2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
85 #include <linux/net_tstamp.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
100 #include "fsl_pq_mdio.h"
102 #define TX_TIMEOUT (1*HZ)
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
106 const char gfar_driver_name
[] = "Gianfar Ethernet";
107 const char gfar_driver_version
[] = "1.3";
109 static int gfar_enet_open(struct net_device
*dev
);
110 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
111 static void gfar_reset_task(struct work_struct
*work
);
112 static void gfar_timeout(struct net_device
*dev
);
113 static int gfar_close(struct net_device
*dev
);
114 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
115 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
116 struct sk_buff
*skb
);
117 static int gfar_set_mac_address(struct net_device
*dev
);
118 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
119 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
120 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
121 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
122 static void adjust_link(struct net_device
*dev
);
123 static void init_registers(struct net_device
*dev
);
124 static int init_phy(struct net_device
*dev
);
125 static int gfar_probe(struct platform_device
*ofdev
,
126 const struct of_device_id
*match
);
127 static int gfar_remove(struct platform_device
*ofdev
);
128 static void free_skb_resources(struct gfar_private
*priv
);
129 static void gfar_set_multi(struct net_device
*dev
);
130 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
131 static void gfar_configure_serdes(struct net_device
*dev
);
132 static int gfar_poll(struct napi_struct
*napi
, int budget
);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device
*dev
);
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
138 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
140 static void gfar_vlan_rx_register(struct net_device
*netdev
,
141 struct vlan_group
*grp
);
142 void gfar_halt(struct net_device
*dev
);
143 static void gfar_halt_nodisable(struct net_device
*dev
);
144 void gfar_start(struct net_device
*dev
);
145 static void gfar_clear_exact_match(struct net_device
*dev
);
146 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
148 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
154 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
161 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
162 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
163 lstatus
|= BD_LFLAG(RXBD_WRAP
);
167 bdp
->lstatus
= lstatus
;
170 static int gfar_init_bds(struct net_device
*ndev
)
172 struct gfar_private
*priv
= netdev_priv(ndev
);
173 struct gfar_priv_tx_q
*tx_queue
= NULL
;
174 struct gfar_priv_rx_q
*rx_queue
= NULL
;
179 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
180 tx_queue
= priv
->tx_queue
[i
];
181 /* Initialize some variables in our dev structure */
182 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
183 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
184 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
185 tx_queue
->skb_curtx
= 0;
186 tx_queue
->skb_dirtytx
= 0;
188 /* Initialize Transmit Descriptor Ring */
189 txbdp
= tx_queue
->tx_bd_base
;
190 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
196 /* Set the last descriptor in the ring to indicate wrap */
198 txbdp
->status
|= TXBD_WRAP
;
201 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
202 rx_queue
= priv
->rx_queue
[i
];
203 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
204 rx_queue
->skb_currx
= 0;
205 rxbdp
= rx_queue
->rx_bd_base
;
207 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
208 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
211 gfar_init_rxbdp(rx_queue
, rxbdp
,
214 skb
= gfar_new_skb(ndev
);
216 pr_err("%s: Can't allocate RX buffers\n",
218 goto err_rxalloc_fail
;
220 rx_queue
->rx_skbuff
[j
] = skb
;
222 gfar_new_rxbdp(rx_queue
, rxbdp
, skb
);
233 free_skb_resources(priv
);
237 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
242 struct gfar_private
*priv
= netdev_priv(ndev
);
243 struct device
*dev
= &priv
->ofdev
->dev
;
244 struct gfar_priv_tx_q
*tx_queue
= NULL
;
245 struct gfar_priv_rx_q
*rx_queue
= NULL
;
247 priv
->total_tx_ring_size
= 0;
248 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
249 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
251 priv
->total_rx_ring_size
= 0;
252 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
253 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
255 /* Allocate memory for the buffer descriptors */
256 vaddr
= dma_alloc_coherent(dev
,
257 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
258 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
261 if (netif_msg_ifup(priv
))
262 pr_err("%s: Could not allocate buffer descriptors!\n",
267 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
268 tx_queue
= priv
->tx_queue
[i
];
269 tx_queue
->tx_bd_base
= (struct txbd8
*) vaddr
;
270 tx_queue
->tx_bd_dma_base
= addr
;
271 tx_queue
->dev
= ndev
;
272 /* enet DMA only understands physical addresses */
273 addr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
274 vaddr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
277 /* Start the rx descriptor ring where the tx ring leaves off */
278 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
279 rx_queue
= priv
->rx_queue
[i
];
280 rx_queue
->rx_bd_base
= (struct rxbd8
*) vaddr
;
281 rx_queue
->rx_bd_dma_base
= addr
;
282 rx_queue
->dev
= ndev
;
283 addr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
284 vaddr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
287 /* Setup the skbuff rings */
288 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
289 tx_queue
= priv
->tx_queue
[i
];
290 tx_queue
->tx_skbuff
= kmalloc(sizeof(*tx_queue
->tx_skbuff
) *
291 tx_queue
->tx_ring_size
, GFP_KERNEL
);
292 if (!tx_queue
->tx_skbuff
) {
293 if (netif_msg_ifup(priv
))
294 pr_err("%s: Could not allocate tx_skbuff\n",
299 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
300 tx_queue
->tx_skbuff
[k
] = NULL
;
303 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
304 rx_queue
= priv
->rx_queue
[i
];
305 rx_queue
->rx_skbuff
= kmalloc(sizeof(*rx_queue
->rx_skbuff
) *
306 rx_queue
->rx_ring_size
, GFP_KERNEL
);
308 if (!rx_queue
->rx_skbuff
) {
309 if (netif_msg_ifup(priv
))
310 pr_err("%s: Could not allocate rx_skbuff\n",
315 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
316 rx_queue
->rx_skbuff
[j
] = NULL
;
319 if (gfar_init_bds(ndev
))
325 free_skb_resources(priv
);
329 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
331 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
335 baddr
= ®s
->tbase0
;
336 for(i
= 0; i
< priv
->num_tx_queues
; i
++) {
337 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
341 baddr
= ®s
->rbase0
;
342 for(i
= 0; i
< priv
->num_rx_queues
; i
++) {
343 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
348 static void gfar_init_mac(struct net_device
*ndev
)
350 struct gfar_private
*priv
= netdev_priv(ndev
);
351 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
356 /* write the tx/rx base registers */
357 gfar_init_tx_rx_base(priv
);
359 /* Configure the coalescing support */
360 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
362 if (priv
->rx_filer_enable
) {
363 rctrl
|= RCTRL_FILREN
;
364 /* Program the RIR0 reg with the required distribution */
365 gfar_write(®s
->rir0
, DEFAULT_RIR0
);
368 if (priv
->rx_csum_enable
)
369 rctrl
|= RCTRL_CHECKSUMMING
;
371 if (priv
->extended_hash
) {
372 rctrl
|= RCTRL_EXTHASH
;
374 gfar_clear_exact_match(ndev
);
379 rctrl
&= ~RCTRL_PAL_MASK
;
380 rctrl
|= RCTRL_PADDING(priv
->padding
);
383 /* Insert receive time stamps into padding alignment bytes */
384 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
) {
385 rctrl
&= ~RCTRL_PAL_MASK
;
386 rctrl
|= RCTRL_PADDING(8);
390 /* Enable HW time stamping if requested from user space */
391 if (priv
->hwts_rx_en
)
392 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
;
394 /* keep vlan related bits if it's enabled */
396 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
397 tctrl
|= TCTRL_VLINS
;
400 /* Init rctrl based on our settings */
401 gfar_write(®s
->rctrl
, rctrl
);
403 if (ndev
->features
& NETIF_F_IP_CSUM
)
404 tctrl
|= TCTRL_INIT_CSUM
;
406 tctrl
|= TCTRL_TXSCHED_PRIO
;
408 gfar_write(®s
->tctrl
, tctrl
);
410 /* Set the extraction length and index */
411 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
412 ATTRELI_EI(priv
->rx_stash_index
);
414 gfar_write(®s
->attreli
, attrs
);
416 /* Start with defaults, and add stashing or locking
417 * depending on the approprate variables */
418 attrs
= ATTR_INIT_SETTINGS
;
420 if (priv
->bd_stash_en
)
421 attrs
|= ATTR_BDSTASH
;
423 if (priv
->rx_stash_size
!= 0)
424 attrs
|= ATTR_BUFSTASH
;
426 gfar_write(®s
->attr
, attrs
);
428 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
429 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
430 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
433 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
435 struct gfar_private
*priv
= netdev_priv(dev
);
436 struct netdev_queue
*txq
;
437 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
438 unsigned long tx_packets
= 0, tx_bytes
= 0;
441 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
442 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
443 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
444 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
447 dev
->stats
.rx_packets
= rx_packets
;
448 dev
->stats
.rx_bytes
= rx_bytes
;
449 dev
->stats
.rx_dropped
= rx_dropped
;
451 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
452 txq
= netdev_get_tx_queue(dev
, i
);
453 tx_bytes
+= txq
->tx_bytes
;
454 tx_packets
+= txq
->tx_packets
;
457 dev
->stats
.tx_bytes
= tx_bytes
;
458 dev
->stats
.tx_packets
= tx_packets
;
463 static const struct net_device_ops gfar_netdev_ops
= {
464 .ndo_open
= gfar_enet_open
,
465 .ndo_start_xmit
= gfar_start_xmit
,
466 .ndo_stop
= gfar_close
,
467 .ndo_change_mtu
= gfar_change_mtu
,
468 .ndo_set_multicast_list
= gfar_set_multi
,
469 .ndo_tx_timeout
= gfar_timeout
,
470 .ndo_do_ioctl
= gfar_ioctl
,
471 .ndo_get_stats
= gfar_get_stats
,
472 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
473 .ndo_set_mac_address
= eth_mac_addr
,
474 .ndo_validate_addr
= eth_validate_addr
,
475 #ifdef CONFIG_NET_POLL_CONTROLLER
476 .ndo_poll_controller
= gfar_netpoll
,
480 unsigned int ftp_rqfpr
[MAX_FILER_IDX
+ 1];
481 unsigned int ftp_rqfcr
[MAX_FILER_IDX
+ 1];
483 void lock_rx_qs(struct gfar_private
*priv
)
487 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
488 spin_lock(&priv
->rx_queue
[i
]->rxlock
);
491 void lock_tx_qs(struct gfar_private
*priv
)
495 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
496 spin_lock(&priv
->tx_queue
[i
]->txlock
);
499 void unlock_rx_qs(struct gfar_private
*priv
)
503 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
504 spin_unlock(&priv
->rx_queue
[i
]->rxlock
);
507 void unlock_tx_qs(struct gfar_private
*priv
)
511 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
512 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
515 /* Returns 1 if incoming frames use an FCB */
516 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
518 return priv
->vlgrp
|| priv
->rx_csum_enable
||
519 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
);
522 static void free_tx_pointers(struct gfar_private
*priv
)
526 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
527 kfree(priv
->tx_queue
[i
]);
530 static void free_rx_pointers(struct gfar_private
*priv
)
534 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
535 kfree(priv
->rx_queue
[i
]);
538 static void unmap_group_regs(struct gfar_private
*priv
)
542 for (i
= 0; i
< MAXGROUPS
; i
++)
543 if (priv
->gfargrp
[i
].regs
)
544 iounmap(priv
->gfargrp
[i
].regs
);
547 static void disable_napi(struct gfar_private
*priv
)
551 for (i
= 0; i
< priv
->num_grps
; i
++)
552 napi_disable(&priv
->gfargrp
[i
].napi
);
555 static void enable_napi(struct gfar_private
*priv
)
559 for (i
= 0; i
< priv
->num_grps
; i
++)
560 napi_enable(&priv
->gfargrp
[i
].napi
);
563 static int gfar_parse_group(struct device_node
*np
,
564 struct gfar_private
*priv
, const char *model
)
568 priv
->gfargrp
[priv
->num_grps
].regs
= of_iomap(np
, 0);
569 if (!priv
->gfargrp
[priv
->num_grps
].regs
)
572 priv
->gfargrp
[priv
->num_grps
].interruptTransmit
=
573 irq_of_parse_and_map(np
, 0);
575 /* If we aren't the FEC we have multiple interrupts */
576 if (model
&& strcasecmp(model
, "FEC")) {
577 priv
->gfargrp
[priv
->num_grps
].interruptReceive
=
578 irq_of_parse_and_map(np
, 1);
579 priv
->gfargrp
[priv
->num_grps
].interruptError
=
580 irq_of_parse_and_map(np
,2);
581 if (priv
->gfargrp
[priv
->num_grps
].interruptTransmit
== NO_IRQ
||
582 priv
->gfargrp
[priv
->num_grps
].interruptReceive
== NO_IRQ
||
583 priv
->gfargrp
[priv
->num_grps
].interruptError
== NO_IRQ
)
587 priv
->gfargrp
[priv
->num_grps
].grp_id
= priv
->num_grps
;
588 priv
->gfargrp
[priv
->num_grps
].priv
= priv
;
589 spin_lock_init(&priv
->gfargrp
[priv
->num_grps
].grplock
);
590 if(priv
->mode
== MQ_MG_MODE
) {
591 queue_mask
= (u32
*)of_get_property(np
,
592 "fsl,rx-bit-map", NULL
);
593 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
=
594 queue_mask
? *queue_mask
:(DEFAULT_MAPPING
>> priv
->num_grps
);
595 queue_mask
= (u32
*)of_get_property(np
,
596 "fsl,tx-bit-map", NULL
);
597 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
=
598 queue_mask
? *queue_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
600 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
= 0xFF;
601 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
= 0xFF;
608 static int gfar_of_init(struct platform_device
*ofdev
, struct net_device
**pdev
)
612 const void *mac_addr
;
614 struct net_device
*dev
= NULL
;
615 struct gfar_private
*priv
= NULL
;
616 struct device_node
*np
= ofdev
->dev
.of_node
;
617 struct device_node
*child
= NULL
;
619 const u32
*stash_len
;
620 const u32
*stash_idx
;
621 unsigned int num_tx_qs
, num_rx_qs
;
622 u32
*tx_queues
, *rx_queues
;
624 if (!np
|| !of_device_is_available(np
))
627 /* parse the num of tx and rx queues */
628 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
629 num_tx_qs
= tx_queues
? *tx_queues
: 1;
631 if (num_tx_qs
> MAX_TX_QS
) {
632 printk(KERN_ERR
"num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
633 num_tx_qs
, MAX_TX_QS
);
634 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
638 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
639 num_rx_qs
= rx_queues
? *rx_queues
: 1;
641 if (num_rx_qs
> MAX_RX_QS
) {
642 printk(KERN_ERR
"num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
643 num_tx_qs
, MAX_TX_QS
);
644 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
648 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
653 priv
= netdev_priv(dev
);
654 priv
->node
= ofdev
->dev
.of_node
;
657 priv
->num_tx_queues
= num_tx_qs
;
658 netif_set_real_num_rx_queues(dev
, num_rx_qs
);
659 priv
->num_rx_queues
= num_rx_qs
;
660 priv
->num_grps
= 0x0;
662 model
= of_get_property(np
, "model", NULL
);
664 for (i
= 0; i
< MAXGROUPS
; i
++)
665 priv
->gfargrp
[i
].regs
= NULL
;
667 /* Parse and initialize group specific information */
668 if (of_device_is_compatible(np
, "fsl,etsec2")) {
669 priv
->mode
= MQ_MG_MODE
;
670 for_each_child_of_node(np
, child
) {
671 err
= gfar_parse_group(child
, priv
, model
);
676 priv
->mode
= SQ_SG_MODE
;
677 err
= gfar_parse_group(np
, priv
, model
);
682 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
683 priv
->tx_queue
[i
] = NULL
;
684 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
685 priv
->rx_queue
[i
] = NULL
;
687 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
688 priv
->tx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_tx_q
),
690 if (!priv
->tx_queue
[i
]) {
692 goto tx_alloc_failed
;
694 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
695 priv
->tx_queue
[i
]->qindex
= i
;
696 priv
->tx_queue
[i
]->dev
= dev
;
697 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
700 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
701 priv
->rx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_rx_q
),
703 if (!priv
->rx_queue
[i
]) {
705 goto rx_alloc_failed
;
707 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
708 priv
->rx_queue
[i
]->qindex
= i
;
709 priv
->rx_queue
[i
]->dev
= dev
;
710 spin_lock_init(&(priv
->rx_queue
[i
]->rxlock
));
714 stash
= of_get_property(np
, "bd-stash", NULL
);
717 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
718 priv
->bd_stash_en
= 1;
721 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
724 priv
->rx_stash_size
= *stash_len
;
726 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
729 priv
->rx_stash_index
= *stash_idx
;
731 if (stash_len
|| stash_idx
)
732 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
734 mac_addr
= of_get_mac_address(np
);
736 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
738 if (model
&& !strcasecmp(model
, "TSEC"))
740 FSL_GIANFAR_DEV_HAS_GIGABIT
|
741 FSL_GIANFAR_DEV_HAS_COALESCE
|
742 FSL_GIANFAR_DEV_HAS_RMON
|
743 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
744 if (model
&& !strcasecmp(model
, "eTSEC"))
746 FSL_GIANFAR_DEV_HAS_GIGABIT
|
747 FSL_GIANFAR_DEV_HAS_COALESCE
|
748 FSL_GIANFAR_DEV_HAS_RMON
|
749 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
750 FSL_GIANFAR_DEV_HAS_PADDING
|
751 FSL_GIANFAR_DEV_HAS_CSUM
|
752 FSL_GIANFAR_DEV_HAS_VLAN
|
753 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
754 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
|
755 FSL_GIANFAR_DEV_HAS_TIMER
;
757 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
759 /* We only care about rgmii-id. The rest are autodetected */
760 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
761 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
763 priv
->interface
= PHY_INTERFACE_MODE_MII
;
765 if (of_get_property(np
, "fsl,magic-packet", NULL
))
766 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
768 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
770 /* Find the TBI PHY. If it's not there, we don't support SGMII */
771 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
776 free_rx_pointers(priv
);
778 free_tx_pointers(priv
);
780 unmap_group_regs(priv
);
785 static int gfar_hwtstamp_ioctl(struct net_device
*netdev
,
786 struct ifreq
*ifr
, int cmd
)
788 struct hwtstamp_config config
;
789 struct gfar_private
*priv
= netdev_priv(netdev
);
791 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
794 /* reserved for future extensions */
798 switch (config
.tx_type
) {
799 case HWTSTAMP_TX_OFF
:
800 priv
->hwts_tx_en
= 0;
803 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
805 priv
->hwts_tx_en
= 1;
811 switch (config
.rx_filter
) {
812 case HWTSTAMP_FILTER_NONE
:
813 if (priv
->hwts_rx_en
) {
815 priv
->hwts_rx_en
= 0;
816 startup_gfar(netdev
);
820 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
822 if (!priv
->hwts_rx_en
) {
824 priv
->hwts_rx_en
= 1;
825 startup_gfar(netdev
);
827 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
831 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
835 /* Ioctl MII Interface */
836 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
838 struct gfar_private
*priv
= netdev_priv(dev
);
840 if (!netif_running(dev
))
843 if (cmd
== SIOCSHWTSTAMP
)
844 return gfar_hwtstamp_ioctl(dev
, rq
, cmd
);
849 return phy_mii_ioctl(priv
->phydev
, rq
, cmd
);
852 static unsigned int reverse_bitmap(unsigned int bit_map
, unsigned int max_qs
)
854 unsigned int new_bit_map
= 0x0;
855 int mask
= 0x1 << (max_qs
- 1), i
;
856 for (i
= 0; i
< max_qs
; i
++) {
858 new_bit_map
= new_bit_map
+ (1 << i
);
864 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
867 u32 rqfpr
= FPR_FILER_MASK
;
871 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
872 ftp_rqfpr
[rqfar
] = rqfpr
;
873 ftp_rqfcr
[rqfar
] = rqfcr
;
874 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
877 rqfcr
= RQFCR_CMP_NOMATCH
;
878 ftp_rqfpr
[rqfar
] = rqfpr
;
879 ftp_rqfcr
[rqfar
] = rqfcr
;
880 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
883 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
885 ftp_rqfcr
[rqfar
] = rqfcr
;
886 ftp_rqfpr
[rqfar
] = rqfpr
;
887 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
890 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
892 ftp_rqfcr
[rqfar
] = rqfcr
;
893 ftp_rqfpr
[rqfar
] = rqfpr
;
894 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
899 static void gfar_init_filer_table(struct gfar_private
*priv
)
902 u32 rqfar
= MAX_FILER_IDX
;
904 u32 rqfpr
= FPR_FILER_MASK
;
907 rqfcr
= RQFCR_CMP_MATCH
;
908 ftp_rqfcr
[rqfar
] = rqfcr
;
909 ftp_rqfpr
[rqfar
] = rqfpr
;
910 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
912 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
913 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
914 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
915 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
916 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
917 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
919 /* cur_filer_idx indicated the first non-masked rule */
920 priv
->cur_filer_idx
= rqfar
;
922 /* Rest are masked rules */
923 rqfcr
= RQFCR_CMP_NOMATCH
;
924 for (i
= 0; i
< rqfar
; i
++) {
925 ftp_rqfcr
[i
] = rqfcr
;
926 ftp_rqfpr
[i
] = rqfpr
;
927 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
931 static void gfar_detect_errata(struct gfar_private
*priv
)
933 struct device
*dev
= &priv
->ofdev
->dev
;
934 unsigned int pvr
= mfspr(SPRN_PVR
);
935 unsigned int svr
= mfspr(SPRN_SVR
);
936 unsigned int mod
= (svr
>> 16) & 0xfff6; /* w/o E suffix */
937 unsigned int rev
= svr
& 0xffff;
939 /* MPC8313 Rev 2.0 and higher; All MPC837x */
940 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
>= 0x0020) ||
941 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
942 priv
->errata
|= GFAR_ERRATA_74
;
944 /* MPC8313 and MPC837x all rev */
945 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
946 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
947 priv
->errata
|= GFAR_ERRATA_76
;
949 /* MPC8313 and MPC837x all rev */
950 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
951 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
952 priv
->errata
|= GFAR_ERRATA_A002
;
955 dev_info(dev
, "enabled errata workarounds, flags: 0x%x\n",
959 /* Set up the ethernet device structure, private data,
960 * and anything else we need before we start */
961 static int gfar_probe(struct platform_device
*ofdev
,
962 const struct of_device_id
*match
)
965 struct net_device
*dev
= NULL
;
966 struct gfar_private
*priv
= NULL
;
967 struct gfar __iomem
*regs
= NULL
;
968 int err
= 0, i
, grp_idx
= 0;
970 u32 rstat
= 0, tstat
= 0, rqueue
= 0, tqueue
= 0;
974 err
= gfar_of_init(ofdev
, &dev
);
979 priv
= netdev_priv(dev
);
982 priv
->node
= ofdev
->dev
.of_node
;
983 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
985 spin_lock_init(&priv
->bflock
);
986 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
988 dev_set_drvdata(&ofdev
->dev
, priv
);
989 regs
= priv
->gfargrp
[0].regs
;
991 gfar_detect_errata(priv
);
993 /* Stop the DMA engine now, in case it was running before */
994 /* (The firmware could have used it, and left it running). */
997 /* Reset MAC layer */
998 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
1000 /* We need to delay at least 3 TX clocks */
1003 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
1004 gfar_write(®s
->maccfg1
, tempval
);
1006 /* Initialize MACCFG2. */
1007 tempval
= MACCFG2_INIT_SETTINGS
;
1008 if (gfar_has_errata(priv
, GFAR_ERRATA_74
))
1009 tempval
|= MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
;
1010 gfar_write(®s
->maccfg2
, tempval
);
1012 /* Initialize ECNTRL */
1013 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
1015 /* Set the dev->base_addr to the gfar reg region */
1016 dev
->base_addr
= (unsigned long) regs
;
1018 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
1020 /* Fill in the dev structure */
1021 dev
->watchdog_timeo
= TX_TIMEOUT
;
1023 dev
->netdev_ops
= &gfar_netdev_ops
;
1024 dev
->ethtool_ops
= &gfar_ethtool_ops
;
1026 /* Register for napi ...We are registering NAPI for each grp */
1027 for (i
= 0; i
< priv
->num_grps
; i
++)
1028 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
1030 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
1031 priv
->rx_csum_enable
= 1;
1032 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
1034 priv
->rx_csum_enable
= 0;
1038 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
1039 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1041 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
1042 priv
->extended_hash
= 1;
1043 priv
->hash_width
= 9;
1045 priv
->hash_regs
[0] = ®s
->igaddr0
;
1046 priv
->hash_regs
[1] = ®s
->igaddr1
;
1047 priv
->hash_regs
[2] = ®s
->igaddr2
;
1048 priv
->hash_regs
[3] = ®s
->igaddr3
;
1049 priv
->hash_regs
[4] = ®s
->igaddr4
;
1050 priv
->hash_regs
[5] = ®s
->igaddr5
;
1051 priv
->hash_regs
[6] = ®s
->igaddr6
;
1052 priv
->hash_regs
[7] = ®s
->igaddr7
;
1053 priv
->hash_regs
[8] = ®s
->gaddr0
;
1054 priv
->hash_regs
[9] = ®s
->gaddr1
;
1055 priv
->hash_regs
[10] = ®s
->gaddr2
;
1056 priv
->hash_regs
[11] = ®s
->gaddr3
;
1057 priv
->hash_regs
[12] = ®s
->gaddr4
;
1058 priv
->hash_regs
[13] = ®s
->gaddr5
;
1059 priv
->hash_regs
[14] = ®s
->gaddr6
;
1060 priv
->hash_regs
[15] = ®s
->gaddr7
;
1063 priv
->extended_hash
= 0;
1064 priv
->hash_width
= 8;
1066 priv
->hash_regs
[0] = ®s
->gaddr0
;
1067 priv
->hash_regs
[1] = ®s
->gaddr1
;
1068 priv
->hash_regs
[2] = ®s
->gaddr2
;
1069 priv
->hash_regs
[3] = ®s
->gaddr3
;
1070 priv
->hash_regs
[4] = ®s
->gaddr4
;
1071 priv
->hash_regs
[5] = ®s
->gaddr5
;
1072 priv
->hash_regs
[6] = ®s
->gaddr6
;
1073 priv
->hash_regs
[7] = ®s
->gaddr7
;
1076 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
1077 priv
->padding
= DEFAULT_PADDING
;
1081 if (dev
->features
& NETIF_F_IP_CSUM
||
1082 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1083 dev
->hard_header_len
+= GMAC_FCB_LEN
;
1085 /* Program the isrg regs only if number of grps > 1 */
1086 if (priv
->num_grps
> 1) {
1087 baddr
= ®s
->isrg0
;
1088 for (i
= 0; i
< priv
->num_grps
; i
++) {
1089 isrg
|= (priv
->gfargrp
[i
].rx_bit_map
<< ISRG_SHIFT_RX
);
1090 isrg
|= (priv
->gfargrp
[i
].tx_bit_map
<< ISRG_SHIFT_TX
);
1091 gfar_write(baddr
, isrg
);
1097 /* Need to reverse the bit maps as bit_map's MSB is q0
1098 * but, for_each_set_bit parses from right to left, which
1099 * basically reverses the queue numbers */
1100 for (i
= 0; i
< priv
->num_grps
; i
++) {
1101 priv
->gfargrp
[i
].tx_bit_map
= reverse_bitmap(
1102 priv
->gfargrp
[i
].tx_bit_map
, MAX_TX_QS
);
1103 priv
->gfargrp
[i
].rx_bit_map
= reverse_bitmap(
1104 priv
->gfargrp
[i
].rx_bit_map
, MAX_RX_QS
);
1107 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1108 * also assign queues to groups */
1109 for (grp_idx
= 0; grp_idx
< priv
->num_grps
; grp_idx
++) {
1110 priv
->gfargrp
[grp_idx
].num_rx_queues
= 0x0;
1111 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].rx_bit_map
,
1112 priv
->num_rx_queues
) {
1113 priv
->gfargrp
[grp_idx
].num_rx_queues
++;
1114 priv
->rx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1115 rstat
= rstat
| (RSTAT_CLEAR_RHALT
>> i
);
1116 rqueue
= rqueue
| ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
1118 priv
->gfargrp
[grp_idx
].num_tx_queues
= 0x0;
1119 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].tx_bit_map
,
1120 priv
->num_tx_queues
) {
1121 priv
->gfargrp
[grp_idx
].num_tx_queues
++;
1122 priv
->tx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1123 tstat
= tstat
| (TSTAT_CLEAR_THALT
>> i
);
1124 tqueue
= tqueue
| (TQUEUE_EN0
>> i
);
1126 priv
->gfargrp
[grp_idx
].rstat
= rstat
;
1127 priv
->gfargrp
[grp_idx
].tstat
= tstat
;
1131 gfar_write(®s
->rqueue
, rqueue
);
1132 gfar_write(®s
->tqueue
, tqueue
);
1134 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1136 /* Initializing some of the rx/tx queue level parameters */
1137 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1138 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1139 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1140 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1141 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1144 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1145 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1146 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1147 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1150 /* enable filer if using multiple RX queues*/
1151 if(priv
->num_rx_queues
> 1)
1152 priv
->rx_filer_enable
= 1;
1153 /* Enable most messages by default */
1154 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1156 /* Carrier starts down, phylib will bring it up */
1157 netif_carrier_off(dev
);
1159 err
= register_netdev(dev
);
1162 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1167 device_init_wakeup(&dev
->dev
,
1168 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1170 /* fill out IRQ number and name fields */
1171 len_devname
= strlen(dev
->name
);
1172 for (i
= 0; i
< priv
->num_grps
; i
++) {
1173 strncpy(&priv
->gfargrp
[i
].int_name_tx
[0], dev
->name
,
1175 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1176 strncpy(&priv
->gfargrp
[i
].int_name_tx
[len_devname
],
1177 "_g", sizeof("_g"));
1178 priv
->gfargrp
[i
].int_name_tx
[
1179 strlen(priv
->gfargrp
[i
].int_name_tx
)] = i
+48;
1180 strncpy(&priv
->gfargrp
[i
].int_name_tx
[strlen(
1181 priv
->gfargrp
[i
].int_name_tx
)],
1182 "_tx", sizeof("_tx") + 1);
1184 strncpy(&priv
->gfargrp
[i
].int_name_rx
[0], dev
->name
,
1186 strncpy(&priv
->gfargrp
[i
].int_name_rx
[len_devname
],
1187 "_g", sizeof("_g"));
1188 priv
->gfargrp
[i
].int_name_rx
[
1189 strlen(priv
->gfargrp
[i
].int_name_rx
)] = i
+48;
1190 strncpy(&priv
->gfargrp
[i
].int_name_rx
[strlen(
1191 priv
->gfargrp
[i
].int_name_rx
)],
1192 "_rx", sizeof("_rx") + 1);
1194 strncpy(&priv
->gfargrp
[i
].int_name_er
[0], dev
->name
,
1196 strncpy(&priv
->gfargrp
[i
].int_name_er
[len_devname
],
1197 "_g", sizeof("_g"));
1198 priv
->gfargrp
[i
].int_name_er
[strlen(
1199 priv
->gfargrp
[i
].int_name_er
)] = i
+48;
1200 strncpy(&priv
->gfargrp
[i
].int_name_er
[strlen(\
1201 priv
->gfargrp
[i
].int_name_er
)],
1202 "_er", sizeof("_er") + 1);
1204 priv
->gfargrp
[i
].int_name_tx
[len_devname
] = '\0';
1207 /* Initialize the filer table */
1208 gfar_init_filer_table(priv
);
1210 /* Create all the sysfs files */
1211 gfar_init_sysfs(dev
);
1213 /* Print out the device info */
1214 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
1216 /* Even more device info helps when determining which kernel */
1217 /* provided which set of benchmarks. */
1218 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
1219 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1220 printk(KERN_INFO
"%s: RX BD ring size for Q[%d]: %d\n",
1221 dev
->name
, i
, priv
->rx_queue
[i
]->rx_ring_size
);
1222 for(i
= 0; i
< priv
->num_tx_queues
; i
++)
1223 printk(KERN_INFO
"%s: TX BD ring size for Q[%d]: %d\n",
1224 dev
->name
, i
, priv
->tx_queue
[i
]->tx_ring_size
);
1229 unmap_group_regs(priv
);
1230 free_tx_pointers(priv
);
1231 free_rx_pointers(priv
);
1233 of_node_put(priv
->phy_node
);
1235 of_node_put(priv
->tbi_node
);
1240 static int gfar_remove(struct platform_device
*ofdev
)
1242 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
1245 of_node_put(priv
->phy_node
);
1247 of_node_put(priv
->tbi_node
);
1249 dev_set_drvdata(&ofdev
->dev
, NULL
);
1251 unregister_netdev(priv
->ndev
);
1252 unmap_group_regs(priv
);
1253 free_netdev(priv
->ndev
);
1260 static int gfar_suspend(struct device
*dev
)
1262 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1263 struct net_device
*ndev
= priv
->ndev
;
1264 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1265 unsigned long flags
;
1268 int magic_packet
= priv
->wol_en
&&
1269 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1271 netif_device_detach(ndev
);
1273 if (netif_running(ndev
)) {
1275 local_irq_save(flags
);
1279 gfar_halt_nodisable(ndev
);
1281 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1282 tempval
= gfar_read(®s
->maccfg1
);
1284 tempval
&= ~MACCFG1_TX_EN
;
1287 tempval
&= ~MACCFG1_RX_EN
;
1289 gfar_write(®s
->maccfg1
, tempval
);
1293 local_irq_restore(flags
);
1298 /* Enable interrupt on Magic Packet */
1299 gfar_write(®s
->imask
, IMASK_MAG
);
1301 /* Enable Magic Packet mode */
1302 tempval
= gfar_read(®s
->maccfg2
);
1303 tempval
|= MACCFG2_MPEN
;
1304 gfar_write(®s
->maccfg2
, tempval
);
1306 phy_stop(priv
->phydev
);
1313 static int gfar_resume(struct device
*dev
)
1315 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1316 struct net_device
*ndev
= priv
->ndev
;
1317 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1318 unsigned long flags
;
1320 int magic_packet
= priv
->wol_en
&&
1321 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1323 if (!netif_running(ndev
)) {
1324 netif_device_attach(ndev
);
1328 if (!magic_packet
&& priv
->phydev
)
1329 phy_start(priv
->phydev
);
1331 /* Disable Magic Packet mode, in case something
1334 local_irq_save(flags
);
1338 tempval
= gfar_read(®s
->maccfg2
);
1339 tempval
&= ~MACCFG2_MPEN
;
1340 gfar_write(®s
->maccfg2
, tempval
);
1346 local_irq_restore(flags
);
1348 netif_device_attach(ndev
);
1355 static int gfar_restore(struct device
*dev
)
1357 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1358 struct net_device
*ndev
= priv
->ndev
;
1360 if (!netif_running(ndev
))
1363 gfar_init_bds(ndev
);
1364 init_registers(ndev
);
1365 gfar_set_mac_address(ndev
);
1366 gfar_init_mac(ndev
);
1371 priv
->oldduplex
= -1;
1374 phy_start(priv
->phydev
);
1376 netif_device_attach(ndev
);
1382 static struct dev_pm_ops gfar_pm_ops
= {
1383 .suspend
= gfar_suspend
,
1384 .resume
= gfar_resume
,
1385 .freeze
= gfar_suspend
,
1386 .thaw
= gfar_resume
,
1387 .restore
= gfar_restore
,
1390 #define GFAR_PM_OPS (&gfar_pm_ops)
1394 #define GFAR_PM_OPS NULL
1398 /* Reads the controller's registers to determine what interface
1399 * connects it to the PHY.
1401 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1403 struct gfar_private
*priv
= netdev_priv(dev
);
1404 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1407 ecntrl
= gfar_read(®s
->ecntrl
);
1409 if (ecntrl
& ECNTRL_SGMII_MODE
)
1410 return PHY_INTERFACE_MODE_SGMII
;
1412 if (ecntrl
& ECNTRL_TBI_MODE
) {
1413 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1414 return PHY_INTERFACE_MODE_RTBI
;
1416 return PHY_INTERFACE_MODE_TBI
;
1419 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1420 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
1421 return PHY_INTERFACE_MODE_RMII
;
1423 phy_interface_t interface
= priv
->interface
;
1426 * This isn't autodetected right now, so it must
1427 * be set by the device tree or platform code.
1429 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1430 return PHY_INTERFACE_MODE_RGMII_ID
;
1432 return PHY_INTERFACE_MODE_RGMII
;
1436 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1437 return PHY_INTERFACE_MODE_GMII
;
1439 return PHY_INTERFACE_MODE_MII
;
1443 /* Initializes driver's PHY state, and attaches to the PHY.
1444 * Returns 0 on success.
1446 static int init_phy(struct net_device
*dev
)
1448 struct gfar_private
*priv
= netdev_priv(dev
);
1449 uint gigabit_support
=
1450 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1451 SUPPORTED_1000baseT_Full
: 0;
1452 phy_interface_t interface
;
1456 priv
->oldduplex
= -1;
1458 interface
= gfar_get_interface(dev
);
1460 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1463 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
1465 if (!priv
->phydev
) {
1466 dev_err(&dev
->dev
, "could not attach to PHY\n");
1470 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1471 gfar_configure_serdes(dev
);
1473 /* Remove any features not supported by the controller */
1474 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1475 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1481 * Initialize TBI PHY interface for communicating with the
1482 * SERDES lynx PHY on the chip. We communicate with this PHY
1483 * through the MDIO bus on each controller, treating it as a
1484 * "normal" PHY at the address found in the TBIPA register. We assume
1485 * that the TBIPA register is valid. Either the MDIO bus code will set
1486 * it to a value that doesn't conflict with other PHYs on the bus, or the
1487 * value doesn't matter, as there are no other PHYs on the bus.
1489 static void gfar_configure_serdes(struct net_device
*dev
)
1491 struct gfar_private
*priv
= netdev_priv(dev
);
1492 struct phy_device
*tbiphy
;
1494 if (!priv
->tbi_node
) {
1495 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1496 "device tree specify a tbi-handle\n");
1500 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1502 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1507 * If the link is already up, we must already be ok, and don't need to
1508 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1509 * everything for us? Resetting it takes the link down and requires
1510 * several seconds for it to come back.
1512 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1515 /* Single clk mode, mii mode off(for serdes communication) */
1516 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1518 phy_write(tbiphy
, MII_ADVERTISE
,
1519 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1520 ADVERTISE_1000XPSE_ASYM
);
1522 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
1523 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
1526 static void init_registers(struct net_device
*dev
)
1528 struct gfar_private
*priv
= netdev_priv(dev
);
1529 struct gfar __iomem
*regs
= NULL
;
1532 for (i
= 0; i
< priv
->num_grps
; i
++) {
1533 regs
= priv
->gfargrp
[i
].regs
;
1535 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1537 /* Initialize IMASK */
1538 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1541 regs
= priv
->gfargrp
[0].regs
;
1542 /* Init hash registers to zero */
1543 gfar_write(®s
->igaddr0
, 0);
1544 gfar_write(®s
->igaddr1
, 0);
1545 gfar_write(®s
->igaddr2
, 0);
1546 gfar_write(®s
->igaddr3
, 0);
1547 gfar_write(®s
->igaddr4
, 0);
1548 gfar_write(®s
->igaddr5
, 0);
1549 gfar_write(®s
->igaddr6
, 0);
1550 gfar_write(®s
->igaddr7
, 0);
1552 gfar_write(®s
->gaddr0
, 0);
1553 gfar_write(®s
->gaddr1
, 0);
1554 gfar_write(®s
->gaddr2
, 0);
1555 gfar_write(®s
->gaddr3
, 0);
1556 gfar_write(®s
->gaddr4
, 0);
1557 gfar_write(®s
->gaddr5
, 0);
1558 gfar_write(®s
->gaddr6
, 0);
1559 gfar_write(®s
->gaddr7
, 0);
1561 /* Zero out the rmon mib registers if it has them */
1562 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1563 memset_io(&(regs
->rmon
), 0, sizeof (struct rmon_mib
));
1565 /* Mask off the CAM interrupts */
1566 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1567 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1570 /* Initialize the max receive buffer length */
1571 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1573 /* Initialize the Minimum Frame Length Register */
1574 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1577 static int __gfar_is_rx_idle(struct gfar_private
*priv
)
1582 * Normaly TSEC should not hang on GRS commands, so we should
1583 * actually wait for IEVENT_GRSC flag.
1585 if (likely(!gfar_has_errata(priv
, GFAR_ERRATA_A002
)))
1589 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1590 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1591 * and the Rx can be safely reset.
1593 res
= gfar_read((void __iomem
*)priv
->gfargrp
[0].regs
+ 0xd1c);
1595 if ((res
& 0xffff) == (res
>> 16))
1601 /* Halt the receive and transmit queues */
1602 static void gfar_halt_nodisable(struct net_device
*dev
)
1604 struct gfar_private
*priv
= netdev_priv(dev
);
1605 struct gfar __iomem
*regs
= NULL
;
1609 for (i
= 0; i
< priv
->num_grps
; i
++) {
1610 regs
= priv
->gfargrp
[i
].regs
;
1611 /* Mask all interrupts */
1612 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1614 /* Clear all interrupts */
1615 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1618 regs
= priv
->gfargrp
[0].regs
;
1619 /* Stop the DMA, and wait for it to stop */
1620 tempval
= gfar_read(®s
->dmactrl
);
1621 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
1622 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
1625 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1626 gfar_write(®s
->dmactrl
, tempval
);
1629 ret
= spin_event_timeout(((gfar_read(®s
->ievent
) &
1630 (IEVENT_GRSC
| IEVENT_GTSC
)) ==
1631 (IEVENT_GRSC
| IEVENT_GTSC
)), 1000000, 0);
1632 if (!ret
&& !(gfar_read(®s
->ievent
) & IEVENT_GRSC
))
1633 ret
= __gfar_is_rx_idle(priv
);
1638 /* Halt the receive and transmit queues */
1639 void gfar_halt(struct net_device
*dev
)
1641 struct gfar_private
*priv
= netdev_priv(dev
);
1642 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1645 gfar_halt_nodisable(dev
);
1647 /* Disable Rx and Tx */
1648 tempval
= gfar_read(®s
->maccfg1
);
1649 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1650 gfar_write(®s
->maccfg1
, tempval
);
1653 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1655 free_irq(grp
->interruptError
, grp
);
1656 free_irq(grp
->interruptTransmit
, grp
);
1657 free_irq(grp
->interruptReceive
, grp
);
1660 void stop_gfar(struct net_device
*dev
)
1662 struct gfar_private
*priv
= netdev_priv(dev
);
1663 unsigned long flags
;
1666 phy_stop(priv
->phydev
);
1670 local_irq_save(flags
);
1678 local_irq_restore(flags
);
1681 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1682 for (i
= 0; i
< priv
->num_grps
; i
++)
1683 free_grp_irqs(&priv
->gfargrp
[i
]);
1685 for (i
= 0; i
< priv
->num_grps
; i
++)
1686 free_irq(priv
->gfargrp
[i
].interruptTransmit
,
1690 free_skb_resources(priv
);
1693 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1695 struct txbd8
*txbdp
;
1696 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1699 txbdp
= tx_queue
->tx_bd_base
;
1701 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1702 if (!tx_queue
->tx_skbuff
[i
])
1705 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1706 txbdp
->length
, DMA_TO_DEVICE
);
1708 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1711 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1712 txbdp
->length
, DMA_TO_DEVICE
);
1715 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1716 tx_queue
->tx_skbuff
[i
] = NULL
;
1718 kfree(tx_queue
->tx_skbuff
);
1721 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1723 struct rxbd8
*rxbdp
;
1724 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1727 rxbdp
= rx_queue
->rx_bd_base
;
1729 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1730 if (rx_queue
->rx_skbuff
[i
]) {
1731 dma_unmap_single(&priv
->ofdev
->dev
,
1732 rxbdp
->bufPtr
, priv
->rx_buffer_size
,
1734 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1735 rx_queue
->rx_skbuff
[i
] = NULL
;
1741 kfree(rx_queue
->rx_skbuff
);
1744 /* If there are any tx skbs or rx skbs still around, free them.
1745 * Then free tx_skbuff and rx_skbuff */
1746 static void free_skb_resources(struct gfar_private
*priv
)
1748 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1749 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1752 /* Go through all the buffer descriptors and free their data buffers */
1753 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1754 tx_queue
= priv
->tx_queue
[i
];
1755 if(tx_queue
->tx_skbuff
)
1756 free_skb_tx_queue(tx_queue
);
1759 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1760 rx_queue
= priv
->rx_queue
[i
];
1761 if(rx_queue
->rx_skbuff
)
1762 free_skb_rx_queue(rx_queue
);
1765 dma_free_coherent(&priv
->ofdev
->dev
,
1766 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1767 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1768 priv
->tx_queue
[0]->tx_bd_base
,
1769 priv
->tx_queue
[0]->tx_bd_dma_base
);
1770 skb_queue_purge(&priv
->rx_recycle
);
1773 void gfar_start(struct net_device
*dev
)
1775 struct gfar_private
*priv
= netdev_priv(dev
);
1776 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1780 /* Enable Rx and Tx in MACCFG1 */
1781 tempval
= gfar_read(®s
->maccfg1
);
1782 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1783 gfar_write(®s
->maccfg1
, tempval
);
1785 /* Initialize DMACTRL to have WWR and WOP */
1786 tempval
= gfar_read(®s
->dmactrl
);
1787 tempval
|= DMACTRL_INIT_SETTINGS
;
1788 gfar_write(®s
->dmactrl
, tempval
);
1790 /* Make sure we aren't stopped */
1791 tempval
= gfar_read(®s
->dmactrl
);
1792 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1793 gfar_write(®s
->dmactrl
, tempval
);
1795 for (i
= 0; i
< priv
->num_grps
; i
++) {
1796 regs
= priv
->gfargrp
[i
].regs
;
1797 /* Clear THLT/RHLT, so that the DMA starts polling now */
1798 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1799 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1800 /* Unmask the interrupts we look for */
1801 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1804 dev
->trans_start
= jiffies
; /* prevent tx timeout */
1807 void gfar_configure_coalescing(struct gfar_private
*priv
,
1808 unsigned long tx_mask
, unsigned long rx_mask
)
1810 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1814 /* Backward compatible case ---- even if we enable
1815 * multiple queues, there's only single reg to program
1817 gfar_write(®s
->txic
, 0);
1818 if(likely(priv
->tx_queue
[0]->txcoalescing
))
1819 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
1821 gfar_write(®s
->rxic
, 0);
1822 if(unlikely(priv
->rx_queue
[0]->rxcoalescing
))
1823 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
1825 if (priv
->mode
== MQ_MG_MODE
) {
1826 baddr
= ®s
->txic0
;
1827 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
1828 if (likely(priv
->tx_queue
[i
]->txcoalescing
)) {
1829 gfar_write(baddr
+ i
, 0);
1830 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
1834 baddr
= ®s
->rxic0
;
1835 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
1836 if (likely(priv
->rx_queue
[i
]->rxcoalescing
)) {
1837 gfar_write(baddr
+ i
, 0);
1838 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
1844 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1846 struct gfar_private
*priv
= grp
->priv
;
1847 struct net_device
*dev
= priv
->ndev
;
1850 /* If the device has multiple interrupts, register for
1851 * them. Otherwise, only register for the one */
1852 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1853 /* Install our interrupt handlers for Error,
1854 * Transmit, and Receive */
1855 if ((err
= request_irq(grp
->interruptError
, gfar_error
, 0,
1856 grp
->int_name_er
,grp
)) < 0) {
1857 if (netif_msg_intr(priv
))
1858 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1859 dev
->name
, grp
->interruptError
);
1864 if ((err
= request_irq(grp
->interruptTransmit
, gfar_transmit
,
1865 0, grp
->int_name_tx
, grp
)) < 0) {
1866 if (netif_msg_intr(priv
))
1867 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1868 dev
->name
, grp
->interruptTransmit
);
1872 if ((err
= request_irq(grp
->interruptReceive
, gfar_receive
, 0,
1873 grp
->int_name_rx
, grp
)) < 0) {
1874 if (netif_msg_intr(priv
))
1875 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1876 dev
->name
, grp
->interruptReceive
);
1880 if ((err
= request_irq(grp
->interruptTransmit
, gfar_interrupt
, 0,
1881 grp
->int_name_tx
, grp
)) < 0) {
1882 if (netif_msg_intr(priv
))
1883 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1884 dev
->name
, grp
->interruptTransmit
);
1892 free_irq(grp
->interruptTransmit
, grp
);
1894 free_irq(grp
->interruptError
, grp
);
1900 /* Bring the controller up and running */
1901 int startup_gfar(struct net_device
*ndev
)
1903 struct gfar_private
*priv
= netdev_priv(ndev
);
1904 struct gfar __iomem
*regs
= NULL
;
1907 for (i
= 0; i
< priv
->num_grps
; i
++) {
1908 regs
= priv
->gfargrp
[i
].regs
;
1909 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1912 regs
= priv
->gfargrp
[0].regs
;
1913 err
= gfar_alloc_skb_resources(ndev
);
1917 gfar_init_mac(ndev
);
1919 for (i
= 0; i
< priv
->num_grps
; i
++) {
1920 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
1922 for (j
= 0; j
< i
; j
++)
1923 free_grp_irqs(&priv
->gfargrp
[j
]);
1928 /* Start the controller */
1931 phy_start(priv
->phydev
);
1933 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
1938 free_skb_resources(priv
);
1942 /* Called when something needs to use the ethernet device */
1943 /* Returns 0 for success. */
1944 static int gfar_enet_open(struct net_device
*dev
)
1946 struct gfar_private
*priv
= netdev_priv(dev
);
1951 skb_queue_head_init(&priv
->rx_recycle
);
1953 /* Initialize a bunch of registers */
1954 init_registers(dev
);
1956 gfar_set_mac_address(dev
);
1958 err
= init_phy(dev
);
1965 err
= startup_gfar(dev
);
1971 netif_tx_start_all_queues(dev
);
1973 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1978 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1980 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1982 memset(fcb
, 0, GMAC_FCB_LEN
);
1987 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1991 /* If we're here, it's a IP packet with a TCP or UDP
1992 * payload. We set it to checksum, using a pseudo-header
1995 flags
= TXFCB_DEFAULT
;
1997 /* Tell the controller what the protocol is */
1998 /* And provide the already calculated phcs */
1999 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
2001 fcb
->phcs
= udp_hdr(skb
)->check
;
2003 fcb
->phcs
= tcp_hdr(skb
)->check
;
2005 /* l3os is the distance between the start of the
2006 * frame (skb->data) and the start of the IP hdr.
2007 * l4os is the distance between the start of the
2008 * l3 hdr and the l4 hdr */
2009 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
2010 fcb
->l4os
= skb_network_header_len(skb
);
2015 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
2017 fcb
->flags
|= TXFCB_VLN
;
2018 fcb
->vlctl
= vlan_tx_tag_get(skb
);
2021 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
2022 struct txbd8
*base
, int ring_size
)
2024 struct txbd8
*new_bd
= bdp
+ stride
;
2026 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
2029 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
2032 return skip_txbd(bdp
, 1, base
, ring_size
);
2035 /* This is called by the kernel when a frame is ready for transmission. */
2036 /* It is pointed to by the dev->hard_start_xmit function pointer */
2037 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2039 struct gfar_private
*priv
= netdev_priv(dev
);
2040 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2041 struct netdev_queue
*txq
;
2042 struct gfar __iomem
*regs
= NULL
;
2043 struct txfcb
*fcb
= NULL
;
2044 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
2046 int i
, rq
= 0, do_tstamp
= 0;
2048 unsigned long flags
;
2049 unsigned int nr_frags
, nr_txbds
, length
;
2052 * TOE=1 frames larger than 2500 bytes may see excess delays
2053 * before start of transmission.
2055 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_76
) &&
2056 skb
->ip_summed
== CHECKSUM_PARTIAL
&&
2060 ret
= skb_checksum_help(skb
);
2065 rq
= skb
->queue_mapping
;
2066 tx_queue
= priv
->tx_queue
[rq
];
2067 txq
= netdev_get_tx_queue(dev
, rq
);
2068 base
= tx_queue
->tx_bd_base
;
2069 regs
= tx_queue
->grp
->regs
;
2071 /* check if time stamp should be generated */
2072 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
2076 /* make space for additional header when fcb is needed */
2077 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2078 vlan_tx_tag_present(skb
) ||
2079 unlikely(do_tstamp
)) &&
2080 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
2081 struct sk_buff
*skb_new
;
2083 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
2085 dev
->stats
.tx_errors
++;
2087 return NETDEV_TX_OK
;
2093 /* total number of fragments in the SKB */
2094 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2096 /* calculate the required number of TxBDs for this skb */
2097 if (unlikely(do_tstamp
))
2098 nr_txbds
= nr_frags
+ 2;
2100 nr_txbds
= nr_frags
+ 1;
2102 /* check if there is space to queue this packet */
2103 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2104 /* no space, stop the queue */
2105 netif_tx_stop_queue(txq
);
2106 dev
->stats
.tx_fifo_errors
++;
2107 return NETDEV_TX_BUSY
;
2110 /* Update transmit stats */
2111 txq
->tx_bytes
+= skb
->len
;
2114 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2115 lstatus
= txbdp
->lstatus
;
2117 /* Time stamp insertion requires one additional TxBD */
2118 if (unlikely(do_tstamp
))
2119 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2120 tx_queue
->tx_ring_size
);
2122 if (nr_frags
== 0) {
2123 if (unlikely(do_tstamp
))
2124 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_LAST
|
2127 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2129 /* Place the fragment addresses and lengths into the TxBDs */
2130 for (i
= 0; i
< nr_frags
; i
++) {
2131 /* Point at the next BD, wrapping as needed */
2132 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2134 length
= skb_shinfo(skb
)->frags
[i
].size
;
2136 lstatus
= txbdp
->lstatus
| length
|
2137 BD_LFLAG(TXBD_READY
);
2139 /* Handle the last BD specially */
2140 if (i
== nr_frags
- 1)
2141 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2143 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
2144 skb_shinfo(skb
)->frags
[i
].page
,
2145 skb_shinfo(skb
)->frags
[i
].page_offset
,
2149 /* set the TxBD length and buffer pointer */
2150 txbdp
->bufPtr
= bufaddr
;
2151 txbdp
->lstatus
= lstatus
;
2154 lstatus
= txbdp_start
->lstatus
;
2157 /* Set up checksumming */
2158 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
2159 fcb
= gfar_add_fcb(skb
);
2160 lstatus
|= BD_LFLAG(TXBD_TOE
);
2161 gfar_tx_checksum(skb
, fcb
);
2164 if (vlan_tx_tag_present(skb
)) {
2165 if (unlikely(NULL
== fcb
)) {
2166 fcb
= gfar_add_fcb(skb
);
2167 lstatus
|= BD_LFLAG(TXBD_TOE
);
2170 gfar_tx_vlan(skb
, fcb
);
2173 /* Setup tx hardware time stamping if requested */
2174 if (unlikely(do_tstamp
)) {
2175 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2177 fcb
= gfar_add_fcb(skb
);
2179 lstatus
|= BD_LFLAG(TXBD_TOE
);
2182 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2183 skb_headlen(skb
), DMA_TO_DEVICE
);
2186 * If time stamping is requested one additional TxBD must be set up. The
2187 * first TxBD points to the FCB and must have a data length of
2188 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2189 * the full frame length.
2191 if (unlikely(do_tstamp
)) {
2192 txbdp_tstamp
->bufPtr
= txbdp_start
->bufPtr
+ GMAC_FCB_LEN
;
2193 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_READY
) |
2194 (skb_headlen(skb
) - GMAC_FCB_LEN
);
2195 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2197 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2201 * We can work in parallel with gfar_clean_tx_ring(), except
2202 * when modifying num_txbdfree. Note that we didn't grab the lock
2203 * when we were reading the num_txbdfree and checking for available
2204 * space, that's because outside of this function it can only grow,
2205 * and once we've got needed space, it cannot suddenly disappear.
2207 * The lock also protects us from gfar_error(), which can modify
2208 * regs->tstat and thus retrigger the transfers, which is why we
2209 * also must grab the lock before setting ready bit for the first
2210 * to be transmitted BD.
2212 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2215 * The powerpc-specific eieio() is used, as wmb() has too strong
2216 * semantics (it requires synchronization between cacheable and
2217 * uncacheable mappings, which eieio doesn't provide and which we
2218 * don't need), thus requiring a more expensive sync instruction. At
2219 * some point, the set of architecture-independent barrier functions
2220 * should be expanded to include weaker barriers.
2224 txbdp_start
->lstatus
= lstatus
;
2226 eieio(); /* force lstatus write before tx_skbuff */
2228 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2230 /* Update the current skb pointer to the next entry we will use
2231 * (wrapping if necessary) */
2232 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2233 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2235 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2237 /* reduce TxBD free count */
2238 tx_queue
->num_txbdfree
-= (nr_txbds
);
2240 /* If the next BD still needs to be cleaned up, then the bds
2241 are full. We need to tell the kernel to stop sending us stuff. */
2242 if (!tx_queue
->num_txbdfree
) {
2243 netif_tx_stop_queue(txq
);
2245 dev
->stats
.tx_fifo_errors
++;
2248 /* Tell the DMA to go go go */
2249 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2252 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2254 return NETDEV_TX_OK
;
2257 /* Stops the kernel queue, and halts the controller */
2258 static int gfar_close(struct net_device
*dev
)
2260 struct gfar_private
*priv
= netdev_priv(dev
);
2264 cancel_work_sync(&priv
->reset_task
);
2267 /* Disconnect from the PHY */
2268 phy_disconnect(priv
->phydev
);
2269 priv
->phydev
= NULL
;
2271 netif_tx_stop_all_queues(dev
);
2276 /* Changes the mac address if the controller is not running. */
2277 static int gfar_set_mac_address(struct net_device
*dev
)
2279 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2285 /* Enables and disables VLAN insertion/extraction */
2286 static void gfar_vlan_rx_register(struct net_device
*dev
,
2287 struct vlan_group
*grp
)
2289 struct gfar_private
*priv
= netdev_priv(dev
);
2290 struct gfar __iomem
*regs
= NULL
;
2291 unsigned long flags
;
2294 regs
= priv
->gfargrp
[0].regs
;
2295 local_irq_save(flags
);
2301 /* Enable VLAN tag insertion */
2302 tempval
= gfar_read(®s
->tctrl
);
2303 tempval
|= TCTRL_VLINS
;
2305 gfar_write(®s
->tctrl
, tempval
);
2307 /* Enable VLAN tag extraction */
2308 tempval
= gfar_read(®s
->rctrl
);
2309 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
2310 gfar_write(®s
->rctrl
, tempval
);
2312 /* Disable VLAN tag insertion */
2313 tempval
= gfar_read(®s
->tctrl
);
2314 tempval
&= ~TCTRL_VLINS
;
2315 gfar_write(®s
->tctrl
, tempval
);
2317 /* Disable VLAN tag extraction */
2318 tempval
= gfar_read(®s
->rctrl
);
2319 tempval
&= ~RCTRL_VLEX
;
2320 /* If parse is no longer required, then disable parser */
2321 if (tempval
& RCTRL_REQ_PARSER
)
2322 tempval
|= RCTRL_PRSDEP_INIT
;
2324 tempval
&= ~RCTRL_PRSDEP_INIT
;
2325 gfar_write(®s
->rctrl
, tempval
);
2328 gfar_change_mtu(dev
, dev
->mtu
);
2331 local_irq_restore(flags
);
2334 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2336 int tempsize
, tempval
;
2337 struct gfar_private
*priv
= netdev_priv(dev
);
2338 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2339 int oldsize
= priv
->rx_buffer_size
;
2340 int frame_size
= new_mtu
+ ETH_HLEN
;
2343 frame_size
+= VLAN_HLEN
;
2345 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2346 if (netif_msg_drv(priv
))
2347 printk(KERN_ERR
"%s: Invalid MTU setting\n",
2352 if (gfar_uses_fcb(priv
))
2353 frame_size
+= GMAC_FCB_LEN
;
2355 frame_size
+= priv
->padding
;
2358 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
2359 INCREMENTAL_BUFFER_SIZE
;
2361 /* Only stop and start the controller if it isn't already
2362 * stopped, and we changed something */
2363 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2366 priv
->rx_buffer_size
= tempsize
;
2370 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
2371 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
2373 /* If the mtu is larger than the max size for standard
2374 * ethernet frames (ie, a jumbo frame), then set maccfg2
2375 * to allow huge frames, and to check the length */
2376 tempval
= gfar_read(®s
->maccfg2
);
2378 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
||
2379 gfar_has_errata(priv
, GFAR_ERRATA_74
))
2380 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2382 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2384 gfar_write(®s
->maccfg2
, tempval
);
2386 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2392 /* gfar_reset_task gets scheduled when a packet has not been
2393 * transmitted after a set amount of time.
2394 * For now, assume that clearing out all the structures, and
2395 * starting over will fix the problem.
2397 static void gfar_reset_task(struct work_struct
*work
)
2399 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2401 struct net_device
*dev
= priv
->ndev
;
2403 if (dev
->flags
& IFF_UP
) {
2404 netif_tx_stop_all_queues(dev
);
2407 netif_tx_start_all_queues(dev
);
2410 netif_tx_schedule_all(dev
);
2413 static void gfar_timeout(struct net_device
*dev
)
2415 struct gfar_private
*priv
= netdev_priv(dev
);
2417 dev
->stats
.tx_errors
++;
2418 schedule_work(&priv
->reset_task
);
2421 static void gfar_align_skb(struct sk_buff
*skb
)
2423 /* We need the data buffer to be aligned properly. We will reserve
2424 * as many bytes as needed to align the data properly
2426 skb_reserve(skb
, RXBUF_ALIGNMENT
-
2427 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
2430 /* Interrupt Handler for Transmit complete */
2431 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2433 struct net_device
*dev
= tx_queue
->dev
;
2434 struct gfar_private
*priv
= netdev_priv(dev
);
2435 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2436 struct txbd8
*bdp
, *next
= NULL
;
2437 struct txbd8
*lbdp
= NULL
;
2438 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2439 struct sk_buff
*skb
;
2441 int tx_ring_size
= tx_queue
->tx_ring_size
;
2442 int frags
= 0, nr_txbds
= 0;
2448 rx_queue
= priv
->rx_queue
[tx_queue
->qindex
];
2449 bdp
= tx_queue
->dirty_tx
;
2450 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2452 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2453 unsigned long flags
;
2455 frags
= skb_shinfo(skb
)->nr_frags
;
2458 * When time stamping, one additional TxBD must be freed.
2459 * Also, we need to dma_unmap_single() the TxPAL.
2461 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2462 nr_txbds
= frags
+ 2;
2464 nr_txbds
= frags
+ 1;
2466 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2468 lstatus
= lbdp
->lstatus
;
2470 /* Only clean completed frames */
2471 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2472 (lstatus
& BD_LENGTH_MASK
))
2475 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2476 next
= next_txbd(bdp
, base
, tx_ring_size
);
2477 buflen
= next
->length
+ GMAC_FCB_LEN
;
2479 buflen
= bdp
->length
;
2481 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2482 buflen
, DMA_TO_DEVICE
);
2484 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2485 struct skb_shared_hwtstamps shhwtstamps
;
2486 u64
*ns
= (u64
*) (((u32
)skb
->data
+ 0x10) & ~0x7);
2487 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2488 shhwtstamps
.hwtstamp
= ns_to_ktime(*ns
);
2489 skb_tstamp_tx(skb
, &shhwtstamps
);
2490 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2494 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2495 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2497 for (i
= 0; i
< frags
; i
++) {
2498 dma_unmap_page(&priv
->ofdev
->dev
,
2502 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2503 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2507 * If there's room in the queue (limit it to rx_buffer_size)
2508 * we add this skb back into the pool, if it's the right size
2510 if (skb_queue_len(&priv
->rx_recycle
) < rx_queue
->rx_ring_size
&&
2511 skb_recycle_check(skb
, priv
->rx_buffer_size
+
2513 gfar_align_skb(skb
);
2514 skb_queue_head(&priv
->rx_recycle
, skb
);
2516 dev_kfree_skb_any(skb
);
2518 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2520 skb_dirtytx
= (skb_dirtytx
+ 1) &
2521 TX_RING_MOD_MASK(tx_ring_size
);
2524 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2525 tx_queue
->num_txbdfree
+= nr_txbds
;
2526 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2529 /* If we freed a buffer, we can restart transmission, if necessary */
2530 if (__netif_subqueue_stopped(dev
, tx_queue
->qindex
) && tx_queue
->num_txbdfree
)
2531 netif_wake_subqueue(dev
, tx_queue
->qindex
);
2533 /* Update dirty indicators */
2534 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2535 tx_queue
->dirty_tx
= bdp
;
2540 static void gfar_schedule_cleanup(struct gfar_priv_grp
*gfargrp
)
2542 unsigned long flags
;
2544 spin_lock_irqsave(&gfargrp
->grplock
, flags
);
2545 if (napi_schedule_prep(&gfargrp
->napi
)) {
2546 gfar_write(&gfargrp
->regs
->imask
, IMASK_RTX_DISABLED
);
2547 __napi_schedule(&gfargrp
->napi
);
2550 * Clear IEVENT, so interrupts aren't called again
2551 * because of the packets that have already arrived.
2553 gfar_write(&gfargrp
->regs
->ievent
, IEVENT_RTX_MASK
);
2555 spin_unlock_irqrestore(&gfargrp
->grplock
, flags
);
2559 /* Interrupt Handler for Transmit complete */
2560 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2562 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2566 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
2567 struct sk_buff
*skb
)
2569 struct net_device
*dev
= rx_queue
->dev
;
2570 struct gfar_private
*priv
= netdev_priv(dev
);
2573 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2574 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2575 gfar_init_rxbdp(rx_queue
, bdp
, buf
);
2578 static struct sk_buff
* gfar_alloc_skb(struct net_device
*dev
)
2580 struct gfar_private
*priv
= netdev_priv(dev
);
2581 struct sk_buff
*skb
= NULL
;
2583 skb
= netdev_alloc_skb(dev
, priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2587 gfar_align_skb(skb
);
2592 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
2594 struct gfar_private
*priv
= netdev_priv(dev
);
2595 struct sk_buff
*skb
= NULL
;
2597 skb
= skb_dequeue(&priv
->rx_recycle
);
2599 skb
= gfar_alloc_skb(dev
);
2604 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2606 struct gfar_private
*priv
= netdev_priv(dev
);
2607 struct net_device_stats
*stats
= &dev
->stats
;
2608 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2610 /* If the packet was truncated, none of the other errors
2612 if (status
& RXBD_TRUNCATED
) {
2613 stats
->rx_length_errors
++;
2619 /* Count the errors, if there were any */
2620 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2621 stats
->rx_length_errors
++;
2623 if (status
& RXBD_LARGE
)
2628 if (status
& RXBD_NONOCTET
) {
2629 stats
->rx_frame_errors
++;
2630 estats
->rx_nonoctet
++;
2632 if (status
& RXBD_CRCERR
) {
2633 estats
->rx_crcerr
++;
2634 stats
->rx_crc_errors
++;
2636 if (status
& RXBD_OVERRUN
) {
2637 estats
->rx_overrun
++;
2638 stats
->rx_crc_errors
++;
2642 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2644 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2648 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2650 /* If valid headers were found, and valid sums
2651 * were verified, then we tell the kernel that no
2652 * checksumming is necessary. Otherwise, it is */
2653 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2654 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2656 skb_checksum_none_assert(skb
);
2660 /* gfar_process_frame() -- handle one incoming packet if skb
2662 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2665 struct gfar_private
*priv
= netdev_priv(dev
);
2666 struct rxfcb
*fcb
= NULL
;
2670 /* fcb is at the beginning if exists */
2671 fcb
= (struct rxfcb
*)skb
->data
;
2673 /* Remove the FCB from the skb */
2674 /* Remove the padded bytes, if there are any */
2676 skb_record_rx_queue(skb
, fcb
->rq
);
2677 skb_pull(skb
, amount_pull
);
2680 /* Get receive timestamp from the skb */
2681 if (priv
->hwts_rx_en
) {
2682 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
2683 u64
*ns
= (u64
*) skb
->data
;
2684 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
2685 shhwtstamps
->hwtstamp
= ns_to_ktime(*ns
);
2689 skb_pull(skb
, priv
->padding
);
2691 if (priv
->rx_csum_enable
)
2692 gfar_rx_checksum(skb
, fcb
);
2694 /* Tell the skb what kind of packet this is */
2695 skb
->protocol
= eth_type_trans(skb
, dev
);
2697 /* Send the packet up the stack */
2698 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
2699 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
2701 ret
= netif_receive_skb(skb
);
2703 if (NET_RX_DROP
== ret
)
2704 priv
->extra_stats
.kernel_dropped
++;
2709 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2710 * until the budget/quota has been reached. Returns the number
2713 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2715 struct net_device
*dev
= rx_queue
->dev
;
2716 struct rxbd8
*bdp
, *base
;
2717 struct sk_buff
*skb
;
2721 struct gfar_private
*priv
= netdev_priv(dev
);
2723 /* Get the first full descriptor */
2724 bdp
= rx_queue
->cur_rx
;
2725 base
= rx_queue
->rx_bd_base
;
2727 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0);
2729 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2730 struct sk_buff
*newskb
;
2733 /* Add another skb for the future */
2734 newskb
= gfar_new_skb(dev
);
2736 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2738 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2739 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2741 if (unlikely(!(bdp
->status
& RXBD_ERR
) &&
2742 bdp
->length
> priv
->rx_buffer_size
))
2743 bdp
->status
= RXBD_LARGE
;
2745 /* We drop the frame if we failed to allocate a new buffer */
2746 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2747 bdp
->status
& RXBD_ERR
)) {
2748 count_errors(bdp
->status
, dev
);
2750 if (unlikely(!newskb
))
2753 skb_queue_head(&priv
->rx_recycle
, skb
);
2755 /* Increment the number of packets */
2756 rx_queue
->stats
.rx_packets
++;
2760 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2761 /* Remove the FCS from the packet length */
2762 skb_put(skb
, pkt_len
);
2763 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2764 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2765 gfar_process_frame(dev
, skb
, amount_pull
);
2768 if (netif_msg_rx_err(priv
))
2770 "%s: Missing skb!\n", dev
->name
);
2771 rx_queue
->stats
.rx_dropped
++;
2772 priv
->extra_stats
.rx_skbmissing
++;
2777 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2779 /* Setup the new bdp */
2780 gfar_new_rxbdp(rx_queue
, bdp
, newskb
);
2782 /* Update to the next pointer */
2783 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2785 /* update to point at the next skb */
2786 rx_queue
->skb_currx
=
2787 (rx_queue
->skb_currx
+ 1) &
2788 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2791 /* Update the current rxbd pointer to be the next one */
2792 rx_queue
->cur_rx
= bdp
;
2797 static int gfar_poll(struct napi_struct
*napi
, int budget
)
2799 struct gfar_priv_grp
*gfargrp
= container_of(napi
,
2800 struct gfar_priv_grp
, napi
);
2801 struct gfar_private
*priv
= gfargrp
->priv
;
2802 struct gfar __iomem
*regs
= gfargrp
->regs
;
2803 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2804 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2805 int rx_cleaned
= 0, budget_per_queue
= 0, rx_cleaned_per_queue
= 0;
2806 int tx_cleaned
= 0, i
, left_over_budget
= budget
;
2807 unsigned long serviced_queues
= 0;
2810 num_queues
= gfargrp
->num_rx_queues
;
2811 budget_per_queue
= budget
/num_queues
;
2813 /* Clear IEVENT, so interrupts aren't called again
2814 * because of the packets that have already arrived */
2815 gfar_write(®s
->ievent
, IEVENT_RTX_MASK
);
2817 while (num_queues
&& left_over_budget
) {
2819 budget_per_queue
= left_over_budget
/num_queues
;
2820 left_over_budget
= 0;
2822 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
2823 if (test_bit(i
, &serviced_queues
))
2825 rx_queue
= priv
->rx_queue
[i
];
2826 tx_queue
= priv
->tx_queue
[rx_queue
->qindex
];
2828 tx_cleaned
+= gfar_clean_tx_ring(tx_queue
);
2829 rx_cleaned_per_queue
= gfar_clean_rx_ring(rx_queue
,
2831 rx_cleaned
+= rx_cleaned_per_queue
;
2832 if(rx_cleaned_per_queue
< budget_per_queue
) {
2833 left_over_budget
= left_over_budget
+
2834 (budget_per_queue
- rx_cleaned_per_queue
);
2835 set_bit(i
, &serviced_queues
);
2844 if (rx_cleaned
< budget
) {
2845 napi_complete(napi
);
2847 /* Clear the halt bit in RSTAT */
2848 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2850 gfar_write(®s
->imask
, IMASK_DEFAULT
);
2852 /* If we are coalescing interrupts, update the timer */
2853 /* Otherwise, clear it */
2854 gfar_configure_coalescing(priv
,
2855 gfargrp
->rx_bit_map
, gfargrp
->tx_bit_map
);
2861 #ifdef CONFIG_NET_POLL_CONTROLLER
2863 * Polling 'interrupt' - used by things like netconsole to send skbs
2864 * without having to re-enable interrupts. It's not called while
2865 * the interrupt routine is executing.
2867 static void gfar_netpoll(struct net_device
*dev
)
2869 struct gfar_private
*priv
= netdev_priv(dev
);
2872 /* If the device has multiple interrupts, run tx/rx */
2873 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2874 for (i
= 0; i
< priv
->num_grps
; i
++) {
2875 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2876 disable_irq(priv
->gfargrp
[i
].interruptReceive
);
2877 disable_irq(priv
->gfargrp
[i
].interruptError
);
2878 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2880 enable_irq(priv
->gfargrp
[i
].interruptError
);
2881 enable_irq(priv
->gfargrp
[i
].interruptReceive
);
2882 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2885 for (i
= 0; i
< priv
->num_grps
; i
++) {
2886 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2887 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2889 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2895 /* The interrupt handler for devices with one interrupt */
2896 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
2898 struct gfar_priv_grp
*gfargrp
= grp_id
;
2900 /* Save ievent for future reference */
2901 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
2903 /* Check for reception */
2904 if (events
& IEVENT_RX_MASK
)
2905 gfar_receive(irq
, grp_id
);
2907 /* Check for transmit completion */
2908 if (events
& IEVENT_TX_MASK
)
2909 gfar_transmit(irq
, grp_id
);
2911 /* Check for errors */
2912 if (events
& IEVENT_ERR_MASK
)
2913 gfar_error(irq
, grp_id
);
2918 /* Called every time the controller might need to be made
2919 * aware of new link state. The PHY code conveys this
2920 * information through variables in the phydev structure, and this
2921 * function converts those variables into the appropriate
2922 * register values, and can bring down the device if needed.
2924 static void adjust_link(struct net_device
*dev
)
2926 struct gfar_private
*priv
= netdev_priv(dev
);
2927 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2928 unsigned long flags
;
2929 struct phy_device
*phydev
= priv
->phydev
;
2932 local_irq_save(flags
);
2936 u32 tempval
= gfar_read(®s
->maccfg2
);
2937 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2939 /* Now we make sure that we can be in full duplex mode.
2940 * If not, we operate in half-duplex mode. */
2941 if (phydev
->duplex
!= priv
->oldduplex
) {
2943 if (!(phydev
->duplex
))
2944 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2946 tempval
|= MACCFG2_FULL_DUPLEX
;
2948 priv
->oldduplex
= phydev
->duplex
;
2951 if (phydev
->speed
!= priv
->oldspeed
) {
2953 switch (phydev
->speed
) {
2956 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2958 ecntrl
&= ~(ECNTRL_R100
);
2963 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2965 /* Reduced mode distinguishes
2966 * between 10 and 100 */
2967 if (phydev
->speed
== SPEED_100
)
2968 ecntrl
|= ECNTRL_R100
;
2970 ecntrl
&= ~(ECNTRL_R100
);
2973 if (netif_msg_link(priv
))
2975 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2976 dev
->name
, phydev
->speed
);
2980 priv
->oldspeed
= phydev
->speed
;
2983 gfar_write(®s
->maccfg2
, tempval
);
2984 gfar_write(®s
->ecntrl
, ecntrl
);
2986 if (!priv
->oldlink
) {
2990 } else if (priv
->oldlink
) {
2994 priv
->oldduplex
= -1;
2997 if (new_state
&& netif_msg_link(priv
))
2998 phy_print_status(phydev
);
3000 local_irq_restore(flags
);
3003 /* Update the hash table based on the current list of multicast
3004 * addresses we subscribe to. Also, change the promiscuity of
3005 * the device based on the flags (this function is called
3006 * whenever dev->flags is changed */
3007 static void gfar_set_multi(struct net_device
*dev
)
3009 struct netdev_hw_addr
*ha
;
3010 struct gfar_private
*priv
= netdev_priv(dev
);
3011 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3014 if (dev
->flags
& IFF_PROMISC
) {
3015 /* Set RCTRL to PROM */
3016 tempval
= gfar_read(®s
->rctrl
);
3017 tempval
|= RCTRL_PROM
;
3018 gfar_write(®s
->rctrl
, tempval
);
3020 /* Set RCTRL to not PROM */
3021 tempval
= gfar_read(®s
->rctrl
);
3022 tempval
&= ~(RCTRL_PROM
);
3023 gfar_write(®s
->rctrl
, tempval
);
3026 if (dev
->flags
& IFF_ALLMULTI
) {
3027 /* Set the hash to rx all multicast frames */
3028 gfar_write(®s
->igaddr0
, 0xffffffff);
3029 gfar_write(®s
->igaddr1
, 0xffffffff);
3030 gfar_write(®s
->igaddr2
, 0xffffffff);
3031 gfar_write(®s
->igaddr3
, 0xffffffff);
3032 gfar_write(®s
->igaddr4
, 0xffffffff);
3033 gfar_write(®s
->igaddr5
, 0xffffffff);
3034 gfar_write(®s
->igaddr6
, 0xffffffff);
3035 gfar_write(®s
->igaddr7
, 0xffffffff);
3036 gfar_write(®s
->gaddr0
, 0xffffffff);
3037 gfar_write(®s
->gaddr1
, 0xffffffff);
3038 gfar_write(®s
->gaddr2
, 0xffffffff);
3039 gfar_write(®s
->gaddr3
, 0xffffffff);
3040 gfar_write(®s
->gaddr4
, 0xffffffff);
3041 gfar_write(®s
->gaddr5
, 0xffffffff);
3042 gfar_write(®s
->gaddr6
, 0xffffffff);
3043 gfar_write(®s
->gaddr7
, 0xffffffff);
3048 /* zero out the hash */
3049 gfar_write(®s
->igaddr0
, 0x0);
3050 gfar_write(®s
->igaddr1
, 0x0);
3051 gfar_write(®s
->igaddr2
, 0x0);
3052 gfar_write(®s
->igaddr3
, 0x0);
3053 gfar_write(®s
->igaddr4
, 0x0);
3054 gfar_write(®s
->igaddr5
, 0x0);
3055 gfar_write(®s
->igaddr6
, 0x0);
3056 gfar_write(®s
->igaddr7
, 0x0);
3057 gfar_write(®s
->gaddr0
, 0x0);
3058 gfar_write(®s
->gaddr1
, 0x0);
3059 gfar_write(®s
->gaddr2
, 0x0);
3060 gfar_write(®s
->gaddr3
, 0x0);
3061 gfar_write(®s
->gaddr4
, 0x0);
3062 gfar_write(®s
->gaddr5
, 0x0);
3063 gfar_write(®s
->gaddr6
, 0x0);
3064 gfar_write(®s
->gaddr7
, 0x0);
3066 /* If we have extended hash tables, we need to
3067 * clear the exact match registers to prepare for
3069 if (priv
->extended_hash
) {
3070 em_num
= GFAR_EM_NUM
+ 1;
3071 gfar_clear_exact_match(dev
);
3078 if (netdev_mc_empty(dev
))
3081 /* Parse the list, and set the appropriate bits */
3082 netdev_for_each_mc_addr(ha
, dev
) {
3084 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
3087 gfar_set_hash_for_addr(dev
, ha
->addr
);
3093 /* Clears each of the exact match registers to zero, so they
3094 * don't interfere with normal reception */
3095 static void gfar_clear_exact_match(struct net_device
*dev
)
3098 static const u8 zero_arr
[MAC_ADDR_LEN
] = {0, 0, 0, 0, 0, 0};
3100 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
3101 gfar_set_mac_for_addr(dev
, idx
, zero_arr
);
3104 /* Set the appropriate hash bit for the given addr */
3105 /* The algorithm works like so:
3106 * 1) Take the Destination Address (ie the multicast address), and
3107 * do a CRC on it (little endian), and reverse the bits of the
3109 * 2) Use the 8 most significant bits as a hash into a 256-entry
3110 * table. The table is controlled through 8 32-bit registers:
3111 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3112 * gaddr7. This means that the 3 most significant bits in the
3113 * hash index which gaddr register to use, and the 5 other bits
3114 * indicate which bit (assuming an IBM numbering scheme, which
3115 * for PowerPC (tm) is usually the case) in the register holds
3117 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3120 struct gfar_private
*priv
= netdev_priv(dev
);
3121 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
3122 int width
= priv
->hash_width
;
3123 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3124 u8 whichreg
= result
>> (32 - width
+ 5);
3125 u32 value
= (1 << (31-whichbit
));
3127 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3129 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3133 /* There are multiple MAC Address register pairs on some controllers
3134 * This function sets the numth pair to a given address
3136 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
3139 struct gfar_private
*priv
= netdev_priv(dev
);
3140 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3142 char tmpbuf
[MAC_ADDR_LEN
];
3144 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3148 /* Now copy it into the mac registers backwards, cuz */
3149 /* little endian is silly */
3150 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
3151 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
3153 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
3155 tempval
= *((u32
*) (tmpbuf
+ 4));
3157 gfar_write(macptr
+1, tempval
);
3160 /* GFAR error interrupt handler */
3161 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3163 struct gfar_priv_grp
*gfargrp
= grp_id
;
3164 struct gfar __iomem
*regs
= gfargrp
->regs
;
3165 struct gfar_private
*priv
= gfargrp
->priv
;
3166 struct net_device
*dev
= priv
->ndev
;
3168 /* Save ievent for future reference */
3169 u32 events
= gfar_read(®s
->ievent
);
3172 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3174 /* Magic Packet is not an error. */
3175 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3176 (events
& IEVENT_MAG
))
3177 events
&= ~IEVENT_MAG
;
3180 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3181 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3182 dev
->name
, events
, gfar_read(®s
->imask
));
3184 /* Update the error counters */
3185 if (events
& IEVENT_TXE
) {
3186 dev
->stats
.tx_errors
++;
3188 if (events
& IEVENT_LC
)
3189 dev
->stats
.tx_window_errors
++;
3190 if (events
& IEVENT_CRL
)
3191 dev
->stats
.tx_aborted_errors
++;
3192 if (events
& IEVENT_XFUN
) {
3193 unsigned long flags
;
3195 if (netif_msg_tx_err(priv
))
3196 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
3197 "packet dropped.\n", dev
->name
);
3198 dev
->stats
.tx_dropped
++;
3199 priv
->extra_stats
.tx_underrun
++;
3201 local_irq_save(flags
);
3204 /* Reactivate the Tx Queues */
3205 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3208 local_irq_restore(flags
);
3210 if (netif_msg_tx_err(priv
))
3211 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
3213 if (events
& IEVENT_BSY
) {
3214 dev
->stats
.rx_errors
++;
3215 priv
->extra_stats
.rx_bsy
++;
3217 gfar_receive(irq
, grp_id
);
3219 if (netif_msg_rx_err(priv
))
3220 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
3221 dev
->name
, gfar_read(®s
->rstat
));
3223 if (events
& IEVENT_BABR
) {
3224 dev
->stats
.rx_errors
++;
3225 priv
->extra_stats
.rx_babr
++;
3227 if (netif_msg_rx_err(priv
))
3228 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
3230 if (events
& IEVENT_EBERR
) {
3231 priv
->extra_stats
.eberr
++;
3232 if (netif_msg_rx_err(priv
))
3233 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
3235 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
3236 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
3238 if (events
& IEVENT_BABT
) {
3239 priv
->extra_stats
.tx_babt
++;
3240 if (netif_msg_tx_err(priv
))
3241 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
3246 static struct of_device_id gfar_match
[] =
3250 .compatible
= "gianfar",
3253 .compatible
= "fsl,etsec2",
3257 MODULE_DEVICE_TABLE(of
, gfar_match
);
3259 /* Structure for a device driver */
3260 static struct of_platform_driver gfar_driver
= {
3262 .name
= "fsl-gianfar",
3263 .owner
= THIS_MODULE
,
3265 .of_match_table
= gfar_match
,
3267 .probe
= gfar_probe
,
3268 .remove
= gfar_remove
,
3271 static int __init
gfar_init(void)
3273 return of_register_platform_driver(&gfar_driver
);
3276 static void __exit
gfar_exit(void)
3278 of_unregister_platform_driver(&gfar_driver
);
3281 module_init(gfar_init
);
3282 module_exit(gfar_exit
);