2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
47 static struct extent_io_ops btree_extent_io_ops
;
48 static void end_workqueue_fn(struct btrfs_work
*work
);
49 static void free_fs_root(struct btrfs_root
*root
);
50 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
52 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
55 struct btrfs_root
*root
);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
58 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
59 struct extent_io_tree
*dirty_pages
,
61 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
62 struct extent_io_tree
*pinned_extents
);
63 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
74 struct btrfs_fs_info
*info
;
77 struct list_head list
;
78 struct btrfs_work work
;
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
86 struct async_submit_bio
{
89 struct list_head list
;
90 extent_submit_bio_hook_t
*submit_bio_start
;
91 extent_submit_bio_hook_t
*submit_bio_done
;
94 unsigned long bio_flags
;
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
100 struct btrfs_work work
;
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
126 #ifdef CONFIG_DEBUG_LOCK_ALLOC
127 # if BTRFS_MAX_LEVEL != 8
131 static struct btrfs_lockdep_keyset
{
132 u64 id
; /* root objectid */
133 const char *name_stem
; /* lock name stem */
134 char names
[BTRFS_MAX_LEVEL
+ 1][20];
135 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
136 } btrfs_lockdep_keysets
[] = {
137 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
138 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
139 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
140 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
141 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
142 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
143 { .id
= BTRFS_ORPHAN_OBJECTID
, .name_stem
= "orphan" },
144 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
145 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
146 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
147 { .id
= 0, .name_stem
= "tree" },
150 void __init
btrfs_init_lockdep(void)
154 /* initialize lockdep class names */
155 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
156 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
158 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
159 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
160 "btrfs-%s-%02d", ks
->name_stem
, j
);
164 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
167 struct btrfs_lockdep_keyset
*ks
;
169 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
173 if (ks
->id
== objectid
)
176 lockdep_set_class_and_name(&eb
->lock
,
177 &ks
->keys
[level
], ks
->names
[level
]);
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
186 static struct extent_map
*btree_get_extent(struct inode
*inode
,
187 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
190 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
191 struct extent_map
*em
;
194 read_lock(&em_tree
->lock
);
195 em
= lookup_extent_mapping(em_tree
, start
, len
);
198 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
199 read_unlock(&em_tree
->lock
);
202 read_unlock(&em_tree
->lock
);
204 em
= alloc_extent_map();
206 em
= ERR_PTR(-ENOMEM
);
211 em
->block_len
= (u64
)-1;
213 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
215 write_lock(&em_tree
->lock
);
216 ret
= add_extent_mapping(em_tree
, em
);
217 if (ret
== -EEXIST
) {
218 u64 failed_start
= em
->start
;
219 u64 failed_len
= em
->len
;
222 em
= lookup_extent_mapping(em_tree
, start
, len
);
226 em
= lookup_extent_mapping(em_tree
, failed_start
,
234 write_unlock(&em_tree
->lock
);
242 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
244 return crc32c(seed
, data
, len
);
247 void btrfs_csum_final(u32 crc
, char *result
)
249 put_unaligned_le32(~crc
, result
);
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
256 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
260 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
263 unsigned long cur_len
;
264 unsigned long offset
= BTRFS_CSUM_SIZE
;
266 unsigned long map_start
;
267 unsigned long map_len
;
270 unsigned long inline_result
;
272 len
= buf
->len
- offset
;
274 err
= map_private_extent_buffer(buf
, offset
, 32,
275 &kaddr
, &map_start
, &map_len
);
278 cur_len
= min(len
, map_len
- (offset
- map_start
));
279 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
284 if (csum_size
> sizeof(inline_result
)) {
285 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
289 result
= (char *)&inline_result
;
292 btrfs_csum_final(crc
, result
);
295 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
298 memcpy(&found
, result
, csum_size
);
300 read_extent_buffer(buf
, &val
, 0, csum_size
);
301 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
302 "failed on %llu wanted %X found %X "
304 root
->fs_info
->sb
->s_id
,
305 (unsigned long long)buf
->start
, val
, found
,
306 btrfs_header_level(buf
));
307 if (result
!= (char *)&inline_result
)
312 write_extent_buffer(buf
, result
, 0, csum_size
);
314 if (result
!= (char *)&inline_result
)
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
325 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
326 struct extent_buffer
*eb
, u64 parent_transid
)
328 struct extent_state
*cached_state
= NULL
;
331 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
334 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
335 0, &cached_state
, GFP_NOFS
);
336 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
337 btrfs_header_generation(eb
) == parent_transid
) {
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
343 (unsigned long long)eb
->start
,
344 (unsigned long long)parent_transid
,
345 (unsigned long long)btrfs_header_generation(eb
));
347 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
349 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
350 &cached_state
, GFP_NOFS
);
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
358 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
359 struct extent_buffer
*eb
,
360 u64 start
, u64 parent_transid
)
362 struct extent_io_tree
*io_tree
;
367 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
368 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
370 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
371 btree_get_extent
, mirror_num
);
373 !verify_parent_transid(io_tree
, eb
, parent_transid
))
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
381 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
384 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
390 if (mirror_num
> num_copies
)
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
401 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
403 struct extent_io_tree
*tree
;
404 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
407 struct extent_buffer
*eb
;
410 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
412 if (page
->private == EXTENT_PAGE_PRIVATE
) {
416 if (!page
->private) {
420 len
= page
->private >> 2;
423 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
428 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
429 btrfs_header_generation(eb
));
431 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
433 found_start
= btrfs_header_bytenr(eb
);
434 if (found_start
!= start
) {
438 if (eb
->first_page
!= page
) {
442 if (!PageUptodate(page
)) {
446 csum_tree_block(root
, eb
, 0);
448 free_extent_buffer(eb
);
453 static int check_tree_block_fsid(struct btrfs_root
*root
,
454 struct extent_buffer
*eb
)
456 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
457 u8 fsid
[BTRFS_UUID_SIZE
];
460 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
463 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
467 fs_devices
= fs_devices
->seed
;
472 #define CORRUPT(reason, eb, root, slot) \
473 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
474 "root=%llu, slot=%d\n", reason, \
475 (unsigned long long)btrfs_header_bytenr(eb), \
476 (unsigned long long)root->objectid, slot)
478 static noinline
int check_leaf(struct btrfs_root
*root
,
479 struct extent_buffer
*leaf
)
481 struct btrfs_key key
;
482 struct btrfs_key leaf_key
;
483 u32 nritems
= btrfs_header_nritems(leaf
);
489 /* Check the 0 item */
490 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
491 BTRFS_LEAF_DATA_SIZE(root
)) {
492 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
497 * Check to make sure each items keys are in the correct order and their
498 * offsets make sense. We only have to loop through nritems-1 because
499 * we check the current slot against the next slot, which verifies the
500 * next slot's offset+size makes sense and that the current's slot
503 for (slot
= 0; slot
< nritems
- 1; slot
++) {
504 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
505 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
507 /* Make sure the keys are in the right order */
508 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
509 CORRUPT("bad key order", leaf
, root
, slot
);
514 * Make sure the offset and ends are right, remember that the
515 * item data starts at the end of the leaf and grows towards the
518 if (btrfs_item_offset_nr(leaf
, slot
) !=
519 btrfs_item_end_nr(leaf
, slot
+ 1)) {
520 CORRUPT("slot offset bad", leaf
, root
, slot
);
525 * Check to make sure that we don't point outside of the leaf,
526 * just incase all the items are consistent to eachother, but
527 * all point outside of the leaf.
529 if (btrfs_item_end_nr(leaf
, slot
) >
530 BTRFS_LEAF_DATA_SIZE(root
)) {
531 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
539 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
540 struct extent_state
*state
)
542 struct extent_io_tree
*tree
;
546 struct extent_buffer
*eb
;
547 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
550 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
551 if (page
->private == EXTENT_PAGE_PRIVATE
)
556 len
= page
->private >> 2;
559 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
565 found_start
= btrfs_header_bytenr(eb
);
566 if (found_start
!= start
) {
567 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
569 (unsigned long long)found_start
,
570 (unsigned long long)eb
->start
);
574 if (eb
->first_page
!= page
) {
575 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
576 eb
->first_page
->index
, page
->index
);
581 if (check_tree_block_fsid(root
, eb
)) {
582 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
583 (unsigned long long)eb
->start
);
587 found_level
= btrfs_header_level(eb
);
589 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
592 ret
= csum_tree_block(root
, eb
, 1);
599 * If this is a leaf block and it is corrupt, set the corrupt bit so
600 * that we don't try and read the other copies of this block, just
603 if (found_level
== 0 && check_leaf(root
, eb
)) {
604 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
608 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
609 end
= eb
->start
+ end
- 1;
611 free_extent_buffer(eb
);
616 static void end_workqueue_bio(struct bio
*bio
, int err
)
618 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
619 struct btrfs_fs_info
*fs_info
;
621 fs_info
= end_io_wq
->info
;
622 end_io_wq
->error
= err
;
623 end_io_wq
->work
.func
= end_workqueue_fn
;
624 end_io_wq
->work
.flags
= 0;
626 if (bio
->bi_rw
& REQ_WRITE
) {
627 if (end_io_wq
->metadata
== 1)
628 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
630 else if (end_io_wq
->metadata
== 2)
631 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
634 btrfs_queue_worker(&fs_info
->endio_write_workers
,
637 if (end_io_wq
->metadata
)
638 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
641 btrfs_queue_worker(&fs_info
->endio_workers
,
647 * For the metadata arg you want
650 * 1 - if normal metadta
651 * 2 - if writing to the free space cache area
653 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
656 struct end_io_wq
*end_io_wq
;
657 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
661 end_io_wq
->private = bio
->bi_private
;
662 end_io_wq
->end_io
= bio
->bi_end_io
;
663 end_io_wq
->info
= info
;
664 end_io_wq
->error
= 0;
665 end_io_wq
->bio
= bio
;
666 end_io_wq
->metadata
= metadata
;
668 bio
->bi_private
= end_io_wq
;
669 bio
->bi_end_io
= end_workqueue_bio
;
673 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
675 unsigned long limit
= min_t(unsigned long,
676 info
->workers
.max_workers
,
677 info
->fs_devices
->open_devices
);
681 static void run_one_async_start(struct btrfs_work
*work
)
683 struct async_submit_bio
*async
;
685 async
= container_of(work
, struct async_submit_bio
, work
);
686 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
687 async
->mirror_num
, async
->bio_flags
,
691 static void run_one_async_done(struct btrfs_work
*work
)
693 struct btrfs_fs_info
*fs_info
;
694 struct async_submit_bio
*async
;
697 async
= container_of(work
, struct async_submit_bio
, work
);
698 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
700 limit
= btrfs_async_submit_limit(fs_info
);
701 limit
= limit
* 2 / 3;
703 atomic_dec(&fs_info
->nr_async_submits
);
705 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
706 waitqueue_active(&fs_info
->async_submit_wait
))
707 wake_up(&fs_info
->async_submit_wait
);
709 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
710 async
->mirror_num
, async
->bio_flags
,
714 static void run_one_async_free(struct btrfs_work
*work
)
716 struct async_submit_bio
*async
;
718 async
= container_of(work
, struct async_submit_bio
, work
);
722 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
723 int rw
, struct bio
*bio
, int mirror_num
,
724 unsigned long bio_flags
,
726 extent_submit_bio_hook_t
*submit_bio_start
,
727 extent_submit_bio_hook_t
*submit_bio_done
)
729 struct async_submit_bio
*async
;
731 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
735 async
->inode
= inode
;
738 async
->mirror_num
= mirror_num
;
739 async
->submit_bio_start
= submit_bio_start
;
740 async
->submit_bio_done
= submit_bio_done
;
742 async
->work
.func
= run_one_async_start
;
743 async
->work
.ordered_func
= run_one_async_done
;
744 async
->work
.ordered_free
= run_one_async_free
;
746 async
->work
.flags
= 0;
747 async
->bio_flags
= bio_flags
;
748 async
->bio_offset
= bio_offset
;
750 atomic_inc(&fs_info
->nr_async_submits
);
753 btrfs_set_work_high_prio(&async
->work
);
755 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
757 while (atomic_read(&fs_info
->async_submit_draining
) &&
758 atomic_read(&fs_info
->nr_async_submits
)) {
759 wait_event(fs_info
->async_submit_wait
,
760 (atomic_read(&fs_info
->nr_async_submits
) == 0));
766 static int btree_csum_one_bio(struct bio
*bio
)
768 struct bio_vec
*bvec
= bio
->bi_io_vec
;
770 struct btrfs_root
*root
;
772 WARN_ON(bio
->bi_vcnt
<= 0);
773 while (bio_index
< bio
->bi_vcnt
) {
774 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
775 csum_dirty_buffer(root
, bvec
->bv_page
);
782 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
783 struct bio
*bio
, int mirror_num
,
784 unsigned long bio_flags
,
788 * when we're called for a write, we're already in the async
789 * submission context. Just jump into btrfs_map_bio
791 btree_csum_one_bio(bio
);
795 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
796 int mirror_num
, unsigned long bio_flags
,
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
803 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
806 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
807 int mirror_num
, unsigned long bio_flags
,
812 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
816 if (!(rw
& REQ_WRITE
)) {
818 * called for a read, do the setup so that checksum validation
819 * can happen in the async kernel threads
821 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
826 * kthread helpers are used to submit writes so that checksumming
827 * can happen in parallel across all CPUs
829 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
830 inode
, rw
, bio
, mirror_num
, 0,
832 __btree_submit_bio_start
,
833 __btree_submit_bio_done
);
836 #ifdef CONFIG_MIGRATION
837 static int btree_migratepage(struct address_space
*mapping
,
838 struct page
*newpage
, struct page
*page
)
841 * we can't safely write a btree page from here,
842 * we haven't done the locking hook
847 * Buffers may be managed in a filesystem specific way.
848 * We must have no buffers or drop them.
850 if (page_has_private(page
) &&
851 !try_to_release_page(page
, GFP_KERNEL
))
853 return migrate_page(mapping
, newpage
, page
);
857 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
859 struct extent_io_tree
*tree
;
860 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
861 struct extent_buffer
*eb
;
864 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
865 if (!(current
->flags
& PF_MEMALLOC
)) {
866 return extent_write_full_page(tree
, page
,
867 btree_get_extent
, wbc
);
870 redirty_page_for_writepage(wbc
, page
);
871 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
874 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
876 spin_lock(&root
->fs_info
->delalloc_lock
);
877 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
878 spin_unlock(&root
->fs_info
->delalloc_lock
);
880 free_extent_buffer(eb
);
886 static int btree_writepages(struct address_space
*mapping
,
887 struct writeback_control
*wbc
)
889 struct extent_io_tree
*tree
;
890 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
891 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
892 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
894 unsigned long thresh
= 32 * 1024 * 1024;
896 if (wbc
->for_kupdate
)
899 /* this is a bit racy, but that's ok */
900 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
901 if (num_dirty
< thresh
)
904 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
907 static int btree_readpage(struct file
*file
, struct page
*page
)
909 struct extent_io_tree
*tree
;
910 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
911 return extent_read_full_page(tree
, page
, btree_get_extent
);
914 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
916 struct extent_io_tree
*tree
;
917 struct extent_map_tree
*map
;
920 if (PageWriteback(page
) || PageDirty(page
))
923 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
924 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
926 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
930 ret
= try_release_extent_buffer(tree
, page
);
932 ClearPagePrivate(page
);
933 set_page_private(page
, 0);
934 page_cache_release(page
);
940 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
942 struct extent_io_tree
*tree
;
943 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
944 extent_invalidatepage(tree
, page
, offset
);
945 btree_releasepage(page
, GFP_NOFS
);
946 if (PagePrivate(page
)) {
947 printk(KERN_WARNING
"btrfs warning page private not zero "
948 "on page %llu\n", (unsigned long long)page_offset(page
));
949 ClearPagePrivate(page
);
950 set_page_private(page
, 0);
951 page_cache_release(page
);
955 static const struct address_space_operations btree_aops
= {
956 .readpage
= btree_readpage
,
957 .writepage
= btree_writepage
,
958 .writepages
= btree_writepages
,
959 .releasepage
= btree_releasepage
,
960 .invalidatepage
= btree_invalidatepage
,
961 #ifdef CONFIG_MIGRATION
962 .migratepage
= btree_migratepage
,
966 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
969 struct extent_buffer
*buf
= NULL
;
970 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
973 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
976 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
977 buf
, 0, 0, btree_get_extent
, 0);
978 free_extent_buffer(buf
);
982 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
983 u64 bytenr
, u32 blocksize
)
985 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
986 struct extent_buffer
*eb
;
987 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
992 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
993 u64 bytenr
, u32 blocksize
)
995 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
996 struct extent_buffer
*eb
;
998 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
999 bytenr
, blocksize
, NULL
);
1004 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1006 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
1007 buf
->start
+ buf
->len
- 1);
1010 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1012 return filemap_fdatawait_range(buf
->first_page
->mapping
,
1013 buf
->start
, buf
->start
+ buf
->len
- 1);
1016 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1017 u32 blocksize
, u64 parent_transid
)
1019 struct extent_buffer
*buf
= NULL
;
1022 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1026 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1029 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
1034 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1035 struct extent_buffer
*buf
)
1037 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1038 if (btrfs_header_generation(buf
) ==
1039 root
->fs_info
->running_transaction
->transid
) {
1040 btrfs_assert_tree_locked(buf
);
1042 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1043 spin_lock(&root
->fs_info
->delalloc_lock
);
1044 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
1045 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
1048 spin_unlock(&root
->fs_info
->delalloc_lock
);
1051 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1052 btrfs_set_lock_blocking(buf
);
1053 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
1059 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1060 u32 stripesize
, struct btrfs_root
*root
,
1061 struct btrfs_fs_info
*fs_info
,
1065 root
->commit_root
= NULL
;
1066 root
->sectorsize
= sectorsize
;
1067 root
->nodesize
= nodesize
;
1068 root
->leafsize
= leafsize
;
1069 root
->stripesize
= stripesize
;
1071 root
->track_dirty
= 0;
1073 root
->orphan_item_inserted
= 0;
1074 root
->orphan_cleanup_state
= 0;
1076 root
->fs_info
= fs_info
;
1077 root
->objectid
= objectid
;
1078 root
->last_trans
= 0;
1079 root
->highest_objectid
= 0;
1081 root
->inode_tree
= RB_ROOT
;
1082 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1083 root
->block_rsv
= NULL
;
1084 root
->orphan_block_rsv
= NULL
;
1086 INIT_LIST_HEAD(&root
->dirty_list
);
1087 INIT_LIST_HEAD(&root
->orphan_list
);
1088 INIT_LIST_HEAD(&root
->root_list
);
1089 spin_lock_init(&root
->orphan_lock
);
1090 spin_lock_init(&root
->inode_lock
);
1091 spin_lock_init(&root
->accounting_lock
);
1092 mutex_init(&root
->objectid_mutex
);
1093 mutex_init(&root
->log_mutex
);
1094 init_waitqueue_head(&root
->log_writer_wait
);
1095 init_waitqueue_head(&root
->log_commit_wait
[0]);
1096 init_waitqueue_head(&root
->log_commit_wait
[1]);
1097 atomic_set(&root
->log_commit
[0], 0);
1098 atomic_set(&root
->log_commit
[1], 0);
1099 atomic_set(&root
->log_writers
, 0);
1100 root
->log_batch
= 0;
1101 root
->log_transid
= 0;
1102 root
->last_log_commit
= 0;
1103 extent_io_tree_init(&root
->dirty_log_pages
,
1104 fs_info
->btree_inode
->i_mapping
);
1106 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1107 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1108 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1109 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1110 root
->defrag_trans_start
= fs_info
->generation
;
1111 init_completion(&root
->kobj_unregister
);
1112 root
->defrag_running
= 0;
1113 root
->root_key
.objectid
= objectid
;
1118 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1119 struct btrfs_fs_info
*fs_info
,
1121 struct btrfs_root
*root
)
1127 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1128 tree_root
->sectorsize
, tree_root
->stripesize
,
1129 root
, fs_info
, objectid
);
1130 ret
= btrfs_find_last_root(tree_root
, objectid
,
1131 &root
->root_item
, &root
->root_key
);
1136 generation
= btrfs_root_generation(&root
->root_item
);
1137 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1138 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1139 blocksize
, generation
);
1140 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1141 free_extent_buffer(root
->node
);
1144 root
->commit_root
= btrfs_root_node(root
);
1148 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1149 struct btrfs_fs_info
*fs_info
)
1151 struct btrfs_root
*root
;
1152 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1153 struct extent_buffer
*leaf
;
1155 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1157 return ERR_PTR(-ENOMEM
);
1159 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1160 tree_root
->sectorsize
, tree_root
->stripesize
,
1161 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1163 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1164 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1165 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1167 * log trees do not get reference counted because they go away
1168 * before a real commit is actually done. They do store pointers
1169 * to file data extents, and those reference counts still get
1170 * updated (along with back refs to the log tree).
1174 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1175 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1178 return ERR_CAST(leaf
);
1181 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1182 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1183 btrfs_set_header_generation(leaf
, trans
->transid
);
1184 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1185 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1188 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1189 (unsigned long)btrfs_header_fsid(root
->node
),
1191 btrfs_mark_buffer_dirty(root
->node
);
1192 btrfs_tree_unlock(root
->node
);
1196 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1197 struct btrfs_fs_info
*fs_info
)
1199 struct btrfs_root
*log_root
;
1201 log_root
= alloc_log_tree(trans
, fs_info
);
1202 if (IS_ERR(log_root
))
1203 return PTR_ERR(log_root
);
1204 WARN_ON(fs_info
->log_root_tree
);
1205 fs_info
->log_root_tree
= log_root
;
1209 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1210 struct btrfs_root
*root
)
1212 struct btrfs_root
*log_root
;
1213 struct btrfs_inode_item
*inode_item
;
1215 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1216 if (IS_ERR(log_root
))
1217 return PTR_ERR(log_root
);
1219 log_root
->last_trans
= trans
->transid
;
1220 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1222 inode_item
= &log_root
->root_item
.inode
;
1223 inode_item
->generation
= cpu_to_le64(1);
1224 inode_item
->size
= cpu_to_le64(3);
1225 inode_item
->nlink
= cpu_to_le32(1);
1226 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1227 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1229 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1231 WARN_ON(root
->log_root
);
1232 root
->log_root
= log_root
;
1233 root
->log_transid
= 0;
1234 root
->last_log_commit
= 0;
1238 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1239 struct btrfs_key
*location
)
1241 struct btrfs_root
*root
;
1242 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1243 struct btrfs_path
*path
;
1244 struct extent_buffer
*l
;
1249 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1251 return ERR_PTR(-ENOMEM
);
1252 if (location
->offset
== (u64
)-1) {
1253 ret
= find_and_setup_root(tree_root
, fs_info
,
1254 location
->objectid
, root
);
1257 return ERR_PTR(ret
);
1262 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1263 tree_root
->sectorsize
, tree_root
->stripesize
,
1264 root
, fs_info
, location
->objectid
);
1266 path
= btrfs_alloc_path();
1269 return ERR_PTR(-ENOMEM
);
1271 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1274 read_extent_buffer(l
, &root
->root_item
,
1275 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1276 sizeof(root
->root_item
));
1277 memcpy(&root
->root_key
, location
, sizeof(*location
));
1279 btrfs_free_path(path
);
1284 return ERR_PTR(ret
);
1287 generation
= btrfs_root_generation(&root
->root_item
);
1288 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1289 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1290 blocksize
, generation
);
1291 root
->commit_root
= btrfs_root_node(root
);
1292 BUG_ON(!root
->node
);
1294 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1296 btrfs_check_and_init_root_item(&root
->root_item
);
1302 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1303 struct btrfs_key
*location
)
1305 struct btrfs_root
*root
;
1308 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1309 return fs_info
->tree_root
;
1310 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1311 return fs_info
->extent_root
;
1312 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1313 return fs_info
->chunk_root
;
1314 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1315 return fs_info
->dev_root
;
1316 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1317 return fs_info
->csum_root
;
1319 spin_lock(&fs_info
->fs_roots_radix_lock
);
1320 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1321 (unsigned long)location
->objectid
);
1322 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1326 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1330 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1331 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1333 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1338 btrfs_init_free_ino_ctl(root
);
1339 mutex_init(&root
->fs_commit_mutex
);
1340 spin_lock_init(&root
->cache_lock
);
1341 init_waitqueue_head(&root
->cache_wait
);
1343 ret
= get_anon_bdev(&root
->anon_dev
);
1347 if (btrfs_root_refs(&root
->root_item
) == 0) {
1352 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1356 root
->orphan_item_inserted
= 1;
1358 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1362 spin_lock(&fs_info
->fs_roots_radix_lock
);
1363 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1364 (unsigned long)root
->root_key
.objectid
,
1369 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1370 radix_tree_preload_end();
1372 if (ret
== -EEXIST
) {
1379 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1380 root
->root_key
.objectid
);
1385 return ERR_PTR(ret
);
1388 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1390 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1392 struct btrfs_device
*device
;
1393 struct backing_dev_info
*bdi
;
1396 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1399 bdi
= blk_get_backing_dev_info(device
->bdev
);
1400 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1410 * If this fails, caller must call bdi_destroy() to get rid of the
1413 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1417 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1418 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1422 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1423 bdi
->congested_fn
= btrfs_congested_fn
;
1424 bdi
->congested_data
= info
;
1428 static int bio_ready_for_csum(struct bio
*bio
)
1434 struct extent_io_tree
*io_tree
= NULL
;
1435 struct bio_vec
*bvec
;
1439 bio_for_each_segment(bvec
, bio
, i
) {
1440 page
= bvec
->bv_page
;
1441 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1442 length
+= bvec
->bv_len
;
1445 if (!page
->private) {
1446 length
+= bvec
->bv_len
;
1449 length
= bvec
->bv_len
;
1450 buf_len
= page
->private >> 2;
1451 start
= page_offset(page
) + bvec
->bv_offset
;
1452 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1454 /* are we fully contained in this bio? */
1455 if (buf_len
<= length
)
1458 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1459 start
+ buf_len
- 1);
1464 * called by the kthread helper functions to finally call the bio end_io
1465 * functions. This is where read checksum verification actually happens
1467 static void end_workqueue_fn(struct btrfs_work
*work
)
1470 struct end_io_wq
*end_io_wq
;
1471 struct btrfs_fs_info
*fs_info
;
1474 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1475 bio
= end_io_wq
->bio
;
1476 fs_info
= end_io_wq
->info
;
1478 /* metadata bio reads are special because the whole tree block must
1479 * be checksummed at once. This makes sure the entire block is in
1480 * ram and up to date before trying to verify things. For
1481 * blocksize <= pagesize, it is basically a noop
1483 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1484 !bio_ready_for_csum(bio
)) {
1485 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1489 error
= end_io_wq
->error
;
1490 bio
->bi_private
= end_io_wq
->private;
1491 bio
->bi_end_io
= end_io_wq
->end_io
;
1493 bio_endio(bio
, error
);
1496 static int cleaner_kthread(void *arg
)
1498 struct btrfs_root
*root
= arg
;
1501 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1503 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1504 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1505 btrfs_run_delayed_iputs(root
);
1506 btrfs_clean_old_snapshots(root
);
1507 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1508 btrfs_run_defrag_inodes(root
->fs_info
);
1511 if (freezing(current
)) {
1514 set_current_state(TASK_INTERRUPTIBLE
);
1515 if (!kthread_should_stop())
1517 __set_current_state(TASK_RUNNING
);
1519 } while (!kthread_should_stop());
1523 static int transaction_kthread(void *arg
)
1525 struct btrfs_root
*root
= arg
;
1526 struct btrfs_trans_handle
*trans
;
1527 struct btrfs_transaction
*cur
;
1530 unsigned long delay
;
1535 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1536 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1538 spin_lock(&root
->fs_info
->trans_lock
);
1539 cur
= root
->fs_info
->running_transaction
;
1541 spin_unlock(&root
->fs_info
->trans_lock
);
1545 now
= get_seconds();
1546 if (!cur
->blocked
&&
1547 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1548 spin_unlock(&root
->fs_info
->trans_lock
);
1552 transid
= cur
->transid
;
1553 spin_unlock(&root
->fs_info
->trans_lock
);
1555 trans
= btrfs_join_transaction(root
);
1556 BUG_ON(IS_ERR(trans
));
1557 if (transid
== trans
->transid
) {
1558 ret
= btrfs_commit_transaction(trans
, root
);
1561 btrfs_end_transaction(trans
, root
);
1564 wake_up_process(root
->fs_info
->cleaner_kthread
);
1565 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1567 if (freezing(current
)) {
1570 set_current_state(TASK_INTERRUPTIBLE
);
1571 if (!kthread_should_stop() &&
1572 !btrfs_transaction_blocked(root
->fs_info
))
1573 schedule_timeout(delay
);
1574 __set_current_state(TASK_RUNNING
);
1576 } while (!kthread_should_stop());
1580 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1581 struct btrfs_fs_devices
*fs_devices
,
1591 struct btrfs_key location
;
1592 struct buffer_head
*bh
;
1593 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1595 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1597 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1598 struct btrfs_fs_info
*fs_info
= NULL
;
1599 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1601 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1603 struct btrfs_root
*log_tree_root
;
1608 struct btrfs_super_block
*disk_super
;
1610 if (!extent_root
|| !tree_root
|| !tree_root
->fs_info
||
1611 !chunk_root
|| !dev_root
|| !csum_root
) {
1615 fs_info
= tree_root
->fs_info
;
1617 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1623 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1629 fs_info
->btree_inode
= new_inode(sb
);
1630 if (!fs_info
->btree_inode
) {
1635 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1637 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1638 INIT_LIST_HEAD(&fs_info
->trans_list
);
1639 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1640 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1641 INIT_LIST_HEAD(&fs_info
->hashers
);
1642 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1643 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1644 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1645 spin_lock_init(&fs_info
->delalloc_lock
);
1646 spin_lock_init(&fs_info
->trans_lock
);
1647 spin_lock_init(&fs_info
->ref_cache_lock
);
1648 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1649 spin_lock_init(&fs_info
->delayed_iput_lock
);
1650 spin_lock_init(&fs_info
->defrag_inodes_lock
);
1651 mutex_init(&fs_info
->reloc_mutex
);
1653 init_completion(&fs_info
->kobj_unregister
);
1654 fs_info
->tree_root
= tree_root
;
1655 fs_info
->extent_root
= extent_root
;
1656 fs_info
->csum_root
= csum_root
;
1657 fs_info
->chunk_root
= chunk_root
;
1658 fs_info
->dev_root
= dev_root
;
1659 fs_info
->fs_devices
= fs_devices
;
1660 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1661 INIT_LIST_HEAD(&fs_info
->space_info
);
1662 btrfs_mapping_init(&fs_info
->mapping_tree
);
1663 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1664 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1665 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1666 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1667 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1668 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1669 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1670 atomic_set(&fs_info
->nr_async_submits
, 0);
1671 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1672 atomic_set(&fs_info
->async_submit_draining
, 0);
1673 atomic_set(&fs_info
->nr_async_bios
, 0);
1674 atomic_set(&fs_info
->defrag_running
, 0);
1676 fs_info
->max_inline
= 8192 * 1024;
1677 fs_info
->metadata_ratio
= 0;
1678 fs_info
->defrag_inodes
= RB_ROOT
;
1679 fs_info
->trans_no_join
= 0;
1681 fs_info
->thread_pool_size
= min_t(unsigned long,
1682 num_online_cpus() + 2, 8);
1684 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1685 spin_lock_init(&fs_info
->ordered_extent_lock
);
1686 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
1688 if (!fs_info
->delayed_root
) {
1692 btrfs_init_delayed_root(fs_info
->delayed_root
);
1694 mutex_init(&fs_info
->scrub_lock
);
1695 atomic_set(&fs_info
->scrubs_running
, 0);
1696 atomic_set(&fs_info
->scrub_pause_req
, 0);
1697 atomic_set(&fs_info
->scrubs_paused
, 0);
1698 atomic_set(&fs_info
->scrub_cancel_req
, 0);
1699 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
1700 init_rwsem(&fs_info
->scrub_super_lock
);
1701 fs_info
->scrub_workers_refcnt
= 0;
1703 sb
->s_blocksize
= 4096;
1704 sb
->s_blocksize_bits
= blksize_bits(4096);
1705 sb
->s_bdi
= &fs_info
->bdi
;
1707 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1708 fs_info
->btree_inode
->i_nlink
= 1;
1710 * we set the i_size on the btree inode to the max possible int.
1711 * the real end of the address space is determined by all of
1712 * the devices in the system
1714 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1715 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1716 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1718 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1719 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1720 fs_info
->btree_inode
->i_mapping
);
1721 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
1723 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1725 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1726 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1727 sizeof(struct btrfs_key
));
1728 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1729 insert_inode_hash(fs_info
->btree_inode
);
1731 spin_lock_init(&fs_info
->block_group_cache_lock
);
1732 fs_info
->block_group_cache_tree
= RB_ROOT
;
1734 extent_io_tree_init(&fs_info
->freed_extents
[0],
1735 fs_info
->btree_inode
->i_mapping
);
1736 extent_io_tree_init(&fs_info
->freed_extents
[1],
1737 fs_info
->btree_inode
->i_mapping
);
1738 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1739 fs_info
->do_barriers
= 1;
1742 mutex_init(&fs_info
->ordered_operations_mutex
);
1743 mutex_init(&fs_info
->tree_log_mutex
);
1744 mutex_init(&fs_info
->chunk_mutex
);
1745 mutex_init(&fs_info
->transaction_kthread_mutex
);
1746 mutex_init(&fs_info
->cleaner_mutex
);
1747 mutex_init(&fs_info
->volume_mutex
);
1748 init_rwsem(&fs_info
->extent_commit_sem
);
1749 init_rwsem(&fs_info
->cleanup_work_sem
);
1750 init_rwsem(&fs_info
->subvol_sem
);
1752 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1753 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1755 init_waitqueue_head(&fs_info
->transaction_throttle
);
1756 init_waitqueue_head(&fs_info
->transaction_wait
);
1757 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
1758 init_waitqueue_head(&fs_info
->async_submit_wait
);
1760 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1761 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1763 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1769 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1770 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1771 sizeof(fs_info
->super_for_commit
));
1774 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1776 disk_super
= &fs_info
->super_copy
;
1777 if (!btrfs_super_root(disk_super
))
1780 /* check FS state, whether FS is broken. */
1781 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
1783 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
1786 * In the long term, we'll store the compression type in the super
1787 * block, and it'll be used for per file compression control.
1789 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
1791 ret
= btrfs_parse_options(tree_root
, options
);
1797 features
= btrfs_super_incompat_flags(disk_super
) &
1798 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1800 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1801 "unsupported optional features (%Lx).\n",
1802 (unsigned long long)features
);
1807 features
= btrfs_super_incompat_flags(disk_super
);
1808 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1809 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
1810 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1811 btrfs_set_super_incompat_flags(disk_super
, features
);
1813 features
= btrfs_super_compat_ro_flags(disk_super
) &
1814 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1815 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1816 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1817 "unsupported option features (%Lx).\n",
1818 (unsigned long long)features
);
1823 btrfs_init_workers(&fs_info
->generic_worker
,
1824 "genwork", 1, NULL
);
1826 btrfs_init_workers(&fs_info
->workers
, "worker",
1827 fs_info
->thread_pool_size
,
1828 &fs_info
->generic_worker
);
1830 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1831 fs_info
->thread_pool_size
,
1832 &fs_info
->generic_worker
);
1834 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1835 min_t(u64
, fs_devices
->num_devices
,
1836 fs_info
->thread_pool_size
),
1837 &fs_info
->generic_worker
);
1839 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
1840 2, &fs_info
->generic_worker
);
1842 /* a higher idle thresh on the submit workers makes it much more
1843 * likely that bios will be send down in a sane order to the
1846 fs_info
->submit_workers
.idle_thresh
= 64;
1848 fs_info
->workers
.idle_thresh
= 16;
1849 fs_info
->workers
.ordered
= 1;
1851 fs_info
->delalloc_workers
.idle_thresh
= 2;
1852 fs_info
->delalloc_workers
.ordered
= 1;
1854 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1855 &fs_info
->generic_worker
);
1856 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1857 fs_info
->thread_pool_size
,
1858 &fs_info
->generic_worker
);
1859 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1860 fs_info
->thread_pool_size
,
1861 &fs_info
->generic_worker
);
1862 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1863 "endio-meta-write", fs_info
->thread_pool_size
,
1864 &fs_info
->generic_worker
);
1865 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1866 fs_info
->thread_pool_size
,
1867 &fs_info
->generic_worker
);
1868 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
1869 1, &fs_info
->generic_worker
);
1870 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
1871 fs_info
->thread_pool_size
,
1872 &fs_info
->generic_worker
);
1875 * endios are largely parallel and should have a very
1878 fs_info
->endio_workers
.idle_thresh
= 4;
1879 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1881 fs_info
->endio_write_workers
.idle_thresh
= 2;
1882 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1884 btrfs_start_workers(&fs_info
->workers
, 1);
1885 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1886 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1887 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1888 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1889 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1890 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1891 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1892 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1893 btrfs_start_workers(&fs_info
->endio_freespace_worker
, 1);
1894 btrfs_start_workers(&fs_info
->delayed_workers
, 1);
1895 btrfs_start_workers(&fs_info
->caching_workers
, 1);
1897 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1898 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1899 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1901 nodesize
= btrfs_super_nodesize(disk_super
);
1902 leafsize
= btrfs_super_leafsize(disk_super
);
1903 sectorsize
= btrfs_super_sectorsize(disk_super
);
1904 stripesize
= btrfs_super_stripesize(disk_super
);
1905 tree_root
->nodesize
= nodesize
;
1906 tree_root
->leafsize
= leafsize
;
1907 tree_root
->sectorsize
= sectorsize
;
1908 tree_root
->stripesize
= stripesize
;
1910 sb
->s_blocksize
= sectorsize
;
1911 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1913 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1914 sizeof(disk_super
->magic
))) {
1915 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1916 goto fail_sb_buffer
;
1919 mutex_lock(&fs_info
->chunk_mutex
);
1920 ret
= btrfs_read_sys_array(tree_root
);
1921 mutex_unlock(&fs_info
->chunk_mutex
);
1923 printk(KERN_WARNING
"btrfs: failed to read the system "
1924 "array on %s\n", sb
->s_id
);
1925 goto fail_sb_buffer
;
1928 blocksize
= btrfs_level_size(tree_root
,
1929 btrfs_super_chunk_root_level(disk_super
));
1930 generation
= btrfs_super_chunk_root_generation(disk_super
);
1932 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1933 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1935 chunk_root
->node
= read_tree_block(chunk_root
,
1936 btrfs_super_chunk_root(disk_super
),
1937 blocksize
, generation
);
1938 BUG_ON(!chunk_root
->node
);
1939 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1940 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1942 goto fail_chunk_root
;
1944 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1945 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1947 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1948 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1951 mutex_lock(&fs_info
->chunk_mutex
);
1952 ret
= btrfs_read_chunk_tree(chunk_root
);
1953 mutex_unlock(&fs_info
->chunk_mutex
);
1955 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1957 goto fail_chunk_root
;
1960 btrfs_close_extra_devices(fs_devices
);
1962 blocksize
= btrfs_level_size(tree_root
,
1963 btrfs_super_root_level(disk_super
));
1964 generation
= btrfs_super_generation(disk_super
);
1966 tree_root
->node
= read_tree_block(tree_root
,
1967 btrfs_super_root(disk_super
),
1968 blocksize
, generation
);
1969 if (!tree_root
->node
)
1970 goto fail_chunk_root
;
1971 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1972 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1974 goto fail_tree_root
;
1976 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1977 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1979 ret
= find_and_setup_root(tree_root
, fs_info
,
1980 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1982 goto fail_tree_root
;
1983 extent_root
->track_dirty
= 1;
1985 ret
= find_and_setup_root(tree_root
, fs_info
,
1986 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1988 goto fail_extent_root
;
1989 dev_root
->track_dirty
= 1;
1991 ret
= find_and_setup_root(tree_root
, fs_info
,
1992 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1996 csum_root
->track_dirty
= 1;
1998 fs_info
->generation
= generation
;
1999 fs_info
->last_trans_committed
= generation
;
2000 fs_info
->data_alloc_profile
= (u64
)-1;
2001 fs_info
->metadata_alloc_profile
= (u64
)-1;
2002 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
2004 ret
= btrfs_init_space_info(fs_info
);
2006 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2007 goto fail_block_groups
;
2010 ret
= btrfs_read_block_groups(extent_root
);
2012 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2013 goto fail_block_groups
;
2016 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2018 if (IS_ERR(fs_info
->cleaner_kthread
))
2019 goto fail_block_groups
;
2021 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2023 "btrfs-transaction");
2024 if (IS_ERR(fs_info
->transaction_kthread
))
2027 if (!btrfs_test_opt(tree_root
, SSD
) &&
2028 !btrfs_test_opt(tree_root
, NOSSD
) &&
2029 !fs_info
->fs_devices
->rotating
) {
2030 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2032 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2035 /* do not make disk changes in broken FS */
2036 if (btrfs_super_log_root(disk_super
) != 0 &&
2037 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
2038 u64 bytenr
= btrfs_super_log_root(disk_super
);
2040 if (fs_devices
->rw_devices
== 0) {
2041 printk(KERN_WARNING
"Btrfs log replay required "
2044 goto fail_trans_kthread
;
2047 btrfs_level_size(tree_root
,
2048 btrfs_super_log_root_level(disk_super
));
2050 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
2051 if (!log_tree_root
) {
2053 goto fail_trans_kthread
;
2056 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2057 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2059 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2062 ret
= btrfs_recover_log_trees(log_tree_root
);
2065 if (sb
->s_flags
& MS_RDONLY
) {
2066 ret
= btrfs_commit_super(tree_root
);
2071 ret
= btrfs_find_orphan_roots(tree_root
);
2074 if (!(sb
->s_flags
& MS_RDONLY
)) {
2075 ret
= btrfs_cleanup_fs_roots(fs_info
);
2078 ret
= btrfs_recover_relocation(tree_root
);
2081 "btrfs: failed to recover relocation\n");
2083 goto fail_trans_kthread
;
2087 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2088 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2089 location
.offset
= (u64
)-1;
2091 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2092 if (!fs_info
->fs_root
)
2093 goto fail_trans_kthread
;
2094 if (IS_ERR(fs_info
->fs_root
)) {
2095 err
= PTR_ERR(fs_info
->fs_root
);
2096 goto fail_trans_kthread
;
2099 if (!(sb
->s_flags
& MS_RDONLY
)) {
2100 down_read(&fs_info
->cleanup_work_sem
);
2101 err
= btrfs_orphan_cleanup(fs_info
->fs_root
);
2103 err
= btrfs_orphan_cleanup(fs_info
->tree_root
);
2104 up_read(&fs_info
->cleanup_work_sem
);
2106 close_ctree(tree_root
);
2107 return ERR_PTR(err
);
2114 kthread_stop(fs_info
->transaction_kthread
);
2116 kthread_stop(fs_info
->cleaner_kthread
);
2119 * make sure we're done with the btree inode before we stop our
2122 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2123 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2126 btrfs_free_block_groups(fs_info
);
2127 free_extent_buffer(csum_root
->node
);
2128 free_extent_buffer(csum_root
->commit_root
);
2130 free_extent_buffer(dev_root
->node
);
2131 free_extent_buffer(dev_root
->commit_root
);
2133 free_extent_buffer(extent_root
->node
);
2134 free_extent_buffer(extent_root
->commit_root
);
2136 free_extent_buffer(tree_root
->node
);
2137 free_extent_buffer(tree_root
->commit_root
);
2139 free_extent_buffer(chunk_root
->node
);
2140 free_extent_buffer(chunk_root
->commit_root
);
2142 btrfs_stop_workers(&fs_info
->generic_worker
);
2143 btrfs_stop_workers(&fs_info
->fixup_workers
);
2144 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2145 btrfs_stop_workers(&fs_info
->workers
);
2146 btrfs_stop_workers(&fs_info
->endio_workers
);
2147 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2148 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2149 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2150 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2151 btrfs_stop_workers(&fs_info
->submit_workers
);
2152 btrfs_stop_workers(&fs_info
->delayed_workers
);
2153 btrfs_stop_workers(&fs_info
->caching_workers
);
2155 kfree(fs_info
->delayed_root
);
2157 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2158 iput(fs_info
->btree_inode
);
2160 btrfs_close_devices(fs_info
->fs_devices
);
2161 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2163 bdi_destroy(&fs_info
->bdi
);
2165 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2173 return ERR_PTR(err
);
2176 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2178 char b
[BDEVNAME_SIZE
];
2181 set_buffer_uptodate(bh
);
2183 printk_ratelimited(KERN_WARNING
"lost page write due to "
2184 "I/O error on %s\n",
2185 bdevname(bh
->b_bdev
, b
));
2186 /* note, we dont' set_buffer_write_io_error because we have
2187 * our own ways of dealing with the IO errors
2189 clear_buffer_uptodate(bh
);
2195 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2197 struct buffer_head
*bh
;
2198 struct buffer_head
*latest
= NULL
;
2199 struct btrfs_super_block
*super
;
2204 /* we would like to check all the supers, but that would make
2205 * a btrfs mount succeed after a mkfs from a different FS.
2206 * So, we need to add a special mount option to scan for
2207 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2209 for (i
= 0; i
< 1; i
++) {
2210 bytenr
= btrfs_sb_offset(i
);
2211 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2213 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2217 super
= (struct btrfs_super_block
*)bh
->b_data
;
2218 if (btrfs_super_bytenr(super
) != bytenr
||
2219 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2220 sizeof(super
->magic
))) {
2225 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2228 transid
= btrfs_super_generation(super
);
2237 * this should be called twice, once with wait == 0 and
2238 * once with wait == 1. When wait == 0 is done, all the buffer heads
2239 * we write are pinned.
2241 * They are released when wait == 1 is done.
2242 * max_mirrors must be the same for both runs, and it indicates how
2243 * many supers on this one device should be written.
2245 * max_mirrors == 0 means to write them all.
2247 static int write_dev_supers(struct btrfs_device
*device
,
2248 struct btrfs_super_block
*sb
,
2249 int do_barriers
, int wait
, int max_mirrors
)
2251 struct buffer_head
*bh
;
2257 int last_barrier
= 0;
2259 if (max_mirrors
== 0)
2260 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2262 /* make sure only the last submit_bh does a barrier */
2264 for (i
= 0; i
< max_mirrors
; i
++) {
2265 bytenr
= btrfs_sb_offset(i
);
2266 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2267 device
->total_bytes
)
2273 for (i
= 0; i
< max_mirrors
; i
++) {
2274 bytenr
= btrfs_sb_offset(i
);
2275 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2279 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2280 BTRFS_SUPER_INFO_SIZE
);
2283 if (!buffer_uptodate(bh
))
2286 /* drop our reference */
2289 /* drop the reference from the wait == 0 run */
2293 btrfs_set_super_bytenr(sb
, bytenr
);
2296 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2297 BTRFS_CSUM_SIZE
, crc
,
2298 BTRFS_SUPER_INFO_SIZE
-
2300 btrfs_csum_final(crc
, sb
->csum
);
2303 * one reference for us, and we leave it for the
2306 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2307 BTRFS_SUPER_INFO_SIZE
);
2308 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2310 /* one reference for submit_bh */
2313 set_buffer_uptodate(bh
);
2315 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2318 if (i
== last_barrier
&& do_barriers
)
2319 ret
= submit_bh(WRITE_FLUSH_FUA
, bh
);
2321 ret
= submit_bh(WRITE_SYNC
, bh
);
2326 return errors
< i
? 0 : -1;
2329 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2331 struct list_head
*head
;
2332 struct btrfs_device
*dev
;
2333 struct btrfs_super_block
*sb
;
2334 struct btrfs_dev_item
*dev_item
;
2338 int total_errors
= 0;
2341 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2342 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2344 sb
= &root
->fs_info
->super_for_commit
;
2345 dev_item
= &sb
->dev_item
;
2347 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2348 head
= &root
->fs_info
->fs_devices
->devices
;
2349 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2354 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2357 btrfs_set_stack_device_generation(dev_item
, 0);
2358 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2359 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2360 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2361 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2362 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2363 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2364 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2365 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2366 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2368 flags
= btrfs_super_flags(sb
);
2369 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2371 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2375 if (total_errors
> max_errors
) {
2376 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2382 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2385 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2388 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2392 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2393 if (total_errors
> max_errors
) {
2394 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2401 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2402 struct btrfs_root
*root
, int max_mirrors
)
2406 ret
= write_all_supers(root
, max_mirrors
);
2410 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2412 spin_lock(&fs_info
->fs_roots_radix_lock
);
2413 radix_tree_delete(&fs_info
->fs_roots_radix
,
2414 (unsigned long)root
->root_key
.objectid
);
2415 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2417 if (btrfs_root_refs(&root
->root_item
) == 0)
2418 synchronize_srcu(&fs_info
->subvol_srcu
);
2420 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
2421 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
2426 static void free_fs_root(struct btrfs_root
*root
)
2428 iput(root
->cache_inode
);
2429 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2431 free_anon_bdev(root
->anon_dev
);
2432 free_extent_buffer(root
->node
);
2433 free_extent_buffer(root
->commit_root
);
2434 kfree(root
->free_ino_ctl
);
2435 kfree(root
->free_ino_pinned
);
2440 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2443 struct btrfs_root
*gang
[8];
2446 while (!list_empty(&fs_info
->dead_roots
)) {
2447 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2448 struct btrfs_root
, root_list
);
2449 list_del(&gang
[0]->root_list
);
2451 if (gang
[0]->in_radix
) {
2452 btrfs_free_fs_root(fs_info
, gang
[0]);
2454 free_extent_buffer(gang
[0]->node
);
2455 free_extent_buffer(gang
[0]->commit_root
);
2461 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2466 for (i
= 0; i
< ret
; i
++)
2467 btrfs_free_fs_root(fs_info
, gang
[i
]);
2472 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2474 u64 root_objectid
= 0;
2475 struct btrfs_root
*gang
[8];
2480 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2481 (void **)gang
, root_objectid
,
2486 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2487 for (i
= 0; i
< ret
; i
++) {
2490 root_objectid
= gang
[i
]->root_key
.objectid
;
2491 err
= btrfs_orphan_cleanup(gang
[i
]);
2500 int btrfs_commit_super(struct btrfs_root
*root
)
2502 struct btrfs_trans_handle
*trans
;
2505 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2506 btrfs_run_delayed_iputs(root
);
2507 btrfs_clean_old_snapshots(root
);
2508 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2510 /* wait until ongoing cleanup work done */
2511 down_write(&root
->fs_info
->cleanup_work_sem
);
2512 up_write(&root
->fs_info
->cleanup_work_sem
);
2514 trans
= btrfs_join_transaction(root
);
2516 return PTR_ERR(trans
);
2517 ret
= btrfs_commit_transaction(trans
, root
);
2519 /* run commit again to drop the original snapshot */
2520 trans
= btrfs_join_transaction(root
);
2522 return PTR_ERR(trans
);
2523 btrfs_commit_transaction(trans
, root
);
2524 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2527 ret
= write_ctree_super(NULL
, root
, 0);
2531 int close_ctree(struct btrfs_root
*root
)
2533 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2536 fs_info
->closing
= 1;
2539 btrfs_scrub_cancel(root
);
2541 /* wait for any defraggers to finish */
2542 wait_event(fs_info
->transaction_wait
,
2543 (atomic_read(&fs_info
->defrag_running
) == 0));
2545 /* clear out the rbtree of defraggable inodes */
2546 btrfs_run_defrag_inodes(root
->fs_info
);
2548 btrfs_put_block_group_cache(fs_info
);
2551 * Here come 2 situations when btrfs is broken to flip readonly:
2553 * 1. when btrfs flips readonly somewhere else before
2554 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2555 * and btrfs will skip to write sb directly to keep
2556 * ERROR state on disk.
2558 * 2. when btrfs flips readonly just in btrfs_commit_super,
2559 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2560 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2561 * btrfs will cleanup all FS resources first and write sb then.
2563 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2564 ret
= btrfs_commit_super(root
);
2566 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2569 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
2570 ret
= btrfs_error_commit_super(root
);
2572 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2575 kthread_stop(root
->fs_info
->transaction_kthread
);
2576 kthread_stop(root
->fs_info
->cleaner_kthread
);
2578 fs_info
->closing
= 2;
2581 if (fs_info
->delalloc_bytes
) {
2582 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2583 (unsigned long long)fs_info
->delalloc_bytes
);
2585 if (fs_info
->total_ref_cache_size
) {
2586 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2587 (unsigned long long)fs_info
->total_ref_cache_size
);
2590 free_extent_buffer(fs_info
->extent_root
->node
);
2591 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2592 free_extent_buffer(fs_info
->tree_root
->node
);
2593 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2594 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2595 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2596 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2597 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2598 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2599 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2601 btrfs_free_block_groups(root
->fs_info
);
2603 del_fs_roots(fs_info
);
2605 iput(fs_info
->btree_inode
);
2606 kfree(fs_info
->delayed_root
);
2608 btrfs_stop_workers(&fs_info
->generic_worker
);
2609 btrfs_stop_workers(&fs_info
->fixup_workers
);
2610 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2611 btrfs_stop_workers(&fs_info
->workers
);
2612 btrfs_stop_workers(&fs_info
->endio_workers
);
2613 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2614 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2615 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2616 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2617 btrfs_stop_workers(&fs_info
->submit_workers
);
2618 btrfs_stop_workers(&fs_info
->delayed_workers
);
2619 btrfs_stop_workers(&fs_info
->caching_workers
);
2621 btrfs_close_devices(fs_info
->fs_devices
);
2622 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2624 bdi_destroy(&fs_info
->bdi
);
2625 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2627 kfree(fs_info
->extent_root
);
2628 kfree(fs_info
->tree_root
);
2629 kfree(fs_info
->chunk_root
);
2630 kfree(fs_info
->dev_root
);
2631 kfree(fs_info
->csum_root
);
2637 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2640 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2642 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2647 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2652 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2654 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2655 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2659 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2661 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2662 u64 transid
= btrfs_header_generation(buf
);
2663 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2666 btrfs_assert_tree_locked(buf
);
2667 if (transid
!= root
->fs_info
->generation
) {
2668 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2669 "found %llu running %llu\n",
2670 (unsigned long long)buf
->start
,
2671 (unsigned long long)transid
,
2672 (unsigned long long)root
->fs_info
->generation
);
2675 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2678 spin_lock(&root
->fs_info
->delalloc_lock
);
2679 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2680 spin_unlock(&root
->fs_info
->delalloc_lock
);
2684 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2687 * looks as though older kernels can get into trouble with
2688 * this code, they end up stuck in balance_dirty_pages forever
2691 unsigned long thresh
= 32 * 1024 * 1024;
2693 if (current
->flags
& PF_MEMALLOC
)
2696 btrfs_balance_delayed_items(root
);
2698 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2700 if (num_dirty
> thresh
) {
2701 balance_dirty_pages_ratelimited_nr(
2702 root
->fs_info
->btree_inode
->i_mapping
, 1);
2707 void __btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2710 * looks as though older kernels can get into trouble with
2711 * this code, they end up stuck in balance_dirty_pages forever
2714 unsigned long thresh
= 32 * 1024 * 1024;
2716 if (current
->flags
& PF_MEMALLOC
)
2719 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2721 if (num_dirty
> thresh
) {
2722 balance_dirty_pages_ratelimited_nr(
2723 root
->fs_info
->btree_inode
->i_mapping
, 1);
2728 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2730 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2732 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2734 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2738 int btree_lock_page_hook(struct page
*page
)
2740 struct inode
*inode
= page
->mapping
->host
;
2741 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2742 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2743 struct extent_buffer
*eb
;
2745 u64 bytenr
= page_offset(page
);
2747 if (page
->private == EXTENT_PAGE_PRIVATE
)
2750 len
= page
->private >> 2;
2751 eb
= find_extent_buffer(io_tree
, bytenr
, len
);
2755 btrfs_tree_lock(eb
);
2756 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2758 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2759 spin_lock(&root
->fs_info
->delalloc_lock
);
2760 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2761 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2764 spin_unlock(&root
->fs_info
->delalloc_lock
);
2767 btrfs_tree_unlock(eb
);
2768 free_extent_buffer(eb
);
2774 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
2780 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
2781 printk(KERN_WARNING
"warning: mount fs with errors, "
2782 "running btrfsck is recommended\n");
2785 int btrfs_error_commit_super(struct btrfs_root
*root
)
2789 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2790 btrfs_run_delayed_iputs(root
);
2791 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2793 down_write(&root
->fs_info
->cleanup_work_sem
);
2794 up_write(&root
->fs_info
->cleanup_work_sem
);
2796 /* cleanup FS via transaction */
2797 btrfs_cleanup_transaction(root
);
2799 ret
= write_ctree_super(NULL
, root
, 0);
2804 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
2806 struct btrfs_inode
*btrfs_inode
;
2807 struct list_head splice
;
2809 INIT_LIST_HEAD(&splice
);
2811 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
2812 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2814 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
2815 while (!list_empty(&splice
)) {
2816 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2817 ordered_operations
);
2819 list_del_init(&btrfs_inode
->ordered_operations
);
2821 btrfs_invalidate_inodes(btrfs_inode
->root
);
2824 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2825 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
2830 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
2832 struct list_head splice
;
2833 struct btrfs_ordered_extent
*ordered
;
2834 struct inode
*inode
;
2836 INIT_LIST_HEAD(&splice
);
2838 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2840 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
2841 while (!list_empty(&splice
)) {
2842 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
2845 list_del_init(&ordered
->root_extent_list
);
2846 atomic_inc(&ordered
->refs
);
2848 /* the inode may be getting freed (in sys_unlink path). */
2849 inode
= igrab(ordered
->inode
);
2851 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2855 atomic_set(&ordered
->refs
, 1);
2856 btrfs_put_ordered_extent(ordered
);
2858 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2861 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2866 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
2867 struct btrfs_root
*root
)
2869 struct rb_node
*node
;
2870 struct btrfs_delayed_ref_root
*delayed_refs
;
2871 struct btrfs_delayed_ref_node
*ref
;
2874 delayed_refs
= &trans
->delayed_refs
;
2876 spin_lock(&delayed_refs
->lock
);
2877 if (delayed_refs
->num_entries
== 0) {
2878 spin_unlock(&delayed_refs
->lock
);
2879 printk(KERN_INFO
"delayed_refs has NO entry\n");
2883 node
= rb_first(&delayed_refs
->root
);
2885 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2886 node
= rb_next(node
);
2889 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2890 delayed_refs
->num_entries
--;
2892 atomic_set(&ref
->refs
, 1);
2893 if (btrfs_delayed_ref_is_head(ref
)) {
2894 struct btrfs_delayed_ref_head
*head
;
2896 head
= btrfs_delayed_node_to_head(ref
);
2897 mutex_lock(&head
->mutex
);
2898 kfree(head
->extent_op
);
2899 delayed_refs
->num_heads
--;
2900 if (list_empty(&head
->cluster
))
2901 delayed_refs
->num_heads_ready
--;
2902 list_del_init(&head
->cluster
);
2903 mutex_unlock(&head
->mutex
);
2906 spin_unlock(&delayed_refs
->lock
);
2907 btrfs_put_delayed_ref(ref
);
2910 spin_lock(&delayed_refs
->lock
);
2913 spin_unlock(&delayed_refs
->lock
);
2918 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
2920 struct btrfs_pending_snapshot
*snapshot
;
2921 struct list_head splice
;
2923 INIT_LIST_HEAD(&splice
);
2925 list_splice_init(&t
->pending_snapshots
, &splice
);
2927 while (!list_empty(&splice
)) {
2928 snapshot
= list_entry(splice
.next
,
2929 struct btrfs_pending_snapshot
,
2932 list_del_init(&snapshot
->list
);
2940 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
2942 struct btrfs_inode
*btrfs_inode
;
2943 struct list_head splice
;
2945 INIT_LIST_HEAD(&splice
);
2947 spin_lock(&root
->fs_info
->delalloc_lock
);
2948 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
2950 while (!list_empty(&splice
)) {
2951 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2954 list_del_init(&btrfs_inode
->delalloc_inodes
);
2956 btrfs_invalidate_inodes(btrfs_inode
->root
);
2959 spin_unlock(&root
->fs_info
->delalloc_lock
);
2964 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
2965 struct extent_io_tree
*dirty_pages
,
2970 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2971 struct extent_buffer
*eb
;
2975 unsigned long index
;
2978 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
2983 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
2984 while (start
<= end
) {
2985 index
= start
>> PAGE_CACHE_SHIFT
;
2986 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
2987 page
= find_get_page(btree_inode
->i_mapping
, index
);
2990 offset
= page_offset(page
);
2992 spin_lock(&dirty_pages
->buffer_lock
);
2993 eb
= radix_tree_lookup(
2994 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
2995 offset
>> PAGE_CACHE_SHIFT
);
2996 spin_unlock(&dirty_pages
->buffer_lock
);
2998 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3000 atomic_set(&eb
->refs
, 1);
3002 if (PageWriteback(page
))
3003 end_page_writeback(page
);
3006 if (PageDirty(page
)) {
3007 clear_page_dirty_for_io(page
);
3008 spin_lock_irq(&page
->mapping
->tree_lock
);
3009 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3011 PAGECACHE_TAG_DIRTY
);
3012 spin_unlock_irq(&page
->mapping
->tree_lock
);
3015 page
->mapping
->a_ops
->invalidatepage(page
, 0);
3023 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3024 struct extent_io_tree
*pinned_extents
)
3026 struct extent_io_tree
*unpin
;
3031 unpin
= pinned_extents
;
3033 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3039 if (btrfs_test_opt(root
, DISCARD
))
3040 ret
= btrfs_error_discard_extent(root
, start
,
3044 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3045 btrfs_error_unpin_extent_range(root
, start
, end
);
3052 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3054 struct btrfs_transaction
*t
;
3059 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3061 spin_lock(&root
->fs_info
->trans_lock
);
3062 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3063 root
->fs_info
->trans_no_join
= 1;
3064 spin_unlock(&root
->fs_info
->trans_lock
);
3066 while (!list_empty(&list
)) {
3067 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3071 btrfs_destroy_ordered_operations(root
);
3073 btrfs_destroy_ordered_extents(root
);
3075 btrfs_destroy_delayed_refs(t
, root
);
3077 btrfs_block_rsv_release(root
,
3078 &root
->fs_info
->trans_block_rsv
,
3079 t
->dirty_pages
.dirty_bytes
);
3081 /* FIXME: cleanup wait for commit */
3084 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3085 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3088 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3089 wake_up(&root
->fs_info
->transaction_wait
);
3092 if (waitqueue_active(&t
->commit_wait
))
3093 wake_up(&t
->commit_wait
);
3095 btrfs_destroy_pending_snapshots(t
);
3097 btrfs_destroy_delalloc_inodes(root
);
3099 spin_lock(&root
->fs_info
->trans_lock
);
3100 root
->fs_info
->running_transaction
= NULL
;
3101 spin_unlock(&root
->fs_info
->trans_lock
);
3103 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3106 btrfs_destroy_pinned_extent(root
,
3107 root
->fs_info
->pinned_extents
);
3109 atomic_set(&t
->use_count
, 0);
3110 list_del_init(&t
->list
);
3111 memset(t
, 0, sizeof(*t
));
3112 kmem_cache_free(btrfs_transaction_cachep
, t
);
3115 spin_lock(&root
->fs_info
->trans_lock
);
3116 root
->fs_info
->trans_no_join
= 0;
3117 spin_unlock(&root
->fs_info
->trans_lock
);
3118 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3123 static struct extent_io_ops btree_extent_io_ops
= {
3124 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
3125 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3126 .submit_bio_hook
= btree_submit_bio_hook
,
3127 /* note we're sharing with inode.c for the merge bio hook */
3128 .merge_bio_hook
= btrfs_merge_bio_hook
,