces:
1748 while (--n >= 0)
1749 kfree(new_interfaces[n]);
1750 kfree(new_interfaces);
1751 return ret;
1755 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1756 if (i < 0)
1757 dev_warn(&dev->dev, "new config #%d exceeds power "
1758 "limit by %dmA\n",
1759 configuration, -i);
1762 /* Wake up the device so we can send it the Set-Config request */
1763 ret = usb_autoresume_device(dev);
1764 if (ret)
1765 goto free_interfaces;
1767 /* Make sure we have bandwidth (and available HCD resources) for this
1768 * configuration. Remove endpoints from the schedule if we're dropping
1769 * this configuration to set configuration 0. After this point, the
1770 * host controller will not allow submissions to dropped endpoints. If
1771 * this call fails, the device state is unchanged.
1773 mutex_lock(&hcd->bandwidth_mutex);
1774 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1775 if (ret < 0) {
1776 usb_autosuspend_device(dev);
1777 mutex_unlock(&hcd->bandwidth_mutex);
1778 goto free_interfaces;
1781 /* if it's already configured, clear out old state first.
1782 * getting rid of old interfaces means unbinding their drivers.
1784 if (dev->state != USB_STATE_ADDRESS)
1785 usb_disable_device(dev, 1); /* Skip ep0 */
1787 /* Get rid of pending async Set-Config requests for this device */
1788 cancel_async_set_config(dev);
1790 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1791 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1792 NULL, 0, USB_CTRL_SET_TIMEOUT);
1793 if (ret < 0) {
1794 /* All the old state is gone, so what else can we do?
1795 * The device is probably useless now anyway.
1797 cp = NULL;
1800 dev->actconfig = cp;
1801 if (!cp) {
1802 usb_set_device_state(dev, USB_STATE_ADDRESS);
1803 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1804 usb_autosuspend_device(dev);
1805 mutex_unlock(&hcd->bandwidth_mutex);
1806 goto free_interfaces;
1808 mutex_unlock(&hcd->bandwidth_mutex);
1809 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1811 /* Initialize the new interface structures and the
1812 * hc/hcd/usbcore interface/endpoint state.
1814 for (i = 0; i < nintf; ++i) {
1815 struct usb_interface_cache *intfc;
1816 struct usb_interface *intf;
1817 struct usb_host_interface *alt;
1819 cp->interface[i] = intf = new_interfaces[i];
1820 intfc = cp->intf_cache[i];
1821 intf->altsetting = intfc->altsetting;
1822 intf->num_altsetting = intfc->num_altsetting;
1823 intf->intf_assoc = find_iad(dev, cp, i);
1824 kref_get(&intfc->ref);
1826 alt = usb_altnum_to_altsetting(intf, 0);
1828 /* No altsetting 0? We'll assume the first altsetting.
1829 * We could use a GetInterface call, but if a device is
1830 * so non-compliant that it doesn't have altsetting 0
1831 * then I wouldn't trust its reply anyway.
1833 if (!alt)
1834 alt = &intf->altsetting[0];
1836 intf->cur_altsetting = alt;
1837 usb_enable_interface(dev, intf, true);
1838 intf->dev.parent = &dev->dev;
1839 intf->dev.driver = NULL;
1840 intf->dev.bus = &usb_bus_type;
1841 intf->dev.type = &usb_if_device_type;
1842 intf->dev.groups = usb_interface_groups;
1843 intf->dev.dma_mask = dev->dev.dma_mask;
1844 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1845 device_initialize(&intf->dev);
1846 mark_quiesced(intf);
1847 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1848 dev->bus->busnum, dev->devpath,
1849 configuration, alt->desc.bInterfaceNumber);
1851 kfree(new_interfaces);
1853 if (cp->string == NULL &&
1854 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1855 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1857 /* Now that all the interfaces are set up, register them
1858 * to trigger binding of drivers to interfaces. probe()
1859 * routines may install different altsettings and may
1860 * claim() any interfaces not yet bound. Many class drivers
1861 * need that: CDC, audio, video, etc.
1863 for (i = 0; i < nintf; ++i) {
1864 struct usb_interface *intf = cp->interface[i];
1866 dev_dbg(&dev->dev,
1867 "adding %s (config #%d, interface %d)\n",
1868 dev_name(&intf->dev), configuration,
1869 intf->cur_altsetting->desc.bInterfaceNumber);
1870 ret = device_add(&intf->dev);
1871 if (ret != 0) {
1872 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1873 dev_name(&intf->dev), ret);
1874 continue;
1876 create_intf_ep_devs(intf);
1879 usb_autosuspend_device(dev);
1880 return 0;
1883 static LIST_HEAD(set_config_list);
1884 static DEFINE_SPINLOCK(set_config_lock);
1886 struct set_config_request {
1887 struct usb_device *udev;
1888 int config;
1889 struct work_struct work;
1890 struct list_head node;
1893 /* Worker routine for usb_driver_set_configuration() */
1894 static void driver_set_config_work(struct work_struct *work)
1896 struct set_config_request *req =
1897 container_of(work, struct set_config_request, work);
1898 struct usb_device *udev = req->udev;
1900 usb_lock_device(udev);
1901 spin_lock(&set_config_lock);
1902 list_del(&req->node);
1903 spin_unlock(&set_config_lock);
1905 if (req->config >= -1) /* Is req still valid? */
1906 usb_set_configuration(udev, req->config);
1907 usb_unlock_device(udev);
1908 usb_put_dev(udev);
1909 kfree(req);
1912 /* Cancel pending Set-Config requests for a device whose configuration
1913 * was just changed
1915 static void cancel_async_set_config(struct usb_device *udev)
1917 struct set_config_request *req;
1919 spin_lock(&set_config_lock);
1920 list_for_each_entry(req, &set_config_list, node) {
1921 if (req->udev == udev)
1922 req->config = -999; /* Mark as cancelled */
1924 spin_unlock(&set_config_lock);
1928 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1929 * @udev: the device whose configuration is being updated
1930 * @config: the configuration being chosen.
1931 * Context: In process context, must be able to sleep
1933 * Device interface drivers are not allowed to change device configurations.
1934 * This is because changing configurations will destroy the interface the
1935 * driver is bound to and create new ones; it would be like a floppy-disk
1936 * driver telling the computer to replace the floppy-disk drive with a
1937 * tape drive!
1939 * Still, in certain specialized circumstances the need may arise. This
1940 * routine gets around the normal restrictions by using a work thread to
1941 * submit the change-config request.
1943 * Returns 0 if the request was successfully queued, error code otherwise.
1944 * The caller has no way to know whether the queued request will eventually
1945 * succeed.
1947 int usb_driver_set_configuration(struct usb_device *udev, int config)
1949 struct set_config_request *req;
1951 req = kmalloc(sizeof(*req), GFP_KERNEL);
1952 if (!req)
1953 return -ENOMEM;
1954 req->udev = udev;
1955 req->config = config;
1956 INIT_WORK(&req->work, driver_set_config_work);
1958 spin_lock(&set_config_lock);
1959 list_add(&req->node, &set_config_list);
1960 spin_unlock(&set_config_lock);
1962 usb_get_dev(udev);
1963 schedule_work(&req->work);
1964 return 0;
1966 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);