2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
26 #include "transaction.h"
30 #define BTRFS_ROOT_TRANS_TAG 0
32 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
34 WARN_ON(transaction
->use_count
== 0);
35 transaction
->use_count
--;
36 if (transaction
->use_count
== 0) {
37 list_del_init(&transaction
->list
);
38 memset(transaction
, 0, sizeof(*transaction
));
39 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
43 static noinline
void switch_commit_root(struct btrfs_root
*root
)
45 free_extent_buffer(root
->commit_root
);
46 root
->commit_root
= btrfs_root_node(root
);
50 * either allocate a new transaction or hop into the existing one
52 static noinline
int join_transaction(struct btrfs_root
*root
)
54 struct btrfs_transaction
*cur_trans
;
55 cur_trans
= root
->fs_info
->running_transaction
;
57 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
,
60 root
->fs_info
->generation
++;
61 cur_trans
->num_writers
= 1;
62 cur_trans
->num_joined
= 0;
63 cur_trans
->transid
= root
->fs_info
->generation
;
64 init_waitqueue_head(&cur_trans
->writer_wait
);
65 init_waitqueue_head(&cur_trans
->commit_wait
);
66 cur_trans
->in_commit
= 0;
67 cur_trans
->blocked
= 0;
68 cur_trans
->use_count
= 1;
69 cur_trans
->commit_done
= 0;
70 cur_trans
->start_time
= get_seconds();
72 cur_trans
->delayed_refs
.root
.rb_node
= NULL
;
73 cur_trans
->delayed_refs
.num_entries
= 0;
74 cur_trans
->delayed_refs
.num_heads_ready
= 0;
75 cur_trans
->delayed_refs
.num_heads
= 0;
76 cur_trans
->delayed_refs
.flushing
= 0;
77 cur_trans
->delayed_refs
.run_delayed_start
= 0;
78 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
80 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
81 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
82 extent_io_tree_init(&cur_trans
->dirty_pages
,
83 root
->fs_info
->btree_inode
->i_mapping
,
85 spin_lock(&root
->fs_info
->new_trans_lock
);
86 root
->fs_info
->running_transaction
= cur_trans
;
87 spin_unlock(&root
->fs_info
->new_trans_lock
);
89 cur_trans
->num_writers
++;
90 cur_trans
->num_joined
++;
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
102 static noinline
int record_root_in_trans(struct btrfs_trans_handle
*trans
,
103 struct btrfs_root
*root
)
105 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
106 WARN_ON(root
== root
->fs_info
->extent_root
);
107 WARN_ON(root
->commit_root
!= root
->node
);
109 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
110 (unsigned long)root
->root_key
.objectid
,
111 BTRFS_ROOT_TRANS_TAG
);
112 root
->last_trans
= trans
->transid
;
113 btrfs_init_reloc_root(trans
, root
);
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
119 struct btrfs_root
*root
)
124 mutex_lock(&root
->fs_info
->trans_mutex
);
125 if (root
->last_trans
== trans
->transid
) {
126 mutex_unlock(&root
->fs_info
->trans_mutex
);
130 record_root_in_trans(trans
, root
);
131 mutex_unlock(&root
->fs_info
->trans_mutex
);
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
139 static void wait_current_trans(struct btrfs_root
*root
)
141 struct btrfs_transaction
*cur_trans
;
143 cur_trans
= root
->fs_info
->running_transaction
;
144 if (cur_trans
&& cur_trans
->blocked
) {
146 cur_trans
->use_count
++;
148 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
149 TASK_UNINTERRUPTIBLE
);
150 if (cur_trans
->blocked
) {
151 mutex_unlock(&root
->fs_info
->trans_mutex
);
153 mutex_lock(&root
->fs_info
->trans_mutex
);
154 finish_wait(&root
->fs_info
->transaction_wait
,
157 finish_wait(&root
->fs_info
->transaction_wait
,
162 put_transaction(cur_trans
);
166 enum btrfs_trans_type
{
172 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
173 int num_blocks
, int type
)
175 struct btrfs_trans_handle
*h
=
176 kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
179 mutex_lock(&root
->fs_info
->trans_mutex
);
180 if (!root
->fs_info
->log_root_recovering
&&
181 ((type
== TRANS_START
&& !root
->fs_info
->open_ioctl_trans
) ||
182 type
== TRANS_USERSPACE
))
183 wait_current_trans(root
);
184 ret
= join_transaction(root
);
187 h
->transid
= root
->fs_info
->running_transaction
->transid
;
188 h
->transaction
= root
->fs_info
->running_transaction
;
189 h
->blocks_reserved
= num_blocks
;
192 h
->alloc_exclude_nr
= 0;
193 h
->alloc_exclude_start
= 0;
194 h
->delayed_ref_updates
= 0;
196 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
197 current
->journal_info
= h
;
199 root
->fs_info
->running_transaction
->use_count
++;
200 record_root_in_trans(h
, root
);
201 mutex_unlock(&root
->fs_info
->trans_mutex
);
205 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
208 return start_transaction(root
, num_blocks
, TRANS_START
);
210 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
,
213 return start_transaction(root
, num_blocks
, TRANS_JOIN
);
216 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*r
,
219 return start_transaction(r
, num_blocks
, TRANS_USERSPACE
);
222 /* wait for a transaction commit to be fully complete */
223 static noinline
int wait_for_commit(struct btrfs_root
*root
,
224 struct btrfs_transaction
*commit
)
227 mutex_lock(&root
->fs_info
->trans_mutex
);
228 while (!commit
->commit_done
) {
229 prepare_to_wait(&commit
->commit_wait
, &wait
,
230 TASK_UNINTERRUPTIBLE
);
231 if (commit
->commit_done
)
233 mutex_unlock(&root
->fs_info
->trans_mutex
);
235 mutex_lock(&root
->fs_info
->trans_mutex
);
237 mutex_unlock(&root
->fs_info
->trans_mutex
);
238 finish_wait(&commit
->commit_wait
, &wait
);
244 * rate limit against the drop_snapshot code. This helps to slow down new
245 * operations if the drop_snapshot code isn't able to keep up.
247 static void throttle_on_drops(struct btrfs_root
*root
)
249 struct btrfs_fs_info
*info
= root
->fs_info
;
250 int harder_count
= 0;
253 if (atomic_read(&info
->throttles
)) {
256 thr
= atomic_read(&info
->throttle_gen
);
259 prepare_to_wait(&info
->transaction_throttle
,
260 &wait
, TASK_UNINTERRUPTIBLE
);
261 if (!atomic_read(&info
->throttles
)) {
262 finish_wait(&info
->transaction_throttle
, &wait
);
266 finish_wait(&info
->transaction_throttle
, &wait
);
267 } while (thr
== atomic_read(&info
->throttle_gen
));
270 if (root
->fs_info
->total_ref_cache_size
> 1 * 1024 * 1024 &&
274 if (root
->fs_info
->total_ref_cache_size
> 5 * 1024 * 1024 &&
278 if (root
->fs_info
->total_ref_cache_size
> 10 * 1024 * 1024 &&
285 void btrfs_throttle(struct btrfs_root
*root
)
287 mutex_lock(&root
->fs_info
->trans_mutex
);
288 if (!root
->fs_info
->open_ioctl_trans
)
289 wait_current_trans(root
);
290 mutex_unlock(&root
->fs_info
->trans_mutex
);
293 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
294 struct btrfs_root
*root
, int throttle
)
296 struct btrfs_transaction
*cur_trans
;
297 struct btrfs_fs_info
*info
= root
->fs_info
;
301 unsigned long cur
= trans
->delayed_ref_updates
;
302 trans
->delayed_ref_updates
= 0;
304 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
305 trans
->delayed_ref_updates
= 0;
308 * do a full flush if the transaction is trying
311 if (trans
->transaction
->delayed_refs
.flushing
)
313 btrfs_run_delayed_refs(trans
, root
, cur
);
320 mutex_lock(&info
->trans_mutex
);
321 cur_trans
= info
->running_transaction
;
322 WARN_ON(cur_trans
!= trans
->transaction
);
323 WARN_ON(cur_trans
->num_writers
< 1);
324 cur_trans
->num_writers
--;
326 if (waitqueue_active(&cur_trans
->writer_wait
))
327 wake_up(&cur_trans
->writer_wait
);
328 put_transaction(cur_trans
);
329 mutex_unlock(&info
->trans_mutex
);
331 if (current
->journal_info
== trans
)
332 current
->journal_info
= NULL
;
333 memset(trans
, 0, sizeof(*trans
));
334 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
339 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
340 struct btrfs_root
*root
)
342 return __btrfs_end_transaction(trans
, root
, 0);
345 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
346 struct btrfs_root
*root
)
348 return __btrfs_end_transaction(trans
, root
, 1);
352 * when btree blocks are allocated, they have some corresponding bits set for
353 * them in one of two extent_io trees. This is used to make sure all of
354 * those extents are sent to disk but does not wait on them
356 int btrfs_write_marked_extents(struct btrfs_root
*root
,
357 struct extent_io_tree
*dirty_pages
)
363 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
369 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
373 while (start
<= end
) {
376 index
= start
>> PAGE_CACHE_SHIFT
;
377 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
378 page
= find_get_page(btree_inode
->i_mapping
, index
);
382 btree_lock_page_hook(page
);
383 if (!page
->mapping
) {
385 page_cache_release(page
);
389 if (PageWriteback(page
)) {
391 wait_on_page_writeback(page
);
394 page_cache_release(page
);
398 err
= write_one_page(page
, 0);
401 page_cache_release(page
);
410 * when btree blocks are allocated, they have some corresponding bits set for
411 * them in one of two extent_io trees. This is used to make sure all of
412 * those extents are on disk for transaction or log commit. We wait
413 * on all the pages and clear them from the dirty pages state tree
415 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
416 struct extent_io_tree
*dirty_pages
)
422 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
428 ret
= find_first_extent_bit(dirty_pages
, 0, &start
, &end
,
433 clear_extent_dirty(dirty_pages
, start
, end
, GFP_NOFS
);
434 while (start
<= end
) {
435 index
= start
>> PAGE_CACHE_SHIFT
;
436 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
437 page
= find_get_page(btree_inode
->i_mapping
, index
);
440 if (PageDirty(page
)) {
441 btree_lock_page_hook(page
);
442 wait_on_page_writeback(page
);
443 err
= write_one_page(page
, 0);
447 wait_on_page_writeback(page
);
448 page_cache_release(page
);
458 * when btree blocks are allocated, they have some corresponding bits set for
459 * them in one of two extent_io trees. This is used to make sure all of
460 * those extents are on disk for transaction or log commit
462 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
463 struct extent_io_tree
*dirty_pages
)
468 ret
= btrfs_write_marked_extents(root
, dirty_pages
);
469 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
);
473 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
474 struct btrfs_root
*root
)
476 if (!trans
|| !trans
->transaction
) {
477 struct inode
*btree_inode
;
478 btree_inode
= root
->fs_info
->btree_inode
;
479 return filemap_write_and_wait(btree_inode
->i_mapping
);
481 return btrfs_write_and_wait_marked_extents(root
,
482 &trans
->transaction
->dirty_pages
);
486 * this is used to update the root pointer in the tree of tree roots.
488 * But, in the case of the extent allocation tree, updating the root
489 * pointer may allocate blocks which may change the root of the extent
492 * So, this loops and repeats and makes sure the cowonly root didn't
493 * change while the root pointer was being updated in the metadata.
495 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
496 struct btrfs_root
*root
)
500 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
502 btrfs_write_dirty_block_groups(trans
, root
);
505 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
506 if (old_root_bytenr
== root
->node
->start
)
509 btrfs_set_root_node(&root
->root_item
, root
->node
);
510 ret
= btrfs_update_root(trans
, tree_root
,
515 ret
= btrfs_write_dirty_block_groups(trans
, root
);
519 if (root
!= root
->fs_info
->extent_root
)
520 switch_commit_root(root
);
526 * update all the cowonly tree roots on disk
528 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
529 struct btrfs_root
*root
)
531 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
532 struct list_head
*next
;
533 struct extent_buffer
*eb
;
536 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
539 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
540 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
541 btrfs_tree_unlock(eb
);
542 free_extent_buffer(eb
);
544 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
547 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
548 next
= fs_info
->dirty_cowonly_roots
.next
;
550 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
552 update_cowonly_root(trans
, root
);
555 down_write(&fs_info
->extent_commit_sem
);
556 switch_commit_root(fs_info
->extent_root
);
557 up_write(&fs_info
->extent_commit_sem
);
563 * dead roots are old snapshots that need to be deleted. This allocates
564 * a dirty root struct and adds it into the list of dead roots that need to
567 int btrfs_add_dead_root(struct btrfs_root
*root
)
569 mutex_lock(&root
->fs_info
->trans_mutex
);
570 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
571 mutex_unlock(&root
->fs_info
->trans_mutex
);
576 * update all the cowonly tree roots on disk
578 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
579 struct btrfs_root
*root
)
581 struct btrfs_root
*gang
[8];
582 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
588 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
591 BTRFS_ROOT_TRANS_TAG
);
594 for (i
= 0; i
< ret
; i
++) {
596 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
597 (unsigned long)root
->root_key
.objectid
,
598 BTRFS_ROOT_TRANS_TAG
);
600 btrfs_free_log(trans
, root
);
601 btrfs_update_reloc_root(trans
, root
);
603 if (root
->commit_root
!= root
->node
) {
604 switch_commit_root(root
);
605 btrfs_set_root_node(&root
->root_item
,
609 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
620 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
621 * otherwise every leaf in the btree is read and defragged.
623 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
625 struct btrfs_fs_info
*info
= root
->fs_info
;
627 struct btrfs_trans_handle
*trans
;
631 if (root
->defrag_running
)
633 trans
= btrfs_start_transaction(root
, 1);
635 root
->defrag_running
= 1;
636 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
637 nr
= trans
->blocks_used
;
638 btrfs_end_transaction(trans
, root
);
639 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
642 trans
= btrfs_start_transaction(root
, 1);
643 if (root
->fs_info
->closing
|| ret
!= -EAGAIN
)
646 root
->defrag_running
= 0;
648 btrfs_end_transaction(trans
, root
);
654 * when dropping snapshots, we generate a ton of delayed refs, and it makes
655 * sense not to join the transaction while it is trying to flush the current
656 * queue of delayed refs out.
658 * This is used by the drop snapshot code only
660 static noinline
int wait_transaction_pre_flush(struct btrfs_fs_info
*info
)
664 mutex_lock(&info
->trans_mutex
);
665 while (info
->running_transaction
&&
666 info
->running_transaction
->delayed_refs
.flushing
) {
667 prepare_to_wait(&info
->transaction_wait
, &wait
,
668 TASK_UNINTERRUPTIBLE
);
669 mutex_unlock(&info
->trans_mutex
);
673 mutex_lock(&info
->trans_mutex
);
674 finish_wait(&info
->transaction_wait
, &wait
);
676 mutex_unlock(&info
->trans_mutex
);
681 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
684 int btrfs_drop_dead_root(struct btrfs_root
*root
)
686 struct btrfs_trans_handle
*trans
;
687 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
693 * we don't want to jump in and create a bunch of
694 * delayed refs if the transaction is starting to close
696 wait_transaction_pre_flush(tree_root
->fs_info
);
697 trans
= btrfs_start_transaction(tree_root
, 1);
700 * we've joined a transaction, make sure it isn't
703 if (trans
->transaction
->delayed_refs
.flushing
) {
704 btrfs_end_transaction(trans
, tree_root
);
708 ret
= btrfs_drop_snapshot(trans
, root
);
712 ret
= btrfs_update_root(trans
, tree_root
,
718 nr
= trans
->blocks_used
;
719 ret
= btrfs_end_transaction(trans
, tree_root
);
722 btrfs_btree_balance_dirty(tree_root
, nr
);
727 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
730 nr
= trans
->blocks_used
;
731 ret
= btrfs_end_transaction(trans
, tree_root
);
734 free_extent_buffer(root
->node
);
735 free_extent_buffer(root
->commit_root
);
738 btrfs_btree_balance_dirty(tree_root
, nr
);
744 * new snapshots need to be created at a very specific time in the
745 * transaction commit. This does the actual creation
747 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
748 struct btrfs_fs_info
*fs_info
,
749 struct btrfs_pending_snapshot
*pending
)
751 struct btrfs_key key
;
752 struct btrfs_root_item
*new_root_item
;
753 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
754 struct btrfs_root
*root
= pending
->root
;
755 struct extent_buffer
*tmp
;
756 struct extent_buffer
*old
;
760 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
761 if (!new_root_item
) {
765 ret
= btrfs_find_free_objectid(trans
, tree_root
, 0, &objectid
);
769 record_root_in_trans(trans
, root
);
770 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
771 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
773 key
.objectid
= objectid
;
774 /* record when the snapshot was created in key.offset */
775 key
.offset
= trans
->transid
;
776 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
778 old
= btrfs_lock_root_node(root
);
779 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
780 btrfs_set_lock_blocking(old
);
782 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
783 btrfs_tree_unlock(old
);
784 free_extent_buffer(old
);
786 btrfs_set_root_node(new_root_item
, tmp
);
787 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
789 btrfs_tree_unlock(tmp
);
790 free_extent_buffer(tmp
);
794 key
.offset
= (u64
)-1;
795 memcpy(&pending
->root_key
, &key
, sizeof(key
));
797 kfree(new_root_item
);
798 btrfs_unreserve_metadata_space(root
, 6);
802 static noinline
int finish_pending_snapshot(struct btrfs_fs_info
*fs_info
,
803 struct btrfs_pending_snapshot
*pending
)
808 struct btrfs_trans_handle
*trans
;
809 struct inode
*parent_inode
;
811 struct btrfs_root
*parent_root
;
813 parent_inode
= pending
->dentry
->d_parent
->d_inode
;
814 parent_root
= BTRFS_I(parent_inode
)->root
;
815 trans
= btrfs_join_transaction(parent_root
, 1);
818 * insert the directory item
820 namelen
= strlen(pending
->name
);
821 ret
= btrfs_set_inode_index(parent_inode
, &index
);
822 ret
= btrfs_insert_dir_item(trans
, parent_root
,
823 pending
->name
, namelen
,
825 &pending
->root_key
, BTRFS_FT_DIR
, index
);
830 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+ namelen
* 2);
831 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
834 ret
= btrfs_add_root_ref(trans
, parent_root
->fs_info
->tree_root
,
835 pending
->root_key
.objectid
,
836 parent_root
->root_key
.objectid
,
837 parent_inode
->i_ino
, index
, pending
->name
,
842 inode
= btrfs_lookup_dentry(parent_inode
, pending
->dentry
);
843 d_instantiate(pending
->dentry
, inode
);
845 btrfs_end_transaction(trans
, fs_info
->fs_root
);
850 * create all the snapshots we've scheduled for creation
852 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
853 struct btrfs_fs_info
*fs_info
)
855 struct btrfs_pending_snapshot
*pending
;
856 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
859 list_for_each_entry(pending
, head
, list
) {
860 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
866 static noinline
int finish_pending_snapshots(struct btrfs_trans_handle
*trans
,
867 struct btrfs_fs_info
*fs_info
)
869 struct btrfs_pending_snapshot
*pending
;
870 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
873 while (!list_empty(head
)) {
874 pending
= list_entry(head
->next
,
875 struct btrfs_pending_snapshot
, list
);
876 ret
= finish_pending_snapshot(fs_info
, pending
);
878 list_del(&pending
->list
);
879 kfree(pending
->name
);
885 static void update_super_roots(struct btrfs_root
*root
)
887 struct btrfs_root_item
*root_item
;
888 struct btrfs_super_block
*super
;
890 super
= &root
->fs_info
->super_copy
;
892 root_item
= &root
->fs_info
->chunk_root
->root_item
;
893 super
->chunk_root
= root_item
->bytenr
;
894 super
->chunk_root_generation
= root_item
->generation
;
895 super
->chunk_root_level
= root_item
->level
;
897 root_item
= &root
->fs_info
->tree_root
->root_item
;
898 super
->root
= root_item
->bytenr
;
899 super
->generation
= root_item
->generation
;
900 super
->root_level
= root_item
->level
;
903 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
906 spin_lock(&info
->new_trans_lock
);
907 if (info
->running_transaction
)
908 ret
= info
->running_transaction
->in_commit
;
909 spin_unlock(&info
->new_trans_lock
);
913 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
914 struct btrfs_root
*root
)
916 unsigned long joined
= 0;
917 unsigned long timeout
= 1;
918 struct btrfs_transaction
*cur_trans
;
919 struct btrfs_transaction
*prev_trans
= NULL
;
923 unsigned long now
= get_seconds();
924 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
926 btrfs_run_ordered_operations(root
, 0);
928 /* make a pass through all the delayed refs we have so far
929 * any runnings procs may add more while we are here
931 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
934 cur_trans
= trans
->transaction
;
936 * set the flushing flag so procs in this transaction have to
937 * start sending their work down.
939 cur_trans
->delayed_refs
.flushing
= 1;
941 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
944 mutex_lock(&root
->fs_info
->trans_mutex
);
945 if (cur_trans
->in_commit
) {
946 cur_trans
->use_count
++;
947 mutex_unlock(&root
->fs_info
->trans_mutex
);
948 btrfs_end_transaction(trans
, root
);
950 ret
= wait_for_commit(root
, cur_trans
);
953 mutex_lock(&root
->fs_info
->trans_mutex
);
954 put_transaction(cur_trans
);
955 mutex_unlock(&root
->fs_info
->trans_mutex
);
960 trans
->transaction
->in_commit
= 1;
961 trans
->transaction
->blocked
= 1;
962 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
963 prev_trans
= list_entry(cur_trans
->list
.prev
,
964 struct btrfs_transaction
, list
);
965 if (!prev_trans
->commit_done
) {
966 prev_trans
->use_count
++;
967 mutex_unlock(&root
->fs_info
->trans_mutex
);
969 wait_for_commit(root
, prev_trans
);
971 mutex_lock(&root
->fs_info
->trans_mutex
);
972 put_transaction(prev_trans
);
976 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
980 int snap_pending
= 0;
981 joined
= cur_trans
->num_joined
;
982 if (!list_empty(&trans
->transaction
->pending_snapshots
))
985 WARN_ON(cur_trans
!= trans
->transaction
);
986 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
987 TASK_UNINTERRUPTIBLE
);
989 if (cur_trans
->num_writers
> 1)
990 timeout
= MAX_SCHEDULE_TIMEOUT
;
991 else if (should_grow
)
994 mutex_unlock(&root
->fs_info
->trans_mutex
);
996 if (flush_on_commit
) {
997 btrfs_start_delalloc_inodes(root
);
998 ret
= btrfs_wait_ordered_extents(root
, 0);
1000 } else if (snap_pending
) {
1001 ret
= btrfs_wait_ordered_extents(root
, 1);
1006 * rename don't use btrfs_join_transaction, so, once we
1007 * set the transaction to blocked above, we aren't going
1008 * to get any new ordered operations. We can safely run
1009 * it here and no for sure that nothing new will be added
1012 btrfs_run_ordered_operations(root
, 1);
1015 if (cur_trans
->num_writers
> 1 || should_grow
)
1016 schedule_timeout(timeout
);
1018 mutex_lock(&root
->fs_info
->trans_mutex
);
1019 finish_wait(&cur_trans
->writer_wait
, &wait
);
1020 } while (cur_trans
->num_writers
> 1 ||
1021 (should_grow
&& cur_trans
->num_joined
!= joined
));
1023 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1026 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1029 WARN_ON(cur_trans
!= trans
->transaction
);
1031 /* btrfs_commit_tree_roots is responsible for getting the
1032 * various roots consistent with each other. Every pointer
1033 * in the tree of tree roots has to point to the most up to date
1034 * root for every subvolume and other tree. So, we have to keep
1035 * the tree logging code from jumping in and changing any
1038 * At this point in the commit, there can't be any tree-log
1039 * writers, but a little lower down we drop the trans mutex
1040 * and let new people in. By holding the tree_log_mutex
1041 * from now until after the super is written, we avoid races
1042 * with the tree-log code.
1044 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1046 ret
= commit_fs_roots(trans
, root
);
1049 /* commit_fs_roots gets rid of all the tree log roots, it is now
1050 * safe to free the root of tree log roots
1052 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1054 ret
= commit_cowonly_roots(trans
, root
);
1057 btrfs_prepare_extent_commit(trans
, root
);
1059 cur_trans
= root
->fs_info
->running_transaction
;
1060 spin_lock(&root
->fs_info
->new_trans_lock
);
1061 root
->fs_info
->running_transaction
= NULL
;
1062 spin_unlock(&root
->fs_info
->new_trans_lock
);
1064 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1065 root
->fs_info
->tree_root
->node
);
1066 switch_commit_root(root
->fs_info
->tree_root
);
1068 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1069 root
->fs_info
->chunk_root
->node
);
1070 switch_commit_root(root
->fs_info
->chunk_root
);
1072 update_super_roots(root
);
1074 if (!root
->fs_info
->log_root_recovering
) {
1075 btrfs_set_super_log_root(&root
->fs_info
->super_copy
, 0);
1076 btrfs_set_super_log_root_level(&root
->fs_info
->super_copy
, 0);
1079 memcpy(&root
->fs_info
->super_for_commit
, &root
->fs_info
->super_copy
,
1080 sizeof(root
->fs_info
->super_copy
));
1082 trans
->transaction
->blocked
= 0;
1084 wake_up(&root
->fs_info
->transaction_wait
);
1086 mutex_unlock(&root
->fs_info
->trans_mutex
);
1087 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1089 write_ctree_super(trans
, root
, 0);
1092 * the super is written, we can safely allow the tree-loggers
1093 * to go about their business
1095 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1097 btrfs_finish_extent_commit(trans
, root
);
1099 /* do the directory inserts of any pending snapshot creations */
1100 finish_pending_snapshots(trans
, root
->fs_info
);
1102 mutex_lock(&root
->fs_info
->trans_mutex
);
1104 cur_trans
->commit_done
= 1;
1106 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1108 wake_up(&cur_trans
->commit_wait
);
1110 put_transaction(cur_trans
);
1111 put_transaction(cur_trans
);
1113 mutex_unlock(&root
->fs_info
->trans_mutex
);
1115 if (current
->journal_info
== trans
)
1116 current
->journal_info
= NULL
;
1118 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1123 * interface function to delete all the snapshots we have scheduled for deletion
1125 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1128 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1130 mutex_lock(&fs_info
->trans_mutex
);
1131 list_splice_init(&fs_info
->dead_roots
, &list
);
1132 mutex_unlock(&fs_info
->trans_mutex
);
1134 while (!list_empty(&list
)) {
1135 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1136 list_del(&root
->root_list
);
1138 if (btrfs_header_backref_rev(root
->node
) <
1139 BTRFS_MIXED_BACKREF_REV
)
1140 btrfs_drop_snapshot(root
, 0);
1142 btrfs_drop_snapshot(root
, 1);