backlight: extend event support to also support poll()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / gc.c
blob02aba36fe3d4994ac6dbdba97d0705371cd8bf21
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
36 #include <linux/pagemap.h>
37 #include "ubifs.h"
40 * GC tries to optimize the way it fit nodes to available space, and it sorts
41 * nodes a little. The below constants are watermarks which define "large",
42 * "medium", and "small" nodes.
44 #define MEDIUM_NODE_WM (UBIFS_BLOCK_SIZE / 4)
45 #define SMALL_NODE_WM UBIFS_MAX_DENT_NODE_SZ
48 * GC may need to move more then one LEB to make progress. The below constants
49 * define "soft" and "hard" limits on the number of LEBs the garbage collector
50 * may move.
52 #define SOFT_LEBS_LIMIT 4
53 #define HARD_LEBS_LIMIT 32
55 /**
56 * switch_gc_head - switch the garbage collection journal head.
57 * @c: UBIFS file-system description object
58 * @buf: buffer to write
59 * @len: length of the buffer to write
60 * @lnum: LEB number written is returned here
61 * @offs: offset written is returned here
63 * This function switch the GC head to the next LEB which is reserved in
64 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
65 * and other negative error code in case of failures.
67 static int switch_gc_head(struct ubifs_info *c)
69 int err, gc_lnum = c->gc_lnum;
70 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
72 ubifs_assert(gc_lnum != -1);
73 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
74 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
75 c->leb_size - wbuf->offs - wbuf->used);
77 err = ubifs_wbuf_sync_nolock(wbuf);
78 if (err)
79 return err;
82 * The GC write-buffer was synchronized, we may safely unmap
83 * 'c->gc_lnum'.
85 err = ubifs_leb_unmap(c, gc_lnum);
86 if (err)
87 return err;
89 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
90 if (err)
91 return err;
93 c->gc_lnum = -1;
94 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
95 return err;
98 /**
99 * move_nodes - move nodes.
100 * @c: UBIFS file-system description object
101 * @sleb: describes nodes to move
103 * This function moves valid nodes from data LEB described by @sleb to the GC
104 * journal head. The obsolete nodes are dropped.
106 * When moving nodes we have to deal with classical bin-packing problem: the
107 * space in the current GC journal head LEB and in @c->gc_lnum are the "bins",
108 * where the nodes in the @sleb->nodes list are the elements which should be
109 * fit optimally to the bins. This function uses the "first fit decreasing"
110 * strategy, although it does not really sort the nodes but just split them on
111 * 3 classes - large, medium, and small, so they are roughly sorted.
113 * This function returns zero in case of success, %-EAGAIN if commit is
114 * required, and other negative error codes in case of other failures.
116 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
118 struct ubifs_scan_node *snod, *tmp;
119 struct list_head large, medium, small;
120 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
121 int avail, err, min = INT_MAX;
123 INIT_LIST_HEAD(&large);
124 INIT_LIST_HEAD(&medium);
125 INIT_LIST_HEAD(&small);
127 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
128 struct list_head *lst;
130 ubifs_assert(snod->type != UBIFS_IDX_NODE);
131 ubifs_assert(snod->type != UBIFS_REF_NODE);
132 ubifs_assert(snod->type != UBIFS_CS_NODE);
134 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
135 snod->offs, 0);
136 if (err < 0)
137 goto out;
139 lst = &snod->list;
140 list_del(lst);
141 if (!err) {
142 /* The node is obsolete, remove it from the list */
143 kfree(snod);
144 continue;
148 * Sort the list of nodes so that large nodes go first, and
149 * small nodes go last.
151 if (snod->len > MEDIUM_NODE_WM)
152 list_add(lst, &large);
153 else if (snod->len > SMALL_NODE_WM)
154 list_add(lst, &medium);
155 else
156 list_add(lst, &small);
158 /* And find the smallest node */
159 if (snod->len < min)
160 min = snod->len;
164 * Join the tree lists so that we'd have one roughly sorted list
165 * ('large' will be the head of the joined list).
167 list_splice(&medium, large.prev);
168 list_splice(&small, large.prev);
170 if (wbuf->lnum == -1) {
172 * The GC journal head is not set, because it is the first GC
173 * invocation since mount.
175 err = switch_gc_head(c);
176 if (err)
177 goto out;
180 /* Write nodes to their new location. Use the first-fit strategy */
181 while (1) {
182 avail = c->leb_size - wbuf->offs - wbuf->used;
183 list_for_each_entry_safe(snod, tmp, &large, list) {
184 int new_lnum, new_offs;
186 if (avail < min)
187 break;
189 if (snod->len > avail)
190 /* This node does not fit */
191 continue;
193 cond_resched();
195 new_lnum = wbuf->lnum;
196 new_offs = wbuf->offs + wbuf->used;
197 err = ubifs_wbuf_write_nolock(wbuf, snod->node,
198 snod->len);
199 if (err)
200 goto out;
201 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
202 snod->offs, new_lnum, new_offs,
203 snod->len);
204 if (err)
205 goto out;
207 avail = c->leb_size - wbuf->offs - wbuf->used;
208 list_del(&snod->list);
209 kfree(snod);
212 if (list_empty(&large))
213 break;
216 * Waste the rest of the space in the LEB and switch to the
217 * next LEB.
219 err = switch_gc_head(c);
220 if (err)
221 goto out;
224 return 0;
226 out:
227 list_for_each_entry_safe(snod, tmp, &large, list) {
228 list_del(&snod->list);
229 kfree(snod);
231 return err;
235 * gc_sync_wbufs - sync write-buffers for GC.
236 * @c: UBIFS file-system description object
238 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
239 * be in a write-buffer instead. That is, a node could be written to a
240 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
241 * erased before the write-buffer is sync'd and then there is an unclean
242 * unmount, then an existing node is lost. To avoid this, we sync all
243 * write-buffers.
245 * This function returns %0 on success or a negative error code on failure.
247 static int gc_sync_wbufs(struct ubifs_info *c)
249 int err, i;
251 for (i = 0; i < c->jhead_cnt; i++) {
252 if (i == GCHD)
253 continue;
254 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
255 if (err)
256 return err;
258 return 0;
262 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
263 * @c: UBIFS file-system description object
264 * @lp: describes the LEB to garbage collect
266 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
267 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
268 * required, and other negative error codes in case of failures.
270 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
272 struct ubifs_scan_leb *sleb;
273 struct ubifs_scan_node *snod;
274 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
275 int err = 0, lnum = lp->lnum;
277 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
278 c->need_recovery);
279 ubifs_assert(c->gc_lnum != lnum);
280 ubifs_assert(wbuf->lnum != lnum);
283 * We scan the entire LEB even though we only really need to scan up to
284 * (c->leb_size - lp->free).
286 sleb = ubifs_scan(c, lnum, 0, c->sbuf);
287 if (IS_ERR(sleb))
288 return PTR_ERR(sleb);
290 ubifs_assert(!list_empty(&sleb->nodes));
291 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
293 if (snod->type == UBIFS_IDX_NODE) {
294 struct ubifs_gced_idx_leb *idx_gc;
296 dbg_gc("indexing LEB %d (free %d, dirty %d)",
297 lnum, lp->free, lp->dirty);
298 list_for_each_entry(snod, &sleb->nodes, list) {
299 struct ubifs_idx_node *idx = snod->node;
300 int level = le16_to_cpu(idx->level);
302 ubifs_assert(snod->type == UBIFS_IDX_NODE);
303 key_read(c, ubifs_idx_key(c, idx), &snod->key);
304 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
305 snod->offs);
306 if (err)
307 goto out;
310 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
311 if (!idx_gc) {
312 err = -ENOMEM;
313 goto out;
316 idx_gc->lnum = lnum;
317 idx_gc->unmap = 0;
318 list_add(&idx_gc->list, &c->idx_gc);
321 * Don't release the LEB until after the next commit, because
322 * it may contain date which is needed for recovery. So
323 * although we freed this LEB, it will become usable only after
324 * the commit.
326 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
327 LPROPS_INDEX, 1);
328 if (err)
329 goto out;
330 err = LEB_FREED_IDX;
331 } else {
332 dbg_gc("data LEB %d (free %d, dirty %d)",
333 lnum, lp->free, lp->dirty);
335 err = move_nodes(c, sleb);
336 if (err)
337 goto out_inc_seq;
339 err = gc_sync_wbufs(c);
340 if (err)
341 goto out_inc_seq;
343 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
344 if (err)
345 goto out_inc_seq;
347 /* Allow for races with TNC */
348 c->gced_lnum = lnum;
349 smp_wmb();
350 c->gc_seq += 1;
351 smp_wmb();
353 if (c->gc_lnum == -1) {
354 c->gc_lnum = lnum;
355 err = LEB_RETAINED;
356 } else {
357 err = ubifs_wbuf_sync_nolock(wbuf);
358 if (err)
359 goto out;
361 err = ubifs_leb_unmap(c, lnum);
362 if (err)
363 goto out;
365 err = LEB_FREED;
369 out:
370 ubifs_scan_destroy(sleb);
371 return err;
373 out_inc_seq:
374 /* We may have moved at least some nodes so allow for races with TNC */
375 c->gced_lnum = lnum;
376 smp_wmb();
377 c->gc_seq += 1;
378 smp_wmb();
379 goto out;
383 * ubifs_garbage_collect - UBIFS garbage collector.
384 * @c: UBIFS file-system description object
385 * @anyway: do GC even if there are free LEBs
387 * This function does out-of-place garbage collection. The return codes are:
388 * o positive LEB number if the LEB has been freed and may be used;
389 * o %-EAGAIN if the caller has to run commit;
390 * o %-ENOSPC if GC failed to make any progress;
391 * o other negative error codes in case of other errors.
393 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
394 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
395 * commit may be required. But commit cannot be run from inside GC, because the
396 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
397 * And this error code means that the caller has to run commit, and re-run GC
398 * if there is still no free space.
400 * There are many reasons why this function may return %-EAGAIN:
401 * o the log is full and there is no space to write an LEB reference for
402 * @c->gc_lnum;
403 * o the journal is too large and exceeds size limitations;
404 * o GC moved indexing LEBs, but they can be used only after the commit;
405 * o the shrinker fails to find clean znodes to free and requests the commit;
406 * o etc.
408 * Note, if the file-system is close to be full, this function may return
409 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
410 * the function. E.g., this happens if the limits on the journal size are too
411 * tough and GC writes too much to the journal before an LEB is freed. This
412 * might also mean that the journal is too large, and the TNC becomes to big,
413 * so that the shrinker is constantly called, finds not clean znodes to free,
414 * and requests commit. Well, this may also happen if the journal is all right,
415 * but another kernel process consumes too much memory. Anyway, infinite
416 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
418 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
420 int i, err, ret, min_space = c->dead_wm;
421 struct ubifs_lprops lp;
422 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
424 ubifs_assert_cmt_locked(c);
426 if (ubifs_gc_should_commit(c))
427 return -EAGAIN;
429 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
431 if (c->ro_media) {
432 ret = -EROFS;
433 goto out_unlock;
436 /* We expect the write-buffer to be empty on entry */
437 ubifs_assert(!wbuf->used);
439 for (i = 0; ; i++) {
440 int space_before = c->leb_size - wbuf->offs - wbuf->used;
441 int space_after;
443 cond_resched();
445 /* Give the commit an opportunity to run */
446 if (ubifs_gc_should_commit(c)) {
447 ret = -EAGAIN;
448 break;
451 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
453 * We've done enough iterations. Indexing LEBs were
454 * moved and will be available after the commit.
456 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
457 ubifs_commit_required(c);
458 ret = -EAGAIN;
459 break;
462 if (i > HARD_LEBS_LIMIT) {
464 * We've moved too many LEBs and have not made
465 * progress, give up.
467 dbg_gc("hard limit, -ENOSPC");
468 ret = -ENOSPC;
469 break;
473 * Empty and freeable LEBs can turn up while we waited for
474 * the wbuf lock, or while we have been running GC. In that
475 * case, we should just return one of those instead of
476 * continuing to GC dirty LEBs. Hence we request
477 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
479 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
480 if (ret) {
481 if (ret == -ENOSPC)
482 dbg_gc("no more dirty LEBs");
483 break;
486 dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
487 "(min. space %d)", lp.lnum, lp.free, lp.dirty,
488 lp.free + lp.dirty, min_space);
490 if (lp.free + lp.dirty == c->leb_size) {
491 /* An empty LEB was returned */
492 dbg_gc("LEB %d is free, return it", lp.lnum);
494 * ubifs_find_dirty_leb() doesn't return freeable index
495 * LEBs.
497 ubifs_assert(!(lp.flags & LPROPS_INDEX));
498 if (lp.free != c->leb_size) {
500 * Write buffers must be sync'd before
501 * unmapping freeable LEBs, because one of them
502 * may contain data which obsoletes something
503 * in 'lp.pnum'.
505 ret = gc_sync_wbufs(c);
506 if (ret)
507 goto out;
508 ret = ubifs_change_one_lp(c, lp.lnum,
509 c->leb_size, 0, 0, 0,
511 if (ret)
512 goto out;
514 ret = ubifs_leb_unmap(c, lp.lnum);
515 if (ret)
516 goto out;
517 ret = lp.lnum;
518 break;
521 space_before = c->leb_size - wbuf->offs - wbuf->used;
522 if (wbuf->lnum == -1)
523 space_before = 0;
525 ret = ubifs_garbage_collect_leb(c, &lp);
526 if (ret < 0) {
527 if (ret == -EAGAIN || ret == -ENOSPC) {
529 * These codes are not errors, so we have to
530 * return the LEB to lprops. But if the
531 * 'ubifs_return_leb()' function fails, its
532 * failure code is propagated to the caller
533 * instead of the original '-EAGAIN' or
534 * '-ENOSPC'.
536 err = ubifs_return_leb(c, lp.lnum);
537 if (err)
538 ret = err;
539 break;
541 goto out;
544 if (ret == LEB_FREED) {
545 /* An LEB has been freed and is ready for use */
546 dbg_gc("LEB %d freed, return", lp.lnum);
547 ret = lp.lnum;
548 break;
551 if (ret == LEB_FREED_IDX) {
553 * This was an indexing LEB and it cannot be
554 * immediately used. And instead of requesting the
555 * commit straight away, we try to garbage collect some
556 * more.
558 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
559 continue;
562 ubifs_assert(ret == LEB_RETAINED);
563 space_after = c->leb_size - wbuf->offs - wbuf->used;
564 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
565 space_after - space_before);
567 if (space_after > space_before) {
568 /* GC makes progress, keep working */
569 min_space >>= 1;
570 if (min_space < c->dead_wm)
571 min_space = c->dead_wm;
572 continue;
575 dbg_gc("did not make progress");
578 * GC moved an LEB bud have not done any progress. This means
579 * that the previous GC head LEB contained too few free space
580 * and the LEB which was GC'ed contained only large nodes which
581 * did not fit that space.
583 * We can do 2 things:
584 * 1. pick another LEB in a hope it'll contain a small node
585 * which will fit the space we have at the end of current GC
586 * head LEB, but there is no guarantee, so we try this out
587 * unless we have already been working for too long;
588 * 2. request an LEB with more dirty space, which will force
589 * 'ubifs_find_dirty_leb()' to start scanning the lprops
590 * table, instead of just picking one from the heap
591 * (previously it already picked the dirtiest LEB).
593 if (i < SOFT_LEBS_LIMIT) {
594 dbg_gc("try again");
595 continue;
598 min_space <<= 1;
599 if (min_space > c->dark_wm)
600 min_space = c->dark_wm;
601 dbg_gc("set min. space to %d", min_space);
604 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
605 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
606 ubifs_commit_required(c);
607 ret = -EAGAIN;
610 err = ubifs_wbuf_sync_nolock(wbuf);
611 if (!err)
612 err = ubifs_leb_unmap(c, c->gc_lnum);
613 if (err) {
614 ret = err;
615 goto out;
617 out_unlock:
618 mutex_unlock(&wbuf->io_mutex);
619 return ret;
621 out:
622 ubifs_assert(ret < 0);
623 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
624 ubifs_ro_mode(c, ret);
625 ubifs_wbuf_sync_nolock(wbuf);
626 mutex_unlock(&wbuf->io_mutex);
627 ubifs_return_leb(c, lp.lnum);
628 return ret;
632 * ubifs_gc_start_commit - garbage collection at start of commit.
633 * @c: UBIFS file-system description object
635 * If a LEB has only dirty and free space, then we may safely unmap it and make
636 * it free. Note, we cannot do this with indexing LEBs because dirty space may
637 * correspond index nodes that are required for recovery. In that case, the
638 * LEB cannot be unmapped until after the next commit.
640 * This function returns %0 upon success and a negative error code upon failure.
642 int ubifs_gc_start_commit(struct ubifs_info *c)
644 struct ubifs_gced_idx_leb *idx_gc;
645 const struct ubifs_lprops *lp;
646 int err = 0, flags;
648 ubifs_get_lprops(c);
651 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
652 * wbufs are sync'd before this, which is done in 'do_commit()'.
654 while (1) {
655 lp = ubifs_fast_find_freeable(c);
656 if (unlikely(IS_ERR(lp))) {
657 err = PTR_ERR(lp);
658 goto out;
660 if (!lp)
661 break;
662 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
663 ubifs_assert(!(lp->flags & LPROPS_INDEX));
664 err = ubifs_leb_unmap(c, lp->lnum);
665 if (err)
666 goto out;
667 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
668 if (unlikely(IS_ERR(lp))) {
669 err = PTR_ERR(lp);
670 goto out;
672 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
673 ubifs_assert(!(lp->flags & LPROPS_INDEX));
676 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
677 list_for_each_entry(idx_gc, &c->idx_gc, list)
678 idx_gc->unmap = 1;
680 /* Record index freeable LEBs for unmapping after commit */
681 while (1) {
682 lp = ubifs_fast_find_frdi_idx(c);
683 if (unlikely(IS_ERR(lp))) {
684 err = PTR_ERR(lp);
685 goto out;
687 if (!lp)
688 break;
689 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
690 if (!idx_gc) {
691 err = -ENOMEM;
692 goto out;
694 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
695 ubifs_assert(lp->flags & LPROPS_INDEX);
696 /* Don't release the LEB until after the next commit */
697 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
698 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
699 if (unlikely(IS_ERR(lp))) {
700 err = PTR_ERR(lp);
701 kfree(idx_gc);
702 goto out;
704 ubifs_assert(lp->flags & LPROPS_TAKEN);
705 ubifs_assert(!(lp->flags & LPROPS_INDEX));
706 idx_gc->lnum = lp->lnum;
707 idx_gc->unmap = 1;
708 list_add(&idx_gc->list, &c->idx_gc);
710 out:
711 ubifs_release_lprops(c);
712 return err;
716 * ubifs_gc_end_commit - garbage collection at end of commit.
717 * @c: UBIFS file-system description object
719 * This function completes out-of-place garbage collection of index LEBs.
721 int ubifs_gc_end_commit(struct ubifs_info *c)
723 struct ubifs_gced_idx_leb *idx_gc, *tmp;
724 struct ubifs_wbuf *wbuf;
725 int err = 0;
727 wbuf = &c->jheads[GCHD].wbuf;
728 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
729 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
730 if (idx_gc->unmap) {
731 dbg_gc("LEB %d", idx_gc->lnum);
732 err = ubifs_leb_unmap(c, idx_gc->lnum);
733 if (err)
734 goto out;
735 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
736 LPROPS_NC, 0, LPROPS_TAKEN, -1);
737 if (err)
738 goto out;
739 list_del(&idx_gc->list);
740 kfree(idx_gc);
742 out:
743 mutex_unlock(&wbuf->io_mutex);
744 return err;
748 * ubifs_destroy_idx_gc - destroy idx_gc list.
749 * @c: UBIFS file-system description object
751 * This function destroys the idx_gc list. It is called when unmounting or
752 * remounting read-only so locks are not needed.
754 void ubifs_destroy_idx_gc(struct ubifs_info *c)
756 while (!list_empty(&c->idx_gc)) {
757 struct ubifs_gced_idx_leb *idx_gc;
759 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
760 list);
761 c->idx_gc_cnt -= 1;
762 list_del(&idx_gc->list);
763 kfree(idx_gc);
769 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
770 * @c: UBIFS file-system description object
772 * Called during start commit so locks are not needed.
774 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
776 struct ubifs_gced_idx_leb *idx_gc;
777 int lnum;
779 if (list_empty(&c->idx_gc))
780 return -ENOSPC;
781 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
782 lnum = idx_gc->lnum;
783 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
784 list_del(&idx_gc->list);
785 kfree(idx_gc);
786 return lnum;