backlight: extend event support to also support poll()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blob56313f6e71e86a848a02f62079741ffd08228365
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/tlb.h>
58 #ifdef CONFIG_KMOD
59 #include <linux/kmod.h>
60 #endif
62 #ifdef __alpha__
63 /* for /sbin/loader handling in search_binary_handler() */
64 #include <linux/a.out.h>
65 #endif
67 int core_uses_pid;
68 char core_pattern[CORENAME_MAX_SIZE] = "core";
69 int suid_dumpable = 0;
71 /* The maximal length of core_pattern is also specified in sysctl.c */
73 static LIST_HEAD(formats);
74 static DEFINE_RWLOCK(binfmt_lock);
76 int register_binfmt(struct linux_binfmt * fmt)
78 if (!fmt)
79 return -EINVAL;
80 write_lock(&binfmt_lock);
81 list_add(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83 return 0;
86 EXPORT_SYMBOL(register_binfmt);
88 void unregister_binfmt(struct linux_binfmt * fmt)
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
95 EXPORT_SYMBOL(unregister_binfmt);
97 static inline void put_binfmt(struct linux_binfmt * fmt)
99 module_put(fmt->module);
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
106 * Also note that we take the address to load from from the file itself.
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
110 struct file *file;
111 struct nameidata nd;
112 char *tmp = getname(library);
113 int error = PTR_ERR(tmp);
115 if (!IS_ERR(tmp)) {
116 error = path_lookup_open(AT_FDCWD, tmp,
117 LOOKUP_FOLLOW, &nd,
118 FMODE_READ|FMODE_EXEC);
119 putname(tmp);
121 if (error)
122 goto out;
124 error = -EINVAL;
125 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
126 goto exit;
128 error = -EACCES;
129 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
130 goto exit;
132 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
133 if (error)
134 goto exit;
136 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
137 error = PTR_ERR(file);
138 if (IS_ERR(file))
139 goto out;
141 error = -ENOEXEC;
142 if(file->f_op) {
143 struct linux_binfmt * fmt;
145 read_lock(&binfmt_lock);
146 list_for_each_entry(fmt, &formats, lh) {
147 if (!fmt->load_shlib)
148 continue;
149 if (!try_module_get(fmt->module))
150 continue;
151 read_unlock(&binfmt_lock);
152 error = fmt->load_shlib(file);
153 read_lock(&binfmt_lock);
154 put_binfmt(fmt);
155 if (error != -ENOEXEC)
156 break;
158 read_unlock(&binfmt_lock);
160 fput(file);
161 out:
162 return error;
163 exit:
164 release_open_intent(&nd);
165 path_put(&nd.path);
166 goto out;
169 #ifdef CONFIG_MMU
171 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
173 struct mm_struct *mm = current->mm;
174 long diff = (long)(pages - bprm->vma_pages);
176 if (!mm || !diff)
177 return;
179 bprm->vma_pages = pages;
181 down_write(&mm->mmap_sem);
182 mm->total_vm += diff;
183 up_write(&mm->mmap_sem);
186 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
187 int write)
189 struct page *page;
190 int ret;
192 #ifdef CONFIG_STACK_GROWSUP
193 if (write) {
194 ret = expand_stack_downwards(bprm->vma, pos);
195 if (ret < 0)
196 return NULL;
198 #endif
199 ret = get_user_pages(current, bprm->mm, pos,
200 1, write, 1, &page, NULL);
201 if (ret <= 0)
202 return NULL;
204 if (write) {
205 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
206 struct rlimit *rlim;
208 acct_arg_size(bprm, size / PAGE_SIZE);
211 * We've historically supported up to 32 pages (ARG_MAX)
212 * of argument strings even with small stacks
214 if (size <= ARG_MAX)
215 return page;
218 * Limit to 1/4-th the stack size for the argv+env strings.
219 * This ensures that:
220 * - the remaining binfmt code will not run out of stack space,
221 * - the program will have a reasonable amount of stack left
222 * to work from.
224 rlim = current->signal->rlim;
225 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
226 put_page(page);
227 return NULL;
231 return page;
234 static void put_arg_page(struct page *page)
236 put_page(page);
239 static void free_arg_page(struct linux_binprm *bprm, int i)
243 static void free_arg_pages(struct linux_binprm *bprm)
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 struct page *page)
250 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 static int __bprm_mm_init(struct linux_binprm *bprm)
255 int err = -ENOMEM;
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
259 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
260 if (!vma)
261 goto err;
263 down_write(&mm->mmap_sem);
264 vma->vm_mm = mm;
267 * Place the stack at the largest stack address the architecture
268 * supports. Later, we'll move this to an appropriate place. We don't
269 * use STACK_TOP because that can depend on attributes which aren't
270 * configured yet.
272 vma->vm_end = STACK_TOP_MAX;
273 vma->vm_start = vma->vm_end - PAGE_SIZE;
275 vma->vm_flags = VM_STACK_FLAGS;
276 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
278 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
279 if (err)
280 goto err;
282 err = insert_vm_struct(mm, vma);
283 if (err) {
284 up_write(&mm->mmap_sem);
285 goto err;
288 mm->stack_vm = mm->total_vm = 1;
289 up_write(&mm->mmap_sem);
291 bprm->p = vma->vm_end - sizeof(void *);
293 return 0;
295 err:
296 if (vma) {
297 bprm->vma = NULL;
298 kmem_cache_free(vm_area_cachep, vma);
301 return err;
304 static bool valid_arg_len(struct linux_binprm *bprm, long len)
306 return len <= MAX_ARG_STRLEN;
309 #else
311 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
316 int write)
318 struct page *page;
320 page = bprm->page[pos / PAGE_SIZE];
321 if (!page && write) {
322 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
323 if (!page)
324 return NULL;
325 bprm->page[pos / PAGE_SIZE] = page;
328 return page;
331 static void put_arg_page(struct page *page)
335 static void free_arg_page(struct linux_binprm *bprm, int i)
337 if (bprm->page[i]) {
338 __free_page(bprm->page[i]);
339 bprm->page[i] = NULL;
343 static void free_arg_pages(struct linux_binprm *bprm)
345 int i;
347 for (i = 0; i < MAX_ARG_PAGES; i++)
348 free_arg_page(bprm, i);
351 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
352 struct page *page)
356 static int __bprm_mm_init(struct linux_binprm *bprm)
358 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
359 return 0;
362 static bool valid_arg_len(struct linux_binprm *bprm, long len)
364 return len <= bprm->p;
367 #endif /* CONFIG_MMU */
370 * Create a new mm_struct and populate it with a temporary stack
371 * vm_area_struct. We don't have enough context at this point to set the stack
372 * flags, permissions, and offset, so we use temporary values. We'll update
373 * them later in setup_arg_pages().
375 int bprm_mm_init(struct linux_binprm *bprm)
377 int err;
378 struct mm_struct *mm = NULL;
380 bprm->mm = mm = mm_alloc();
381 err = -ENOMEM;
382 if (!mm)
383 goto err;
385 err = init_new_context(current, mm);
386 if (err)
387 goto err;
389 err = __bprm_mm_init(bprm);
390 if (err)
391 goto err;
393 return 0;
395 err:
396 if (mm) {
397 bprm->mm = NULL;
398 mmdrop(mm);
401 return err;
405 * count() counts the number of strings in array ARGV.
407 static int count(char __user * __user * argv, int max)
409 int i = 0;
411 if (argv != NULL) {
412 for (;;) {
413 char __user * p;
415 if (get_user(p, argv))
416 return -EFAULT;
417 if (!p)
418 break;
419 argv++;
420 if(++i > max)
421 return -E2BIG;
423 if (fatal_signal_pending(current))
424 return -ERESTARTNOHAND;
425 cond_resched();
428 return i;
432 * 'copy_strings()' copies argument/environment strings from the old
433 * processes's memory to the new process's stack. The call to get_user_pages()
434 * ensures the destination page is created and not swapped out.
436 static int copy_strings(int argc, char __user * __user * argv,
437 struct linux_binprm *bprm)
439 struct page *kmapped_page = NULL;
440 char *kaddr = NULL;
441 unsigned long kpos = 0;
442 int ret;
444 while (argc-- > 0) {
445 char __user *str;
446 int len;
447 unsigned long pos;
449 if (get_user(str, argv+argc) ||
450 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
451 ret = -EFAULT;
452 goto out;
455 if (!valid_arg_len(bprm, len)) {
456 ret = -E2BIG;
457 goto out;
460 /* We're going to work our way backwords. */
461 pos = bprm->p;
462 str += len;
463 bprm->p -= len;
465 while (len > 0) {
466 int offset, bytes_to_copy;
468 if (fatal_signal_pending(current)) {
469 ret = -ERESTARTNOHAND;
470 goto out;
472 cond_resched();
474 offset = pos % PAGE_SIZE;
475 if (offset == 0)
476 offset = PAGE_SIZE;
478 bytes_to_copy = offset;
479 if (bytes_to_copy > len)
480 bytes_to_copy = len;
482 offset -= bytes_to_copy;
483 pos -= bytes_to_copy;
484 str -= bytes_to_copy;
485 len -= bytes_to_copy;
487 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
488 struct page *page;
490 page = get_arg_page(bprm, pos, 1);
491 if (!page) {
492 ret = -E2BIG;
493 goto out;
496 if (kmapped_page) {
497 flush_kernel_dcache_page(kmapped_page);
498 kunmap(kmapped_page);
499 put_arg_page(kmapped_page);
501 kmapped_page = page;
502 kaddr = kmap(kmapped_page);
503 kpos = pos & PAGE_MASK;
504 flush_arg_page(bprm, kpos, kmapped_page);
506 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
507 ret = -EFAULT;
508 goto out;
512 ret = 0;
513 out:
514 if (kmapped_page) {
515 flush_kernel_dcache_page(kmapped_page);
516 kunmap(kmapped_page);
517 put_arg_page(kmapped_page);
519 return ret;
523 * Like copy_strings, but get argv and its values from kernel memory.
525 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
527 int r;
528 mm_segment_t oldfs = get_fs();
529 set_fs(KERNEL_DS);
530 r = copy_strings(argc, (char __user * __user *)argv, bprm);
531 set_fs(oldfs);
532 return r;
534 EXPORT_SYMBOL(copy_strings_kernel);
536 #ifdef CONFIG_MMU
539 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
540 * the binfmt code determines where the new stack should reside, we shift it to
541 * its final location. The process proceeds as follows:
543 * 1) Use shift to calculate the new vma endpoints.
544 * 2) Extend vma to cover both the old and new ranges. This ensures the
545 * arguments passed to subsequent functions are consistent.
546 * 3) Move vma's page tables to the new range.
547 * 4) Free up any cleared pgd range.
548 * 5) Shrink the vma to cover only the new range.
550 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
552 struct mm_struct *mm = vma->vm_mm;
553 unsigned long old_start = vma->vm_start;
554 unsigned long old_end = vma->vm_end;
555 unsigned long length = old_end - old_start;
556 unsigned long new_start = old_start - shift;
557 unsigned long new_end = old_end - shift;
558 struct mmu_gather *tlb;
560 BUG_ON(new_start > new_end);
563 * ensure there are no vmas between where we want to go
564 * and where we are
566 if (vma != find_vma(mm, new_start))
567 return -EFAULT;
570 * cover the whole range: [new_start, old_end)
572 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
575 * move the page tables downwards, on failure we rely on
576 * process cleanup to remove whatever mess we made.
578 if (length != move_page_tables(vma, old_start,
579 vma, new_start, length))
580 return -ENOMEM;
582 lru_add_drain();
583 tlb = tlb_gather_mmu(mm, 0);
584 if (new_end > old_start) {
586 * when the old and new regions overlap clear from new_end.
588 free_pgd_range(tlb, new_end, old_end, new_end,
589 vma->vm_next ? vma->vm_next->vm_start : 0);
590 } else {
592 * otherwise, clean from old_start; this is done to not touch
593 * the address space in [new_end, old_start) some architectures
594 * have constraints on va-space that make this illegal (IA64) -
595 * for the others its just a little faster.
597 free_pgd_range(tlb, old_start, old_end, new_end,
598 vma->vm_next ? vma->vm_next->vm_start : 0);
600 tlb_finish_mmu(tlb, new_end, old_end);
603 * shrink the vma to just the new range.
605 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
607 return 0;
610 #define EXTRA_STACK_VM_PAGES 20 /* random */
613 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
614 * the stack is optionally relocated, and some extra space is added.
616 int setup_arg_pages(struct linux_binprm *bprm,
617 unsigned long stack_top,
618 int executable_stack)
620 unsigned long ret;
621 unsigned long stack_shift;
622 struct mm_struct *mm = current->mm;
623 struct vm_area_struct *vma = bprm->vma;
624 struct vm_area_struct *prev = NULL;
625 unsigned long vm_flags;
626 unsigned long stack_base;
628 #ifdef CONFIG_STACK_GROWSUP
629 /* Limit stack size to 1GB */
630 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
631 if (stack_base > (1 << 30))
632 stack_base = 1 << 30;
634 /* Make sure we didn't let the argument array grow too large. */
635 if (vma->vm_end - vma->vm_start > stack_base)
636 return -ENOMEM;
638 stack_base = PAGE_ALIGN(stack_top - stack_base);
640 stack_shift = vma->vm_start - stack_base;
641 mm->arg_start = bprm->p - stack_shift;
642 bprm->p = vma->vm_end - stack_shift;
643 #else
644 stack_top = arch_align_stack(stack_top);
645 stack_top = PAGE_ALIGN(stack_top);
647 if (unlikely(stack_top < mmap_min_addr) ||
648 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
649 return -ENOMEM;
651 stack_shift = vma->vm_end - stack_top;
653 bprm->p -= stack_shift;
654 mm->arg_start = bprm->p;
655 #endif
657 if (bprm->loader)
658 bprm->loader -= stack_shift;
659 bprm->exec -= stack_shift;
661 down_write(&mm->mmap_sem);
662 vm_flags = VM_STACK_FLAGS;
665 * Adjust stack execute permissions; explicitly enable for
666 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
667 * (arch default) otherwise.
669 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
670 vm_flags |= VM_EXEC;
671 else if (executable_stack == EXSTACK_DISABLE_X)
672 vm_flags &= ~VM_EXEC;
673 vm_flags |= mm->def_flags;
675 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
676 vm_flags);
677 if (ret)
678 goto out_unlock;
679 BUG_ON(prev != vma);
681 /* Move stack pages down in memory. */
682 if (stack_shift) {
683 ret = shift_arg_pages(vma, stack_shift);
684 if (ret) {
685 up_write(&mm->mmap_sem);
686 return ret;
690 #ifdef CONFIG_STACK_GROWSUP
691 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
692 #else
693 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
694 #endif
695 ret = expand_stack(vma, stack_base);
696 if (ret)
697 ret = -EFAULT;
699 out_unlock:
700 up_write(&mm->mmap_sem);
701 return 0;
703 EXPORT_SYMBOL(setup_arg_pages);
705 #endif /* CONFIG_MMU */
707 struct file *open_exec(const char *name)
709 struct nameidata nd;
710 struct file *file;
711 int err;
713 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
714 FMODE_READ|FMODE_EXEC);
715 if (err)
716 goto out;
718 err = -EACCES;
719 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
720 goto out_path_put;
722 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
723 goto out_path_put;
725 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
726 if (err)
727 goto out_path_put;
729 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
730 if (IS_ERR(file))
731 return file;
733 err = deny_write_access(file);
734 if (err) {
735 fput(file);
736 goto out;
739 return file;
741 out_path_put:
742 release_open_intent(&nd);
743 path_put(&nd.path);
744 out:
745 return ERR_PTR(err);
747 EXPORT_SYMBOL(open_exec);
749 int kernel_read(struct file *file, unsigned long offset,
750 char *addr, unsigned long count)
752 mm_segment_t old_fs;
753 loff_t pos = offset;
754 int result;
756 old_fs = get_fs();
757 set_fs(get_ds());
758 /* The cast to a user pointer is valid due to the set_fs() */
759 result = vfs_read(file, (void __user *)addr, count, &pos);
760 set_fs(old_fs);
761 return result;
764 EXPORT_SYMBOL(kernel_read);
766 static int exec_mmap(struct mm_struct *mm)
768 struct task_struct *tsk;
769 struct mm_struct * old_mm, *active_mm;
771 /* Notify parent that we're no longer interested in the old VM */
772 tsk = current;
773 old_mm = current->mm;
774 mm_release(tsk, old_mm);
776 if (old_mm) {
778 * Make sure that if there is a core dump in progress
779 * for the old mm, we get out and die instead of going
780 * through with the exec. We must hold mmap_sem around
781 * checking core_state and changing tsk->mm.
783 down_read(&old_mm->mmap_sem);
784 if (unlikely(old_mm->core_state)) {
785 up_read(&old_mm->mmap_sem);
786 return -EINTR;
789 task_lock(tsk);
790 active_mm = tsk->active_mm;
791 tsk->mm = mm;
792 tsk->active_mm = mm;
793 activate_mm(active_mm, mm);
794 task_unlock(tsk);
795 arch_pick_mmap_layout(mm);
796 if (old_mm) {
797 up_read(&old_mm->mmap_sem);
798 BUG_ON(active_mm != old_mm);
799 mm_update_next_owner(old_mm);
800 mmput(old_mm);
801 return 0;
803 mmdrop(active_mm);
804 return 0;
808 * This function makes sure the current process has its own signal table,
809 * so that flush_signal_handlers can later reset the handlers without
810 * disturbing other processes. (Other processes might share the signal
811 * table via the CLONE_SIGHAND option to clone().)
813 static int de_thread(struct task_struct *tsk)
815 struct signal_struct *sig = tsk->signal;
816 struct sighand_struct *oldsighand = tsk->sighand;
817 spinlock_t *lock = &oldsighand->siglock;
818 struct task_struct *leader = NULL;
819 int count;
821 if (thread_group_empty(tsk))
822 goto no_thread_group;
825 * Kill all other threads in the thread group.
827 spin_lock_irq(lock);
828 if (signal_group_exit(sig)) {
830 * Another group action in progress, just
831 * return so that the signal is processed.
833 spin_unlock_irq(lock);
834 return -EAGAIN;
836 sig->group_exit_task = tsk;
837 zap_other_threads(tsk);
839 /* Account for the thread group leader hanging around: */
840 count = thread_group_leader(tsk) ? 1 : 2;
841 sig->notify_count = count;
842 while (atomic_read(&sig->count) > count) {
843 __set_current_state(TASK_UNINTERRUPTIBLE);
844 spin_unlock_irq(lock);
845 schedule();
846 spin_lock_irq(lock);
848 spin_unlock_irq(lock);
851 * At this point all other threads have exited, all we have to
852 * do is to wait for the thread group leader to become inactive,
853 * and to assume its PID:
855 if (!thread_group_leader(tsk)) {
856 leader = tsk->group_leader;
858 sig->notify_count = -1; /* for exit_notify() */
859 for (;;) {
860 write_lock_irq(&tasklist_lock);
861 if (likely(leader->exit_state))
862 break;
863 __set_current_state(TASK_UNINTERRUPTIBLE);
864 write_unlock_irq(&tasklist_lock);
865 schedule();
868 if (unlikely(task_child_reaper(tsk) == leader))
869 task_active_pid_ns(tsk)->child_reaper = tsk;
871 * The only record we have of the real-time age of a
872 * process, regardless of execs it's done, is start_time.
873 * All the past CPU time is accumulated in signal_struct
874 * from sister threads now dead. But in this non-leader
875 * exec, nothing survives from the original leader thread,
876 * whose birth marks the true age of this process now.
877 * When we take on its identity by switching to its PID, we
878 * also take its birthdate (always earlier than our own).
880 tsk->start_time = leader->start_time;
882 BUG_ON(!same_thread_group(leader, tsk));
883 BUG_ON(has_group_leader_pid(tsk));
885 * An exec() starts a new thread group with the
886 * TGID of the previous thread group. Rehash the
887 * two threads with a switched PID, and release
888 * the former thread group leader:
891 /* Become a process group leader with the old leader's pid.
892 * The old leader becomes a thread of the this thread group.
893 * Note: The old leader also uses this pid until release_task
894 * is called. Odd but simple and correct.
896 detach_pid(tsk, PIDTYPE_PID);
897 tsk->pid = leader->pid;
898 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
899 transfer_pid(leader, tsk, PIDTYPE_PGID);
900 transfer_pid(leader, tsk, PIDTYPE_SID);
901 list_replace_rcu(&leader->tasks, &tsk->tasks);
903 tsk->group_leader = tsk;
904 leader->group_leader = tsk;
906 tsk->exit_signal = SIGCHLD;
908 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
909 leader->exit_state = EXIT_DEAD;
911 write_unlock_irq(&tasklist_lock);
914 sig->group_exit_task = NULL;
915 sig->notify_count = 0;
917 no_thread_group:
918 exit_itimers(sig);
919 flush_itimer_signals();
920 if (leader)
921 release_task(leader);
923 if (atomic_read(&oldsighand->count) != 1) {
924 struct sighand_struct *newsighand;
926 * This ->sighand is shared with the CLONE_SIGHAND
927 * but not CLONE_THREAD task, switch to the new one.
929 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
930 if (!newsighand)
931 return -ENOMEM;
933 atomic_set(&newsighand->count, 1);
934 memcpy(newsighand->action, oldsighand->action,
935 sizeof(newsighand->action));
937 write_lock_irq(&tasklist_lock);
938 spin_lock(&oldsighand->siglock);
939 rcu_assign_pointer(tsk->sighand, newsighand);
940 spin_unlock(&oldsighand->siglock);
941 write_unlock_irq(&tasklist_lock);
943 __cleanup_sighand(oldsighand);
946 BUG_ON(!thread_group_leader(tsk));
947 return 0;
951 * These functions flushes out all traces of the currently running executable
952 * so that a new one can be started
954 static void flush_old_files(struct files_struct * files)
956 long j = -1;
957 struct fdtable *fdt;
959 spin_lock(&files->file_lock);
960 for (;;) {
961 unsigned long set, i;
963 j++;
964 i = j * __NFDBITS;
965 fdt = files_fdtable(files);
966 if (i >= fdt->max_fds)
967 break;
968 set = fdt->close_on_exec->fds_bits[j];
969 if (!set)
970 continue;
971 fdt->close_on_exec->fds_bits[j] = 0;
972 spin_unlock(&files->file_lock);
973 for ( ; set ; i++,set >>= 1) {
974 if (set & 1) {
975 sys_close(i);
978 spin_lock(&files->file_lock);
981 spin_unlock(&files->file_lock);
984 char *get_task_comm(char *buf, struct task_struct *tsk)
986 /* buf must be at least sizeof(tsk->comm) in size */
987 task_lock(tsk);
988 strncpy(buf, tsk->comm, sizeof(tsk->comm));
989 task_unlock(tsk);
990 return buf;
993 void set_task_comm(struct task_struct *tsk, char *buf)
995 task_lock(tsk);
996 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
997 task_unlock(tsk);
1000 int flush_old_exec(struct linux_binprm * bprm)
1002 char * name;
1003 int i, ch, retval;
1004 char tcomm[sizeof(current->comm)];
1007 * Make sure we have a private signal table and that
1008 * we are unassociated from the previous thread group.
1010 retval = de_thread(current);
1011 if (retval)
1012 goto out;
1014 set_mm_exe_file(bprm->mm, bprm->file);
1017 * Release all of the old mmap stuff
1019 acct_arg_size(bprm, 0);
1020 retval = exec_mmap(bprm->mm);
1021 if (retval)
1022 goto out;
1024 bprm->mm = NULL; /* We're using it now */
1026 /* This is the point of no return */
1027 current->sas_ss_sp = current->sas_ss_size = 0;
1029 if (current->euid == current->uid && current->egid == current->gid)
1030 set_dumpable(current->mm, 1);
1031 else
1032 set_dumpable(current->mm, suid_dumpable);
1034 name = bprm->filename;
1036 /* Copies the binary name from after last slash */
1037 for (i=0; (ch = *(name++)) != '\0';) {
1038 if (ch == '/')
1039 i = 0; /* overwrite what we wrote */
1040 else
1041 if (i < (sizeof(tcomm) - 1))
1042 tcomm[i++] = ch;
1044 tcomm[i] = '\0';
1045 set_task_comm(current, tcomm);
1047 current->flags &= ~PF_RANDOMIZE;
1048 flush_thread();
1050 /* Set the new mm task size. We have to do that late because it may
1051 * depend on TIF_32BIT which is only updated in flush_thread() on
1052 * some architectures like powerpc
1054 current->mm->task_size = TASK_SIZE;
1056 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1057 suid_keys(current);
1058 set_dumpable(current->mm, suid_dumpable);
1059 current->pdeath_signal = 0;
1060 } else if (file_permission(bprm->file, MAY_READ) ||
1061 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1062 suid_keys(current);
1063 set_dumpable(current->mm, suid_dumpable);
1066 /* An exec changes our domain. We are no longer part of the thread
1067 group */
1069 current->self_exec_id++;
1071 flush_signal_handlers(current, 0);
1072 flush_old_files(current->files);
1074 return 0;
1076 out:
1077 return retval;
1080 EXPORT_SYMBOL(flush_old_exec);
1083 * Fill the binprm structure from the inode.
1084 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1086 int prepare_binprm(struct linux_binprm *bprm)
1088 int mode;
1089 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1090 int retval;
1092 mode = inode->i_mode;
1093 if (bprm->file->f_op == NULL)
1094 return -EACCES;
1096 bprm->e_uid = current->euid;
1097 bprm->e_gid = current->egid;
1099 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1100 /* Set-uid? */
1101 if (mode & S_ISUID) {
1102 current->personality &= ~PER_CLEAR_ON_SETID;
1103 bprm->e_uid = inode->i_uid;
1106 /* Set-gid? */
1108 * If setgid is set but no group execute bit then this
1109 * is a candidate for mandatory locking, not a setgid
1110 * executable.
1112 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1113 current->personality &= ~PER_CLEAR_ON_SETID;
1114 bprm->e_gid = inode->i_gid;
1118 /* fill in binprm security blob */
1119 retval = security_bprm_set(bprm);
1120 if (retval)
1121 return retval;
1123 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1124 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1127 EXPORT_SYMBOL(prepare_binprm);
1129 static int unsafe_exec(struct task_struct *p)
1131 int unsafe = tracehook_unsafe_exec(p);
1133 if (atomic_read(&p->fs->count) > 1)
1134 unsafe |= LSM_UNSAFE_SHARE;
1136 return unsafe;
1139 void compute_creds(struct linux_binprm *bprm)
1141 int unsafe;
1143 if (bprm->e_uid != current->uid) {
1144 suid_keys(current);
1145 current->pdeath_signal = 0;
1147 exec_keys(current);
1149 task_lock(current);
1150 unsafe = unsafe_exec(current);
1151 security_bprm_apply_creds(bprm, unsafe);
1152 task_unlock(current);
1153 security_bprm_post_apply_creds(bprm);
1155 EXPORT_SYMBOL(compute_creds);
1158 * Arguments are '\0' separated strings found at the location bprm->p
1159 * points to; chop off the first by relocating brpm->p to right after
1160 * the first '\0' encountered.
1162 int remove_arg_zero(struct linux_binprm *bprm)
1164 int ret = 0;
1165 unsigned long offset;
1166 char *kaddr;
1167 struct page *page;
1169 if (!bprm->argc)
1170 return 0;
1172 do {
1173 offset = bprm->p & ~PAGE_MASK;
1174 page = get_arg_page(bprm, bprm->p, 0);
1175 if (!page) {
1176 ret = -EFAULT;
1177 goto out;
1179 kaddr = kmap_atomic(page, KM_USER0);
1181 for (; offset < PAGE_SIZE && kaddr[offset];
1182 offset++, bprm->p++)
1185 kunmap_atomic(kaddr, KM_USER0);
1186 put_arg_page(page);
1188 if (offset == PAGE_SIZE)
1189 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1190 } while (offset == PAGE_SIZE);
1192 bprm->p++;
1193 bprm->argc--;
1194 ret = 0;
1196 out:
1197 return ret;
1199 EXPORT_SYMBOL(remove_arg_zero);
1202 * cycle the list of binary formats handler, until one recognizes the image
1204 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1206 unsigned int depth = bprm->recursion_depth;
1207 int try,retval;
1208 struct linux_binfmt *fmt;
1209 #ifdef __alpha__
1210 /* handle /sbin/loader.. */
1212 struct exec * eh = (struct exec *) bprm->buf;
1214 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1215 (eh->fh.f_flags & 0x3000) == 0x3000)
1217 struct file * file;
1218 unsigned long loader;
1220 allow_write_access(bprm->file);
1221 fput(bprm->file);
1222 bprm->file = NULL;
1224 loader = bprm->vma->vm_end - sizeof(void *);
1226 file = open_exec("/sbin/loader");
1227 retval = PTR_ERR(file);
1228 if (IS_ERR(file))
1229 return retval;
1231 /* Remember if the application is TASO. */
1232 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1234 bprm->file = file;
1235 bprm->loader = loader;
1236 retval = prepare_binprm(bprm);
1237 if (retval<0)
1238 return retval;
1239 /* should call search_binary_handler recursively here,
1240 but it does not matter */
1243 #endif
1244 retval = security_bprm_check(bprm);
1245 if (retval)
1246 return retval;
1248 /* kernel module loader fixup */
1249 /* so we don't try to load run modprobe in kernel space. */
1250 set_fs(USER_DS);
1252 retval = audit_bprm(bprm);
1253 if (retval)
1254 return retval;
1256 retval = -ENOENT;
1257 for (try=0; try<2; try++) {
1258 read_lock(&binfmt_lock);
1259 list_for_each_entry(fmt, &formats, lh) {
1260 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1261 if (!fn)
1262 continue;
1263 if (!try_module_get(fmt->module))
1264 continue;
1265 read_unlock(&binfmt_lock);
1266 retval = fn(bprm, regs);
1268 * Restore the depth counter to its starting value
1269 * in this call, so we don't have to rely on every
1270 * load_binary function to restore it on return.
1272 bprm->recursion_depth = depth;
1273 if (retval >= 0) {
1274 if (depth == 0)
1275 tracehook_report_exec(fmt, bprm, regs);
1276 put_binfmt(fmt);
1277 allow_write_access(bprm->file);
1278 if (bprm->file)
1279 fput(bprm->file);
1280 bprm->file = NULL;
1281 current->did_exec = 1;
1282 proc_exec_connector(current);
1283 return retval;
1285 read_lock(&binfmt_lock);
1286 put_binfmt(fmt);
1287 if (retval != -ENOEXEC || bprm->mm == NULL)
1288 break;
1289 if (!bprm->file) {
1290 read_unlock(&binfmt_lock);
1291 return retval;
1294 read_unlock(&binfmt_lock);
1295 if (retval != -ENOEXEC || bprm->mm == NULL) {
1296 break;
1297 #ifdef CONFIG_KMOD
1298 }else{
1299 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1300 if (printable(bprm->buf[0]) &&
1301 printable(bprm->buf[1]) &&
1302 printable(bprm->buf[2]) &&
1303 printable(bprm->buf[3]))
1304 break; /* -ENOEXEC */
1305 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1306 #endif
1309 return retval;
1312 EXPORT_SYMBOL(search_binary_handler);
1314 void free_bprm(struct linux_binprm *bprm)
1316 free_arg_pages(bprm);
1317 kfree(bprm);
1321 * sys_execve() executes a new program.
1323 int do_execve(char * filename,
1324 char __user *__user *argv,
1325 char __user *__user *envp,
1326 struct pt_regs * regs)
1328 struct linux_binprm *bprm;
1329 struct file *file;
1330 struct files_struct *displaced;
1331 int retval;
1333 retval = unshare_files(&displaced);
1334 if (retval)
1335 goto out_ret;
1337 retval = -ENOMEM;
1338 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1339 if (!bprm)
1340 goto out_files;
1342 file = open_exec(filename);
1343 retval = PTR_ERR(file);
1344 if (IS_ERR(file))
1345 goto out_kfree;
1347 sched_exec();
1349 bprm->file = file;
1350 bprm->filename = filename;
1351 bprm->interp = filename;
1353 retval = bprm_mm_init(bprm);
1354 if (retval)
1355 goto out_file;
1357 bprm->argc = count(argv, MAX_ARG_STRINGS);
1358 if ((retval = bprm->argc) < 0)
1359 goto out_mm;
1361 bprm->envc = count(envp, MAX_ARG_STRINGS);
1362 if ((retval = bprm->envc) < 0)
1363 goto out_mm;
1365 retval = security_bprm_alloc(bprm);
1366 if (retval)
1367 goto out;
1369 retval = prepare_binprm(bprm);
1370 if (retval < 0)
1371 goto out;
1373 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1374 if (retval < 0)
1375 goto out;
1377 bprm->exec = bprm->p;
1378 retval = copy_strings(bprm->envc, envp, bprm);
1379 if (retval < 0)
1380 goto out;
1382 retval = copy_strings(bprm->argc, argv, bprm);
1383 if (retval < 0)
1384 goto out;
1386 current->flags &= ~PF_KTHREAD;
1387 retval = search_binary_handler(bprm,regs);
1388 if (retval >= 0) {
1389 /* execve success */
1390 security_bprm_free(bprm);
1391 acct_update_integrals(current);
1392 free_bprm(bprm);
1393 if (displaced)
1394 put_files_struct(displaced);
1395 return retval;
1398 out:
1399 if (bprm->security)
1400 security_bprm_free(bprm);
1402 out_mm:
1403 if (bprm->mm) {
1404 acct_arg_size(bprm, 0);
1405 mmput (bprm->mm);
1408 out_file:
1409 if (bprm->file) {
1410 allow_write_access(bprm->file);
1411 fput(bprm->file);
1413 out_kfree:
1414 free_bprm(bprm);
1416 out_files:
1417 if (displaced)
1418 reset_files_struct(displaced);
1419 out_ret:
1420 return retval;
1423 int set_binfmt(struct linux_binfmt *new)
1425 struct linux_binfmt *old = current->binfmt;
1427 if (new) {
1428 if (!try_module_get(new->module))
1429 return -1;
1431 current->binfmt = new;
1432 if (old)
1433 module_put(old->module);
1434 return 0;
1437 EXPORT_SYMBOL(set_binfmt);
1439 /* format_corename will inspect the pattern parameter, and output a
1440 * name into corename, which must have space for at least
1441 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1443 static int format_corename(char *corename, int nr_threads, long signr)
1445 const char *pat_ptr = core_pattern;
1446 int ispipe = (*pat_ptr == '|');
1447 char *out_ptr = corename;
1448 char *const out_end = corename + CORENAME_MAX_SIZE;
1449 int rc;
1450 int pid_in_pattern = 0;
1452 /* Repeat as long as we have more pattern to process and more output
1453 space */
1454 while (*pat_ptr) {
1455 if (*pat_ptr != '%') {
1456 if (out_ptr == out_end)
1457 goto out;
1458 *out_ptr++ = *pat_ptr++;
1459 } else {
1460 switch (*++pat_ptr) {
1461 case 0:
1462 goto out;
1463 /* Double percent, output one percent */
1464 case '%':
1465 if (out_ptr == out_end)
1466 goto out;
1467 *out_ptr++ = '%';
1468 break;
1469 /* pid */
1470 case 'p':
1471 pid_in_pattern = 1;
1472 rc = snprintf(out_ptr, out_end - out_ptr,
1473 "%d", task_tgid_vnr(current));
1474 if (rc > out_end - out_ptr)
1475 goto out;
1476 out_ptr += rc;
1477 break;
1478 /* uid */
1479 case 'u':
1480 rc = snprintf(out_ptr, out_end - out_ptr,
1481 "%d", current->uid);
1482 if (rc > out_end - out_ptr)
1483 goto out;
1484 out_ptr += rc;
1485 break;
1486 /* gid */
1487 case 'g':
1488 rc = snprintf(out_ptr, out_end - out_ptr,
1489 "%d", current->gid);
1490 if (rc > out_end - out_ptr)
1491 goto out;
1492 out_ptr += rc;
1493 break;
1494 /* signal that caused the coredump */
1495 case 's':
1496 rc = snprintf(out_ptr, out_end - out_ptr,
1497 "%ld", signr);
1498 if (rc > out_end - out_ptr)
1499 goto out;
1500 out_ptr += rc;
1501 break;
1502 /* UNIX time of coredump */
1503 case 't': {
1504 struct timeval tv;
1505 do_gettimeofday(&tv);
1506 rc = snprintf(out_ptr, out_end - out_ptr,
1507 "%lu", tv.tv_sec);
1508 if (rc > out_end - out_ptr)
1509 goto out;
1510 out_ptr += rc;
1511 break;
1513 /* hostname */
1514 case 'h':
1515 down_read(&uts_sem);
1516 rc = snprintf(out_ptr, out_end - out_ptr,
1517 "%s", utsname()->nodename);
1518 up_read(&uts_sem);
1519 if (rc > out_end - out_ptr)
1520 goto out;
1521 out_ptr += rc;
1522 break;
1523 /* executable */
1524 case 'e':
1525 rc = snprintf(out_ptr, out_end - out_ptr,
1526 "%s", current->comm);
1527 if (rc > out_end - out_ptr)
1528 goto out;
1529 out_ptr += rc;
1530 break;
1531 /* core limit size */
1532 case 'c':
1533 rc = snprintf(out_ptr, out_end - out_ptr,
1534 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1535 if (rc > out_end - out_ptr)
1536 goto out;
1537 out_ptr += rc;
1538 break;
1539 default:
1540 break;
1542 ++pat_ptr;
1545 /* Backward compatibility with core_uses_pid:
1547 * If core_pattern does not include a %p (as is the default)
1548 * and core_uses_pid is set, then .%pid will be appended to
1549 * the filename. Do not do this for piped commands. */
1550 if (!ispipe && !pid_in_pattern
1551 && (core_uses_pid || nr_threads)) {
1552 rc = snprintf(out_ptr, out_end - out_ptr,
1553 ".%d", task_tgid_vnr(current));
1554 if (rc > out_end - out_ptr)
1555 goto out;
1556 out_ptr += rc;
1558 out:
1559 *out_ptr = 0;
1560 return ispipe;
1563 static int zap_process(struct task_struct *start)
1565 struct task_struct *t;
1566 int nr = 0;
1568 start->signal->flags = SIGNAL_GROUP_EXIT;
1569 start->signal->group_stop_count = 0;
1571 t = start;
1572 do {
1573 if (t != current && t->mm) {
1574 sigaddset(&t->pending.signal, SIGKILL);
1575 signal_wake_up(t, 1);
1576 nr++;
1578 } while_each_thread(start, t);
1580 return nr;
1583 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1584 struct core_state *core_state, int exit_code)
1586 struct task_struct *g, *p;
1587 unsigned long flags;
1588 int nr = -EAGAIN;
1590 spin_lock_irq(&tsk->sighand->siglock);
1591 if (!signal_group_exit(tsk->signal)) {
1592 mm->core_state = core_state;
1593 tsk->signal->group_exit_code = exit_code;
1594 nr = zap_process(tsk);
1596 spin_unlock_irq(&tsk->sighand->siglock);
1597 if (unlikely(nr < 0))
1598 return nr;
1600 if (atomic_read(&mm->mm_users) == nr + 1)
1601 goto done;
1603 * We should find and kill all tasks which use this mm, and we should
1604 * count them correctly into ->nr_threads. We don't take tasklist
1605 * lock, but this is safe wrt:
1607 * fork:
1608 * None of sub-threads can fork after zap_process(leader). All
1609 * processes which were created before this point should be
1610 * visible to zap_threads() because copy_process() adds the new
1611 * process to the tail of init_task.tasks list, and lock/unlock
1612 * of ->siglock provides a memory barrier.
1614 * do_exit:
1615 * The caller holds mm->mmap_sem. This means that the task which
1616 * uses this mm can't pass exit_mm(), so it can't exit or clear
1617 * its ->mm.
1619 * de_thread:
1620 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1621 * we must see either old or new leader, this does not matter.
1622 * However, it can change p->sighand, so lock_task_sighand(p)
1623 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1624 * it can't fail.
1626 * Note also that "g" can be the old leader with ->mm == NULL
1627 * and already unhashed and thus removed from ->thread_group.
1628 * This is OK, __unhash_process()->list_del_rcu() does not
1629 * clear the ->next pointer, we will find the new leader via
1630 * next_thread().
1632 rcu_read_lock();
1633 for_each_process(g) {
1634 if (g == tsk->group_leader)
1635 continue;
1636 if (g->flags & PF_KTHREAD)
1637 continue;
1638 p = g;
1639 do {
1640 if (p->mm) {
1641 if (unlikely(p->mm == mm)) {
1642 lock_task_sighand(p, &flags);
1643 nr += zap_process(p);
1644 unlock_task_sighand(p, &flags);
1646 break;
1648 } while_each_thread(g, p);
1650 rcu_read_unlock();
1651 done:
1652 atomic_set(&core_state->nr_threads, nr);
1653 return nr;
1656 static int coredump_wait(int exit_code, struct core_state *core_state)
1658 struct task_struct *tsk = current;
1659 struct mm_struct *mm = tsk->mm;
1660 struct completion *vfork_done;
1661 int core_waiters;
1663 init_completion(&core_state->startup);
1664 core_state->dumper.task = tsk;
1665 core_state->dumper.next = NULL;
1666 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1667 up_write(&mm->mmap_sem);
1669 if (unlikely(core_waiters < 0))
1670 goto fail;
1673 * Make sure nobody is waiting for us to release the VM,
1674 * otherwise we can deadlock when we wait on each other
1676 vfork_done = tsk->vfork_done;
1677 if (vfork_done) {
1678 tsk->vfork_done = NULL;
1679 complete(vfork_done);
1682 if (core_waiters)
1683 wait_for_completion(&core_state->startup);
1684 fail:
1685 return core_waiters;
1688 static void coredump_finish(struct mm_struct *mm)
1690 struct core_thread *curr, *next;
1691 struct task_struct *task;
1693 next = mm->core_state->dumper.next;
1694 while ((curr = next) != NULL) {
1695 next = curr->next;
1696 task = curr->task;
1698 * see exit_mm(), curr->task must not see
1699 * ->task == NULL before we read ->next.
1701 smp_mb();
1702 curr->task = NULL;
1703 wake_up_process(task);
1706 mm->core_state = NULL;
1710 * set_dumpable converts traditional three-value dumpable to two flags and
1711 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1712 * these bits are not changed atomically. So get_dumpable can observe the
1713 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1714 * return either old dumpable or new one by paying attention to the order of
1715 * modifying the bits.
1717 * dumpable | mm->flags (binary)
1718 * old new | initial interim final
1719 * ---------+-----------------------
1720 * 0 1 | 00 01 01
1721 * 0 2 | 00 10(*) 11
1722 * 1 0 | 01 00 00
1723 * 1 2 | 01 11 11
1724 * 2 0 | 11 10(*) 00
1725 * 2 1 | 11 11 01
1727 * (*) get_dumpable regards interim value of 10 as 11.
1729 void set_dumpable(struct mm_struct *mm, int value)
1731 switch (value) {
1732 case 0:
1733 clear_bit(MMF_DUMPABLE, &mm->flags);
1734 smp_wmb();
1735 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1736 break;
1737 case 1:
1738 set_bit(MMF_DUMPABLE, &mm->flags);
1739 smp_wmb();
1740 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1741 break;
1742 case 2:
1743 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1744 smp_wmb();
1745 set_bit(MMF_DUMPABLE, &mm->flags);
1746 break;
1750 int get_dumpable(struct mm_struct *mm)
1752 int ret;
1754 ret = mm->flags & 0x3;
1755 return (ret >= 2) ? 2 : ret;
1758 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1760 struct core_state core_state;
1761 char corename[CORENAME_MAX_SIZE + 1];
1762 struct mm_struct *mm = current->mm;
1763 struct linux_binfmt * binfmt;
1764 struct inode * inode;
1765 struct file * file;
1766 int retval = 0;
1767 int fsuid = current->fsuid;
1768 int flag = 0;
1769 int ispipe = 0;
1770 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1771 char **helper_argv = NULL;
1772 int helper_argc = 0;
1773 char *delimit;
1775 audit_core_dumps(signr);
1777 binfmt = current->binfmt;
1778 if (!binfmt || !binfmt->core_dump)
1779 goto fail;
1780 down_write(&mm->mmap_sem);
1782 * If another thread got here first, or we are not dumpable, bail out.
1784 if (mm->core_state || !get_dumpable(mm)) {
1785 up_write(&mm->mmap_sem);
1786 goto fail;
1790 * We cannot trust fsuid as being the "true" uid of the
1791 * process nor do we know its entire history. We only know it
1792 * was tainted so we dump it as root in mode 2.
1794 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1795 flag = O_EXCL; /* Stop rewrite attacks */
1796 current->fsuid = 0; /* Dump root private */
1799 retval = coredump_wait(exit_code, &core_state);
1800 if (retval < 0)
1801 goto fail;
1804 * Clear any false indication of pending signals that might
1805 * be seen by the filesystem code called to write the core file.
1807 clear_thread_flag(TIF_SIGPENDING);
1810 * lock_kernel() because format_corename() is controlled by sysctl, which
1811 * uses lock_kernel()
1813 lock_kernel();
1814 ispipe = format_corename(corename, retval, signr);
1815 unlock_kernel();
1817 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1818 * to a pipe. Since we're not writing directly to the filesystem
1819 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1820 * created unless the pipe reader choses to write out the core file
1821 * at which point file size limits and permissions will be imposed
1822 * as it does with any other process
1824 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1825 goto fail_unlock;
1827 if (ispipe) {
1828 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1829 /* Terminate the string before the first option */
1830 delimit = strchr(corename, ' ');
1831 if (delimit)
1832 *delimit = '\0';
1833 delimit = strrchr(helper_argv[0], '/');
1834 if (delimit)
1835 delimit++;
1836 else
1837 delimit = helper_argv[0];
1838 if (!strcmp(delimit, current->comm)) {
1839 printk(KERN_NOTICE "Recursive core dump detected, "
1840 "aborting\n");
1841 goto fail_unlock;
1844 core_limit = RLIM_INFINITY;
1846 /* SIGPIPE can happen, but it's just never processed */
1847 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1848 &file)) {
1849 printk(KERN_INFO "Core dump to %s pipe failed\n",
1850 corename);
1851 goto fail_unlock;
1853 } else
1854 file = filp_open(corename,
1855 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1856 0600);
1857 if (IS_ERR(file))
1858 goto fail_unlock;
1859 inode = file->f_path.dentry->d_inode;
1860 if (inode->i_nlink > 1)
1861 goto close_fail; /* multiple links - don't dump */
1862 if (!ispipe && d_unhashed(file->f_path.dentry))
1863 goto close_fail;
1865 /* AK: actually i see no reason to not allow this for named pipes etc.,
1866 but keep the previous behaviour for now. */
1867 if (!ispipe && !S_ISREG(inode->i_mode))
1868 goto close_fail;
1870 * Dont allow local users get cute and trick others to coredump
1871 * into their pre-created files:
1872 * Note, this is not relevant for pipes
1874 if (!ispipe && (inode->i_uid != current->fsuid))
1875 goto close_fail;
1876 if (!file->f_op)
1877 goto close_fail;
1878 if (!file->f_op->write)
1879 goto close_fail;
1880 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1881 goto close_fail;
1883 retval = binfmt->core_dump(signr, regs, file, core_limit);
1885 if (retval)
1886 current->signal->group_exit_code |= 0x80;
1887 close_fail:
1888 filp_close(file, NULL);
1889 fail_unlock:
1890 if (helper_argv)
1891 argv_free(helper_argv);
1893 current->fsuid = fsuid;
1894 coredump_finish(mm);
1895 fail:
1896 return retval;