1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
40 #define MLOG_MASK_PREFIX ML_INODE
41 #include <cluster/masklog.h>
49 #include "extent_map.h"
62 #include "refcounttree.h"
64 #include "buffer_head_io.h"
66 static int ocfs2_sync_inode(struct inode
*inode
)
68 filemap_fdatawrite(inode
->i_mapping
);
69 return sync_mapping_buffers(inode
->i_mapping
);
72 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
74 struct ocfs2_file_private
*fp
;
76 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
81 mutex_init(&fp
->fp_mutex
);
82 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
83 file
->private_data
= fp
;
88 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
90 struct ocfs2_file_private
*fp
= file
->private_data
;
91 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
94 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
95 ocfs2_lock_res_free(&fp
->fp_flock
);
97 file
->private_data
= NULL
;
101 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
104 int mode
= file
->f_flags
;
105 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
107 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
108 file
->f_path
.dentry
->d_name
.len
, file
->f_path
.dentry
->d_name
.name
);
110 spin_lock(&oi
->ip_lock
);
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
116 spin_unlock(&oi
->ip_lock
);
123 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
126 spin_unlock(&oi
->ip_lock
);
128 status
= ocfs2_init_file_private(inode
, file
);
131 * We want to set open count back if we're failing the
134 spin_lock(&oi
->ip_lock
);
136 spin_unlock(&oi
->ip_lock
);
144 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
146 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
148 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
149 file
->f_path
.dentry
->d_name
.len
,
150 file
->f_path
.dentry
->d_name
.name
);
152 spin_lock(&oi
->ip_lock
);
153 if (!--oi
->ip_open_count
)
154 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
155 spin_unlock(&oi
->ip_lock
);
157 ocfs2_free_file_private(inode
, file
);
164 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
166 return ocfs2_init_file_private(inode
, file
);
169 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
171 ocfs2_free_file_private(inode
, file
);
175 static int ocfs2_sync_file(struct file
*file
,
176 struct dentry
*dentry
,
181 struct inode
*inode
= dentry
->d_inode
;
182 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
184 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file
, dentry
, datasync
,
185 dentry
->d_name
.len
, dentry
->d_name
.name
);
187 err
= ocfs2_sync_inode(dentry
->d_inode
);
191 if (datasync
&& !(inode
->i_state
& I_DIRTY_DATASYNC
))
194 journal
= osb
->journal
->j_journal
;
195 err
= jbd2_journal_force_commit(journal
);
200 return (err
< 0) ? -EIO
: 0;
203 int ocfs2_should_update_atime(struct inode
*inode
,
204 struct vfsmount
*vfsmnt
)
207 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
209 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
212 if ((inode
->i_flags
& S_NOATIME
) ||
213 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
217 * We can be called with no vfsmnt structure - NFSD will
220 * Note that our action here is different than touch_atime() -
221 * if we can't tell whether this is a noatime mount, then we
222 * don't know whether to trust the value of s_atime_quantum.
227 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
228 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
231 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
232 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
233 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
240 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
246 int ocfs2_update_inode_atime(struct inode
*inode
,
247 struct buffer_head
*bh
)
250 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
252 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
256 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
257 if (IS_ERR(handle
)) {
258 ret
= PTR_ERR(handle
);
263 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
264 OCFS2_JOURNAL_ACCESS_WRITE
);
271 * Don't use ocfs2_mark_inode_dirty() here as we don't always
272 * have i_mutex to guard against concurrent changes to other
275 inode
->i_atime
= CURRENT_TIME
;
276 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
277 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
279 ret
= ocfs2_journal_dirty(handle
, bh
);
284 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
290 static int ocfs2_set_inode_size(handle_t
*handle
,
292 struct buffer_head
*fe_bh
,
298 i_size_write(inode
, new_i_size
);
299 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
300 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
302 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
313 int ocfs2_simple_size_update(struct inode
*inode
,
314 struct buffer_head
*di_bh
,
318 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
319 handle_t
*handle
= NULL
;
321 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
322 if (IS_ERR(handle
)) {
323 ret
= PTR_ERR(handle
);
328 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
333 ocfs2_commit_trans(osb
, handle
);
338 static int ocfs2_cow_file_pos(struct inode
*inode
,
339 struct buffer_head
*fe_bh
,
343 u32 phys
, cpos
= offset
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
344 unsigned int num_clusters
= 0;
345 unsigned int ext_flags
= 0;
348 * If the new offset is aligned to the range of the cluster, there is
349 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
352 if ((offset
& (OCFS2_SB(inode
->i_sb
)->s_clustersize
- 1)) == 0)
355 status
= ocfs2_get_clusters(inode
, cpos
, &phys
,
356 &num_clusters
, &ext_flags
);
362 if (!(ext_flags
& OCFS2_EXT_REFCOUNTED
))
365 return ocfs2_refcount_cow(inode
, fe_bh
, cpos
, 1, cpos
+1);
371 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
373 struct buffer_head
*fe_bh
,
378 struct ocfs2_dinode
*di
;
384 * We need to CoW the cluster contains the offset if it is reflinked
385 * since we will call ocfs2_zero_range_for_truncate later which will
386 * write "0" from offset to the end of the cluster.
388 status
= ocfs2_cow_file_pos(inode
, fe_bh
, new_i_size
);
394 /* TODO: This needs to actually orphan the inode in this
397 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
398 if (IS_ERR(handle
)) {
399 status
= PTR_ERR(handle
);
404 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), fe_bh
,
405 OCFS2_JOURNAL_ACCESS_WRITE
);
412 * Do this before setting i_size.
414 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
415 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
422 i_size_write(inode
, new_i_size
);
423 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
425 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
426 di
->i_size
= cpu_to_le64(new_i_size
);
427 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
428 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
430 status
= ocfs2_journal_dirty(handle
, fe_bh
);
435 ocfs2_commit_trans(osb
, handle
);
442 static int ocfs2_truncate_file(struct inode
*inode
,
443 struct buffer_head
*di_bh
,
447 struct ocfs2_dinode
*fe
= NULL
;
448 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
449 struct ocfs2_truncate_context
*tc
= NULL
;
451 mlog_entry("(inode = %llu, new_i_size = %llu\n",
452 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
453 (unsigned long long)new_i_size
);
455 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
456 * already validated it */
457 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
459 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
460 "Inode %llu, inode i_size = %lld != di "
461 "i_size = %llu, i_flags = 0x%x\n",
462 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
464 (unsigned long long)le64_to_cpu(fe
->i_size
),
465 le32_to_cpu(fe
->i_flags
));
467 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
468 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
469 (unsigned long long)le64_to_cpu(fe
->i_size
),
470 (unsigned long long)new_i_size
);
476 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
477 (unsigned long long)le64_to_cpu(fe
->i_blkno
),
478 (unsigned long long)le64_to_cpu(fe
->i_size
),
479 (unsigned long long)new_i_size
);
481 /* lets handle the simple truncate cases before doing any more
482 * cluster locking. */
483 if (new_i_size
== le64_to_cpu(fe
->i_size
))
486 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
489 * The inode lock forced other nodes to sync and drop their
490 * pages, which (correctly) happens even if we have a truncate
491 * without allocation change - ocfs2 cluster sizes can be much
492 * greater than page size, so we have to truncate them
495 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
496 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
498 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
499 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
500 i_size_read(inode
), 1);
504 goto bail_unlock_sem
;
507 /* alright, we're going to need to do a full blown alloc size
508 * change. Orphan the inode so that recovery can complete the
509 * truncate if necessary. This does the task of marking
511 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
514 goto bail_unlock_sem
;
517 status
= ocfs2_prepare_truncate(osb
, inode
, di_bh
, &tc
);
520 goto bail_unlock_sem
;
523 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
, tc
);
526 goto bail_unlock_sem
;
529 /* TODO: orphan dir cleanup here. */
531 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
534 if (!status
&& OCFS2_I(inode
)->ip_clusters
== 0)
535 status
= ocfs2_try_remove_refcount_tree(inode
, di_bh
);
542 * extend file allocation only here.
543 * we'll update all the disk stuff, and oip->alloc_size
545 * expect stuff to be locked, a transaction started and enough data /
546 * metadata reservations in the contexts.
548 * Will return -EAGAIN, and a reason if a restart is needed.
549 * If passed in, *reason will always be set, even in error.
551 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
556 struct buffer_head
*fe_bh
,
558 struct ocfs2_alloc_context
*data_ac
,
559 struct ocfs2_alloc_context
*meta_ac
,
560 enum ocfs2_alloc_restarted
*reason_ret
)
563 struct ocfs2_extent_tree et
;
565 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), fe_bh
);
566 ret
= ocfs2_add_clusters_in_btree(handle
, &et
, logical_offset
,
567 clusters_to_add
, mark_unwritten
,
568 data_ac
, meta_ac
, reason_ret
);
573 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
574 u32 clusters_to_add
, int mark_unwritten
)
577 int restart_func
= 0;
580 struct buffer_head
*bh
= NULL
;
581 struct ocfs2_dinode
*fe
= NULL
;
582 handle_t
*handle
= NULL
;
583 struct ocfs2_alloc_context
*data_ac
= NULL
;
584 struct ocfs2_alloc_context
*meta_ac
= NULL
;
585 enum ocfs2_alloc_restarted why
;
586 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
587 struct ocfs2_extent_tree et
;
590 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add
);
593 * This function only exists for file systems which don't
596 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
598 status
= ocfs2_read_inode_block(inode
, &bh
);
603 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
606 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
608 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
609 "clusters_to_add = %u\n",
610 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
611 (long long)i_size_read(inode
), le32_to_cpu(fe
->i_clusters
),
613 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), bh
);
614 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
621 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
,
623 handle
= ocfs2_start_trans(osb
, credits
);
624 if (IS_ERR(handle
)) {
625 status
= PTR_ERR(handle
);
631 restarted_transaction
:
632 if (vfs_dq_alloc_space_nodirty(inode
, ocfs2_clusters_to_bytes(osb
->sb
,
639 /* reserve a write to the file entry early on - that we if we
640 * run out of credits in the allocation path, we can still
642 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
643 OCFS2_JOURNAL_ACCESS_WRITE
);
649 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
651 status
= ocfs2_add_inode_data(osb
,
661 if ((status
< 0) && (status
!= -EAGAIN
)) {
662 if (status
!= -ENOSPC
)
667 status
= ocfs2_journal_dirty(handle
, bh
);
673 spin_lock(&OCFS2_I(inode
)->ip_lock
);
674 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
675 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
676 /* Release unused quota reservation */
677 vfs_dq_free_space(inode
,
678 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
681 if (why
!= RESTART_NONE
&& clusters_to_add
) {
682 if (why
== RESTART_META
) {
683 mlog(0, "restarting function.\n");
686 BUG_ON(why
!= RESTART_TRANS
);
688 mlog(0, "restarting transaction.\n");
689 /* TODO: This can be more intelligent. */
690 credits
= ocfs2_calc_extend_credits(osb
->sb
,
693 status
= ocfs2_extend_trans(handle
, credits
);
695 /* handle still has to be committed at
701 goto restarted_transaction
;
705 mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
706 le32_to_cpu(fe
->i_clusters
),
707 (unsigned long long)le64_to_cpu(fe
->i_size
));
708 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
709 OCFS2_I(inode
)->ip_clusters
, (long long)i_size_read(inode
));
712 if (status
< 0 && did_quota
)
713 vfs_dq_free_space(inode
,
714 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
716 ocfs2_commit_trans(osb
, handle
);
720 ocfs2_free_alloc_context(data_ac
);
724 ocfs2_free_alloc_context(meta_ac
);
727 if ((!status
) && restart_func
) {
738 /* Some parts of this taken from generic_cont_expand, which turned out
739 * to be too fragile to do exactly what we need without us having to
740 * worry about recursive locking in ->write_begin() and ->write_end(). */
741 static int ocfs2_write_zero_page(struct inode
*inode
,
744 struct address_space
*mapping
= inode
->i_mapping
;
748 handle_t
*handle
= NULL
;
751 offset
= (size
& (PAGE_CACHE_SIZE
-1)); /* Within page */
752 /* ugh. in prepare/commit_write, if from==to==start of block, we
753 ** skip the prepare. make sure we never send an offset for the start
756 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
759 index
= size
>> PAGE_CACHE_SHIFT
;
761 page
= grab_cache_page(mapping
, index
);
768 ret
= ocfs2_prepare_write_nolock(inode
, page
, offset
, offset
);
774 if (ocfs2_should_order_data(inode
)) {
775 handle
= ocfs2_start_walk_page_trans(inode
, page
, offset
,
777 if (IS_ERR(handle
)) {
778 ret
= PTR_ERR(handle
);
784 /* must not update i_size! */
785 ret
= block_commit_write(page
, offset
, offset
);
792 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
795 page_cache_release(page
);
800 static int ocfs2_zero_extend(struct inode
*inode
,
805 struct super_block
*sb
= inode
->i_sb
;
807 start_off
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
808 while (start_off
< zero_to_size
) {
809 ret
= ocfs2_write_zero_page(inode
, start_off
);
815 start_off
+= sb
->s_blocksize
;
818 * Very large extends have the potential to lock up
819 * the cpu for extended periods of time.
828 int ocfs2_extend_no_holes(struct inode
*inode
, u64 new_i_size
, u64 zero_to
)
832 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
834 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
835 if (clusters_to_add
< oi
->ip_clusters
)
838 clusters_to_add
-= oi
->ip_clusters
;
840 if (clusters_to_add
) {
841 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
850 * Call this even if we don't add any clusters to the tree. We
851 * still need to zero the area between the old i_size and the
854 ret
= ocfs2_zero_extend(inode
, zero_to
);
862 static int ocfs2_extend_file(struct inode
*inode
,
863 struct buffer_head
*di_bh
,
867 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
871 /* setattr sometimes calls us like this. */
875 if (i_size_read(inode
) == new_i_size
)
877 BUG_ON(new_i_size
< i_size_read(inode
));
880 * Fall through for converting inline data, even if the fs
881 * supports sparse files.
883 * The check for inline data here is legal - nobody can add
884 * the feature since we have i_mutex. We must check it again
885 * after acquiring ip_alloc_sem though, as paths like mmap
886 * might have raced us to converting the inode to extents.
888 if (!(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
889 && ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
890 goto out_update_size
;
893 * The alloc sem blocks people in read/write from reading our
894 * allocation until we're done changing it. We depend on
895 * i_mutex to block other extend/truncate calls while we're
898 down_write(&oi
->ip_alloc_sem
);
900 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
902 * We can optimize small extends by keeping the inodes
905 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
906 up_write(&oi
->ip_alloc_sem
);
907 goto out_update_size
;
910 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
912 up_write(&oi
->ip_alloc_sem
);
919 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
920 ret
= ocfs2_extend_no_holes(inode
, new_i_size
, new_i_size
);
922 up_write(&oi
->ip_alloc_sem
);
930 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
938 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
940 int status
= 0, size_change
;
941 struct inode
*inode
= dentry
->d_inode
;
942 struct super_block
*sb
= inode
->i_sb
;
943 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
944 struct buffer_head
*bh
= NULL
;
945 handle_t
*handle
= NULL
;
947 struct dquot
*transfer_from
[MAXQUOTAS
] = { };
948 struct dquot
*transfer_to
[MAXQUOTAS
] = { };
950 mlog_entry("(0x%p, '%.*s')\n", dentry
,
951 dentry
->d_name
.len
, dentry
->d_name
.name
);
953 /* ensuring we don't even attempt to truncate a symlink */
954 if (S_ISLNK(inode
->i_mode
))
955 attr
->ia_valid
&= ~ATTR_SIZE
;
957 if (attr
->ia_valid
& ATTR_MODE
)
958 mlog(0, "mode change: %d\n", attr
->ia_mode
);
959 if (attr
->ia_valid
& ATTR_UID
)
960 mlog(0, "uid change: %d\n", attr
->ia_uid
);
961 if (attr
->ia_valid
& ATTR_GID
)
962 mlog(0, "gid change: %d\n", attr
->ia_gid
);
963 if (attr
->ia_valid
& ATTR_SIZE
)
964 mlog(0, "size change...\n");
965 if (attr
->ia_valid
& (ATTR_ATIME
| ATTR_MTIME
| ATTR_CTIME
))
966 mlog(0, "time change...\n");
968 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
969 | ATTR_GID | ATTR_UID | ATTR_MODE)
970 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
)) {
971 mlog(0, "can't handle attrs: 0x%x\n", attr
->ia_valid
);
975 status
= inode_change_ok(inode
, attr
);
979 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
981 status
= ocfs2_rw_lock(inode
, 1);
988 status
= ocfs2_inode_lock(inode
, &bh
, 1);
990 if (status
!= -ENOENT
)
995 if (size_change
&& attr
->ia_size
!= i_size_read(inode
)) {
996 if (attr
->ia_size
> sb
->s_maxbytes
) {
1001 if (i_size_read(inode
) > attr
->ia_size
) {
1002 if (ocfs2_should_order_data(inode
)) {
1003 status
= ocfs2_begin_ordered_truncate(inode
,
1008 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1010 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1012 if (status
!= -ENOSPC
)
1019 if ((attr
->ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
1020 (attr
->ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
1022 * Gather pointers to quota structures so that allocation /
1023 * freeing of quota structures happens here and not inside
1024 * vfs_dq_transfer() where we have problems with lock ordering
1026 if (attr
->ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
1027 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1028 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)) {
1029 transfer_to
[USRQUOTA
] = dqget(sb
, attr
->ia_uid
,
1031 transfer_from
[USRQUOTA
] = dqget(sb
, inode
->i_uid
,
1033 if (!transfer_to
[USRQUOTA
] || !transfer_from
[USRQUOTA
]) {
1038 if (attr
->ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
1039 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1040 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
)) {
1041 transfer_to
[GRPQUOTA
] = dqget(sb
, attr
->ia_gid
,
1043 transfer_from
[GRPQUOTA
] = dqget(sb
, inode
->i_gid
,
1045 if (!transfer_to
[GRPQUOTA
] || !transfer_from
[GRPQUOTA
]) {
1050 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
+
1051 2 * ocfs2_quota_trans_credits(sb
));
1052 if (IS_ERR(handle
)) {
1053 status
= PTR_ERR(handle
);
1057 status
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
1061 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1062 if (IS_ERR(handle
)) {
1063 status
= PTR_ERR(handle
);
1070 * This will intentionally not wind up calling vmtruncate(),
1071 * since all the work for a size change has been done above.
1072 * Otherwise, we could get into problems with truncate as
1073 * ip_alloc_sem is used there to protect against i_size
1076 status
= inode_setattr(inode
, attr
);
1082 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1087 ocfs2_commit_trans(osb
, handle
);
1089 ocfs2_inode_unlock(inode
, 1);
1092 ocfs2_rw_unlock(inode
, 1);
1096 /* Release quota pointers in case we acquired them */
1097 for (qtype
= 0; qtype
< MAXQUOTAS
; qtype
++) {
1098 dqput(transfer_to
[qtype
]);
1099 dqput(transfer_from
[qtype
]);
1102 if (!status
&& attr
->ia_valid
& ATTR_MODE
) {
1103 status
= ocfs2_acl_chmod(inode
);
1112 int ocfs2_getattr(struct vfsmount
*mnt
,
1113 struct dentry
*dentry
,
1116 struct inode
*inode
= dentry
->d_inode
;
1117 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1118 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1123 err
= ocfs2_inode_revalidate(dentry
);
1130 generic_fillattr(inode
, stat
);
1132 /* We set the blksize from the cluster size for performance */
1133 stat
->blksize
= osb
->s_clustersize
;
1141 int ocfs2_permission(struct inode
*inode
, int mask
)
1147 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
1154 ret
= generic_permission(inode
, mask
, ocfs2_check_acl
);
1156 ocfs2_inode_unlock(inode
, 0);
1162 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1163 struct buffer_head
*bh
)
1167 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1168 struct ocfs2_dinode
*di
;
1170 mlog_entry("(Inode %llu, mode 0%o)\n",
1171 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, inode
->i_mode
);
1173 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1174 if (IS_ERR(handle
)) {
1175 ret
= PTR_ERR(handle
);
1180 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
1181 OCFS2_JOURNAL_ACCESS_WRITE
);
1187 inode
->i_mode
&= ~S_ISUID
;
1188 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1189 inode
->i_mode
&= ~S_ISGID
;
1191 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1192 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1194 ret
= ocfs2_journal_dirty(handle
, bh
);
1199 ocfs2_commit_trans(osb
, handle
);
1206 * Will look for holes and unwritten extents in the range starting at
1207 * pos for count bytes (inclusive).
1209 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1213 unsigned int extent_flags
;
1214 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1215 struct super_block
*sb
= inode
->i_sb
;
1217 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1218 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1221 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1228 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1233 if (extent_len
> clusters
)
1234 extent_len
= clusters
;
1236 clusters
-= extent_len
;
1243 static int ocfs2_write_remove_suid(struct inode
*inode
)
1246 struct buffer_head
*bh
= NULL
;
1248 ret
= ocfs2_read_inode_block(inode
, &bh
);
1254 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1261 * Allocate enough extents to cover the region starting at byte offset
1262 * start for len bytes. Existing extents are skipped, any extents
1263 * added are marked as "unwritten".
1265 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1269 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1270 u64 end
= start
+ len
;
1271 struct buffer_head
*di_bh
= NULL
;
1273 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1274 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
1281 * Nothing to do if the requested reservation range
1282 * fits within the inode.
1284 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1287 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1295 * We consider both start and len to be inclusive.
1297 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1298 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1302 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1310 * Hole or existing extent len can be arbitrary, so
1311 * cap it to our own allocation request.
1313 if (alloc_size
> clusters
)
1314 alloc_size
= clusters
;
1318 * We already have an allocation at this
1319 * region so we can safely skip it.
1324 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1333 clusters
-= alloc_size
;
1344 * Truncate a byte range, avoiding pages within partial clusters. This
1345 * preserves those pages for the zeroing code to write to.
1347 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1350 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1352 struct address_space
*mapping
= inode
->i_mapping
;
1354 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1355 end
= byte_start
+ byte_len
;
1356 end
= end
& ~(osb
->s_clustersize
- 1);
1359 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1360 truncate_inode_pages_range(mapping
, start
, end
- 1);
1364 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1368 u64 tmpend
, end
= start
+ len
;
1369 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1370 unsigned int csize
= osb
->s_clustersize
;
1374 * The "start" and "end" values are NOT necessarily part of
1375 * the range whose allocation is being deleted. Rather, this
1376 * is what the user passed in with the request. We must zero
1377 * partial clusters here. There's no need to worry about
1378 * physical allocation - the zeroing code knows to skip holes.
1380 mlog(0, "byte start: %llu, end: %llu\n",
1381 (unsigned long long)start
, (unsigned long long)end
);
1384 * If both edges are on a cluster boundary then there's no
1385 * zeroing required as the region is part of the allocation to
1388 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1391 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1392 if (IS_ERR(handle
)) {
1393 ret
= PTR_ERR(handle
);
1399 * We want to get the byte offset of the end of the 1st cluster.
1401 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1405 mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1406 (unsigned long long)start
, (unsigned long long)tmpend
);
1408 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1414 * This may make start and end equal, but the zeroing
1415 * code will skip any work in that case so there's no
1416 * need to catch it up here.
1418 start
= end
& ~(osb
->s_clustersize
- 1);
1420 mlog(0, "2nd range: start: %llu, end: %llu\n",
1421 (unsigned long long)start
, (unsigned long long)end
);
1423 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1428 ocfs2_commit_trans(osb
, handle
);
1433 static int ocfs2_remove_inode_range(struct inode
*inode
,
1434 struct buffer_head
*di_bh
, u64 byte_start
,
1438 u32 trunc_start
, trunc_len
, cpos
, phys_cpos
, alloc_size
;
1439 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1440 struct ocfs2_cached_dealloc_ctxt dealloc
;
1441 struct address_space
*mapping
= inode
->i_mapping
;
1442 struct ocfs2_extent_tree et
;
1444 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
1445 ocfs2_init_dealloc_ctxt(&dealloc
);
1450 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1451 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1452 byte_start
+ byte_len
, 0);
1458 * There's no need to get fancy with the page cache
1459 * truncate of an inline-data inode. We're talking
1460 * about less than a page here, which will be cached
1461 * in the dinode buffer anyway.
1463 unmap_mapping_range(mapping
, 0, 0, 0);
1464 truncate_inode_pages(mapping
, 0);
1468 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1469 trunc_len
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1470 if (trunc_len
>= trunc_start
)
1471 trunc_len
-= trunc_start
;
1475 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u\n",
1476 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1477 (unsigned long long)byte_start
,
1478 (unsigned long long)byte_len
, trunc_start
, trunc_len
);
1480 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1488 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1495 if (alloc_size
> trunc_len
)
1496 alloc_size
= trunc_len
;
1498 /* Only do work for non-holes */
1499 if (phys_cpos
!= 0) {
1500 ret
= ocfs2_remove_btree_range(inode
, &et
, cpos
,
1501 phys_cpos
, alloc_size
,
1510 trunc_len
-= alloc_size
;
1513 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1516 ocfs2_schedule_truncate_log_flush(osb
, 1);
1517 ocfs2_run_deallocs(osb
, &dealloc
);
1523 * Parts of this function taken from xfs_change_file_space()
1525 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1526 loff_t f_pos
, unsigned int cmd
,
1527 struct ocfs2_space_resv
*sr
,
1533 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1534 struct buffer_head
*di_bh
= NULL
;
1536 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1538 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1541 mutex_lock(&inode
->i_mutex
);
1544 * This prevents concurrent writes on other nodes
1546 ret
= ocfs2_rw_lock(inode
, 1);
1552 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1558 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1560 goto out_inode_unlock
;
1563 switch (sr
->l_whence
) {
1564 case 0: /*SEEK_SET*/
1566 case 1: /*SEEK_CUR*/
1567 sr
->l_start
+= f_pos
;
1569 case 2: /*SEEK_END*/
1570 sr
->l_start
+= i_size_read(inode
);
1574 goto out_inode_unlock
;
1578 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1581 || sr
->l_start
> max_off
1582 || (sr
->l_start
+ llen
) < 0
1583 || (sr
->l_start
+ llen
) > max_off
) {
1585 goto out_inode_unlock
;
1587 size
= sr
->l_start
+ sr
->l_len
;
1589 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) {
1590 if (sr
->l_len
<= 0) {
1592 goto out_inode_unlock
;
1596 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1597 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1600 goto out_inode_unlock
;
1604 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1606 case OCFS2_IOC_RESVSP
:
1607 case OCFS2_IOC_RESVSP64
:
1609 * This takes unsigned offsets, but the signed ones we
1610 * pass have been checked against overflow above.
1612 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1615 case OCFS2_IOC_UNRESVSP
:
1616 case OCFS2_IOC_UNRESVSP64
:
1617 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1623 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1626 goto out_inode_unlock
;
1630 * We update c/mtime for these changes
1632 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1633 if (IS_ERR(handle
)) {
1634 ret
= PTR_ERR(handle
);
1636 goto out_inode_unlock
;
1639 if (change_size
&& i_size_read(inode
) < size
)
1640 i_size_write(inode
, size
);
1642 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1643 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1647 ocfs2_commit_trans(osb
, handle
);
1651 ocfs2_inode_unlock(inode
, 1);
1653 ocfs2_rw_unlock(inode
, 1);
1656 mutex_unlock(&inode
->i_mutex
);
1660 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1661 struct ocfs2_space_resv
*sr
)
1663 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1664 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1666 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1667 !ocfs2_writes_unwritten_extents(osb
))
1669 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1670 !ocfs2_sparse_alloc(osb
))
1673 if (!S_ISREG(inode
->i_mode
))
1676 if (!(file
->f_mode
& FMODE_WRITE
))
1679 return __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1682 static long ocfs2_fallocate(struct inode
*inode
, int mode
, loff_t offset
,
1685 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1686 struct ocfs2_space_resv sr
;
1687 int change_size
= 1;
1689 if (!ocfs2_writes_unwritten_extents(osb
))
1692 if (S_ISDIR(inode
->i_mode
))
1695 if (mode
& FALLOC_FL_KEEP_SIZE
)
1699 sr
.l_start
= (s64
)offset
;
1700 sr
.l_len
= (s64
)len
;
1702 return __ocfs2_change_file_space(NULL
, inode
, offset
,
1703 OCFS2_IOC_RESVSP64
, &sr
, change_size
);
1706 int ocfs2_check_range_for_refcount(struct inode
*inode
, loff_t pos
,
1710 unsigned int extent_flags
;
1711 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1712 struct super_block
*sb
= inode
->i_sb
;
1714 if (!ocfs2_refcount_tree(OCFS2_SB(inode
->i_sb
)) ||
1715 !(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) ||
1716 OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
1719 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1720 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1723 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1730 if (phys_cpos
&& (extent_flags
& OCFS2_EXT_REFCOUNTED
)) {
1735 if (extent_len
> clusters
)
1736 extent_len
= clusters
;
1738 clusters
-= extent_len
;
1745 static int ocfs2_prepare_inode_for_refcount(struct inode
*inode
,
1746 loff_t pos
, size_t count
,
1750 struct buffer_head
*di_bh
= NULL
;
1751 u32 cpos
= pos
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1753 ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ count
) - cpos
;
1755 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1763 ret
= ocfs2_refcount_cow(inode
, di_bh
, cpos
, clusters
, UINT_MAX
);
1771 static int ocfs2_prepare_inode_for_write(struct dentry
*dentry
,
1777 int ret
= 0, meta_level
= 0;
1778 struct inode
*inode
= dentry
->d_inode
;
1779 loff_t saved_pos
, end
;
1782 * We start with a read level meta lock and only jump to an ex
1783 * if we need to make modifications here.
1786 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
1793 /* Clear suid / sgid if necessary. We do this here
1794 * instead of later in the write path because
1795 * remove_suid() calls ->setattr without any hint that
1796 * we may have already done our cluster locking. Since
1797 * ocfs2_setattr() *must* take cluster locks to
1798 * proceeed, this will lead us to recursively lock the
1799 * inode. There's also the dinode i_size state which
1800 * can be lost via setattr during extending writes (we
1801 * set inode->i_size at the end of a write. */
1802 if (should_remove_suid(dentry
)) {
1803 if (meta_level
== 0) {
1804 ocfs2_inode_unlock(inode
, meta_level
);
1809 ret
= ocfs2_write_remove_suid(inode
);
1816 /* work on a copy of ppos until we're sure that we won't have
1817 * to recalculate it due to relocking. */
1819 saved_pos
= i_size_read(inode
);
1820 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos
);
1825 end
= saved_pos
+ count
;
1827 ret
= ocfs2_check_range_for_refcount(inode
, saved_pos
, count
);
1829 ocfs2_inode_unlock(inode
, meta_level
);
1832 ret
= ocfs2_prepare_inode_for_refcount(inode
,
1844 * Skip the O_DIRECT checks if we don't need
1847 if (!direct_io
|| !(*direct_io
))
1851 * There's no sane way to do direct writes to an inode
1854 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1860 * Allowing concurrent direct writes means
1861 * i_size changes wouldn't be synchronized, so
1862 * one node could wind up truncating another
1865 if (end
> i_size_read(inode
)) {
1871 * We don't fill holes during direct io, so
1872 * check for them here. If any are found, the
1873 * caller will have to retake some cluster
1874 * locks and initiate the io as buffered.
1876 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
, count
);
1889 if (meta_level
>= 0)
1890 ocfs2_inode_unlock(inode
, meta_level
);
1896 static ssize_t
ocfs2_file_aio_write(struct kiocb
*iocb
,
1897 const struct iovec
*iov
,
1898 unsigned long nr_segs
,
1901 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
1903 ssize_t written
= 0;
1904 size_t ocount
; /* original count */
1905 size_t count
; /* after file limit checks */
1906 loff_t old_size
, *ppos
= &iocb
->ki_pos
;
1908 struct file
*file
= iocb
->ki_filp
;
1909 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1910 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1912 mlog_entry("(0x%p, %u, '%.*s')\n", file
,
1913 (unsigned int)nr_segs
,
1914 file
->f_path
.dentry
->d_name
.len
,
1915 file
->f_path
.dentry
->d_name
.name
);
1917 if (iocb
->ki_left
== 0)
1920 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
1922 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
1923 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
1925 mutex_lock(&inode
->i_mutex
);
1928 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
1930 down_read(&inode
->i_alloc_sem
);
1934 /* concurrent O_DIRECT writes are allowed */
1935 rw_level
= !direct_io
;
1936 ret
= ocfs2_rw_lock(inode
, rw_level
);
1942 can_do_direct
= direct_io
;
1943 ret
= ocfs2_prepare_inode_for_write(file
->f_path
.dentry
, ppos
,
1944 iocb
->ki_left
, appending
,
1952 * We can't complete the direct I/O as requested, fall back to
1955 if (direct_io
&& !can_do_direct
) {
1956 ocfs2_rw_unlock(inode
, rw_level
);
1957 up_read(&inode
->i_alloc_sem
);
1967 * To later detect whether a journal commit for sync writes is
1968 * necessary, we sample i_size, and cluster count here.
1970 old_size
= i_size_read(inode
);
1971 old_clusters
= OCFS2_I(inode
)->ip_clusters
;
1973 /* communicate with ocfs2_dio_end_io */
1974 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
1977 ret
= generic_segment_checks(iov
, &nr_segs
, &ocount
,
1983 ret
= generic_write_checks(file
, ppos
, &count
,
1984 S_ISBLK(inode
->i_mode
));
1988 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, *ppos
,
1989 ppos
, count
, ocount
);
1992 * direct write may have instantiated a few
1993 * blocks outside i_size. Trim these off again.
1994 * Don't need i_size_read because we hold i_mutex.
1996 if (*ppos
+ count
> inode
->i_size
)
1997 vmtruncate(inode
, inode
->i_size
);
2002 written
= __generic_file_aio_write(iocb
, iov
, nr_segs
, ppos
);
2006 /* buffered aio wouldn't have proper lock coverage today */
2007 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
2009 if ((file
->f_flags
& O_SYNC
&& !direct_io
) || IS_SYNC(inode
)) {
2010 ret
= filemap_fdatawrite_range(file
->f_mapping
, pos
,
2015 if (!ret
&& (old_size
!= i_size_read(inode
) ||
2016 old_clusters
!= OCFS2_I(inode
)->ip_clusters
)) {
2017 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
2023 ret
= filemap_fdatawait_range(file
->f_mapping
, pos
,
2028 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2029 * function pointer which is called when o_direct io completes so that
2030 * it can unlock our rw lock. (it's the clustered equivalent of
2031 * i_alloc_sem; protects truncate from racing with pending ios).
2032 * Unfortunately there are error cases which call end_io and others
2033 * that don't. so we don't have to unlock the rw_lock if either an
2034 * async dio is going to do it in the future or an end_io after an
2035 * error has already done it.
2037 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2044 ocfs2_rw_unlock(inode
, rw_level
);
2048 up_read(&inode
->i_alloc_sem
);
2050 mutex_unlock(&inode
->i_mutex
);
2058 static int ocfs2_splice_to_file(struct pipe_inode_info
*pipe
,
2060 struct splice_desc
*sd
)
2064 ret
= ocfs2_prepare_inode_for_write(out
->f_path
.dentry
, &sd
->pos
,
2065 sd
->total_len
, 0, NULL
);
2071 return splice_from_pipe_feed(pipe
, sd
, pipe_to_file
);
2074 static ssize_t
ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2081 struct address_space
*mapping
= out
->f_mapping
;
2082 struct inode
*inode
= mapping
->host
;
2083 struct splice_desc sd
= {
2090 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out
, pipe
,
2092 out
->f_path
.dentry
->d_name
.len
,
2093 out
->f_path
.dentry
->d_name
.name
);
2096 mutex_lock_nested(&pipe
->inode
->i_mutex
, I_MUTEX_PARENT
);
2098 splice_from_pipe_begin(&sd
);
2100 ret
= splice_from_pipe_next(pipe
, &sd
);
2104 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2105 ret
= ocfs2_rw_lock(inode
, 1);
2109 ret
= ocfs2_splice_to_file(pipe
, out
, &sd
);
2110 ocfs2_rw_unlock(inode
, 1);
2112 mutex_unlock(&inode
->i_mutex
);
2114 splice_from_pipe_end(pipe
, &sd
);
2117 mutex_unlock(&pipe
->inode
->i_mutex
);
2120 ret
= sd
.num_spliced
;
2123 unsigned long nr_pages
;
2126 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2128 err
= generic_write_sync(out
, *ppos
, ret
);
2134 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
2141 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2143 struct pipe_inode_info
*pipe
,
2147 int ret
= 0, lock_level
= 0;
2148 struct inode
*inode
= in
->f_path
.dentry
->d_inode
;
2150 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in
, pipe
,
2152 in
->f_path
.dentry
->d_name
.len
,
2153 in
->f_path
.dentry
->d_name
.name
);
2156 * See the comment in ocfs2_file_aio_read()
2158 ret
= ocfs2_inode_lock_atime(inode
, in
->f_vfsmnt
, &lock_level
);
2163 ocfs2_inode_unlock(inode
, lock_level
);
2165 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2172 static ssize_t
ocfs2_file_aio_read(struct kiocb
*iocb
,
2173 const struct iovec
*iov
,
2174 unsigned long nr_segs
,
2177 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2178 struct file
*filp
= iocb
->ki_filp
;
2179 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2181 mlog_entry("(0x%p, %u, '%.*s')\n", filp
,
2182 (unsigned int)nr_segs
,
2183 filp
->f_path
.dentry
->d_name
.len
,
2184 filp
->f_path
.dentry
->d_name
.name
);
2193 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2194 * need locks to protect pending reads from racing with truncate.
2196 if (filp
->f_flags
& O_DIRECT
) {
2197 down_read(&inode
->i_alloc_sem
);
2200 ret
= ocfs2_rw_lock(inode
, 0);
2206 /* communicate with ocfs2_dio_end_io */
2207 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2211 * We're fine letting folks race truncates and extending
2212 * writes with read across the cluster, just like they can
2213 * locally. Hence no rw_lock during read.
2215 * Take and drop the meta data lock to update inode fields
2216 * like i_size. This allows the checks down below
2217 * generic_file_aio_read() a chance of actually working.
2219 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_vfsmnt
, &lock_level
);
2224 ocfs2_inode_unlock(inode
, lock_level
);
2226 ret
= generic_file_aio_read(iocb
, iov
, nr_segs
, iocb
->ki_pos
);
2228 mlog(0, "generic_file_aio_read returned -EINVAL\n");
2230 /* buffered aio wouldn't have proper lock coverage today */
2231 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2233 /* see ocfs2_file_aio_write */
2234 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2241 up_read(&inode
->i_alloc_sem
);
2243 ocfs2_rw_unlock(inode
, rw_level
);
2249 const struct inode_operations ocfs2_file_iops
= {
2250 .setattr
= ocfs2_setattr
,
2251 .getattr
= ocfs2_getattr
,
2252 .permission
= ocfs2_permission
,
2253 .setxattr
= generic_setxattr
,
2254 .getxattr
= generic_getxattr
,
2255 .listxattr
= ocfs2_listxattr
,
2256 .removexattr
= generic_removexattr
,
2257 .fallocate
= ocfs2_fallocate
,
2258 .fiemap
= ocfs2_fiemap
,
2261 const struct inode_operations ocfs2_special_file_iops
= {
2262 .setattr
= ocfs2_setattr
,
2263 .getattr
= ocfs2_getattr
,
2264 .permission
= ocfs2_permission
,
2268 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2269 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2271 const struct file_operations ocfs2_fops
= {
2272 .llseek
= generic_file_llseek
,
2273 .read
= do_sync_read
,
2274 .write
= do_sync_write
,
2276 .fsync
= ocfs2_sync_file
,
2277 .release
= ocfs2_file_release
,
2278 .open
= ocfs2_file_open
,
2279 .aio_read
= ocfs2_file_aio_read
,
2280 .aio_write
= ocfs2_file_aio_write
,
2281 .unlocked_ioctl
= ocfs2_ioctl
,
2282 #ifdef CONFIG_COMPAT
2283 .compat_ioctl
= ocfs2_compat_ioctl
,
2286 .flock
= ocfs2_flock
,
2287 .splice_read
= ocfs2_file_splice_read
,
2288 .splice_write
= ocfs2_file_splice_write
,
2291 const struct file_operations ocfs2_dops
= {
2292 .llseek
= generic_file_llseek
,
2293 .read
= generic_read_dir
,
2294 .readdir
= ocfs2_readdir
,
2295 .fsync
= ocfs2_sync_file
,
2296 .release
= ocfs2_dir_release
,
2297 .open
= ocfs2_dir_open
,
2298 .unlocked_ioctl
= ocfs2_ioctl
,
2299 #ifdef CONFIG_COMPAT
2300 .compat_ioctl
= ocfs2_compat_ioctl
,
2303 .flock
= ocfs2_flock
,
2307 * POSIX-lockless variants of our file_operations.
2309 * These will be used if the underlying cluster stack does not support
2310 * posix file locking, if the user passes the "localflocks" mount
2311 * option, or if we have a local-only fs.
2313 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2314 * so we still want it in the case of no stack support for
2315 * plocks. Internally, it will do the right thing when asked to ignore
2318 const struct file_operations ocfs2_fops_no_plocks
= {
2319 .llseek
= generic_file_llseek
,
2320 .read
= do_sync_read
,
2321 .write
= do_sync_write
,
2323 .fsync
= ocfs2_sync_file
,
2324 .release
= ocfs2_file_release
,
2325 .open
= ocfs2_file_open
,
2326 .aio_read
= ocfs2_file_aio_read
,
2327 .aio_write
= ocfs2_file_aio_write
,
2328 .unlocked_ioctl
= ocfs2_ioctl
,
2329 #ifdef CONFIG_COMPAT
2330 .compat_ioctl
= ocfs2_compat_ioctl
,
2332 .flock
= ocfs2_flock
,
2333 .splice_read
= ocfs2_file_splice_read
,
2334 .splice_write
= ocfs2_file_splice_write
,
2337 const struct file_operations ocfs2_dops_no_plocks
= {
2338 .llseek
= generic_file_llseek
,
2339 .read
= generic_read_dir
,
2340 .readdir
= ocfs2_readdir
,
2341 .fsync
= ocfs2_sync_file
,
2342 .release
= ocfs2_dir_release
,
2343 .open
= ocfs2_dir_open
,
2344 .unlocked_ioctl
= ocfs2_ioctl
,
2345 #ifdef CONFIG_COMPAT
2346 .compat_ioctl
= ocfs2_compat_ioctl
,
2348 .flock
= ocfs2_flock
,