[PATCH] pid: replace is_orphaned_pgrp with is_current_pgrp_orphaned
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / tty_io.c
blob94070f7bf38963845bcdd783b02ff305cc46d0c9
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 extern void disable_early_printk(void);
146 static void initialize_tty_struct(struct tty_struct *tty);
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
151 static unsigned int tty_poll(struct file *, poll_table *);
152 static int tty_open(struct inode *, struct file *);
153 static int tty_release(struct inode *, struct file *);
154 int tty_ioctl(struct inode * inode, struct file * file,
155 unsigned int cmd, unsigned long arg);
156 static int tty_fasync(int fd, struct file * filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
161 * alloc_tty_struct - allocate a tty object
163 * Return a new empty tty structure. The data fields have not
164 * been initialized in any way but has been zeroed
166 * Locking: none
169 static struct tty_struct *alloc_tty_struct(void)
171 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 static void tty_buffer_free_all(struct tty_struct *);
177 * free_tty_struct - free a disused tty
178 * @tty: tty struct to free
180 * Free the write buffers, tty queue and tty memory itself.
182 * Locking: none. Must be called after tty is definitely unused
185 static inline void free_tty_struct(struct tty_struct *tty)
187 kfree(tty->write_buf);
188 tty_buffer_free_all(tty);
189 kfree(tty);
192 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
195 * tty_name - return tty naming
196 * @tty: tty structure
197 * @buf: buffer for output
199 * Convert a tty structure into a name. The name reflects the kernel
200 * naming policy and if udev is in use may not reflect user space
202 * Locking: none
205 char *tty_name(struct tty_struct *tty, char *buf)
207 if (!tty) /* Hmm. NULL pointer. That's fun. */
208 strcpy(buf, "NULL tty");
209 else
210 strcpy(buf, tty->name);
211 return buf;
214 EXPORT_SYMBOL(tty_name);
216 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
217 const char *routine)
219 #ifdef TTY_PARANOIA_CHECK
220 if (!tty) {
221 printk(KERN_WARNING
222 "null TTY for (%d:%d) in %s\n",
223 imajor(inode), iminor(inode), routine);
224 return 1;
226 if (tty->magic != TTY_MAGIC) {
227 printk(KERN_WARNING
228 "bad magic number for tty struct (%d:%d) in %s\n",
229 imajor(inode), iminor(inode), routine);
230 return 1;
232 #endif
233 return 0;
236 static int check_tty_count(struct tty_struct *tty, const char *routine)
238 #ifdef CHECK_TTY_COUNT
239 struct list_head *p;
240 int count = 0;
242 file_list_lock();
243 list_for_each(p, &tty->tty_files) {
244 count++;
246 file_list_unlock();
247 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
248 tty->driver->subtype == PTY_TYPE_SLAVE &&
249 tty->link && tty->link->count)
250 count++;
251 if (tty->count != count) {
252 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
253 "!= #fd's(%d) in %s\n",
254 tty->name, tty->count, count, routine);
255 return count;
257 #endif
258 return 0;
262 * Tty buffer allocation management
266 * tty_buffer_free_all - free buffers used by a tty
267 * @tty: tty to free from
269 * Remove all the buffers pending on a tty whether queued with data
270 * or in the free ring. Must be called when the tty is no longer in use
272 * Locking: none
275 static void tty_buffer_free_all(struct tty_struct *tty)
277 struct tty_buffer *thead;
278 while((thead = tty->buf.head) != NULL) {
279 tty->buf.head = thead->next;
280 kfree(thead);
282 while((thead = tty->buf.free) != NULL) {
283 tty->buf.free = thead->next;
284 kfree(thead);
286 tty->buf.tail = NULL;
287 tty->buf.memory_used = 0;
291 * tty_buffer_init - prepare a tty buffer structure
292 * @tty: tty to initialise
294 * Set up the initial state of the buffer management for a tty device.
295 * Must be called before the other tty buffer functions are used.
297 * Locking: none
300 static void tty_buffer_init(struct tty_struct *tty)
302 spin_lock_init(&tty->buf.lock);
303 tty->buf.head = NULL;
304 tty->buf.tail = NULL;
305 tty->buf.free = NULL;
306 tty->buf.memory_used = 0;
310 * tty_buffer_alloc - allocate a tty buffer
311 * @tty: tty device
312 * @size: desired size (characters)
314 * Allocate a new tty buffer to hold the desired number of characters.
315 * Return NULL if out of memory or the allocation would exceed the
316 * per device queue
318 * Locking: Caller must hold tty->buf.lock
321 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
323 struct tty_buffer *p;
325 if (tty->buf.memory_used + size > 65536)
326 return NULL;
327 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
328 if(p == NULL)
329 return NULL;
330 p->used = 0;
331 p->size = size;
332 p->next = NULL;
333 p->commit = 0;
334 p->read = 0;
335 p->char_buf_ptr = (char *)(p->data);
336 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
337 tty->buf.memory_used += size;
338 return p;
342 * tty_buffer_free - free a tty buffer
343 * @tty: tty owning the buffer
344 * @b: the buffer to free
346 * Free a tty buffer, or add it to the free list according to our
347 * internal strategy
349 * Locking: Caller must hold tty->buf.lock
352 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
354 /* Dumb strategy for now - should keep some stats */
355 tty->buf.memory_used -= b->size;
356 WARN_ON(tty->buf.memory_used < 0);
358 if(b->size >= 512)
359 kfree(b);
360 else {
361 b->next = tty->buf.free;
362 tty->buf.free = b;
367 * tty_buffer_find - find a free tty buffer
368 * @tty: tty owning the buffer
369 * @size: characters wanted
371 * Locate an existing suitable tty buffer or if we are lacking one then
372 * allocate a new one. We round our buffers off in 256 character chunks
373 * to get better allocation behaviour.
375 * Locking: Caller must hold tty->buf.lock
378 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
380 struct tty_buffer **tbh = &tty->buf.free;
381 while((*tbh) != NULL) {
382 struct tty_buffer *t = *tbh;
383 if(t->size >= size) {
384 *tbh = t->next;
385 t->next = NULL;
386 t->used = 0;
387 t->commit = 0;
388 t->read = 0;
389 tty->buf.memory_used += t->size;
390 return t;
392 tbh = &((*tbh)->next);
394 /* Round the buffer size out */
395 size = (size + 0xFF) & ~ 0xFF;
396 return tty_buffer_alloc(tty, size);
397 /* Should possibly check if this fails for the largest buffer we
398 have queued and recycle that ? */
402 * tty_buffer_request_room - grow tty buffer if needed
403 * @tty: tty structure
404 * @size: size desired
406 * Make at least size bytes of linear space available for the tty
407 * buffer. If we fail return the size we managed to find.
409 * Locking: Takes tty->buf.lock
411 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
413 struct tty_buffer *b, *n;
414 int left;
415 unsigned long flags;
417 spin_lock_irqsave(&tty->buf.lock, flags);
419 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
420 remove this conditional if its worth it. This would be invisible
421 to the callers */
422 if ((b = tty->buf.tail) != NULL)
423 left = b->size - b->used;
424 else
425 left = 0;
427 if (left < size) {
428 /* This is the slow path - looking for new buffers to use */
429 if ((n = tty_buffer_find(tty, size)) != NULL) {
430 if (b != NULL) {
431 b->next = n;
432 b->commit = b->used;
433 } else
434 tty->buf.head = n;
435 tty->buf.tail = n;
436 } else
437 size = left;
440 spin_unlock_irqrestore(&tty->buf.lock, flags);
441 return size;
443 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
446 * tty_insert_flip_string - Add characters to the tty buffer
447 * @tty: tty structure
448 * @chars: characters
449 * @size: size
451 * Queue a series of bytes to the tty buffering. All the characters
452 * passed are marked as without error. Returns the number added.
454 * Locking: Called functions may take tty->buf.lock
457 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
458 size_t size)
460 int copied = 0;
461 do {
462 int space = tty_buffer_request_room(tty, size - copied);
463 struct tty_buffer *tb = tty->buf.tail;
464 /* If there is no space then tb may be NULL */
465 if(unlikely(space == 0))
466 break;
467 memcpy(tb->char_buf_ptr + tb->used, chars, space);
468 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
469 tb->used += space;
470 copied += space;
471 chars += space;
472 /* There is a small chance that we need to split the data over
473 several buffers. If this is the case we must loop */
474 } while (unlikely(size > copied));
475 return copied;
477 EXPORT_SYMBOL(tty_insert_flip_string);
480 * tty_insert_flip_string_flags - Add characters to the tty buffer
481 * @tty: tty structure
482 * @chars: characters
483 * @flags: flag bytes
484 * @size: size
486 * Queue a series of bytes to the tty buffering. For each character
487 * the flags array indicates the status of the character. Returns the
488 * number added.
490 * Locking: Called functions may take tty->buf.lock
493 int tty_insert_flip_string_flags(struct tty_struct *tty,
494 const unsigned char *chars, const char *flags, size_t size)
496 int copied = 0;
497 do {
498 int space = tty_buffer_request_room(tty, size - copied);
499 struct tty_buffer *tb = tty->buf.tail;
500 /* If there is no space then tb may be NULL */
501 if(unlikely(space == 0))
502 break;
503 memcpy(tb->char_buf_ptr + tb->used, chars, space);
504 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
505 tb->used += space;
506 copied += space;
507 chars += space;
508 flags += space;
509 /* There is a small chance that we need to split the data over
510 several buffers. If this is the case we must loop */
511 } while (unlikely(size > copied));
512 return copied;
514 EXPORT_SYMBOL(tty_insert_flip_string_flags);
517 * tty_schedule_flip - push characters to ldisc
518 * @tty: tty to push from
520 * Takes any pending buffers and transfers their ownership to the
521 * ldisc side of the queue. It then schedules those characters for
522 * processing by the line discipline.
524 * Locking: Takes tty->buf.lock
527 void tty_schedule_flip(struct tty_struct *tty)
529 unsigned long flags;
530 spin_lock_irqsave(&tty->buf.lock, flags);
531 if (tty->buf.tail != NULL)
532 tty->buf.tail->commit = tty->buf.tail->used;
533 spin_unlock_irqrestore(&tty->buf.lock, flags);
534 schedule_delayed_work(&tty->buf.work, 1);
536 EXPORT_SYMBOL(tty_schedule_flip);
539 * tty_prepare_flip_string - make room for characters
540 * @tty: tty
541 * @chars: return pointer for character write area
542 * @size: desired size
544 * Prepare a block of space in the buffer for data. Returns the length
545 * available and buffer pointer to the space which is now allocated and
546 * accounted for as ready for normal characters. This is used for drivers
547 * that need their own block copy routines into the buffer. There is no
548 * guarantee the buffer is a DMA target!
550 * Locking: May call functions taking tty->buf.lock
553 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
555 int space = tty_buffer_request_room(tty, size);
556 if (likely(space)) {
557 struct tty_buffer *tb = tty->buf.tail;
558 *chars = tb->char_buf_ptr + tb->used;
559 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
560 tb->used += space;
562 return space;
565 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
568 * tty_prepare_flip_string_flags - make room for characters
569 * @tty: tty
570 * @chars: return pointer for character write area
571 * @flags: return pointer for status flag write area
572 * @size: desired size
574 * Prepare a block of space in the buffer for data. Returns the length
575 * available and buffer pointer to the space which is now allocated and
576 * accounted for as ready for characters. This is used for drivers
577 * that need their own block copy routines into the buffer. There is no
578 * guarantee the buffer is a DMA target!
580 * Locking: May call functions taking tty->buf.lock
583 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
585 int space = tty_buffer_request_room(tty, size);
586 if (likely(space)) {
587 struct tty_buffer *tb = tty->buf.tail;
588 *chars = tb->char_buf_ptr + tb->used;
589 *flags = tb->flag_buf_ptr + tb->used;
590 tb->used += space;
592 return space;
595 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
600 * tty_set_termios_ldisc - set ldisc field
601 * @tty: tty structure
602 * @num: line discipline number
604 * This is probably overkill for real world processors but
605 * they are not on hot paths so a little discipline won't do
606 * any harm.
608 * Locking: takes termios_mutex
611 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
613 mutex_lock(&tty->termios_mutex);
614 tty->termios->c_line = num;
615 mutex_unlock(&tty->termios_mutex);
619 * This guards the refcounted line discipline lists. The lock
620 * must be taken with irqs off because there are hangup path
621 * callers who will do ldisc lookups and cannot sleep.
624 static DEFINE_SPINLOCK(tty_ldisc_lock);
625 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
626 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
629 * tty_register_ldisc - install a line discipline
630 * @disc: ldisc number
631 * @new_ldisc: pointer to the ldisc object
633 * Installs a new line discipline into the kernel. The discipline
634 * is set up as unreferenced and then made available to the kernel
635 * from this point onwards.
637 * Locking:
638 * takes tty_ldisc_lock to guard against ldisc races
641 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
643 unsigned long flags;
644 int ret = 0;
646 if (disc < N_TTY || disc >= NR_LDISCS)
647 return -EINVAL;
649 spin_lock_irqsave(&tty_ldisc_lock, flags);
650 tty_ldiscs[disc] = *new_ldisc;
651 tty_ldiscs[disc].num = disc;
652 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
653 tty_ldiscs[disc].refcount = 0;
654 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
656 return ret;
658 EXPORT_SYMBOL(tty_register_ldisc);
661 * tty_unregister_ldisc - unload a line discipline
662 * @disc: ldisc number
663 * @new_ldisc: pointer to the ldisc object
665 * Remove a line discipline from the kernel providing it is not
666 * currently in use.
668 * Locking:
669 * takes tty_ldisc_lock to guard against ldisc races
672 int tty_unregister_ldisc(int disc)
674 unsigned long flags;
675 int ret = 0;
677 if (disc < N_TTY || disc >= NR_LDISCS)
678 return -EINVAL;
680 spin_lock_irqsave(&tty_ldisc_lock, flags);
681 if (tty_ldiscs[disc].refcount)
682 ret = -EBUSY;
683 else
684 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
685 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
687 return ret;
689 EXPORT_SYMBOL(tty_unregister_ldisc);
692 * tty_ldisc_get - take a reference to an ldisc
693 * @disc: ldisc number
695 * Takes a reference to a line discipline. Deals with refcounts and
696 * module locking counts. Returns NULL if the discipline is not available.
697 * Returns a pointer to the discipline and bumps the ref count if it is
698 * available
700 * Locking:
701 * takes tty_ldisc_lock to guard against ldisc races
704 struct tty_ldisc *tty_ldisc_get(int disc)
706 unsigned long flags;
707 struct tty_ldisc *ld;
709 if (disc < N_TTY || disc >= NR_LDISCS)
710 return NULL;
712 spin_lock_irqsave(&tty_ldisc_lock, flags);
714 ld = &tty_ldiscs[disc];
715 /* Check the entry is defined */
716 if(ld->flags & LDISC_FLAG_DEFINED)
718 /* If the module is being unloaded we can't use it */
719 if (!try_module_get(ld->owner))
720 ld = NULL;
721 else /* lock it */
722 ld->refcount++;
724 else
725 ld = NULL;
726 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
727 return ld;
730 EXPORT_SYMBOL_GPL(tty_ldisc_get);
733 * tty_ldisc_put - drop ldisc reference
734 * @disc: ldisc number
736 * Drop a reference to a line discipline. Manage refcounts and
737 * module usage counts
739 * Locking:
740 * takes tty_ldisc_lock to guard against ldisc races
743 void tty_ldisc_put(int disc)
745 struct tty_ldisc *ld;
746 unsigned long flags;
748 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
750 spin_lock_irqsave(&tty_ldisc_lock, flags);
751 ld = &tty_ldiscs[disc];
752 BUG_ON(ld->refcount == 0);
753 ld->refcount--;
754 module_put(ld->owner);
755 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
758 EXPORT_SYMBOL_GPL(tty_ldisc_put);
761 * tty_ldisc_assign - set ldisc on a tty
762 * @tty: tty to assign
763 * @ld: line discipline
765 * Install an instance of a line discipline into a tty structure. The
766 * ldisc must have a reference count above zero to ensure it remains/
767 * The tty instance refcount starts at zero.
769 * Locking:
770 * Caller must hold references
773 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
775 tty->ldisc = *ld;
776 tty->ldisc.refcount = 0;
780 * tty_ldisc_try - internal helper
781 * @tty: the tty
783 * Make a single attempt to grab and bump the refcount on
784 * the tty ldisc. Return 0 on failure or 1 on success. This is
785 * used to implement both the waiting and non waiting versions
786 * of tty_ldisc_ref
788 * Locking: takes tty_ldisc_lock
791 static int tty_ldisc_try(struct tty_struct *tty)
793 unsigned long flags;
794 struct tty_ldisc *ld;
795 int ret = 0;
797 spin_lock_irqsave(&tty_ldisc_lock, flags);
798 ld = &tty->ldisc;
799 if(test_bit(TTY_LDISC, &tty->flags))
801 ld->refcount++;
802 ret = 1;
804 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
805 return ret;
809 * tty_ldisc_ref_wait - wait for the tty ldisc
810 * @tty: tty device
812 * Dereference the line discipline for the terminal and take a
813 * reference to it. If the line discipline is in flux then
814 * wait patiently until it changes.
816 * Note: Must not be called from an IRQ/timer context. The caller
817 * must also be careful not to hold other locks that will deadlock
818 * against a discipline change, such as an existing ldisc reference
819 * (which we check for)
821 * Locking: call functions take tty_ldisc_lock
824 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
826 /* wait_event is a macro */
827 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
828 if(tty->ldisc.refcount == 0)
829 printk(KERN_ERR "tty_ldisc_ref_wait\n");
830 return &tty->ldisc;
833 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
836 * tty_ldisc_ref - get the tty ldisc
837 * @tty: tty device
839 * Dereference the line discipline for the terminal and take a
840 * reference to it. If the line discipline is in flux then
841 * return NULL. Can be called from IRQ and timer functions.
843 * Locking: called functions take tty_ldisc_lock
846 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
848 if(tty_ldisc_try(tty))
849 return &tty->ldisc;
850 return NULL;
853 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
856 * tty_ldisc_deref - free a tty ldisc reference
857 * @ld: reference to free up
859 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
860 * be called in IRQ context.
862 * Locking: takes tty_ldisc_lock
865 void tty_ldisc_deref(struct tty_ldisc *ld)
867 unsigned long flags;
869 BUG_ON(ld == NULL);
871 spin_lock_irqsave(&tty_ldisc_lock, flags);
872 if(ld->refcount == 0)
873 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
874 else
875 ld->refcount--;
876 if(ld->refcount == 0)
877 wake_up(&tty_ldisc_wait);
878 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
881 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
884 * tty_ldisc_enable - allow ldisc use
885 * @tty: terminal to activate ldisc on
887 * Set the TTY_LDISC flag when the line discipline can be called
888 * again. Do neccessary wakeups for existing sleepers.
890 * Note: nobody should set this bit except via this function. Clearing
891 * directly is allowed.
894 static void tty_ldisc_enable(struct tty_struct *tty)
896 set_bit(TTY_LDISC, &tty->flags);
897 wake_up(&tty_ldisc_wait);
901 * tty_set_ldisc - set line discipline
902 * @tty: the terminal to set
903 * @ldisc: the line discipline
905 * Set the discipline of a tty line. Must be called from a process
906 * context.
908 * Locking: takes tty_ldisc_lock.
909 * called functions take termios_mutex
912 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
914 int retval = 0;
915 struct tty_ldisc o_ldisc;
916 char buf[64];
917 int work;
918 unsigned long flags;
919 struct tty_ldisc *ld;
920 struct tty_struct *o_tty;
922 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
923 return -EINVAL;
925 restart:
927 ld = tty_ldisc_get(ldisc);
928 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
929 /* Cyrus Durgin <cider@speakeasy.org> */
930 if (ld == NULL) {
931 request_module("tty-ldisc-%d", ldisc);
932 ld = tty_ldisc_get(ldisc);
934 if (ld == NULL)
935 return -EINVAL;
938 * No more input please, we are switching. The new ldisc
939 * will update this value in the ldisc open function
942 tty->receive_room = 0;
945 * Problem: What do we do if this blocks ?
948 tty_wait_until_sent(tty, 0);
950 if (tty->ldisc.num == ldisc) {
951 tty_ldisc_put(ldisc);
952 return 0;
955 o_ldisc = tty->ldisc;
956 o_tty = tty->link;
959 * Make sure we don't change while someone holds a
960 * reference to the line discipline. The TTY_LDISC bit
961 * prevents anyone taking a reference once it is clear.
962 * We need the lock to avoid racing reference takers.
965 spin_lock_irqsave(&tty_ldisc_lock, flags);
966 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
967 if(tty->ldisc.refcount) {
968 /* Free the new ldisc we grabbed. Must drop the lock
969 first. */
970 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
971 tty_ldisc_put(ldisc);
973 * There are several reasons we may be busy, including
974 * random momentary I/O traffic. We must therefore
975 * retry. We could distinguish between blocking ops
976 * and retries if we made tty_ldisc_wait() smarter. That
977 * is up for discussion.
979 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
980 return -ERESTARTSYS;
981 goto restart;
983 if(o_tty && o_tty->ldisc.refcount) {
984 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
985 tty_ldisc_put(ldisc);
986 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
987 return -ERESTARTSYS;
988 goto restart;
992 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
994 if (!test_bit(TTY_LDISC, &tty->flags)) {
995 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
996 tty_ldisc_put(ldisc);
997 ld = tty_ldisc_ref_wait(tty);
998 tty_ldisc_deref(ld);
999 goto restart;
1002 clear_bit(TTY_LDISC, &tty->flags);
1003 if (o_tty)
1004 clear_bit(TTY_LDISC, &o_tty->flags);
1005 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1008 * From this point on we know nobody has an ldisc
1009 * usage reference, nor can they obtain one until
1010 * we say so later on.
1013 work = cancel_delayed_work(&tty->buf.work);
1015 * Wait for ->hangup_work and ->buf.work handlers to terminate
1018 flush_scheduled_work();
1019 /* Shutdown the current discipline. */
1020 if (tty->ldisc.close)
1021 (tty->ldisc.close)(tty);
1023 /* Now set up the new line discipline. */
1024 tty_ldisc_assign(tty, ld);
1025 tty_set_termios_ldisc(tty, ldisc);
1026 if (tty->ldisc.open)
1027 retval = (tty->ldisc.open)(tty);
1028 if (retval < 0) {
1029 tty_ldisc_put(ldisc);
1030 /* There is an outstanding reference here so this is safe */
1031 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1032 tty_set_termios_ldisc(tty, tty->ldisc.num);
1033 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1034 tty_ldisc_put(o_ldisc.num);
1035 /* This driver is always present */
1036 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1037 tty_set_termios_ldisc(tty, N_TTY);
1038 if (tty->ldisc.open) {
1039 int r = tty->ldisc.open(tty);
1041 if (r < 0)
1042 panic("Couldn't open N_TTY ldisc for "
1043 "%s --- error %d.",
1044 tty_name(tty, buf), r);
1048 /* At this point we hold a reference to the new ldisc and a
1049 a reference to the old ldisc. If we ended up flipping back
1050 to the existing ldisc we have two references to it */
1052 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1053 tty->driver->set_ldisc(tty);
1055 tty_ldisc_put(o_ldisc.num);
1058 * Allow ldisc referencing to occur as soon as the driver
1059 * ldisc callback completes.
1062 tty_ldisc_enable(tty);
1063 if (o_tty)
1064 tty_ldisc_enable(o_tty);
1066 /* Restart it in case no characters kick it off. Safe if
1067 already running */
1068 if (work)
1069 schedule_delayed_work(&tty->buf.work, 1);
1070 return retval;
1074 * get_tty_driver - find device of a tty
1075 * @dev_t: device identifier
1076 * @index: returns the index of the tty
1078 * This routine returns a tty driver structure, given a device number
1079 * and also passes back the index number.
1081 * Locking: caller must hold tty_mutex
1084 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1086 struct tty_driver *p;
1088 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1089 dev_t base = MKDEV(p->major, p->minor_start);
1090 if (device < base || device >= base + p->num)
1091 continue;
1092 *index = device - base;
1093 return p;
1095 return NULL;
1099 * tty_check_change - check for POSIX terminal changes
1100 * @tty: tty to check
1102 * If we try to write to, or set the state of, a terminal and we're
1103 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1104 * ignored, go ahead and perform the operation. (POSIX 7.2)
1106 * Locking: none
1109 int tty_check_change(struct tty_struct * tty)
1111 if (current->signal->tty != tty)
1112 return 0;
1113 if (tty->pgrp <= 0) {
1114 printk(KERN_WARNING "tty_check_change: tty->pgrp <= 0!\n");
1115 return 0;
1117 if (process_group(current) == tty->pgrp)
1118 return 0;
1119 if (is_ignored(SIGTTOU))
1120 return 0;
1121 if (is_current_pgrp_orphaned())
1122 return -EIO;
1123 (void) kill_pg(process_group(current), SIGTTOU, 1);
1124 return -ERESTARTSYS;
1127 EXPORT_SYMBOL(tty_check_change);
1129 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1130 size_t count, loff_t *ppos)
1132 return 0;
1135 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1136 size_t count, loff_t *ppos)
1138 return -EIO;
1141 /* No kernel lock held - none needed ;) */
1142 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1144 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1147 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1148 unsigned int cmd, unsigned long arg)
1150 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1153 static const struct file_operations tty_fops = {
1154 .llseek = no_llseek,
1155 .read = tty_read,
1156 .write = tty_write,
1157 .poll = tty_poll,
1158 .ioctl = tty_ioctl,
1159 .open = tty_open,
1160 .release = tty_release,
1161 .fasync = tty_fasync,
1164 #ifdef CONFIG_UNIX98_PTYS
1165 static const struct file_operations ptmx_fops = {
1166 .llseek = no_llseek,
1167 .read = tty_read,
1168 .write = tty_write,
1169 .poll = tty_poll,
1170 .ioctl = tty_ioctl,
1171 .open = ptmx_open,
1172 .release = tty_release,
1173 .fasync = tty_fasync,
1175 #endif
1177 static const struct file_operations console_fops = {
1178 .llseek = no_llseek,
1179 .read = tty_read,
1180 .write = redirected_tty_write,
1181 .poll = tty_poll,
1182 .ioctl = tty_ioctl,
1183 .open = tty_open,
1184 .release = tty_release,
1185 .fasync = tty_fasync,
1188 static const struct file_operations hung_up_tty_fops = {
1189 .llseek = no_llseek,
1190 .read = hung_up_tty_read,
1191 .write = hung_up_tty_write,
1192 .poll = hung_up_tty_poll,
1193 .ioctl = hung_up_tty_ioctl,
1194 .release = tty_release,
1197 static DEFINE_SPINLOCK(redirect_lock);
1198 static struct file *redirect;
1201 * tty_wakeup - request more data
1202 * @tty: terminal
1204 * Internal and external helper for wakeups of tty. This function
1205 * informs the line discipline if present that the driver is ready
1206 * to receive more output data.
1209 void tty_wakeup(struct tty_struct *tty)
1211 struct tty_ldisc *ld;
1213 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1214 ld = tty_ldisc_ref(tty);
1215 if(ld) {
1216 if(ld->write_wakeup)
1217 ld->write_wakeup(tty);
1218 tty_ldisc_deref(ld);
1221 wake_up_interruptible(&tty->write_wait);
1224 EXPORT_SYMBOL_GPL(tty_wakeup);
1227 * tty_ldisc_flush - flush line discipline queue
1228 * @tty: tty
1230 * Flush the line discipline queue (if any) for this tty. If there
1231 * is no line discipline active this is a no-op.
1234 void tty_ldisc_flush(struct tty_struct *tty)
1236 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1237 if(ld) {
1238 if(ld->flush_buffer)
1239 ld->flush_buffer(tty);
1240 tty_ldisc_deref(ld);
1244 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1247 * tty_reset_termios - reset terminal state
1248 * @tty: tty to reset
1250 * Restore a terminal to the driver default state
1253 static void tty_reset_termios(struct tty_struct *tty)
1255 mutex_lock(&tty->termios_mutex);
1256 *tty->termios = tty->driver->init_termios;
1257 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1258 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1259 mutex_unlock(&tty->termios_mutex);
1263 * do_tty_hangup - actual handler for hangup events
1264 * @work: tty device
1266 * This can be called by the "eventd" kernel thread. That is process
1267 * synchronous but doesn't hold any locks, so we need to make sure we
1268 * have the appropriate locks for what we're doing.
1270 * The hangup event clears any pending redirections onto the hung up
1271 * device. It ensures future writes will error and it does the needed
1272 * line discipline hangup and signal delivery. The tty object itself
1273 * remains intact.
1275 * Locking:
1276 * BKL
1277 * redirect lock for undoing redirection
1278 * file list lock for manipulating list of ttys
1279 * tty_ldisc_lock from called functions
1280 * termios_mutex resetting termios data
1281 * tasklist_lock to walk task list for hangup event
1282 * ->siglock to protect ->signal/->sighand
1284 static void do_tty_hangup(struct work_struct *work)
1286 struct tty_struct *tty =
1287 container_of(work, struct tty_struct, hangup_work);
1288 struct file * cons_filp = NULL;
1289 struct file *filp, *f = NULL;
1290 struct task_struct *p;
1291 struct tty_ldisc *ld;
1292 int closecount = 0, n;
1294 if (!tty)
1295 return;
1297 /* inuse_filps is protected by the single kernel lock */
1298 lock_kernel();
1300 spin_lock(&redirect_lock);
1301 if (redirect && redirect->private_data == tty) {
1302 f = redirect;
1303 redirect = NULL;
1305 spin_unlock(&redirect_lock);
1307 check_tty_count(tty, "do_tty_hangup");
1308 file_list_lock();
1309 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1310 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1311 if (filp->f_op->write == redirected_tty_write)
1312 cons_filp = filp;
1313 if (filp->f_op->write != tty_write)
1314 continue;
1315 closecount++;
1316 tty_fasync(-1, filp, 0); /* can't block */
1317 filp->f_op = &hung_up_tty_fops;
1319 file_list_unlock();
1321 /* FIXME! What are the locking issues here? This may me overdoing things..
1322 * this question is especially important now that we've removed the irqlock. */
1324 ld = tty_ldisc_ref(tty);
1325 if(ld != NULL) /* We may have no line discipline at this point */
1327 if (ld->flush_buffer)
1328 ld->flush_buffer(tty);
1329 if (tty->driver->flush_buffer)
1330 tty->driver->flush_buffer(tty);
1331 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1332 ld->write_wakeup)
1333 ld->write_wakeup(tty);
1334 if (ld->hangup)
1335 ld->hangup(tty);
1338 /* FIXME: Once we trust the LDISC code better we can wait here for
1339 ldisc completion and fix the driver call race */
1341 wake_up_interruptible(&tty->write_wait);
1342 wake_up_interruptible(&tty->read_wait);
1345 * Shutdown the current line discipline, and reset it to
1346 * N_TTY.
1348 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1349 tty_reset_termios(tty);
1351 /* Defer ldisc switch */
1352 /* tty_deferred_ldisc_switch(N_TTY);
1354 This should get done automatically when the port closes and
1355 tty_release is called */
1357 read_lock(&tasklist_lock);
1358 if (tty->session > 0) {
1359 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
1360 spin_lock_irq(&p->sighand->siglock);
1361 if (p->signal->tty == tty)
1362 p->signal->tty = NULL;
1363 if (!p->signal->leader) {
1364 spin_unlock_irq(&p->sighand->siglock);
1365 continue;
1367 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1368 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1369 if (tty->pgrp > 0)
1370 p->signal->tty_old_pgrp = tty->pgrp;
1371 spin_unlock_irq(&p->sighand->siglock);
1372 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
1374 read_unlock(&tasklist_lock);
1376 tty->flags = 0;
1377 tty->session = 0;
1378 tty->pgrp = -1;
1379 tty->ctrl_status = 0;
1381 * If one of the devices matches a console pointer, we
1382 * cannot just call hangup() because that will cause
1383 * tty->count and state->count to go out of sync.
1384 * So we just call close() the right number of times.
1386 if (cons_filp) {
1387 if (tty->driver->close)
1388 for (n = 0; n < closecount; n++)
1389 tty->driver->close(tty, cons_filp);
1390 } else if (tty->driver->hangup)
1391 (tty->driver->hangup)(tty);
1393 /* We don't want to have driver/ldisc interactions beyond
1394 the ones we did here. The driver layer expects no
1395 calls after ->hangup() from the ldisc side. However we
1396 can't yet guarantee all that */
1398 set_bit(TTY_HUPPED, &tty->flags);
1399 if (ld) {
1400 tty_ldisc_enable(tty);
1401 tty_ldisc_deref(ld);
1403 unlock_kernel();
1404 if (f)
1405 fput(f);
1409 * tty_hangup - trigger a hangup event
1410 * @tty: tty to hangup
1412 * A carrier loss (virtual or otherwise) has occurred on this like
1413 * schedule a hangup sequence to run after this event.
1416 void tty_hangup(struct tty_struct * tty)
1418 #ifdef TTY_DEBUG_HANGUP
1419 char buf[64];
1421 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1422 #endif
1423 schedule_work(&tty->hangup_work);
1426 EXPORT_SYMBOL(tty_hangup);
1429 * tty_vhangup - process vhangup
1430 * @tty: tty to hangup
1432 * The user has asked via system call for the terminal to be hung up.
1433 * We do this synchronously so that when the syscall returns the process
1434 * is complete. That guarantee is neccessary for security reasons.
1437 void tty_vhangup(struct tty_struct * tty)
1439 #ifdef TTY_DEBUG_HANGUP
1440 char buf[64];
1442 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1443 #endif
1444 do_tty_hangup(&tty->hangup_work);
1446 EXPORT_SYMBOL(tty_vhangup);
1449 * tty_hung_up_p - was tty hung up
1450 * @filp: file pointer of tty
1452 * Return true if the tty has been subject to a vhangup or a carrier
1453 * loss
1456 int tty_hung_up_p(struct file * filp)
1458 return (filp->f_op == &hung_up_tty_fops);
1461 EXPORT_SYMBOL(tty_hung_up_p);
1463 static void session_clear_tty(pid_t session)
1465 struct task_struct *p;
1466 do_each_task_pid(session, PIDTYPE_SID, p) {
1467 proc_clear_tty(p);
1468 } while_each_task_pid(session, PIDTYPE_SID, p);
1472 * disassociate_ctty - disconnect controlling tty
1473 * @on_exit: true if exiting so need to "hang up" the session
1475 * This function is typically called only by the session leader, when
1476 * it wants to disassociate itself from its controlling tty.
1478 * It performs the following functions:
1479 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1480 * (2) Clears the tty from being controlling the session
1481 * (3) Clears the controlling tty for all processes in the
1482 * session group.
1484 * The argument on_exit is set to 1 if called when a process is
1485 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1487 * Locking:
1488 * BKL is taken for hysterical raisins
1489 * tty_mutex is taken to protect tty
1490 * ->siglock is taken to protect ->signal/->sighand
1491 * tasklist_lock is taken to walk process list for sessions
1492 * ->siglock is taken to protect ->signal/->sighand
1495 void disassociate_ctty(int on_exit)
1497 struct tty_struct *tty;
1498 int tty_pgrp = -1;
1500 lock_kernel();
1502 mutex_lock(&tty_mutex);
1503 tty = get_current_tty();
1504 if (tty) {
1505 tty_pgrp = tty->pgrp;
1506 mutex_unlock(&tty_mutex);
1507 /* XXX: here we race, there is nothing protecting tty */
1508 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1509 tty_vhangup(tty);
1510 } else if (on_exit) {
1511 pid_t old_pgrp;
1512 spin_lock_irq(&current->sighand->siglock);
1513 old_pgrp = current->signal->tty_old_pgrp;
1514 current->signal->tty_old_pgrp = 0;
1515 spin_unlock_irq(&current->sighand->siglock);
1516 if (old_pgrp) {
1517 kill_pg(old_pgrp, SIGHUP, on_exit);
1518 kill_pg(old_pgrp, SIGCONT, on_exit);
1520 mutex_unlock(&tty_mutex);
1521 unlock_kernel();
1522 return;
1524 if (tty_pgrp > 0) {
1525 kill_pg(tty_pgrp, SIGHUP, on_exit);
1526 if (!on_exit)
1527 kill_pg(tty_pgrp, SIGCONT, on_exit);
1530 spin_lock_irq(&current->sighand->siglock);
1531 current->signal->tty_old_pgrp = 0;
1532 spin_unlock_irq(&current->sighand->siglock);
1534 mutex_lock(&tty_mutex);
1535 /* It is possible that do_tty_hangup has free'd this tty */
1536 tty = get_current_tty();
1537 if (tty) {
1538 tty->session = 0;
1539 tty->pgrp = 0;
1540 } else {
1541 #ifdef TTY_DEBUG_HANGUP
1542 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1543 " = NULL", tty);
1544 #endif
1546 mutex_unlock(&tty_mutex);
1548 /* Now clear signal->tty under the lock */
1549 read_lock(&tasklist_lock);
1550 session_clear_tty(process_session(current));
1551 read_unlock(&tasklist_lock);
1552 unlock_kernel();
1557 * stop_tty - propogate flow control
1558 * @tty: tty to stop
1560 * Perform flow control to the driver. For PTY/TTY pairs we
1561 * must also propogate the TIOCKPKT status. May be called
1562 * on an already stopped device and will not re-call the driver
1563 * method.
1565 * This functionality is used by both the line disciplines for
1566 * halting incoming flow and by the driver. It may therefore be
1567 * called from any context, may be under the tty atomic_write_lock
1568 * but not always.
1570 * Locking:
1571 * Broken. Relies on BKL which is unsafe here.
1574 void stop_tty(struct tty_struct *tty)
1576 if (tty->stopped)
1577 return;
1578 tty->stopped = 1;
1579 if (tty->link && tty->link->packet) {
1580 tty->ctrl_status &= ~TIOCPKT_START;
1581 tty->ctrl_status |= TIOCPKT_STOP;
1582 wake_up_interruptible(&tty->link->read_wait);
1584 if (tty->driver->stop)
1585 (tty->driver->stop)(tty);
1588 EXPORT_SYMBOL(stop_tty);
1591 * start_tty - propogate flow control
1592 * @tty: tty to start
1594 * Start a tty that has been stopped if at all possible. Perform
1595 * any neccessary wakeups and propogate the TIOCPKT status. If this
1596 * is the tty was previous stopped and is being started then the
1597 * driver start method is invoked and the line discipline woken.
1599 * Locking:
1600 * Broken. Relies on BKL which is unsafe here.
1603 void start_tty(struct tty_struct *tty)
1605 if (!tty->stopped || tty->flow_stopped)
1606 return;
1607 tty->stopped = 0;
1608 if (tty->link && tty->link->packet) {
1609 tty->ctrl_status &= ~TIOCPKT_STOP;
1610 tty->ctrl_status |= TIOCPKT_START;
1611 wake_up_interruptible(&tty->link->read_wait);
1613 if (tty->driver->start)
1614 (tty->driver->start)(tty);
1616 /* If we have a running line discipline it may need kicking */
1617 tty_wakeup(tty);
1620 EXPORT_SYMBOL(start_tty);
1623 * tty_read - read method for tty device files
1624 * @file: pointer to tty file
1625 * @buf: user buffer
1626 * @count: size of user buffer
1627 * @ppos: unused
1629 * Perform the read system call function on this terminal device. Checks
1630 * for hung up devices before calling the line discipline method.
1632 * Locking:
1633 * Locks the line discipline internally while needed
1634 * For historical reasons the line discipline read method is
1635 * invoked under the BKL. This will go away in time so do not rely on it
1636 * in new code. Multiple read calls may be outstanding in parallel.
1639 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1640 loff_t *ppos)
1642 int i;
1643 struct tty_struct * tty;
1644 struct inode *inode;
1645 struct tty_ldisc *ld;
1647 tty = (struct tty_struct *)file->private_data;
1648 inode = file->f_path.dentry->d_inode;
1649 if (tty_paranoia_check(tty, inode, "tty_read"))
1650 return -EIO;
1651 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1652 return -EIO;
1654 /* We want to wait for the line discipline to sort out in this
1655 situation */
1656 ld = tty_ldisc_ref_wait(tty);
1657 lock_kernel();
1658 if (ld->read)
1659 i = (ld->read)(tty,file,buf,count);
1660 else
1661 i = -EIO;
1662 tty_ldisc_deref(ld);
1663 unlock_kernel();
1664 if (i > 0)
1665 inode->i_atime = current_fs_time(inode->i_sb);
1666 return i;
1670 * Split writes up in sane blocksizes to avoid
1671 * denial-of-service type attacks
1673 static inline ssize_t do_tty_write(
1674 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1675 struct tty_struct *tty,
1676 struct file *file,
1677 const char __user *buf,
1678 size_t count)
1680 ssize_t ret = 0, written = 0;
1681 unsigned int chunk;
1683 /* FIXME: O_NDELAY ... */
1684 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1685 return -ERESTARTSYS;
1689 * We chunk up writes into a temporary buffer. This
1690 * simplifies low-level drivers immensely, since they
1691 * don't have locking issues and user mode accesses.
1693 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1694 * big chunk-size..
1696 * The default chunk-size is 2kB, because the NTTY
1697 * layer has problems with bigger chunks. It will
1698 * claim to be able to handle more characters than
1699 * it actually does.
1701 * FIXME: This can probably go away now except that 64K chunks
1702 * are too likely to fail unless switched to vmalloc...
1704 chunk = 2048;
1705 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1706 chunk = 65536;
1707 if (count < chunk)
1708 chunk = count;
1710 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1711 if (tty->write_cnt < chunk) {
1712 unsigned char *buf;
1714 if (chunk < 1024)
1715 chunk = 1024;
1717 buf = kmalloc(chunk, GFP_KERNEL);
1718 if (!buf) {
1719 mutex_unlock(&tty->atomic_write_lock);
1720 return -ENOMEM;
1722 kfree(tty->write_buf);
1723 tty->write_cnt = chunk;
1724 tty->write_buf = buf;
1727 /* Do the write .. */
1728 for (;;) {
1729 size_t size = count;
1730 if (size > chunk)
1731 size = chunk;
1732 ret = -EFAULT;
1733 if (copy_from_user(tty->write_buf, buf, size))
1734 break;
1735 lock_kernel();
1736 ret = write(tty, file, tty->write_buf, size);
1737 unlock_kernel();
1738 if (ret <= 0)
1739 break;
1740 written += ret;
1741 buf += ret;
1742 count -= ret;
1743 if (!count)
1744 break;
1745 ret = -ERESTARTSYS;
1746 if (signal_pending(current))
1747 break;
1748 cond_resched();
1750 if (written) {
1751 struct inode *inode = file->f_path.dentry->d_inode;
1752 inode->i_mtime = current_fs_time(inode->i_sb);
1753 ret = written;
1755 mutex_unlock(&tty->atomic_write_lock);
1756 return ret;
1761 * tty_write - write method for tty device file
1762 * @file: tty file pointer
1763 * @buf: user data to write
1764 * @count: bytes to write
1765 * @ppos: unused
1767 * Write data to a tty device via the line discipline.
1769 * Locking:
1770 * Locks the line discipline as required
1771 * Writes to the tty driver are serialized by the atomic_write_lock
1772 * and are then processed in chunks to the device. The line discipline
1773 * write method will not be involked in parallel for each device
1774 * The line discipline write method is called under the big
1775 * kernel lock for historical reasons. New code should not rely on this.
1778 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1779 loff_t *ppos)
1781 struct tty_struct * tty;
1782 struct inode *inode = file->f_path.dentry->d_inode;
1783 ssize_t ret;
1784 struct tty_ldisc *ld;
1786 tty = (struct tty_struct *)file->private_data;
1787 if (tty_paranoia_check(tty, inode, "tty_write"))
1788 return -EIO;
1789 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1790 return -EIO;
1792 ld = tty_ldisc_ref_wait(tty);
1793 if (!ld->write)
1794 ret = -EIO;
1795 else
1796 ret = do_tty_write(ld->write, tty, file, buf, count);
1797 tty_ldisc_deref(ld);
1798 return ret;
1801 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1802 loff_t *ppos)
1804 struct file *p = NULL;
1806 spin_lock(&redirect_lock);
1807 if (redirect) {
1808 get_file(redirect);
1809 p = redirect;
1811 spin_unlock(&redirect_lock);
1813 if (p) {
1814 ssize_t res;
1815 res = vfs_write(p, buf, count, &p->f_pos);
1816 fput(p);
1817 return res;
1820 return tty_write(file, buf, count, ppos);
1823 static char ptychar[] = "pqrstuvwxyzabcde";
1826 * pty_line_name - generate name for a pty
1827 * @driver: the tty driver in use
1828 * @index: the minor number
1829 * @p: output buffer of at least 6 bytes
1831 * Generate a name from a driver reference and write it to the output
1832 * buffer.
1834 * Locking: None
1836 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1838 int i = index + driver->name_base;
1839 /* ->name is initialized to "ttyp", but "tty" is expected */
1840 sprintf(p, "%s%c%x",
1841 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1842 ptychar[i >> 4 & 0xf], i & 0xf);
1846 * pty_line_name - generate name for a tty
1847 * @driver: the tty driver in use
1848 * @index: the minor number
1849 * @p: output buffer of at least 7 bytes
1851 * Generate a name from a driver reference and write it to the output
1852 * buffer.
1854 * Locking: None
1856 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1858 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1862 * init_dev - initialise a tty device
1863 * @driver: tty driver we are opening a device on
1864 * @idx: device index
1865 * @tty: returned tty structure
1867 * Prepare a tty device. This may not be a "new" clean device but
1868 * could also be an active device. The pty drivers require special
1869 * handling because of this.
1871 * Locking:
1872 * The function is called under the tty_mutex, which
1873 * protects us from the tty struct or driver itself going away.
1875 * On exit the tty device has the line discipline attached and
1876 * a reference count of 1. If a pair was created for pty/tty use
1877 * and the other was a pty master then it too has a reference count of 1.
1879 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1880 * failed open. The new code protects the open with a mutex, so it's
1881 * really quite straightforward. The mutex locking can probably be
1882 * relaxed for the (most common) case of reopening a tty.
1885 static int init_dev(struct tty_driver *driver, int idx,
1886 struct tty_struct **ret_tty)
1888 struct tty_struct *tty, *o_tty;
1889 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1890 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1891 int retval = 0;
1893 /* check whether we're reopening an existing tty */
1894 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1895 tty = devpts_get_tty(idx);
1896 if (tty && driver->subtype == PTY_TYPE_MASTER)
1897 tty = tty->link;
1898 } else {
1899 tty = driver->ttys[idx];
1901 if (tty) goto fast_track;
1904 * First time open is complex, especially for PTY devices.
1905 * This code guarantees that either everything succeeds and the
1906 * TTY is ready for operation, or else the table slots are vacated
1907 * and the allocated memory released. (Except that the termios
1908 * and locked termios may be retained.)
1911 if (!try_module_get(driver->owner)) {
1912 retval = -ENODEV;
1913 goto end_init;
1916 o_tty = NULL;
1917 tp = o_tp = NULL;
1918 ltp = o_ltp = NULL;
1920 tty = alloc_tty_struct();
1921 if(!tty)
1922 goto fail_no_mem;
1923 initialize_tty_struct(tty);
1924 tty->driver = driver;
1925 tty->index = idx;
1926 tty_line_name(driver, idx, tty->name);
1928 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1929 tp_loc = &tty->termios;
1930 ltp_loc = &tty->termios_locked;
1931 } else {
1932 tp_loc = &driver->termios[idx];
1933 ltp_loc = &driver->termios_locked[idx];
1936 if (!*tp_loc) {
1937 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1938 GFP_KERNEL);
1939 if (!tp)
1940 goto free_mem_out;
1941 *tp = driver->init_termios;
1944 if (!*ltp_loc) {
1945 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1946 GFP_KERNEL);
1947 if (!ltp)
1948 goto free_mem_out;
1949 memset(ltp, 0, sizeof(struct ktermios));
1952 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1953 o_tty = alloc_tty_struct();
1954 if (!o_tty)
1955 goto free_mem_out;
1956 initialize_tty_struct(o_tty);
1957 o_tty->driver = driver->other;
1958 o_tty->index = idx;
1959 tty_line_name(driver->other, idx, o_tty->name);
1961 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1962 o_tp_loc = &o_tty->termios;
1963 o_ltp_loc = &o_tty->termios_locked;
1964 } else {
1965 o_tp_loc = &driver->other->termios[idx];
1966 o_ltp_loc = &driver->other->termios_locked[idx];
1969 if (!*o_tp_loc) {
1970 o_tp = (struct ktermios *)
1971 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1972 if (!o_tp)
1973 goto free_mem_out;
1974 *o_tp = driver->other->init_termios;
1977 if (!*o_ltp_loc) {
1978 o_ltp = (struct ktermios *)
1979 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1980 if (!o_ltp)
1981 goto free_mem_out;
1982 memset(o_ltp, 0, sizeof(struct ktermios));
1986 * Everything allocated ... set up the o_tty structure.
1988 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
1989 driver->other->ttys[idx] = o_tty;
1991 if (!*o_tp_loc)
1992 *o_tp_loc = o_tp;
1993 if (!*o_ltp_loc)
1994 *o_ltp_loc = o_ltp;
1995 o_tty->termios = *o_tp_loc;
1996 o_tty->termios_locked = *o_ltp_loc;
1997 driver->other->refcount++;
1998 if (driver->subtype == PTY_TYPE_MASTER)
1999 o_tty->count++;
2001 /* Establish the links in both directions */
2002 tty->link = o_tty;
2003 o_tty->link = tty;
2007 * All structures have been allocated, so now we install them.
2008 * Failures after this point use release_tty to clean up, so
2009 * there's no need to null out the local pointers.
2011 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2012 driver->ttys[idx] = tty;
2015 if (!*tp_loc)
2016 *tp_loc = tp;
2017 if (!*ltp_loc)
2018 *ltp_loc = ltp;
2019 tty->termios = *tp_loc;
2020 tty->termios_locked = *ltp_loc;
2021 /* Compatibility until drivers always set this */
2022 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2023 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2024 driver->refcount++;
2025 tty->count++;
2028 * Structures all installed ... call the ldisc open routines.
2029 * If we fail here just call release_tty to clean up. No need
2030 * to decrement the use counts, as release_tty doesn't care.
2033 if (tty->ldisc.open) {
2034 retval = (tty->ldisc.open)(tty);
2035 if (retval)
2036 goto release_mem_out;
2038 if (o_tty && o_tty->ldisc.open) {
2039 retval = (o_tty->ldisc.open)(o_tty);
2040 if (retval) {
2041 if (tty->ldisc.close)
2042 (tty->ldisc.close)(tty);
2043 goto release_mem_out;
2045 tty_ldisc_enable(o_tty);
2047 tty_ldisc_enable(tty);
2048 goto success;
2051 * This fast open can be used if the tty is already open.
2052 * No memory is allocated, and the only failures are from
2053 * attempting to open a closing tty or attempting multiple
2054 * opens on a pty master.
2056 fast_track:
2057 if (test_bit(TTY_CLOSING, &tty->flags)) {
2058 retval = -EIO;
2059 goto end_init;
2061 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2062 driver->subtype == PTY_TYPE_MASTER) {
2064 * special case for PTY masters: only one open permitted,
2065 * and the slave side open count is incremented as well.
2067 if (tty->count) {
2068 retval = -EIO;
2069 goto end_init;
2071 tty->link->count++;
2073 tty->count++;
2074 tty->driver = driver; /* N.B. why do this every time?? */
2076 /* FIXME */
2077 if(!test_bit(TTY_LDISC, &tty->flags))
2078 printk(KERN_ERR "init_dev but no ldisc\n");
2079 success:
2080 *ret_tty = tty;
2082 /* All paths come through here to release the mutex */
2083 end_init:
2084 return retval;
2086 /* Release locally allocated memory ... nothing placed in slots */
2087 free_mem_out:
2088 kfree(o_tp);
2089 if (o_tty)
2090 free_tty_struct(o_tty);
2091 kfree(ltp);
2092 kfree(tp);
2093 free_tty_struct(tty);
2095 fail_no_mem:
2096 module_put(driver->owner);
2097 retval = -ENOMEM;
2098 goto end_init;
2100 /* call the tty release_tty routine to clean out this slot */
2101 release_mem_out:
2102 if (printk_ratelimit())
2103 printk(KERN_INFO "init_dev: ldisc open failed, "
2104 "clearing slot %d\n", idx);
2105 release_tty(tty, idx);
2106 goto end_init;
2110 * release_one_tty - release tty structure memory
2112 * Releases memory associated with a tty structure, and clears out the
2113 * driver table slots. This function is called when a device is no longer
2114 * in use. It also gets called when setup of a device fails.
2116 * Locking:
2117 * tty_mutex - sometimes only
2118 * takes the file list lock internally when working on the list
2119 * of ttys that the driver keeps.
2120 * FIXME: should we require tty_mutex is held here ??
2122 static void release_one_tty(struct tty_struct *tty, int idx)
2124 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2125 struct ktermios *tp;
2127 if (!devpts)
2128 tty->driver->ttys[idx] = NULL;
2130 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2131 tp = tty->termios;
2132 if (!devpts)
2133 tty->driver->termios[idx] = NULL;
2134 kfree(tp);
2136 tp = tty->termios_locked;
2137 if (!devpts)
2138 tty->driver->termios_locked[idx] = NULL;
2139 kfree(tp);
2143 tty->magic = 0;
2144 tty->driver->refcount--;
2146 file_list_lock();
2147 list_del_init(&tty->tty_files);
2148 file_list_unlock();
2150 free_tty_struct(tty);
2154 * release_tty - release tty structure memory
2156 * Release both @tty and a possible linked partner (think pty pair),
2157 * and decrement the refcount of the backing module.
2159 * Locking:
2160 * tty_mutex - sometimes only
2161 * takes the file list lock internally when working on the list
2162 * of ttys that the driver keeps.
2163 * FIXME: should we require tty_mutex is held here ??
2165 static void release_tty(struct tty_struct *tty, int idx)
2167 struct tty_driver *driver = tty->driver;
2169 if (tty->link)
2170 release_one_tty(tty->link, idx);
2171 release_one_tty(tty, idx);
2172 module_put(driver->owner);
2176 * Even releasing the tty structures is a tricky business.. We have
2177 * to be very careful that the structures are all released at the
2178 * same time, as interrupts might otherwise get the wrong pointers.
2180 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2181 * lead to double frees or releasing memory still in use.
2183 static void release_dev(struct file * filp)
2185 struct tty_struct *tty, *o_tty;
2186 int pty_master, tty_closing, o_tty_closing, do_sleep;
2187 int devpts;
2188 int idx;
2189 char buf[64];
2190 unsigned long flags;
2192 tty = (struct tty_struct *)filp->private_data;
2193 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2194 return;
2196 check_tty_count(tty, "release_dev");
2198 tty_fasync(-1, filp, 0);
2200 idx = tty->index;
2201 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2202 tty->driver->subtype == PTY_TYPE_MASTER);
2203 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2204 o_tty = tty->link;
2206 #ifdef TTY_PARANOIA_CHECK
2207 if (idx < 0 || idx >= tty->driver->num) {
2208 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2209 "free (%s)\n", tty->name);
2210 return;
2212 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2213 if (tty != tty->driver->ttys[idx]) {
2214 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2215 "for (%s)\n", idx, tty->name);
2216 return;
2218 if (tty->termios != tty->driver->termios[idx]) {
2219 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2220 "for (%s)\n",
2221 idx, tty->name);
2222 return;
2224 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2225 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2226 "termios_locked for (%s)\n",
2227 idx, tty->name);
2228 return;
2231 #endif
2233 #ifdef TTY_DEBUG_HANGUP
2234 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2235 tty_name(tty, buf), tty->count);
2236 #endif
2238 #ifdef TTY_PARANOIA_CHECK
2239 if (tty->driver->other &&
2240 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2241 if (o_tty != tty->driver->other->ttys[idx]) {
2242 printk(KERN_DEBUG "release_dev: other->table[%d] "
2243 "not o_tty for (%s)\n",
2244 idx, tty->name);
2245 return;
2247 if (o_tty->termios != tty->driver->other->termios[idx]) {
2248 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2249 "not o_termios for (%s)\n",
2250 idx, tty->name);
2251 return;
2253 if (o_tty->termios_locked !=
2254 tty->driver->other->termios_locked[idx]) {
2255 printk(KERN_DEBUG "release_dev: other->termios_locked["
2256 "%d] not o_termios_locked for (%s)\n",
2257 idx, tty->name);
2258 return;
2260 if (o_tty->link != tty) {
2261 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2262 return;
2265 #endif
2266 if (tty->driver->close)
2267 tty->driver->close(tty, filp);
2270 * Sanity check: if tty->count is going to zero, there shouldn't be
2271 * any waiters on tty->read_wait or tty->write_wait. We test the
2272 * wait queues and kick everyone out _before_ actually starting to
2273 * close. This ensures that we won't block while releasing the tty
2274 * structure.
2276 * The test for the o_tty closing is necessary, since the master and
2277 * slave sides may close in any order. If the slave side closes out
2278 * first, its count will be one, since the master side holds an open.
2279 * Thus this test wouldn't be triggered at the time the slave closes,
2280 * so we do it now.
2282 * Note that it's possible for the tty to be opened again while we're
2283 * flushing out waiters. By recalculating the closing flags before
2284 * each iteration we avoid any problems.
2286 while (1) {
2287 /* Guard against races with tty->count changes elsewhere and
2288 opens on /dev/tty */
2290 mutex_lock(&tty_mutex);
2291 tty_closing = tty->count <= 1;
2292 o_tty_closing = o_tty &&
2293 (o_tty->count <= (pty_master ? 1 : 0));
2294 do_sleep = 0;
2296 if (tty_closing) {
2297 if (waitqueue_active(&tty->read_wait)) {
2298 wake_up(&tty->read_wait);
2299 do_sleep++;
2301 if (waitqueue_active(&tty->write_wait)) {
2302 wake_up(&tty->write_wait);
2303 do_sleep++;
2306 if (o_tty_closing) {
2307 if (waitqueue_active(&o_tty->read_wait)) {
2308 wake_up(&o_tty->read_wait);
2309 do_sleep++;
2311 if (waitqueue_active(&o_tty->write_wait)) {
2312 wake_up(&o_tty->write_wait);
2313 do_sleep++;
2316 if (!do_sleep)
2317 break;
2319 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2320 "active!\n", tty_name(tty, buf));
2321 mutex_unlock(&tty_mutex);
2322 schedule();
2326 * The closing flags are now consistent with the open counts on
2327 * both sides, and we've completed the last operation that could
2328 * block, so it's safe to proceed with closing.
2330 if (pty_master) {
2331 if (--o_tty->count < 0) {
2332 printk(KERN_WARNING "release_dev: bad pty slave count "
2333 "(%d) for %s\n",
2334 o_tty->count, tty_name(o_tty, buf));
2335 o_tty->count = 0;
2338 if (--tty->count < 0) {
2339 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2340 tty->count, tty_name(tty, buf));
2341 tty->count = 0;
2345 * We've decremented tty->count, so we need to remove this file
2346 * descriptor off the tty->tty_files list; this serves two
2347 * purposes:
2348 * - check_tty_count sees the correct number of file descriptors
2349 * associated with this tty.
2350 * - do_tty_hangup no longer sees this file descriptor as
2351 * something that needs to be handled for hangups.
2353 file_kill(filp);
2354 filp->private_data = NULL;
2357 * Perform some housekeeping before deciding whether to return.
2359 * Set the TTY_CLOSING flag if this was the last open. In the
2360 * case of a pty we may have to wait around for the other side
2361 * to close, and TTY_CLOSING makes sure we can't be reopened.
2363 if(tty_closing)
2364 set_bit(TTY_CLOSING, &tty->flags);
2365 if(o_tty_closing)
2366 set_bit(TTY_CLOSING, &o_tty->flags);
2369 * If _either_ side is closing, make sure there aren't any
2370 * processes that still think tty or o_tty is their controlling
2371 * tty.
2373 if (tty_closing || o_tty_closing) {
2374 read_lock(&tasklist_lock);
2375 session_clear_tty(tty->session);
2376 if (o_tty)
2377 session_clear_tty(o_tty->session);
2378 read_unlock(&tasklist_lock);
2381 mutex_unlock(&tty_mutex);
2383 /* check whether both sides are closing ... */
2384 if (!tty_closing || (o_tty && !o_tty_closing))
2385 return;
2387 #ifdef TTY_DEBUG_HANGUP
2388 printk(KERN_DEBUG "freeing tty structure...");
2389 #endif
2391 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2392 * kill any delayed work. As this is the final close it does not
2393 * race with the set_ldisc code path.
2395 clear_bit(TTY_LDISC, &tty->flags);
2396 cancel_delayed_work(&tty->buf.work);
2399 * Wait for ->hangup_work and ->buf.work handlers to terminate
2402 flush_scheduled_work();
2405 * Wait for any short term users (we know they are just driver
2406 * side waiters as the file is closing so user count on the file
2407 * side is zero.
2409 spin_lock_irqsave(&tty_ldisc_lock, flags);
2410 while(tty->ldisc.refcount)
2412 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2413 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2414 spin_lock_irqsave(&tty_ldisc_lock, flags);
2416 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2418 * Shutdown the current line discipline, and reset it to N_TTY.
2419 * N.B. why reset ldisc when we're releasing the memory??
2421 * FIXME: this MUST get fixed for the new reflocking
2423 if (tty->ldisc.close)
2424 (tty->ldisc.close)(tty);
2425 tty_ldisc_put(tty->ldisc.num);
2428 * Switch the line discipline back
2430 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2431 tty_set_termios_ldisc(tty,N_TTY);
2432 if (o_tty) {
2433 /* FIXME: could o_tty be in setldisc here ? */
2434 clear_bit(TTY_LDISC, &o_tty->flags);
2435 if (o_tty->ldisc.close)
2436 (o_tty->ldisc.close)(o_tty);
2437 tty_ldisc_put(o_tty->ldisc.num);
2438 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2439 tty_set_termios_ldisc(o_tty,N_TTY);
2442 * The release_tty function takes care of the details of clearing
2443 * the slots and preserving the termios structure.
2445 release_tty(tty, idx);
2447 #ifdef CONFIG_UNIX98_PTYS
2448 /* Make this pty number available for reallocation */
2449 if (devpts) {
2450 down(&allocated_ptys_lock);
2451 idr_remove(&allocated_ptys, idx);
2452 up(&allocated_ptys_lock);
2454 #endif
2459 * tty_open - open a tty device
2460 * @inode: inode of device file
2461 * @filp: file pointer to tty
2463 * tty_open and tty_release keep up the tty count that contains the
2464 * number of opens done on a tty. We cannot use the inode-count, as
2465 * different inodes might point to the same tty.
2467 * Open-counting is needed for pty masters, as well as for keeping
2468 * track of serial lines: DTR is dropped when the last close happens.
2469 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2471 * The termios state of a pty is reset on first open so that
2472 * settings don't persist across reuse.
2474 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2475 * tty->count should protect the rest.
2476 * ->siglock protects ->signal/->sighand
2479 static int tty_open(struct inode * inode, struct file * filp)
2481 struct tty_struct *tty;
2482 int noctty, retval;
2483 struct tty_driver *driver;
2484 int index;
2485 dev_t device = inode->i_rdev;
2486 unsigned short saved_flags = filp->f_flags;
2488 nonseekable_open(inode, filp);
2490 retry_open:
2491 noctty = filp->f_flags & O_NOCTTY;
2492 index = -1;
2493 retval = 0;
2495 mutex_lock(&tty_mutex);
2497 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2498 tty = get_current_tty();
2499 if (!tty) {
2500 mutex_unlock(&tty_mutex);
2501 return -ENXIO;
2503 driver = tty->driver;
2504 index = tty->index;
2505 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2506 /* noctty = 1; */
2507 goto got_driver;
2509 #ifdef CONFIG_VT
2510 if (device == MKDEV(TTY_MAJOR,0)) {
2511 extern struct tty_driver *console_driver;
2512 driver = console_driver;
2513 index = fg_console;
2514 noctty = 1;
2515 goto got_driver;
2517 #endif
2518 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2519 driver = console_device(&index);
2520 if (driver) {
2521 /* Don't let /dev/console block */
2522 filp->f_flags |= O_NONBLOCK;
2523 noctty = 1;
2524 goto got_driver;
2526 mutex_unlock(&tty_mutex);
2527 return -ENODEV;
2530 driver = get_tty_driver(device, &index);
2531 if (!driver) {
2532 mutex_unlock(&tty_mutex);
2533 return -ENODEV;
2535 got_driver:
2536 retval = init_dev(driver, index, &tty);
2537 mutex_unlock(&tty_mutex);
2538 if (retval)
2539 return retval;
2541 filp->private_data = tty;
2542 file_move(filp, &tty->tty_files);
2543 check_tty_count(tty, "tty_open");
2544 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2545 tty->driver->subtype == PTY_TYPE_MASTER)
2546 noctty = 1;
2547 #ifdef TTY_DEBUG_HANGUP
2548 printk(KERN_DEBUG "opening %s...", tty->name);
2549 #endif
2550 if (!retval) {
2551 if (tty->driver->open)
2552 retval = tty->driver->open(tty, filp);
2553 else
2554 retval = -ENODEV;
2556 filp->f_flags = saved_flags;
2558 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2559 retval = -EBUSY;
2561 if (retval) {
2562 #ifdef TTY_DEBUG_HANGUP
2563 printk(KERN_DEBUG "error %d in opening %s...", retval,
2564 tty->name);
2565 #endif
2566 release_dev(filp);
2567 if (retval != -ERESTARTSYS)
2568 return retval;
2569 if (signal_pending(current))
2570 return retval;
2571 schedule();
2573 * Need to reset f_op in case a hangup happened.
2575 if (filp->f_op == &hung_up_tty_fops)
2576 filp->f_op = &tty_fops;
2577 goto retry_open;
2580 mutex_lock(&tty_mutex);
2581 spin_lock_irq(&current->sighand->siglock);
2582 if (!noctty &&
2583 current->signal->leader &&
2584 !current->signal->tty &&
2585 tty->session == 0)
2586 __proc_set_tty(current, tty);
2587 spin_unlock_irq(&current->sighand->siglock);
2588 mutex_unlock(&tty_mutex);
2589 return 0;
2592 #ifdef CONFIG_UNIX98_PTYS
2594 * ptmx_open - open a unix 98 pty master
2595 * @inode: inode of device file
2596 * @filp: file pointer to tty
2598 * Allocate a unix98 pty master device from the ptmx driver.
2600 * Locking: tty_mutex protects theinit_dev work. tty->count should
2601 protect the rest.
2602 * allocated_ptys_lock handles the list of free pty numbers
2605 static int ptmx_open(struct inode * inode, struct file * filp)
2607 struct tty_struct *tty;
2608 int retval;
2609 int index;
2610 int idr_ret;
2612 nonseekable_open(inode, filp);
2614 /* find a device that is not in use. */
2615 down(&allocated_ptys_lock);
2616 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2617 up(&allocated_ptys_lock);
2618 return -ENOMEM;
2620 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2621 if (idr_ret < 0) {
2622 up(&allocated_ptys_lock);
2623 if (idr_ret == -EAGAIN)
2624 return -ENOMEM;
2625 return -EIO;
2627 if (index >= pty_limit) {
2628 idr_remove(&allocated_ptys, index);
2629 up(&allocated_ptys_lock);
2630 return -EIO;
2632 up(&allocated_ptys_lock);
2634 mutex_lock(&tty_mutex);
2635 retval = init_dev(ptm_driver, index, &tty);
2636 mutex_unlock(&tty_mutex);
2638 if (retval)
2639 goto out;
2641 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2642 filp->private_data = tty;
2643 file_move(filp, &tty->tty_files);
2645 retval = -ENOMEM;
2646 if (devpts_pty_new(tty->link))
2647 goto out1;
2649 check_tty_count(tty, "tty_open");
2650 retval = ptm_driver->open(tty, filp);
2651 if (!retval)
2652 return 0;
2653 out1:
2654 release_dev(filp);
2655 return retval;
2656 out:
2657 down(&allocated_ptys_lock);
2658 idr_remove(&allocated_ptys, index);
2659 up(&allocated_ptys_lock);
2660 return retval;
2662 #endif
2665 * tty_release - vfs callback for close
2666 * @inode: inode of tty
2667 * @filp: file pointer for handle to tty
2669 * Called the last time each file handle is closed that references
2670 * this tty. There may however be several such references.
2672 * Locking:
2673 * Takes bkl. See release_dev
2676 static int tty_release(struct inode * inode, struct file * filp)
2678 lock_kernel();
2679 release_dev(filp);
2680 unlock_kernel();
2681 return 0;
2685 * tty_poll - check tty status
2686 * @filp: file being polled
2687 * @wait: poll wait structures to update
2689 * Call the line discipline polling method to obtain the poll
2690 * status of the device.
2692 * Locking: locks called line discipline but ldisc poll method
2693 * may be re-entered freely by other callers.
2696 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2698 struct tty_struct * tty;
2699 struct tty_ldisc *ld;
2700 int ret = 0;
2702 tty = (struct tty_struct *)filp->private_data;
2703 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2704 return 0;
2706 ld = tty_ldisc_ref_wait(tty);
2707 if (ld->poll)
2708 ret = (ld->poll)(tty, filp, wait);
2709 tty_ldisc_deref(ld);
2710 return ret;
2713 static int tty_fasync(int fd, struct file * filp, int on)
2715 struct tty_struct * tty;
2716 int retval;
2718 tty = (struct tty_struct *)filp->private_data;
2719 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2720 return 0;
2722 retval = fasync_helper(fd, filp, on, &tty->fasync);
2723 if (retval <= 0)
2724 return retval;
2726 if (on) {
2727 if (!waitqueue_active(&tty->read_wait))
2728 tty->minimum_to_wake = 1;
2729 retval = f_setown(filp, (-tty->pgrp) ? : current->pid, 0);
2730 if (retval)
2731 return retval;
2732 } else {
2733 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2734 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2736 return 0;
2740 * tiocsti - fake input character
2741 * @tty: tty to fake input into
2742 * @p: pointer to character
2744 * Fake input to a tty device. Does the neccessary locking and
2745 * input management.
2747 * FIXME: does not honour flow control ??
2749 * Locking:
2750 * Called functions take tty_ldisc_lock
2751 * current->signal->tty check is safe without locks
2753 * FIXME: may race normal receive processing
2756 static int tiocsti(struct tty_struct *tty, char __user *p)
2758 char ch, mbz = 0;
2759 struct tty_ldisc *ld;
2761 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2762 return -EPERM;
2763 if (get_user(ch, p))
2764 return -EFAULT;
2765 ld = tty_ldisc_ref_wait(tty);
2766 ld->receive_buf(tty, &ch, &mbz, 1);
2767 tty_ldisc_deref(ld);
2768 return 0;
2772 * tiocgwinsz - implement window query ioctl
2773 * @tty; tty
2774 * @arg: user buffer for result
2776 * Copies the kernel idea of the window size into the user buffer.
2778 * Locking: tty->termios_mutex is taken to ensure the winsize data
2779 * is consistent.
2782 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2784 int err;
2786 mutex_lock(&tty->termios_mutex);
2787 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2788 mutex_unlock(&tty->termios_mutex);
2790 return err ? -EFAULT: 0;
2794 * tiocswinsz - implement window size set ioctl
2795 * @tty; tty
2796 * @arg: user buffer for result
2798 * Copies the user idea of the window size to the kernel. Traditionally
2799 * this is just advisory information but for the Linux console it
2800 * actually has driver level meaning and triggers a VC resize.
2802 * Locking:
2803 * Called function use the console_sem is used to ensure we do
2804 * not try and resize the console twice at once.
2805 * The tty->termios_mutex is used to ensure we don't double
2806 * resize and get confused. Lock order - tty->termios_mutex before
2807 * console sem
2810 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2811 struct winsize __user * arg)
2813 struct winsize tmp_ws;
2815 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2816 return -EFAULT;
2818 mutex_lock(&tty->termios_mutex);
2819 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2820 goto done;
2822 #ifdef CONFIG_VT
2823 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2824 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2825 tmp_ws.ws_row)) {
2826 mutex_unlock(&tty->termios_mutex);
2827 return -ENXIO;
2830 #endif
2831 if (tty->pgrp > 0)
2832 kill_pg(tty->pgrp, SIGWINCH, 1);
2833 if ((real_tty->pgrp != tty->pgrp) && (real_tty->pgrp > 0))
2834 kill_pg(real_tty->pgrp, SIGWINCH, 1);
2835 tty->winsize = tmp_ws;
2836 real_tty->winsize = tmp_ws;
2837 done:
2838 mutex_unlock(&tty->termios_mutex);
2839 return 0;
2843 * tioccons - allow admin to move logical console
2844 * @file: the file to become console
2846 * Allow the adminstrator to move the redirected console device
2848 * Locking: uses redirect_lock to guard the redirect information
2851 static int tioccons(struct file *file)
2853 if (!capable(CAP_SYS_ADMIN))
2854 return -EPERM;
2855 if (file->f_op->write == redirected_tty_write) {
2856 struct file *f;
2857 spin_lock(&redirect_lock);
2858 f = redirect;
2859 redirect = NULL;
2860 spin_unlock(&redirect_lock);
2861 if (f)
2862 fput(f);
2863 return 0;
2865 spin_lock(&redirect_lock);
2866 if (redirect) {
2867 spin_unlock(&redirect_lock);
2868 return -EBUSY;
2870 get_file(file);
2871 redirect = file;
2872 spin_unlock(&redirect_lock);
2873 return 0;
2877 * fionbio - non blocking ioctl
2878 * @file: file to set blocking value
2879 * @p: user parameter
2881 * Historical tty interfaces had a blocking control ioctl before
2882 * the generic functionality existed. This piece of history is preserved
2883 * in the expected tty API of posix OS's.
2885 * Locking: none, the open fle handle ensures it won't go away.
2888 static int fionbio(struct file *file, int __user *p)
2890 int nonblock;
2892 if (get_user(nonblock, p))
2893 return -EFAULT;
2895 if (nonblock)
2896 file->f_flags |= O_NONBLOCK;
2897 else
2898 file->f_flags &= ~O_NONBLOCK;
2899 return 0;
2903 * tiocsctty - set controlling tty
2904 * @tty: tty structure
2905 * @arg: user argument
2907 * This ioctl is used to manage job control. It permits a session
2908 * leader to set this tty as the controlling tty for the session.
2910 * Locking:
2911 * Takes tty_mutex() to protect tty instance
2912 * Takes tasklist_lock internally to walk sessions
2913 * Takes ->siglock() when updating signal->tty
2916 static int tiocsctty(struct tty_struct *tty, int arg)
2918 int ret = 0;
2919 if (current->signal->leader &&
2920 (process_session(current) == tty->session))
2921 return ret;
2923 mutex_lock(&tty_mutex);
2925 * The process must be a session leader and
2926 * not have a controlling tty already.
2928 if (!current->signal->leader || current->signal->tty) {
2929 ret = -EPERM;
2930 goto unlock;
2933 if (tty->session > 0) {
2935 * This tty is already the controlling
2936 * tty for another session group!
2938 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2940 * Steal it away
2942 read_lock(&tasklist_lock);
2943 session_clear_tty(tty->session);
2944 read_unlock(&tasklist_lock);
2945 } else {
2946 ret = -EPERM;
2947 goto unlock;
2950 proc_set_tty(current, tty);
2951 unlock:
2952 mutex_unlock(&tty_mutex);
2953 return ret;
2957 * tiocgpgrp - get process group
2958 * @tty: tty passed by user
2959 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2960 * @p: returned pid
2962 * Obtain the process group of the tty. If there is no process group
2963 * return an error.
2965 * Locking: none. Reference to current->signal->tty is safe.
2968 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2971 * (tty == real_tty) is a cheap way of
2972 * testing if the tty is NOT a master pty.
2974 if (tty == real_tty && current->signal->tty != real_tty)
2975 return -ENOTTY;
2976 return put_user(real_tty->pgrp, p);
2980 * tiocspgrp - attempt to set process group
2981 * @tty: tty passed by user
2982 * @real_tty: tty side device matching tty passed by user
2983 * @p: pid pointer
2985 * Set the process group of the tty to the session passed. Only
2986 * permitted where the tty session is our session.
2988 * Locking: None
2991 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2993 struct pid *pgrp;
2994 pid_t pgrp_nr;
2995 int retval = tty_check_change(real_tty);
2997 if (retval == -EIO)
2998 return -ENOTTY;
2999 if (retval)
3000 return retval;
3001 if (!current->signal->tty ||
3002 (current->signal->tty != real_tty) ||
3003 (real_tty->session != process_session(current)))
3004 return -ENOTTY;
3005 if (get_user(pgrp_nr, p))
3006 return -EFAULT;
3007 if (pgrp_nr < 0)
3008 return -EINVAL;
3009 rcu_read_lock();
3010 pgrp = find_pid(pgrp_nr);
3011 retval = -ESRCH;
3012 if (!pgrp)
3013 goto out_unlock;
3014 retval = -EPERM;
3015 if (session_of_pgrp(pgrp) != task_session(current))
3016 goto out_unlock;
3017 retval = 0;
3018 real_tty->pgrp = pgrp_nr;
3019 out_unlock:
3020 rcu_read_unlock();
3021 return retval;
3025 * tiocgsid - get session id
3026 * @tty: tty passed by user
3027 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3028 * @p: pointer to returned session id
3030 * Obtain the session id of the tty. If there is no session
3031 * return an error.
3033 * Locking: none. Reference to current->signal->tty is safe.
3036 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3039 * (tty == real_tty) is a cheap way of
3040 * testing if the tty is NOT a master pty.
3042 if (tty == real_tty && current->signal->tty != real_tty)
3043 return -ENOTTY;
3044 if (real_tty->session <= 0)
3045 return -ENOTTY;
3046 return put_user(real_tty->session, p);
3050 * tiocsetd - set line discipline
3051 * @tty: tty device
3052 * @p: pointer to user data
3054 * Set the line discipline according to user request.
3056 * Locking: see tty_set_ldisc, this function is just a helper
3059 static int tiocsetd(struct tty_struct *tty, int __user *p)
3061 int ldisc;
3063 if (get_user(ldisc, p))
3064 return -EFAULT;
3065 return tty_set_ldisc(tty, ldisc);
3069 * send_break - performed time break
3070 * @tty: device to break on
3071 * @duration: timeout in mS
3073 * Perform a timed break on hardware that lacks its own driver level
3074 * timed break functionality.
3076 * Locking:
3077 * atomic_write_lock serializes
3081 static int send_break(struct tty_struct *tty, unsigned int duration)
3083 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3084 return -EINTR;
3085 tty->driver->break_ctl(tty, -1);
3086 if (!signal_pending(current)) {
3087 msleep_interruptible(duration);
3089 tty->driver->break_ctl(tty, 0);
3090 mutex_unlock(&tty->atomic_write_lock);
3091 if (signal_pending(current))
3092 return -EINTR;
3093 return 0;
3097 * tiocmget - get modem status
3098 * @tty: tty device
3099 * @file: user file pointer
3100 * @p: pointer to result
3102 * Obtain the modem status bits from the tty driver if the feature
3103 * is supported. Return -EINVAL if it is not available.
3105 * Locking: none (up to the driver)
3108 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3110 int retval = -EINVAL;
3112 if (tty->driver->tiocmget) {
3113 retval = tty->driver->tiocmget(tty, file);
3115 if (retval >= 0)
3116 retval = put_user(retval, p);
3118 return retval;
3122 * tiocmset - set modem status
3123 * @tty: tty device
3124 * @file: user file pointer
3125 * @cmd: command - clear bits, set bits or set all
3126 * @p: pointer to desired bits
3128 * Set the modem status bits from the tty driver if the feature
3129 * is supported. Return -EINVAL if it is not available.
3131 * Locking: none (up to the driver)
3134 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3135 unsigned __user *p)
3137 int retval = -EINVAL;
3139 if (tty->driver->tiocmset) {
3140 unsigned int set, clear, val;
3142 retval = get_user(val, p);
3143 if (retval)
3144 return retval;
3146 set = clear = 0;
3147 switch (cmd) {
3148 case TIOCMBIS:
3149 set = val;
3150 break;
3151 case TIOCMBIC:
3152 clear = val;
3153 break;
3154 case TIOCMSET:
3155 set = val;
3156 clear = ~val;
3157 break;
3160 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3161 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3163 retval = tty->driver->tiocmset(tty, file, set, clear);
3165 return retval;
3169 * Split this up, as gcc can choke on it otherwise..
3171 int tty_ioctl(struct inode * inode, struct file * file,
3172 unsigned int cmd, unsigned long arg)
3174 struct tty_struct *tty, *real_tty;
3175 void __user *p = (void __user *)arg;
3176 int retval;
3177 struct tty_ldisc *ld;
3179 tty = (struct tty_struct *)file->private_data;
3180 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3181 return -EINVAL;
3183 /* CHECKME: is this safe as one end closes ? */
3185 real_tty = tty;
3186 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3187 tty->driver->subtype == PTY_TYPE_MASTER)
3188 real_tty = tty->link;
3191 * Break handling by driver
3193 if (!tty->driver->break_ctl) {
3194 switch(cmd) {
3195 case TIOCSBRK:
3196 case TIOCCBRK:
3197 if (tty->driver->ioctl)
3198 return tty->driver->ioctl(tty, file, cmd, arg);
3199 return -EINVAL;
3201 /* These two ioctl's always return success; even if */
3202 /* the driver doesn't support them. */
3203 case TCSBRK:
3204 case TCSBRKP:
3205 if (!tty->driver->ioctl)
3206 return 0;
3207 retval = tty->driver->ioctl(tty, file, cmd, arg);
3208 if (retval == -ENOIOCTLCMD)
3209 retval = 0;
3210 return retval;
3215 * Factor out some common prep work
3217 switch (cmd) {
3218 case TIOCSETD:
3219 case TIOCSBRK:
3220 case TIOCCBRK:
3221 case TCSBRK:
3222 case TCSBRKP:
3223 retval = tty_check_change(tty);
3224 if (retval)
3225 return retval;
3226 if (cmd != TIOCCBRK) {
3227 tty_wait_until_sent(tty, 0);
3228 if (signal_pending(current))
3229 return -EINTR;
3231 break;
3234 switch (cmd) {
3235 case TIOCSTI:
3236 return tiocsti(tty, p);
3237 case TIOCGWINSZ:
3238 return tiocgwinsz(tty, p);
3239 case TIOCSWINSZ:
3240 return tiocswinsz(tty, real_tty, p);
3241 case TIOCCONS:
3242 return real_tty!=tty ? -EINVAL : tioccons(file);
3243 case FIONBIO:
3244 return fionbio(file, p);
3245 case TIOCEXCL:
3246 set_bit(TTY_EXCLUSIVE, &tty->flags);
3247 return 0;
3248 case TIOCNXCL:
3249 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3250 return 0;
3251 case TIOCNOTTY:
3252 if (current->signal->tty != tty)
3253 return -ENOTTY;
3254 if (current->signal->leader)
3255 disassociate_ctty(0);
3256 proc_clear_tty(current);
3257 return 0;
3258 case TIOCSCTTY:
3259 return tiocsctty(tty, arg);
3260 case TIOCGPGRP:
3261 return tiocgpgrp(tty, real_tty, p);
3262 case TIOCSPGRP:
3263 return tiocspgrp(tty, real_tty, p);
3264 case TIOCGSID:
3265 return tiocgsid(tty, real_tty, p);
3266 case TIOCGETD:
3267 /* FIXME: check this is ok */
3268 return put_user(tty->ldisc.num, (int __user *)p);
3269 case TIOCSETD:
3270 return tiocsetd(tty, p);
3271 #ifdef CONFIG_VT
3272 case TIOCLINUX:
3273 return tioclinux(tty, arg);
3274 #endif
3276 * Break handling
3278 case TIOCSBRK: /* Turn break on, unconditionally */
3279 tty->driver->break_ctl(tty, -1);
3280 return 0;
3282 case TIOCCBRK: /* Turn break off, unconditionally */
3283 tty->driver->break_ctl(tty, 0);
3284 return 0;
3285 case TCSBRK: /* SVID version: non-zero arg --> no break */
3286 /* non-zero arg means wait for all output data
3287 * to be sent (performed above) but don't send break.
3288 * This is used by the tcdrain() termios function.
3290 if (!arg)
3291 return send_break(tty, 250);
3292 return 0;
3293 case TCSBRKP: /* support for POSIX tcsendbreak() */
3294 return send_break(tty, arg ? arg*100 : 250);
3296 case TIOCMGET:
3297 return tty_tiocmget(tty, file, p);
3299 case TIOCMSET:
3300 case TIOCMBIC:
3301 case TIOCMBIS:
3302 return tty_tiocmset(tty, file, cmd, p);
3304 if (tty->driver->ioctl) {
3305 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3306 if (retval != -ENOIOCTLCMD)
3307 return retval;
3309 ld = tty_ldisc_ref_wait(tty);
3310 retval = -EINVAL;
3311 if (ld->ioctl) {
3312 retval = ld->ioctl(tty, file, cmd, arg);
3313 if (retval == -ENOIOCTLCMD)
3314 retval = -EINVAL;
3316 tty_ldisc_deref(ld);
3317 return retval;
3322 * This implements the "Secure Attention Key" --- the idea is to
3323 * prevent trojan horses by killing all processes associated with this
3324 * tty when the user hits the "Secure Attention Key". Required for
3325 * super-paranoid applications --- see the Orange Book for more details.
3327 * This code could be nicer; ideally it should send a HUP, wait a few
3328 * seconds, then send a INT, and then a KILL signal. But you then
3329 * have to coordinate with the init process, since all processes associated
3330 * with the current tty must be dead before the new getty is allowed
3331 * to spawn.
3333 * Now, if it would be correct ;-/ The current code has a nasty hole -
3334 * it doesn't catch files in flight. We may send the descriptor to ourselves
3335 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3337 * Nasty bug: do_SAK is being called in interrupt context. This can
3338 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3340 void __do_SAK(struct tty_struct *tty)
3342 #ifdef TTY_SOFT_SAK
3343 tty_hangup(tty);
3344 #else
3345 struct task_struct *g, *p;
3346 int session;
3347 int i;
3348 struct file *filp;
3349 struct fdtable *fdt;
3351 if (!tty)
3352 return;
3353 session = tty->session;
3355 tty_ldisc_flush(tty);
3357 if (tty->driver->flush_buffer)
3358 tty->driver->flush_buffer(tty);
3360 read_lock(&tasklist_lock);
3361 /* Kill the entire session */
3362 do_each_task_pid(session, PIDTYPE_SID, p) {
3363 printk(KERN_NOTICE "SAK: killed process %d"
3364 " (%s): process_session(p)==tty->session\n",
3365 p->pid, p->comm);
3366 send_sig(SIGKILL, p, 1);
3367 } while_each_task_pid(session, PIDTYPE_SID, p);
3368 /* Now kill any processes that happen to have the
3369 * tty open.
3371 do_each_thread(g, p) {
3372 if (p->signal->tty == tty) {
3373 printk(KERN_NOTICE "SAK: killed process %d"
3374 " (%s): process_session(p)==tty->session\n",
3375 p->pid, p->comm);
3376 send_sig(SIGKILL, p, 1);
3377 continue;
3379 task_lock(p);
3380 if (p->files) {
3382 * We don't take a ref to the file, so we must
3383 * hold ->file_lock instead.
3385 spin_lock(&p->files->file_lock);
3386 fdt = files_fdtable(p->files);
3387 for (i=0; i < fdt->max_fds; i++) {
3388 filp = fcheck_files(p->files, i);
3389 if (!filp)
3390 continue;
3391 if (filp->f_op->read == tty_read &&
3392 filp->private_data == tty) {
3393 printk(KERN_NOTICE "SAK: killed process %d"
3394 " (%s): fd#%d opened to the tty\n",
3395 p->pid, p->comm, i);
3396 force_sig(SIGKILL, p);
3397 break;
3400 spin_unlock(&p->files->file_lock);
3402 task_unlock(p);
3403 } while_each_thread(g, p);
3404 read_unlock(&tasklist_lock);
3405 #endif
3408 static void do_SAK_work(struct work_struct *work)
3410 struct tty_struct *tty =
3411 container_of(work, struct tty_struct, SAK_work);
3412 __do_SAK(tty);
3416 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3417 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3418 * the values which we write to it will be identical to the values which it
3419 * already has. --akpm
3421 void do_SAK(struct tty_struct *tty)
3423 if (!tty)
3424 return;
3425 PREPARE_WORK(&tty->SAK_work, do_SAK_work);
3426 schedule_work(&tty->SAK_work);
3429 EXPORT_SYMBOL(do_SAK);
3432 * flush_to_ldisc
3433 * @work: tty structure passed from work queue.
3435 * This routine is called out of the software interrupt to flush data
3436 * from the buffer chain to the line discipline.
3438 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3439 * while invoking the line discipline receive_buf method. The
3440 * receive_buf method is single threaded for each tty instance.
3443 static void flush_to_ldisc(struct work_struct *work)
3445 struct tty_struct *tty =
3446 container_of(work, struct tty_struct, buf.work.work);
3447 unsigned long flags;
3448 struct tty_ldisc *disc;
3449 struct tty_buffer *tbuf, *head;
3450 char *char_buf;
3451 unsigned char *flag_buf;
3453 disc = tty_ldisc_ref(tty);
3454 if (disc == NULL) /* !TTY_LDISC */
3455 return;
3457 spin_lock_irqsave(&tty->buf.lock, flags);
3458 head = tty->buf.head;
3459 if (head != NULL) {
3460 tty->buf.head = NULL;
3461 for (;;) {
3462 int count = head->commit - head->read;
3463 if (!count) {
3464 if (head->next == NULL)
3465 break;
3466 tbuf = head;
3467 head = head->next;
3468 tty_buffer_free(tty, tbuf);
3469 continue;
3471 if (!tty->receive_room) {
3472 schedule_delayed_work(&tty->buf.work, 1);
3473 break;
3475 if (count > tty->receive_room)
3476 count = tty->receive_room;
3477 char_buf = head->char_buf_ptr + head->read;
3478 flag_buf = head->flag_buf_ptr + head->read;
3479 head->read += count;
3480 spin_unlock_irqrestore(&tty->buf.lock, flags);
3481 disc->receive_buf(tty, char_buf, flag_buf, count);
3482 spin_lock_irqsave(&tty->buf.lock, flags);
3484 tty->buf.head = head;
3486 spin_unlock_irqrestore(&tty->buf.lock, flags);
3488 tty_ldisc_deref(disc);
3492 * tty_flip_buffer_push - terminal
3493 * @tty: tty to push
3495 * Queue a push of the terminal flip buffers to the line discipline. This
3496 * function must not be called from IRQ context if tty->low_latency is set.
3498 * In the event of the queue being busy for flipping the work will be
3499 * held off and retried later.
3501 * Locking: tty buffer lock. Driver locks in low latency mode.
3504 void tty_flip_buffer_push(struct tty_struct *tty)
3506 unsigned long flags;
3507 spin_lock_irqsave(&tty->buf.lock, flags);
3508 if (tty->buf.tail != NULL)
3509 tty->buf.tail->commit = tty->buf.tail->used;
3510 spin_unlock_irqrestore(&tty->buf.lock, flags);
3512 if (tty->low_latency)
3513 flush_to_ldisc(&tty->buf.work.work);
3514 else
3515 schedule_delayed_work(&tty->buf.work, 1);
3518 EXPORT_SYMBOL(tty_flip_buffer_push);
3522 * initialize_tty_struct
3523 * @tty: tty to initialize
3525 * This subroutine initializes a tty structure that has been newly
3526 * allocated.
3528 * Locking: none - tty in question must not be exposed at this point
3531 static void initialize_tty_struct(struct tty_struct *tty)
3533 memset(tty, 0, sizeof(struct tty_struct));
3534 tty->magic = TTY_MAGIC;
3535 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3536 tty->pgrp = -1;
3537 tty->overrun_time = jiffies;
3538 tty->buf.head = tty->buf.tail = NULL;
3539 tty_buffer_init(tty);
3540 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3541 init_MUTEX(&tty->buf.pty_sem);
3542 mutex_init(&tty->termios_mutex);
3543 init_waitqueue_head(&tty->write_wait);
3544 init_waitqueue_head(&tty->read_wait);
3545 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3546 mutex_init(&tty->atomic_read_lock);
3547 mutex_init(&tty->atomic_write_lock);
3548 spin_lock_init(&tty->read_lock);
3549 INIT_LIST_HEAD(&tty->tty_files);
3550 INIT_WORK(&tty->SAK_work, NULL);
3554 * The default put_char routine if the driver did not define one.
3557 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3559 tty->driver->write(tty, &ch, 1);
3562 static struct class *tty_class;
3565 * tty_register_device - register a tty device
3566 * @driver: the tty driver that describes the tty device
3567 * @index: the index in the tty driver for this tty device
3568 * @device: a struct device that is associated with this tty device.
3569 * This field is optional, if there is no known struct device
3570 * for this tty device it can be set to NULL safely.
3572 * Returns a pointer to the struct device for this tty device
3573 * (or ERR_PTR(-EFOO) on error).
3575 * This call is required to be made to register an individual tty device
3576 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3577 * that bit is not set, this function should not be called by a tty
3578 * driver.
3580 * Locking: ??
3583 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3584 struct device *device)
3586 char name[64];
3587 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3589 if (index >= driver->num) {
3590 printk(KERN_ERR "Attempt to register invalid tty line number "
3591 " (%d).\n", index);
3592 return ERR_PTR(-EINVAL);
3595 if (driver->type == TTY_DRIVER_TYPE_PTY)
3596 pty_line_name(driver, index, name);
3597 else
3598 tty_line_name(driver, index, name);
3600 return device_create(tty_class, device, dev, name);
3604 * tty_unregister_device - unregister a tty device
3605 * @driver: the tty driver that describes the tty device
3606 * @index: the index in the tty driver for this tty device
3608 * If a tty device is registered with a call to tty_register_device() then
3609 * this function must be called when the tty device is gone.
3611 * Locking: ??
3614 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3616 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3619 EXPORT_SYMBOL(tty_register_device);
3620 EXPORT_SYMBOL(tty_unregister_device);
3622 struct tty_driver *alloc_tty_driver(int lines)
3624 struct tty_driver *driver;
3626 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3627 if (driver) {
3628 memset(driver, 0, sizeof(struct tty_driver));
3629 driver->magic = TTY_DRIVER_MAGIC;
3630 driver->num = lines;
3631 /* later we'll move allocation of tables here */
3633 return driver;
3636 void put_tty_driver(struct tty_driver *driver)
3638 kfree(driver);
3641 void tty_set_operations(struct tty_driver *driver,
3642 const struct tty_operations *op)
3644 driver->open = op->open;
3645 driver->close = op->close;
3646 driver->write = op->write;
3647 driver->put_char = op->put_char;
3648 driver->flush_chars = op->flush_chars;
3649 driver->write_room = op->write_room;
3650 driver->chars_in_buffer = op->chars_in_buffer;
3651 driver->ioctl = op->ioctl;
3652 driver->set_termios = op->set_termios;
3653 driver->throttle = op->throttle;
3654 driver->unthrottle = op->unthrottle;
3655 driver->stop = op->stop;
3656 driver->start = op->start;
3657 driver->hangup = op->hangup;
3658 driver->break_ctl = op->break_ctl;
3659 driver->flush_buffer = op->flush_buffer;
3660 driver->set_ldisc = op->set_ldisc;
3661 driver->wait_until_sent = op->wait_until_sent;
3662 driver->send_xchar = op->send_xchar;
3663 driver->read_proc = op->read_proc;
3664 driver->write_proc = op->write_proc;
3665 driver->tiocmget = op->tiocmget;
3666 driver->tiocmset = op->tiocmset;
3670 EXPORT_SYMBOL(alloc_tty_driver);
3671 EXPORT_SYMBOL(put_tty_driver);
3672 EXPORT_SYMBOL(tty_set_operations);
3675 * Called by a tty driver to register itself.
3677 int tty_register_driver(struct tty_driver *driver)
3679 int error;
3680 int i;
3681 dev_t dev;
3682 void **p = NULL;
3684 if (driver->flags & TTY_DRIVER_INSTALLED)
3685 return 0;
3687 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
3688 p = kmalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3689 if (!p)
3690 return -ENOMEM;
3691 memset(p, 0, driver->num * 3 * sizeof(void *));
3694 if (!driver->major) {
3695 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3696 (char*)driver->name);
3697 if (!error) {
3698 driver->major = MAJOR(dev);
3699 driver->minor_start = MINOR(dev);
3701 } else {
3702 dev = MKDEV(driver->major, driver->minor_start);
3703 error = register_chrdev_region(dev, driver->num,
3704 (char*)driver->name);
3706 if (error < 0) {
3707 kfree(p);
3708 return error;
3711 if (p) {
3712 driver->ttys = (struct tty_struct **)p;
3713 driver->termios = (struct ktermios **)(p + driver->num);
3714 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3715 } else {
3716 driver->ttys = NULL;
3717 driver->termios = NULL;
3718 driver->termios_locked = NULL;
3721 cdev_init(&driver->cdev, &tty_fops);
3722 driver->cdev.owner = driver->owner;
3723 error = cdev_add(&driver->cdev, dev, driver->num);
3724 if (error) {
3725 unregister_chrdev_region(dev, driver->num);
3726 driver->ttys = NULL;
3727 driver->termios = driver->termios_locked = NULL;
3728 kfree(p);
3729 return error;
3732 if (!driver->put_char)
3733 driver->put_char = tty_default_put_char;
3735 list_add(&driver->tty_drivers, &tty_drivers);
3737 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3738 for(i = 0; i < driver->num; i++)
3739 tty_register_device(driver, i, NULL);
3741 proc_tty_register_driver(driver);
3742 return 0;
3745 EXPORT_SYMBOL(tty_register_driver);
3748 * Called by a tty driver to unregister itself.
3750 int tty_unregister_driver(struct tty_driver *driver)
3752 int i;
3753 struct ktermios *tp;
3754 void *p;
3756 if (driver->refcount)
3757 return -EBUSY;
3759 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3760 driver->num);
3762 list_del(&driver->tty_drivers);
3765 * Free the termios and termios_locked structures because
3766 * we don't want to get memory leaks when modular tty
3767 * drivers are removed from the kernel.
3769 for (i = 0; i < driver->num; i++) {
3770 tp = driver->termios[i];
3771 if (tp) {
3772 driver->termios[i] = NULL;
3773 kfree(tp);
3775 tp = driver->termios_locked[i];
3776 if (tp) {
3777 driver->termios_locked[i] = NULL;
3778 kfree(tp);
3780 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3781 tty_unregister_device(driver, i);
3783 p = driver->ttys;
3784 proc_tty_unregister_driver(driver);
3785 driver->ttys = NULL;
3786 driver->termios = driver->termios_locked = NULL;
3787 kfree(p);
3788 cdev_del(&driver->cdev);
3789 return 0;
3791 EXPORT_SYMBOL(tty_unregister_driver);
3793 dev_t tty_devnum(struct tty_struct *tty)
3795 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3797 EXPORT_SYMBOL(tty_devnum);
3799 void proc_clear_tty(struct task_struct *p)
3801 spin_lock_irq(&p->sighand->siglock);
3802 p->signal->tty = NULL;
3803 spin_unlock_irq(&p->sighand->siglock);
3805 EXPORT_SYMBOL(proc_clear_tty);
3807 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3809 if (tty) {
3810 tty->session = process_session(tsk);
3811 tty->pgrp = process_group(tsk);
3813 tsk->signal->tty = tty;
3814 tsk->signal->tty_old_pgrp = 0;
3817 void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3819 spin_lock_irq(&tsk->sighand->siglock);
3820 __proc_set_tty(tsk, tty);
3821 spin_unlock_irq(&tsk->sighand->siglock);
3824 struct tty_struct *get_current_tty(void)
3826 struct tty_struct *tty;
3827 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3828 tty = current->signal->tty;
3830 * session->tty can be changed/cleared from under us, make sure we
3831 * issue the load. The obtained pointer, when not NULL, is valid as
3832 * long as we hold tty_mutex.
3834 barrier();
3835 return tty;
3837 EXPORT_SYMBOL_GPL(get_current_tty);
3840 * Initialize the console device. This is called *early*, so
3841 * we can't necessarily depend on lots of kernel help here.
3842 * Just do some early initializations, and do the complex setup
3843 * later.
3845 void __init console_init(void)
3847 initcall_t *call;
3849 /* Setup the default TTY line discipline. */
3850 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3853 * set up the console device so that later boot sequences can
3854 * inform about problems etc..
3856 #ifdef CONFIG_EARLY_PRINTK
3857 disable_early_printk();
3858 #endif
3859 call = __con_initcall_start;
3860 while (call < __con_initcall_end) {
3861 (*call)();
3862 call++;
3866 #ifdef CONFIG_VT
3867 extern int vty_init(void);
3868 #endif
3870 static int __init tty_class_init(void)
3872 tty_class = class_create(THIS_MODULE, "tty");
3873 if (IS_ERR(tty_class))
3874 return PTR_ERR(tty_class);
3875 return 0;
3878 postcore_initcall(tty_class_init);
3880 /* 3/2004 jmc: why do these devices exist? */
3882 static struct cdev tty_cdev, console_cdev;
3883 #ifdef CONFIG_UNIX98_PTYS
3884 static struct cdev ptmx_cdev;
3885 #endif
3886 #ifdef CONFIG_VT
3887 static struct cdev vc0_cdev;
3888 #endif
3891 * Ok, now we can initialize the rest of the tty devices and can count
3892 * on memory allocations, interrupts etc..
3894 static int __init tty_init(void)
3896 cdev_init(&tty_cdev, &tty_fops);
3897 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3898 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3899 panic("Couldn't register /dev/tty driver\n");
3900 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3902 cdev_init(&console_cdev, &console_fops);
3903 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3904 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3905 panic("Couldn't register /dev/console driver\n");
3906 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3908 #ifdef CONFIG_UNIX98_PTYS
3909 cdev_init(&ptmx_cdev, &ptmx_fops);
3910 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3911 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3912 panic("Couldn't register /dev/ptmx driver\n");
3913 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3914 #endif
3916 #ifdef CONFIG_VT
3917 cdev_init(&vc0_cdev, &console_fops);
3918 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3919 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3920 panic("Couldn't register /dev/tty0 driver\n");
3921 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3923 vty_init();
3924 #endif
3925 return 0;
3927 module_init(tty_init);