1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k8-NAPI"
35 const char e1000_driver_version
[] = DRV_VERSION
;
36 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
88 int e1000_up(struct e1000_adapter
*adapter
);
89 void e1000_down(struct e1000_adapter
*adapter
);
90 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
91 void e1000_reset(struct e1000_adapter
*adapter
);
92 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
93 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
94 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
95 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
96 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
97 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
98 struct e1000_tx_ring
*txdr
);
99 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
100 struct e1000_rx_ring
*rxdr
);
101 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*tx_ring
);
103 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rx_ring
);
105 void e1000_update_stats(struct e1000_adapter
*adapter
);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
110 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
111 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
112 static int e1000_sw_init(struct e1000_adapter
*adapter
);
113 static int e1000_open(struct net_device
*netdev
);
114 static int e1000_close(struct net_device
*netdev
);
115 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
116 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
117 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
120 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
121 struct e1000_tx_ring
*tx_ring
);
122 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
123 struct e1000_rx_ring
*rx_ring
);
124 static void e1000_set_rx_mode(struct net_device
*netdev
);
125 static void e1000_update_phy_info(unsigned long data
);
126 static void e1000_update_phy_info_task(struct work_struct
*work
);
127 static void e1000_watchdog(unsigned long data
);
128 static void e1000_82547_tx_fifo_stall(unsigned long data
);
129 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
);
130 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
131 struct net_device
*netdev
);
132 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
133 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
134 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
135 static irqreturn_t
e1000_intr(int irq
, void *data
);
136 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
137 struct e1000_tx_ring
*tx_ring
);
138 static int e1000_clean(struct napi_struct
*napi
, int budget
);
139 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
140 struct e1000_rx_ring
*rx_ring
,
141 int *work_done
, int work_to_do
);
142 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
143 struct e1000_rx_ring
*rx_ring
,
144 int *work_done
, int work_to_do
);
145 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
146 struct e1000_rx_ring
*rx_ring
,
148 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
149 struct e1000_rx_ring
*rx_ring
,
151 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
152 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
154 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
155 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
156 static void e1000_tx_timeout(struct net_device
*dev
);
157 static void e1000_reset_task(struct work_struct
*work
);
158 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
159 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
160 struct sk_buff
*skb
);
162 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
163 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
164 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
165 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
168 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
169 static int e1000_resume(struct pci_dev
*pdev
);
171 static void e1000_shutdown(struct pci_dev
*pdev
);
173 #ifdef CONFIG_NET_POLL_CONTROLLER
174 /* for netdump / net console */
175 static void e1000_netpoll (struct net_device
*netdev
);
178 #define COPYBREAK_DEFAULT 256
179 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
180 module_param(copybreak
, uint
, 0644);
181 MODULE_PARM_DESC(copybreak
,
182 "Maximum size of packet that is copied to a new buffer on receive");
184 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
185 pci_channel_state_t state
);
186 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
187 static void e1000_io_resume(struct pci_dev
*pdev
);
189 static struct pci_error_handlers e1000_err_handler
= {
190 .error_detected
= e1000_io_error_detected
,
191 .slot_reset
= e1000_io_slot_reset
,
192 .resume
= e1000_io_resume
,
195 static struct pci_driver e1000_driver
= {
196 .name
= e1000_driver_name
,
197 .id_table
= e1000_pci_tbl
,
198 .probe
= e1000_probe
,
199 .remove
= __devexit_p(e1000_remove
),
201 /* Power Managment Hooks */
202 .suspend
= e1000_suspend
,
203 .resume
= e1000_resume
,
205 .shutdown
= e1000_shutdown
,
206 .err_handler
= &e1000_err_handler
209 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
210 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
211 MODULE_LICENSE("GPL");
212 MODULE_VERSION(DRV_VERSION
);
214 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
215 module_param(debug
, int, 0);
216 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
219 * e1000_get_hw_dev - return device
220 * used by hardware layer to print debugging information
223 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
225 struct e1000_adapter
*adapter
= hw
->back
;
226 return adapter
->netdev
;
230 * e1000_init_module - Driver Registration Routine
232 * e1000_init_module is the first routine called when the driver is
233 * loaded. All it does is register with the PCI subsystem.
236 static int __init
e1000_init_module(void)
239 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
241 pr_info("%s\n", e1000_copyright
);
243 ret
= pci_register_driver(&e1000_driver
);
244 if (copybreak
!= COPYBREAK_DEFAULT
) {
246 pr_info("copybreak disabled\n");
248 pr_info("copybreak enabled for "
249 "packets <= %u bytes\n", copybreak
);
254 module_init(e1000_init_module
);
257 * e1000_exit_module - Driver Exit Cleanup Routine
259 * e1000_exit_module is called just before the driver is removed
263 static void __exit
e1000_exit_module(void)
265 pci_unregister_driver(&e1000_driver
);
268 module_exit(e1000_exit_module
);
270 static int e1000_request_irq(struct e1000_adapter
*adapter
)
272 struct net_device
*netdev
= adapter
->netdev
;
273 irq_handler_t handler
= e1000_intr
;
274 int irq_flags
= IRQF_SHARED
;
277 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
280 e_err(probe
, "Unable to allocate interrupt Error: %d\n", err
);
286 static void e1000_free_irq(struct e1000_adapter
*adapter
)
288 struct net_device
*netdev
= adapter
->netdev
;
290 free_irq(adapter
->pdev
->irq
, netdev
);
294 * e1000_irq_disable - Mask off interrupt generation on the NIC
295 * @adapter: board private structure
298 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
300 struct e1000_hw
*hw
= &adapter
->hw
;
304 synchronize_irq(adapter
->pdev
->irq
);
308 * e1000_irq_enable - Enable default interrupt generation settings
309 * @adapter: board private structure
312 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
314 struct e1000_hw
*hw
= &adapter
->hw
;
316 ew32(IMS
, IMS_ENABLE_MASK
);
320 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
322 struct e1000_hw
*hw
= &adapter
->hw
;
323 struct net_device
*netdev
= adapter
->netdev
;
324 u16 vid
= hw
->mng_cookie
.vlan_id
;
325 u16 old_vid
= adapter
->mng_vlan_id
;
326 if (adapter
->vlgrp
) {
327 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
328 if (hw
->mng_cookie
.status
&
329 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
330 e1000_vlan_rx_add_vid(netdev
, vid
);
331 adapter
->mng_vlan_id
= vid
;
333 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
335 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
337 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
338 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
340 adapter
->mng_vlan_id
= vid
;
344 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
346 struct e1000_hw
*hw
= &adapter
->hw
;
348 if (adapter
->en_mng_pt
) {
349 u32 manc
= er32(MANC
);
351 /* disable hardware interception of ARP */
352 manc
&= ~(E1000_MANC_ARP_EN
);
358 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
360 struct e1000_hw
*hw
= &adapter
->hw
;
362 if (adapter
->en_mng_pt
) {
363 u32 manc
= er32(MANC
);
365 /* re-enable hardware interception of ARP */
366 manc
|= E1000_MANC_ARP_EN
;
373 * e1000_configure - configure the hardware for RX and TX
374 * @adapter = private board structure
376 static void e1000_configure(struct e1000_adapter
*adapter
)
378 struct net_device
*netdev
= adapter
->netdev
;
381 e1000_set_rx_mode(netdev
);
383 e1000_restore_vlan(adapter
);
384 e1000_init_manageability(adapter
);
386 e1000_configure_tx(adapter
);
387 e1000_setup_rctl(adapter
);
388 e1000_configure_rx(adapter
);
389 /* call E1000_DESC_UNUSED which always leaves
390 * at least 1 descriptor unused to make sure
391 * next_to_use != next_to_clean */
392 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
393 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
394 adapter
->alloc_rx_buf(adapter
, ring
,
395 E1000_DESC_UNUSED(ring
));
399 int e1000_up(struct e1000_adapter
*adapter
)
401 struct e1000_hw
*hw
= &adapter
->hw
;
403 /* hardware has been reset, we need to reload some things */
404 e1000_configure(adapter
);
406 clear_bit(__E1000_DOWN
, &adapter
->flags
);
408 napi_enable(&adapter
->napi
);
410 e1000_irq_enable(adapter
);
412 netif_wake_queue(adapter
->netdev
);
414 /* fire a link change interrupt to start the watchdog */
415 ew32(ICS
, E1000_ICS_LSC
);
420 * e1000_power_up_phy - restore link in case the phy was powered down
421 * @adapter: address of board private structure
423 * The phy may be powered down to save power and turn off link when the
424 * driver is unloaded and wake on lan is not enabled (among others)
425 * *** this routine MUST be followed by a call to e1000_reset ***
429 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
431 struct e1000_hw
*hw
= &adapter
->hw
;
434 /* Just clear the power down bit to wake the phy back up */
435 if (hw
->media_type
== e1000_media_type_copper
) {
436 /* according to the manual, the phy will retain its
437 * settings across a power-down/up cycle */
438 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
439 mii_reg
&= ~MII_CR_POWER_DOWN
;
440 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
444 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
446 struct e1000_hw
*hw
= &adapter
->hw
;
448 /* Power down the PHY so no link is implied when interface is down *
449 * The PHY cannot be powered down if any of the following is true *
452 * (c) SoL/IDER session is active */
453 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
454 hw
->media_type
== e1000_media_type_copper
) {
457 switch (hw
->mac_type
) {
460 case e1000_82545_rev_3
:
462 case e1000_82546_rev_3
:
464 case e1000_82541_rev_2
:
466 case e1000_82547_rev_2
:
467 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
473 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
474 mii_reg
|= MII_CR_POWER_DOWN
;
475 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
482 void e1000_down(struct e1000_adapter
*adapter
)
484 struct e1000_hw
*hw
= &adapter
->hw
;
485 struct net_device
*netdev
= adapter
->netdev
;
489 /* disable receives in the hardware */
491 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
492 /* flush and sleep below */
494 netif_tx_disable(netdev
);
496 /* disable transmits in the hardware */
498 tctl
&= ~E1000_TCTL_EN
;
500 /* flush both disables and wait for them to finish */
504 napi_disable(&adapter
->napi
);
506 e1000_irq_disable(adapter
);
509 * Setting DOWN must be after irq_disable to prevent
510 * a screaming interrupt. Setting DOWN also prevents
511 * timers and tasks from rescheduling.
513 set_bit(__E1000_DOWN
, &adapter
->flags
);
515 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
516 del_timer_sync(&adapter
->watchdog_timer
);
517 del_timer_sync(&adapter
->phy_info_timer
);
519 adapter
->link_speed
= 0;
520 adapter
->link_duplex
= 0;
521 netif_carrier_off(netdev
);
523 e1000_reset(adapter
);
524 e1000_clean_all_tx_rings(adapter
);
525 e1000_clean_all_rx_rings(adapter
);
528 static void e1000_reinit_safe(struct e1000_adapter
*adapter
)
530 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
536 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
539 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
541 /* if rtnl_lock is not held the call path is bogus */
543 WARN_ON(in_interrupt());
544 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
548 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
551 void e1000_reset(struct e1000_adapter
*adapter
)
553 struct e1000_hw
*hw
= &adapter
->hw
;
554 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
555 bool legacy_pba_adjust
= false;
558 /* Repartition Pba for greater than 9k mtu
559 * To take effect CTRL.RST is required.
562 switch (hw
->mac_type
) {
563 case e1000_82542_rev2_0
:
564 case e1000_82542_rev2_1
:
569 case e1000_82541_rev_2
:
570 legacy_pba_adjust
= true;
574 case e1000_82545_rev_3
:
576 case e1000_82546_rev_3
:
580 case e1000_82547_rev_2
:
581 legacy_pba_adjust
= true;
584 case e1000_undefined
:
589 if (legacy_pba_adjust
) {
590 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
591 pba
-= 8; /* allocate more FIFO for Tx */
593 if (hw
->mac_type
== e1000_82547
) {
594 adapter
->tx_fifo_head
= 0;
595 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
596 adapter
->tx_fifo_size
=
597 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
598 atomic_set(&adapter
->tx_fifo_stall
, 0);
600 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
601 /* adjust PBA for jumbo frames */
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB. */
611 /* upper 16 bits has Tx packet buffer allocation size in KB */
612 tx_space
= pba
>> 16;
613 /* lower 16 bits has Rx packet buffer allocation size in KB */
616 * the tx fifo also stores 16 bytes of information about the tx
617 * but don't include ethernet FCS because hardware appends it
619 min_tx_space
= (hw
->max_frame_size
+
620 sizeof(struct e1000_tx_desc
) -
622 min_tx_space
= ALIGN(min_tx_space
, 1024);
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space
= hw
->max_frame_size
;
626 min_rx_space
= ALIGN(min_rx_space
, 1024);
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation */
632 if (tx_space
< min_tx_space
&&
633 ((min_tx_space
- tx_space
) < pba
)) {
634 pba
= pba
- (min_tx_space
- tx_space
);
636 /* PCI/PCIx hardware has PBA alignment constraints */
637 switch (hw
->mac_type
) {
638 case e1000_82545
... e1000_82546_rev_3
:
639 pba
&= ~(E1000_PBA_8K
- 1);
645 /* if short on rx space, rx wins and must trump tx
646 * adjustment or use Early Receive if available */
647 if (pba
< min_rx_space
)
655 * flow control settings:
656 * The high water mark must be low enough to fit one full frame
657 * (or the size used for early receive) above it in the Rx FIFO.
658 * Set it to the lower of:
659 * - 90% of the Rx FIFO size, and
660 * - the full Rx FIFO size minus the early receive size (for parts
661 * with ERT support assuming ERT set to E1000_ERT_2048), or
662 * - the full Rx FIFO size minus one full frame
664 hwm
= min(((pba
<< 10) * 9 / 10),
665 ((pba
<< 10) - hw
->max_frame_size
));
667 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
668 hw
->fc_low_water
= hw
->fc_high_water
- 8;
669 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
671 hw
->fc
= hw
->original_fc
;
673 /* Allow time for pending master requests to run */
675 if (hw
->mac_type
>= e1000_82544
)
678 if (e1000_init_hw(hw
))
679 e_dev_err("Hardware Error\n");
680 e1000_update_mng_vlan(adapter
);
682 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
683 if (hw
->mac_type
>= e1000_82544
&&
685 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
686 u32 ctrl
= er32(CTRL
);
687 /* clear phy power management bit if we are in gig only mode,
688 * which if enabled will attempt negotiation to 100Mb, which
689 * can cause a loss of link at power off or driver unload */
690 ctrl
&= ~E1000_CTRL_SWDPIN3
;
694 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
695 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
697 e1000_reset_adaptive(hw
);
698 e1000_phy_get_info(hw
, &adapter
->phy_info
);
700 e1000_release_manageability(adapter
);
704 * Dump the eeprom for users having checksum issues
706 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
708 struct net_device
*netdev
= adapter
->netdev
;
709 struct ethtool_eeprom eeprom
;
710 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
713 u16 csum_old
, csum_new
= 0;
715 eeprom
.len
= ops
->get_eeprom_len(netdev
);
718 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
720 pr_err("Unable to allocate memory to dump EEPROM data\n");
724 ops
->get_eeprom(netdev
, &eeprom
, data
);
726 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
727 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
728 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
729 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
730 csum_new
= EEPROM_SUM
- csum_new
;
732 pr_err("/*********************/\n");
733 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
734 pr_err("Calculated : 0x%04x\n", csum_new
);
736 pr_err("Offset Values\n");
737 pr_err("======== ======\n");
738 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
740 pr_err("Include this output when contacting your support provider.\n");
741 pr_err("This is not a software error! Something bad happened to\n");
742 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
743 pr_err("result in further problems, possibly loss of data,\n");
744 pr_err("corruption or system hangs!\n");
745 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
746 pr_err("which is invalid and requires you to set the proper MAC\n");
747 pr_err("address manually before continuing to enable this network\n");
748 pr_err("device. Please inspect the EEPROM dump and report the\n");
749 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
750 pr_err("/*********************/\n");
756 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
757 * @pdev: PCI device information struct
759 * Return true if an adapter needs ioport resources
761 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
763 switch (pdev
->device
) {
764 case E1000_DEV_ID_82540EM
:
765 case E1000_DEV_ID_82540EM_LOM
:
766 case E1000_DEV_ID_82540EP
:
767 case E1000_DEV_ID_82540EP_LOM
:
768 case E1000_DEV_ID_82540EP_LP
:
769 case E1000_DEV_ID_82541EI
:
770 case E1000_DEV_ID_82541EI_MOBILE
:
771 case E1000_DEV_ID_82541ER
:
772 case E1000_DEV_ID_82541ER_LOM
:
773 case E1000_DEV_ID_82541GI
:
774 case E1000_DEV_ID_82541GI_LF
:
775 case E1000_DEV_ID_82541GI_MOBILE
:
776 case E1000_DEV_ID_82544EI_COPPER
:
777 case E1000_DEV_ID_82544EI_FIBER
:
778 case E1000_DEV_ID_82544GC_COPPER
:
779 case E1000_DEV_ID_82544GC_LOM
:
780 case E1000_DEV_ID_82545EM_COPPER
:
781 case E1000_DEV_ID_82545EM_FIBER
:
782 case E1000_DEV_ID_82546EB_COPPER
:
783 case E1000_DEV_ID_82546EB_FIBER
:
784 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
791 static const struct net_device_ops e1000_netdev_ops
= {
792 .ndo_open
= e1000_open
,
793 .ndo_stop
= e1000_close
,
794 .ndo_start_xmit
= e1000_xmit_frame
,
795 .ndo_get_stats
= e1000_get_stats
,
796 .ndo_set_rx_mode
= e1000_set_rx_mode
,
797 .ndo_set_mac_address
= e1000_set_mac
,
798 .ndo_tx_timeout
= e1000_tx_timeout
,
799 .ndo_change_mtu
= e1000_change_mtu
,
800 .ndo_do_ioctl
= e1000_ioctl
,
801 .ndo_validate_addr
= eth_validate_addr
,
803 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
804 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
805 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
806 #ifdef CONFIG_NET_POLL_CONTROLLER
807 .ndo_poll_controller
= e1000_netpoll
,
812 * e1000_init_hw_struct - initialize members of hw struct
813 * @adapter: board private struct
814 * @hw: structure used by e1000_hw.c
816 * Factors out initialization of the e1000_hw struct to its own function
817 * that can be called very early at init (just after struct allocation).
818 * Fields are initialized based on PCI device information and
819 * OS network device settings (MTU size).
820 * Returns negative error codes if MAC type setup fails.
822 static int e1000_init_hw_struct(struct e1000_adapter
*adapter
,
825 struct pci_dev
*pdev
= adapter
->pdev
;
827 /* PCI config space info */
828 hw
->vendor_id
= pdev
->vendor
;
829 hw
->device_id
= pdev
->device
;
830 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
831 hw
->subsystem_id
= pdev
->subsystem_device
;
832 hw
->revision_id
= pdev
->revision
;
834 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
836 hw
->max_frame_size
= adapter
->netdev
->mtu
+
837 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
838 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
840 /* identify the MAC */
841 if (e1000_set_mac_type(hw
)) {
842 e_err(probe
, "Unknown MAC Type\n");
846 switch (hw
->mac_type
) {
851 case e1000_82541_rev_2
:
852 case e1000_82547_rev_2
:
853 hw
->phy_init_script
= 1;
857 e1000_set_media_type(hw
);
858 e1000_get_bus_info(hw
);
860 hw
->wait_autoneg_complete
= false;
861 hw
->tbi_compatibility_en
= true;
862 hw
->adaptive_ifs
= true;
866 if (hw
->media_type
== e1000_media_type_copper
) {
867 hw
->mdix
= AUTO_ALL_MODES
;
868 hw
->disable_polarity_correction
= false;
869 hw
->master_slave
= E1000_MASTER_SLAVE
;
876 * e1000_probe - Device Initialization Routine
877 * @pdev: PCI device information struct
878 * @ent: entry in e1000_pci_tbl
880 * Returns 0 on success, negative on failure
882 * e1000_probe initializes an adapter identified by a pci_dev structure.
883 * The OS initialization, configuring of the adapter private structure,
884 * and a hardware reset occur.
886 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
887 const struct pci_device_id
*ent
)
889 struct net_device
*netdev
;
890 struct e1000_adapter
*adapter
;
893 static int cards_found
= 0;
894 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
895 int i
, err
, pci_using_dac
;
897 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
898 int bars
, need_ioport
;
900 /* do not allocate ioport bars when not needed */
901 need_ioport
= e1000_is_need_ioport(pdev
);
903 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
904 err
= pci_enable_device(pdev
);
906 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
907 err
= pci_enable_device_mem(pdev
);
912 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
916 pci_set_master(pdev
);
917 err
= pci_save_state(pdev
);
919 goto err_alloc_etherdev
;
922 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
924 goto err_alloc_etherdev
;
926 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
928 pci_set_drvdata(pdev
, netdev
);
929 adapter
= netdev_priv(netdev
);
930 adapter
->netdev
= netdev
;
931 adapter
->pdev
= pdev
;
932 adapter
->msg_enable
= (1 << debug
) - 1;
933 adapter
->bars
= bars
;
934 adapter
->need_ioport
= need_ioport
;
940 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
944 if (adapter
->need_ioport
) {
945 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
946 if (pci_resource_len(pdev
, i
) == 0)
948 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
949 hw
->io_base
= pci_resource_start(pdev
, i
);
955 /* make ready for any if (hw->...) below */
956 err
= e1000_init_hw_struct(adapter
, hw
);
961 * there is a workaround being applied below that limits
962 * 64-bit DMA addresses to 64-bit hardware. There are some
963 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
966 if ((hw
->bus_type
== e1000_bus_type_pcix
) &&
967 !dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
969 * according to DMA-API-HOWTO, coherent calls will always
970 * succeed if the set call did
972 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
975 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
977 pr_err("No usable DMA config, aborting\n");
980 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
983 netdev
->netdev_ops
= &e1000_netdev_ops
;
984 e1000_set_ethtool_ops(netdev
);
985 netdev
->watchdog_timeo
= 5 * HZ
;
986 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
988 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
990 adapter
->bd_number
= cards_found
;
992 /* setup the private structure */
994 err
= e1000_sw_init(adapter
);
1000 if (hw
->mac_type
>= e1000_82543
) {
1001 netdev
->features
= NETIF_F_SG
|
1003 NETIF_F_HW_VLAN_TX
|
1004 NETIF_F_HW_VLAN_RX
|
1005 NETIF_F_HW_VLAN_FILTER
;
1008 if ((hw
->mac_type
>= e1000_82544
) &&
1009 (hw
->mac_type
!= e1000_82547
))
1010 netdev
->features
|= NETIF_F_TSO
;
1012 if (pci_using_dac
) {
1013 netdev
->features
|= NETIF_F_HIGHDMA
;
1014 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1017 netdev
->vlan_features
|= NETIF_F_TSO
;
1018 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1019 netdev
->vlan_features
|= NETIF_F_SG
;
1021 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1023 /* initialize eeprom parameters */
1024 if (e1000_init_eeprom_params(hw
)) {
1025 e_err(probe
, "EEPROM initialization failed\n");
1029 /* before reading the EEPROM, reset the controller to
1030 * put the device in a known good starting state */
1034 /* make sure the EEPROM is good */
1035 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1036 e_err(probe
, "The EEPROM Checksum Is Not Valid\n");
1037 e1000_dump_eeprom(adapter
);
1039 * set MAC address to all zeroes to invalidate and temporary
1040 * disable this device for the user. This blocks regular
1041 * traffic while still permitting ethtool ioctls from reaching
1042 * the hardware as well as allowing the user to run the
1043 * interface after manually setting a hw addr using
1046 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1048 /* copy the MAC address out of the EEPROM */
1049 if (e1000_read_mac_addr(hw
))
1050 e_err(probe
, "EEPROM Read Error\n");
1052 /* don't block initalization here due to bad MAC address */
1053 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1054 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1056 if (!is_valid_ether_addr(netdev
->perm_addr
))
1057 e_err(probe
, "Invalid MAC Address\n");
1059 init_timer(&adapter
->tx_fifo_stall_timer
);
1060 adapter
->tx_fifo_stall_timer
.function
= e1000_82547_tx_fifo_stall
;
1061 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
1063 init_timer(&adapter
->watchdog_timer
);
1064 adapter
->watchdog_timer
.function
= e1000_watchdog
;
1065 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1067 init_timer(&adapter
->phy_info_timer
);
1068 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
1069 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
1071 INIT_WORK(&adapter
->fifo_stall_task
, e1000_82547_tx_fifo_stall_task
);
1072 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1073 INIT_WORK(&adapter
->phy_info_task
, e1000_update_phy_info_task
);
1075 e1000_check_options(adapter
);
1077 /* Initial Wake on LAN setting
1078 * If APM wake is enabled in the EEPROM,
1079 * enable the ACPI Magic Packet filter
1082 switch (hw
->mac_type
) {
1083 case e1000_82542_rev2_0
:
1084 case e1000_82542_rev2_1
:
1088 e1000_read_eeprom(hw
,
1089 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1090 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1093 case e1000_82546_rev_3
:
1094 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1095 e1000_read_eeprom(hw
,
1096 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1101 e1000_read_eeprom(hw
,
1102 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1105 if (eeprom_data
& eeprom_apme_mask
)
1106 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1108 /* now that we have the eeprom settings, apply the special cases
1109 * where the eeprom may be wrong or the board simply won't support
1110 * wake on lan on a particular port */
1111 switch (pdev
->device
) {
1112 case E1000_DEV_ID_82546GB_PCIE
:
1113 adapter
->eeprom_wol
= 0;
1115 case E1000_DEV_ID_82546EB_FIBER
:
1116 case E1000_DEV_ID_82546GB_FIBER
:
1117 /* Wake events only supported on port A for dual fiber
1118 * regardless of eeprom setting */
1119 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1120 adapter
->eeprom_wol
= 0;
1122 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1123 /* if quad port adapter, disable WoL on all but port A */
1124 if (global_quad_port_a
!= 0)
1125 adapter
->eeprom_wol
= 0;
1127 adapter
->quad_port_a
= 1;
1128 /* Reset for multiple quad port adapters */
1129 if (++global_quad_port_a
== 4)
1130 global_quad_port_a
= 0;
1134 /* initialize the wol settings based on the eeprom settings */
1135 adapter
->wol
= adapter
->eeprom_wol
;
1136 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1138 /* reset the hardware with the new settings */
1139 e1000_reset(adapter
);
1141 strcpy(netdev
->name
, "eth%d");
1142 err
= register_netdev(netdev
);
1146 /* print bus type/speed/width info */
1147 e_info(probe
, "(PCI%s:%dMHz:%d-bit) %pM\n",
1148 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1149 ((hw
->bus_speed
== e1000_bus_speed_133
) ? 133 :
1150 (hw
->bus_speed
== e1000_bus_speed_120
) ? 120 :
1151 (hw
->bus_speed
== e1000_bus_speed_100
) ? 100 :
1152 (hw
->bus_speed
== e1000_bus_speed_66
) ? 66 : 33),
1153 ((hw
->bus_width
== e1000_bus_width_64
) ? 64 : 32),
1156 /* carrier off reporting is important to ethtool even BEFORE open */
1157 netif_carrier_off(netdev
);
1159 e_info(probe
, "Intel(R) PRO/1000 Network Connection\n");
1166 e1000_phy_hw_reset(hw
);
1168 if (hw
->flash_address
)
1169 iounmap(hw
->flash_address
);
1170 kfree(adapter
->tx_ring
);
1171 kfree(adapter
->rx_ring
);
1174 iounmap(hw
->hw_addr
);
1176 free_netdev(netdev
);
1178 pci_release_selected_regions(pdev
, bars
);
1180 pci_disable_device(pdev
);
1185 * e1000_remove - Device Removal Routine
1186 * @pdev: PCI device information struct
1188 * e1000_remove is called by the PCI subsystem to alert the driver
1189 * that it should release a PCI device. The could be caused by a
1190 * Hot-Plug event, or because the driver is going to be removed from
1194 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1196 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1197 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1198 struct e1000_hw
*hw
= &adapter
->hw
;
1200 set_bit(__E1000_DOWN
, &adapter
->flags
);
1201 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
1202 del_timer_sync(&adapter
->watchdog_timer
);
1203 del_timer_sync(&adapter
->phy_info_timer
);
1205 cancel_work_sync(&adapter
->reset_task
);
1207 e1000_release_manageability(adapter
);
1209 unregister_netdev(netdev
);
1211 e1000_phy_hw_reset(hw
);
1213 kfree(adapter
->tx_ring
);
1214 kfree(adapter
->rx_ring
);
1216 iounmap(hw
->hw_addr
);
1217 if (hw
->flash_address
)
1218 iounmap(hw
->flash_address
);
1219 pci_release_selected_regions(pdev
, adapter
->bars
);
1221 free_netdev(netdev
);
1223 pci_disable_device(pdev
);
1227 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1228 * @adapter: board private structure to initialize
1230 * e1000_sw_init initializes the Adapter private data structure.
1231 * e1000_init_hw_struct MUST be called before this function
1234 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1236 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1238 adapter
->num_tx_queues
= 1;
1239 adapter
->num_rx_queues
= 1;
1241 if (e1000_alloc_queues(adapter
)) {
1242 e_err(probe
, "Unable to allocate memory for queues\n");
1246 /* Explicitly disable IRQ since the NIC can be in any state. */
1247 e1000_irq_disable(adapter
);
1249 spin_lock_init(&adapter
->stats_lock
);
1251 set_bit(__E1000_DOWN
, &adapter
->flags
);
1257 * e1000_alloc_queues - Allocate memory for all rings
1258 * @adapter: board private structure to initialize
1260 * We allocate one ring per queue at run-time since we don't know the
1261 * number of queues at compile-time.
1264 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1266 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1267 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1268 if (!adapter
->tx_ring
)
1271 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1272 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1273 if (!adapter
->rx_ring
) {
1274 kfree(adapter
->tx_ring
);
1278 return E1000_SUCCESS
;
1282 * e1000_open - Called when a network interface is made active
1283 * @netdev: network interface device structure
1285 * Returns 0 on success, negative value on failure
1287 * The open entry point is called when a network interface is made
1288 * active by the system (IFF_UP). At this point all resources needed
1289 * for transmit and receive operations are allocated, the interrupt
1290 * handler is registered with the OS, the watchdog timer is started,
1291 * and the stack is notified that the interface is ready.
1294 static int e1000_open(struct net_device
*netdev
)
1296 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1297 struct e1000_hw
*hw
= &adapter
->hw
;
1300 /* disallow open during test */
1301 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1304 netif_carrier_off(netdev
);
1306 /* allocate transmit descriptors */
1307 err
= e1000_setup_all_tx_resources(adapter
);
1311 /* allocate receive descriptors */
1312 err
= e1000_setup_all_rx_resources(adapter
);
1316 e1000_power_up_phy(adapter
);
1318 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1319 if ((hw
->mng_cookie
.status
&
1320 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1321 e1000_update_mng_vlan(adapter
);
1324 /* before we allocate an interrupt, we must be ready to handle it.
1325 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1326 * as soon as we call pci_request_irq, so we have to setup our
1327 * clean_rx handler before we do so. */
1328 e1000_configure(adapter
);
1330 err
= e1000_request_irq(adapter
);
1334 /* From here on the code is the same as e1000_up() */
1335 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1337 napi_enable(&adapter
->napi
);
1339 e1000_irq_enable(adapter
);
1341 netif_start_queue(netdev
);
1343 /* fire a link status change interrupt to start the watchdog */
1344 ew32(ICS
, E1000_ICS_LSC
);
1346 return E1000_SUCCESS
;
1349 e1000_power_down_phy(adapter
);
1350 e1000_free_all_rx_resources(adapter
);
1352 e1000_free_all_tx_resources(adapter
);
1354 e1000_reset(adapter
);
1360 * e1000_close - Disables a network interface
1361 * @netdev: network interface device structure
1363 * Returns 0, this is not allowed to fail
1365 * The close entry point is called when an interface is de-activated
1366 * by the OS. The hardware is still under the drivers control, but
1367 * needs to be disabled. A global MAC reset is issued to stop the
1368 * hardware, and all transmit and receive resources are freed.
1371 static int e1000_close(struct net_device
*netdev
)
1373 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1374 struct e1000_hw
*hw
= &adapter
->hw
;
1376 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1377 e1000_down(adapter
);
1378 e1000_power_down_phy(adapter
);
1379 e1000_free_irq(adapter
);
1381 e1000_free_all_tx_resources(adapter
);
1382 e1000_free_all_rx_resources(adapter
);
1384 /* kill manageability vlan ID if supported, but not if a vlan with
1385 * the same ID is registered on the host OS (let 8021q kill it) */
1386 if ((hw
->mng_cookie
.status
&
1387 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1389 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1390 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1397 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1398 * @adapter: address of board private structure
1399 * @start: address of beginning of memory
1400 * @len: length of memory
1402 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1405 struct e1000_hw
*hw
= &adapter
->hw
;
1406 unsigned long begin
= (unsigned long)start
;
1407 unsigned long end
= begin
+ len
;
1409 /* First rev 82545 and 82546 need to not allow any memory
1410 * write location to cross 64k boundary due to errata 23 */
1411 if (hw
->mac_type
== e1000_82545
||
1412 hw
->mac_type
== e1000_82546
) {
1413 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1420 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1421 * @adapter: board private structure
1422 * @txdr: tx descriptor ring (for a specific queue) to setup
1424 * Return 0 on success, negative on failure
1427 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1428 struct e1000_tx_ring
*txdr
)
1430 struct pci_dev
*pdev
= adapter
->pdev
;
1433 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1434 txdr
->buffer_info
= vzalloc(size
);
1435 if (!txdr
->buffer_info
) {
1436 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1441 /* round up to nearest 4K */
1443 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1444 txdr
->size
= ALIGN(txdr
->size
, 4096);
1446 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1450 vfree(txdr
->buffer_info
);
1451 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1456 /* Fix for errata 23, can't cross 64kB boundary */
1457 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1458 void *olddesc
= txdr
->desc
;
1459 dma_addr_t olddma
= txdr
->dma
;
1460 e_err(tx_err
, "txdr align check failed: %u bytes at %p\n",
1461 txdr
->size
, txdr
->desc
);
1462 /* Try again, without freeing the previous */
1463 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1464 &txdr
->dma
, GFP_KERNEL
);
1465 /* Failed allocation, critical failure */
1467 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1469 goto setup_tx_desc_die
;
1472 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1474 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1476 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1478 e_err(probe
, "Unable to allocate aligned memory "
1479 "for the transmit descriptor ring\n");
1480 vfree(txdr
->buffer_info
);
1483 /* Free old allocation, new allocation was successful */
1484 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1488 memset(txdr
->desc
, 0, txdr
->size
);
1490 txdr
->next_to_use
= 0;
1491 txdr
->next_to_clean
= 0;
1497 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1498 * (Descriptors) for all queues
1499 * @adapter: board private structure
1501 * Return 0 on success, negative on failure
1504 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1508 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1509 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1511 e_err(probe
, "Allocation for Tx Queue %u failed\n", i
);
1512 for (i
-- ; i
>= 0; i
--)
1513 e1000_free_tx_resources(adapter
,
1514 &adapter
->tx_ring
[i
]);
1523 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1524 * @adapter: board private structure
1526 * Configure the Tx unit of the MAC after a reset.
1529 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1532 struct e1000_hw
*hw
= &adapter
->hw
;
1533 u32 tdlen
, tctl
, tipg
;
1536 /* Setup the HW Tx Head and Tail descriptor pointers */
1538 switch (adapter
->num_tx_queues
) {
1541 tdba
= adapter
->tx_ring
[0].dma
;
1542 tdlen
= adapter
->tx_ring
[0].count
*
1543 sizeof(struct e1000_tx_desc
);
1545 ew32(TDBAH
, (tdba
>> 32));
1546 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1549 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1550 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1554 /* Set the default values for the Tx Inter Packet Gap timer */
1555 if ((hw
->media_type
== e1000_media_type_fiber
||
1556 hw
->media_type
== e1000_media_type_internal_serdes
))
1557 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1559 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1561 switch (hw
->mac_type
) {
1562 case e1000_82542_rev2_0
:
1563 case e1000_82542_rev2_1
:
1564 tipg
= DEFAULT_82542_TIPG_IPGT
;
1565 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1566 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1569 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1570 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1573 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1574 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1577 /* Set the Tx Interrupt Delay register */
1579 ew32(TIDV
, adapter
->tx_int_delay
);
1580 if (hw
->mac_type
>= e1000_82540
)
1581 ew32(TADV
, adapter
->tx_abs_int_delay
);
1583 /* Program the Transmit Control Register */
1586 tctl
&= ~E1000_TCTL_CT
;
1587 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1588 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1590 e1000_config_collision_dist(hw
);
1592 /* Setup Transmit Descriptor Settings for eop descriptor */
1593 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1595 /* only set IDE if we are delaying interrupts using the timers */
1596 if (adapter
->tx_int_delay
)
1597 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1599 if (hw
->mac_type
< e1000_82543
)
1600 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1602 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1604 /* Cache if we're 82544 running in PCI-X because we'll
1605 * need this to apply a workaround later in the send path. */
1606 if (hw
->mac_type
== e1000_82544
&&
1607 hw
->bus_type
== e1000_bus_type_pcix
)
1608 adapter
->pcix_82544
= 1;
1615 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1616 * @adapter: board private structure
1617 * @rxdr: rx descriptor ring (for a specific queue) to setup
1619 * Returns 0 on success, negative on failure
1622 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1623 struct e1000_rx_ring
*rxdr
)
1625 struct pci_dev
*pdev
= adapter
->pdev
;
1628 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1629 rxdr
->buffer_info
= vzalloc(size
);
1630 if (!rxdr
->buffer_info
) {
1631 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1636 desc_len
= sizeof(struct e1000_rx_desc
);
1638 /* Round up to nearest 4K */
1640 rxdr
->size
= rxdr
->count
* desc_len
;
1641 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1643 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1647 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1650 vfree(rxdr
->buffer_info
);
1654 /* Fix for errata 23, can't cross 64kB boundary */
1655 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1656 void *olddesc
= rxdr
->desc
;
1657 dma_addr_t olddma
= rxdr
->dma
;
1658 e_err(rx_err
, "rxdr align check failed: %u bytes at %p\n",
1659 rxdr
->size
, rxdr
->desc
);
1660 /* Try again, without freeing the previous */
1661 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1662 &rxdr
->dma
, GFP_KERNEL
);
1663 /* Failed allocation, critical failure */
1665 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1667 e_err(probe
, "Unable to allocate memory for the Rx "
1668 "descriptor ring\n");
1669 goto setup_rx_desc_die
;
1672 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1674 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1676 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1678 e_err(probe
, "Unable to allocate aligned memory for "
1679 "the Rx descriptor ring\n");
1680 goto setup_rx_desc_die
;
1682 /* Free old allocation, new allocation was successful */
1683 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1687 memset(rxdr
->desc
, 0, rxdr
->size
);
1689 rxdr
->next_to_clean
= 0;
1690 rxdr
->next_to_use
= 0;
1691 rxdr
->rx_skb_top
= NULL
;
1697 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1698 * (Descriptors) for all queues
1699 * @adapter: board private structure
1701 * Return 0 on success, negative on failure
1704 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1708 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1709 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1711 e_err(probe
, "Allocation for Rx Queue %u failed\n", i
);
1712 for (i
-- ; i
>= 0; i
--)
1713 e1000_free_rx_resources(adapter
,
1714 &adapter
->rx_ring
[i
]);
1723 * e1000_setup_rctl - configure the receive control registers
1724 * @adapter: Board private structure
1726 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1728 struct e1000_hw
*hw
= &adapter
->hw
;
1733 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1735 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1736 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1737 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1739 if (hw
->tbi_compatibility_on
== 1)
1740 rctl
|= E1000_RCTL_SBP
;
1742 rctl
&= ~E1000_RCTL_SBP
;
1744 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1745 rctl
&= ~E1000_RCTL_LPE
;
1747 rctl
|= E1000_RCTL_LPE
;
1749 /* Setup buffer sizes */
1750 rctl
&= ~E1000_RCTL_SZ_4096
;
1751 rctl
|= E1000_RCTL_BSEX
;
1752 switch (adapter
->rx_buffer_len
) {
1753 case E1000_RXBUFFER_2048
:
1755 rctl
|= E1000_RCTL_SZ_2048
;
1756 rctl
&= ~E1000_RCTL_BSEX
;
1758 case E1000_RXBUFFER_4096
:
1759 rctl
|= E1000_RCTL_SZ_4096
;
1761 case E1000_RXBUFFER_8192
:
1762 rctl
|= E1000_RCTL_SZ_8192
;
1764 case E1000_RXBUFFER_16384
:
1765 rctl
|= E1000_RCTL_SZ_16384
;
1773 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1774 * @adapter: board private structure
1776 * Configure the Rx unit of the MAC after a reset.
1779 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1782 struct e1000_hw
*hw
= &adapter
->hw
;
1783 u32 rdlen
, rctl
, rxcsum
;
1785 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1786 rdlen
= adapter
->rx_ring
[0].count
*
1787 sizeof(struct e1000_rx_desc
);
1788 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1789 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1791 rdlen
= adapter
->rx_ring
[0].count
*
1792 sizeof(struct e1000_rx_desc
);
1793 adapter
->clean_rx
= e1000_clean_rx_irq
;
1794 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1797 /* disable receives while setting up the descriptors */
1799 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1801 /* set the Receive Delay Timer Register */
1802 ew32(RDTR
, adapter
->rx_int_delay
);
1804 if (hw
->mac_type
>= e1000_82540
) {
1805 ew32(RADV
, adapter
->rx_abs_int_delay
);
1806 if (adapter
->itr_setting
!= 0)
1807 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1810 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1811 * the Base and Length of the Rx Descriptor Ring */
1812 switch (adapter
->num_rx_queues
) {
1815 rdba
= adapter
->rx_ring
[0].dma
;
1817 ew32(RDBAH
, (rdba
>> 32));
1818 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1821 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1822 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1826 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1827 if (hw
->mac_type
>= e1000_82543
) {
1828 rxcsum
= er32(RXCSUM
);
1829 if (adapter
->rx_csum
)
1830 rxcsum
|= E1000_RXCSUM_TUOFL
;
1832 /* don't need to clear IPPCSE as it defaults to 0 */
1833 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1834 ew32(RXCSUM
, rxcsum
);
1837 /* Enable Receives */
1842 * e1000_free_tx_resources - Free Tx Resources per Queue
1843 * @adapter: board private structure
1844 * @tx_ring: Tx descriptor ring for a specific queue
1846 * Free all transmit software resources
1849 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1850 struct e1000_tx_ring
*tx_ring
)
1852 struct pci_dev
*pdev
= adapter
->pdev
;
1854 e1000_clean_tx_ring(adapter
, tx_ring
);
1856 vfree(tx_ring
->buffer_info
);
1857 tx_ring
->buffer_info
= NULL
;
1859 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1862 tx_ring
->desc
= NULL
;
1866 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1867 * @adapter: board private structure
1869 * Free all transmit software resources
1872 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1876 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1877 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1880 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1881 struct e1000_buffer
*buffer_info
)
1883 if (buffer_info
->dma
) {
1884 if (buffer_info
->mapped_as_page
)
1885 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1886 buffer_info
->length
, DMA_TO_DEVICE
);
1888 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1889 buffer_info
->length
,
1891 buffer_info
->dma
= 0;
1893 if (buffer_info
->skb
) {
1894 dev_kfree_skb_any(buffer_info
->skb
);
1895 buffer_info
->skb
= NULL
;
1897 buffer_info
->time_stamp
= 0;
1898 /* buffer_info must be completely set up in the transmit path */
1902 * e1000_clean_tx_ring - Free Tx Buffers
1903 * @adapter: board private structure
1904 * @tx_ring: ring to be cleaned
1907 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1908 struct e1000_tx_ring
*tx_ring
)
1910 struct e1000_hw
*hw
= &adapter
->hw
;
1911 struct e1000_buffer
*buffer_info
;
1915 /* Free all the Tx ring sk_buffs */
1917 for (i
= 0; i
< tx_ring
->count
; i
++) {
1918 buffer_info
= &tx_ring
->buffer_info
[i
];
1919 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1922 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1923 memset(tx_ring
->buffer_info
, 0, size
);
1925 /* Zero out the descriptor ring */
1927 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1929 tx_ring
->next_to_use
= 0;
1930 tx_ring
->next_to_clean
= 0;
1931 tx_ring
->last_tx_tso
= 0;
1933 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
1934 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
1938 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1939 * @adapter: board private structure
1942 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1946 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1947 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1951 * e1000_free_rx_resources - Free Rx Resources
1952 * @adapter: board private structure
1953 * @rx_ring: ring to clean the resources from
1955 * Free all receive software resources
1958 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1959 struct e1000_rx_ring
*rx_ring
)
1961 struct pci_dev
*pdev
= adapter
->pdev
;
1963 e1000_clean_rx_ring(adapter
, rx_ring
);
1965 vfree(rx_ring
->buffer_info
);
1966 rx_ring
->buffer_info
= NULL
;
1968 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1971 rx_ring
->desc
= NULL
;
1975 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1976 * @adapter: board private structure
1978 * Free all receive software resources
1981 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
1985 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1986 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1990 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1991 * @adapter: board private structure
1992 * @rx_ring: ring to free buffers from
1995 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
1996 struct e1000_rx_ring
*rx_ring
)
1998 struct e1000_hw
*hw
= &adapter
->hw
;
1999 struct e1000_buffer
*buffer_info
;
2000 struct pci_dev
*pdev
= adapter
->pdev
;
2004 /* Free all the Rx ring sk_buffs */
2005 for (i
= 0; i
< rx_ring
->count
; i
++) {
2006 buffer_info
= &rx_ring
->buffer_info
[i
];
2007 if (buffer_info
->dma
&&
2008 adapter
->clean_rx
== e1000_clean_rx_irq
) {
2009 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
2010 buffer_info
->length
,
2012 } else if (buffer_info
->dma
&&
2013 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2014 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
2015 buffer_info
->length
,
2019 buffer_info
->dma
= 0;
2020 if (buffer_info
->page
) {
2021 put_page(buffer_info
->page
);
2022 buffer_info
->page
= NULL
;
2024 if (buffer_info
->skb
) {
2025 dev_kfree_skb(buffer_info
->skb
);
2026 buffer_info
->skb
= NULL
;
2030 /* there also may be some cached data from a chained receive */
2031 if (rx_ring
->rx_skb_top
) {
2032 dev_kfree_skb(rx_ring
->rx_skb_top
);
2033 rx_ring
->rx_skb_top
= NULL
;
2036 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2037 memset(rx_ring
->buffer_info
, 0, size
);
2039 /* Zero out the descriptor ring */
2040 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2042 rx_ring
->next_to_clean
= 0;
2043 rx_ring
->next_to_use
= 0;
2045 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2046 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2050 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2051 * @adapter: board private structure
2054 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2058 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2059 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2062 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2063 * and memory write and invalidate disabled for certain operations
2065 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2067 struct e1000_hw
*hw
= &adapter
->hw
;
2068 struct net_device
*netdev
= adapter
->netdev
;
2071 e1000_pci_clear_mwi(hw
);
2074 rctl
|= E1000_RCTL_RST
;
2076 E1000_WRITE_FLUSH();
2079 if (netif_running(netdev
))
2080 e1000_clean_all_rx_rings(adapter
);
2083 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2085 struct e1000_hw
*hw
= &adapter
->hw
;
2086 struct net_device
*netdev
= adapter
->netdev
;
2090 rctl
&= ~E1000_RCTL_RST
;
2092 E1000_WRITE_FLUSH();
2095 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2096 e1000_pci_set_mwi(hw
);
2098 if (netif_running(netdev
)) {
2099 /* No need to loop, because 82542 supports only 1 queue */
2100 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2101 e1000_configure_rx(adapter
);
2102 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2107 * e1000_set_mac - Change the Ethernet Address of the NIC
2108 * @netdev: network interface device structure
2109 * @p: pointer to an address structure
2111 * Returns 0 on success, negative on failure
2114 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2116 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2117 struct e1000_hw
*hw
= &adapter
->hw
;
2118 struct sockaddr
*addr
= p
;
2120 if (!is_valid_ether_addr(addr
->sa_data
))
2121 return -EADDRNOTAVAIL
;
2123 /* 82542 2.0 needs to be in reset to write receive address registers */
2125 if (hw
->mac_type
== e1000_82542_rev2_0
)
2126 e1000_enter_82542_rst(adapter
);
2128 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2129 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2131 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2133 if (hw
->mac_type
== e1000_82542_rev2_0
)
2134 e1000_leave_82542_rst(adapter
);
2140 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2141 * @netdev: network interface device structure
2143 * The set_rx_mode entry point is called whenever the unicast or multicast
2144 * address lists or the network interface flags are updated. This routine is
2145 * responsible for configuring the hardware for proper unicast, multicast,
2146 * promiscuous mode, and all-multi behavior.
2149 static void e1000_set_rx_mode(struct net_device
*netdev
)
2151 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2152 struct e1000_hw
*hw
= &adapter
->hw
;
2153 struct netdev_hw_addr
*ha
;
2154 bool use_uc
= false;
2157 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2158 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2159 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2162 e_err(probe
, "memory allocation failed\n");
2166 /* Check for Promiscuous and All Multicast modes */
2170 if (netdev
->flags
& IFF_PROMISC
) {
2171 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2172 rctl
&= ~E1000_RCTL_VFE
;
2174 if (netdev
->flags
& IFF_ALLMULTI
)
2175 rctl
|= E1000_RCTL_MPE
;
2177 rctl
&= ~E1000_RCTL_MPE
;
2178 /* Enable VLAN filter if there is a VLAN */
2180 rctl
|= E1000_RCTL_VFE
;
2183 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2184 rctl
|= E1000_RCTL_UPE
;
2185 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2186 rctl
&= ~E1000_RCTL_UPE
;
2192 /* 82542 2.0 needs to be in reset to write receive address registers */
2194 if (hw
->mac_type
== e1000_82542_rev2_0
)
2195 e1000_enter_82542_rst(adapter
);
2197 /* load the first 14 addresses into the exact filters 1-14. Unicast
2198 * addresses take precedence to avoid disabling unicast filtering
2201 * RAR 0 is used for the station MAC adddress
2202 * if there are not 14 addresses, go ahead and clear the filters
2206 netdev_for_each_uc_addr(ha
, netdev
) {
2207 if (i
== rar_entries
)
2209 e1000_rar_set(hw
, ha
->addr
, i
++);
2212 netdev_for_each_mc_addr(ha
, netdev
) {
2213 if (i
== rar_entries
) {
2214 /* load any remaining addresses into the hash table */
2215 u32 hash_reg
, hash_bit
, mta
;
2216 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2217 hash_reg
= (hash_value
>> 5) & 0x7F;
2218 hash_bit
= hash_value
& 0x1F;
2219 mta
= (1 << hash_bit
);
2220 mcarray
[hash_reg
] |= mta
;
2222 e1000_rar_set(hw
, ha
->addr
, i
++);
2226 for (; i
< rar_entries
; i
++) {
2227 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2228 E1000_WRITE_FLUSH();
2229 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2230 E1000_WRITE_FLUSH();
2233 /* write the hash table completely, write from bottom to avoid
2234 * both stupid write combining chipsets, and flushing each write */
2235 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2237 * If we are on an 82544 has an errata where writing odd
2238 * offsets overwrites the previous even offset, but writing
2239 * backwards over the range solves the issue by always
2240 * writing the odd offset first
2242 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2244 E1000_WRITE_FLUSH();
2246 if (hw
->mac_type
== e1000_82542_rev2_0
)
2247 e1000_leave_82542_rst(adapter
);
2252 /* Need to wait a few seconds after link up to get diagnostic information from
2255 static void e1000_update_phy_info(unsigned long data
)
2257 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2258 schedule_work(&adapter
->phy_info_task
);
2261 static void e1000_update_phy_info_task(struct work_struct
*work
)
2263 struct e1000_adapter
*adapter
= container_of(work
,
2264 struct e1000_adapter
,
2266 struct e1000_hw
*hw
= &adapter
->hw
;
2269 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2274 * e1000_82547_tx_fifo_stall - Timer Call-back
2275 * @data: pointer to adapter cast into an unsigned long
2277 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2279 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2280 schedule_work(&adapter
->fifo_stall_task
);
2284 * e1000_82547_tx_fifo_stall_task - task to complete work
2285 * @work: work struct contained inside adapter struct
2287 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
)
2289 struct e1000_adapter
*adapter
= container_of(work
,
2290 struct e1000_adapter
,
2292 struct e1000_hw
*hw
= &adapter
->hw
;
2293 struct net_device
*netdev
= adapter
->netdev
;
2297 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2298 if ((er32(TDT
) == er32(TDH
)) &&
2299 (er32(TDFT
) == er32(TDFH
)) &&
2300 (er32(TDFTS
) == er32(TDFHS
))) {
2302 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2303 ew32(TDFT
, adapter
->tx_head_addr
);
2304 ew32(TDFH
, adapter
->tx_head_addr
);
2305 ew32(TDFTS
, adapter
->tx_head_addr
);
2306 ew32(TDFHS
, adapter
->tx_head_addr
);
2308 E1000_WRITE_FLUSH();
2310 adapter
->tx_fifo_head
= 0;
2311 atomic_set(&adapter
->tx_fifo_stall
, 0);
2312 netif_wake_queue(netdev
);
2313 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2314 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2320 bool e1000_has_link(struct e1000_adapter
*adapter
)
2322 struct e1000_hw
*hw
= &adapter
->hw
;
2323 bool link_active
= false;
2325 /* get_link_status is set on LSC (link status) interrupt or
2326 * rx sequence error interrupt. get_link_status will stay
2327 * false until the e1000_check_for_link establishes link
2328 * for copper adapters ONLY
2330 switch (hw
->media_type
) {
2331 case e1000_media_type_copper
:
2332 if (hw
->get_link_status
) {
2333 e1000_check_for_link(hw
);
2334 link_active
= !hw
->get_link_status
;
2339 case e1000_media_type_fiber
:
2340 e1000_check_for_link(hw
);
2341 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2343 case e1000_media_type_internal_serdes
:
2344 e1000_check_for_link(hw
);
2345 link_active
= hw
->serdes_has_link
;
2355 * e1000_watchdog - Timer Call-back
2356 * @data: pointer to adapter cast into an unsigned long
2358 static void e1000_watchdog(unsigned long data
)
2360 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2361 struct e1000_hw
*hw
= &adapter
->hw
;
2362 struct net_device
*netdev
= adapter
->netdev
;
2363 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2366 link
= e1000_has_link(adapter
);
2367 if ((netif_carrier_ok(netdev
)) && link
)
2371 if (!netif_carrier_ok(netdev
)) {
2374 /* update snapshot of PHY registers on LSC */
2375 e1000_get_speed_and_duplex(hw
,
2376 &adapter
->link_speed
,
2377 &adapter
->link_duplex
);
2380 pr_info("%s NIC Link is Up %d Mbps %s, "
2381 "Flow Control: %s\n",
2383 adapter
->link_speed
,
2384 adapter
->link_duplex
== FULL_DUPLEX
?
2385 "Full Duplex" : "Half Duplex",
2386 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2387 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2388 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2389 E1000_CTRL_TFCE
) ? "TX" : "None")));
2391 /* adjust timeout factor according to speed/duplex */
2392 adapter
->tx_timeout_factor
= 1;
2393 switch (adapter
->link_speed
) {
2396 adapter
->tx_timeout_factor
= 16;
2400 /* maybe add some timeout factor ? */
2404 /* enable transmits in the hardware */
2406 tctl
|= E1000_TCTL_EN
;
2409 netif_carrier_on(netdev
);
2410 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2411 mod_timer(&adapter
->phy_info_timer
,
2412 round_jiffies(jiffies
+ 2 * HZ
));
2413 adapter
->smartspeed
= 0;
2416 if (netif_carrier_ok(netdev
)) {
2417 adapter
->link_speed
= 0;
2418 adapter
->link_duplex
= 0;
2419 pr_info("%s NIC Link is Down\n",
2421 netif_carrier_off(netdev
);
2423 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2424 mod_timer(&adapter
->phy_info_timer
,
2425 round_jiffies(jiffies
+ 2 * HZ
));
2428 e1000_smartspeed(adapter
);
2432 e1000_update_stats(adapter
);
2434 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2435 adapter
->tpt_old
= adapter
->stats
.tpt
;
2436 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2437 adapter
->colc_old
= adapter
->stats
.colc
;
2439 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2440 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2441 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2442 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2444 e1000_update_adaptive(hw
);
2446 if (!netif_carrier_ok(netdev
)) {
2447 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2448 /* We've lost link, so the controller stops DMA,
2449 * but we've got queued Tx work that's never going
2450 * to get done, so reset controller to flush Tx.
2451 * (Do the reset outside of interrupt context). */
2452 adapter
->tx_timeout_count
++;
2453 schedule_work(&adapter
->reset_task
);
2454 /* return immediately since reset is imminent */
2459 /* Simple mode for Interrupt Throttle Rate (ITR) */
2460 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2462 * Symmetric Tx/Rx gets a reduced ITR=2000;
2463 * Total asymmetrical Tx or Rx gets ITR=8000;
2464 * everyone else is between 2000-8000.
2466 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2467 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2468 adapter
->gotcl
- adapter
->gorcl
:
2469 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2470 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2472 ew32(ITR
, 1000000000 / (itr
* 256));
2475 /* Cause software interrupt to ensure rx ring is cleaned */
2476 ew32(ICS
, E1000_ICS_RXDMT0
);
2478 /* Force detection of hung controller every watchdog period */
2479 adapter
->detect_tx_hung
= true;
2481 /* Reset the timer */
2482 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2483 mod_timer(&adapter
->watchdog_timer
,
2484 round_jiffies(jiffies
+ 2 * HZ
));
2487 enum latency_range
{
2491 latency_invalid
= 255
2495 * e1000_update_itr - update the dynamic ITR value based on statistics
2496 * @adapter: pointer to adapter
2497 * @itr_setting: current adapter->itr
2498 * @packets: the number of packets during this measurement interval
2499 * @bytes: the number of bytes during this measurement interval
2501 * Stores a new ITR value based on packets and byte
2502 * counts during the last interrupt. The advantage of per interrupt
2503 * computation is faster updates and more accurate ITR for the current
2504 * traffic pattern. Constants in this function were computed
2505 * based on theoretical maximum wire speed and thresholds were set based
2506 * on testing data as well as attempting to minimize response time
2507 * while increasing bulk throughput.
2508 * this functionality is controlled by the InterruptThrottleRate module
2509 * parameter (see e1000_param.c)
2511 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2512 u16 itr_setting
, int packets
, int bytes
)
2514 unsigned int retval
= itr_setting
;
2515 struct e1000_hw
*hw
= &adapter
->hw
;
2517 if (unlikely(hw
->mac_type
< e1000_82540
))
2518 goto update_itr_done
;
2521 goto update_itr_done
;
2523 switch (itr_setting
) {
2524 case lowest_latency
:
2525 /* jumbo frames get bulk treatment*/
2526 if (bytes
/packets
> 8000)
2527 retval
= bulk_latency
;
2528 else if ((packets
< 5) && (bytes
> 512))
2529 retval
= low_latency
;
2531 case low_latency
: /* 50 usec aka 20000 ints/s */
2532 if (bytes
> 10000) {
2533 /* jumbo frames need bulk latency setting */
2534 if (bytes
/packets
> 8000)
2535 retval
= bulk_latency
;
2536 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2537 retval
= bulk_latency
;
2538 else if ((packets
> 35))
2539 retval
= lowest_latency
;
2540 } else if (bytes
/packets
> 2000)
2541 retval
= bulk_latency
;
2542 else if (packets
<= 2 && bytes
< 512)
2543 retval
= lowest_latency
;
2545 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2546 if (bytes
> 25000) {
2548 retval
= low_latency
;
2549 } else if (bytes
< 6000) {
2550 retval
= low_latency
;
2559 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2561 struct e1000_hw
*hw
= &adapter
->hw
;
2563 u32 new_itr
= adapter
->itr
;
2565 if (unlikely(hw
->mac_type
< e1000_82540
))
2568 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2575 adapter
->tx_itr
= e1000_update_itr(adapter
,
2577 adapter
->total_tx_packets
,
2578 adapter
->total_tx_bytes
);
2579 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2580 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2581 adapter
->tx_itr
= low_latency
;
2583 adapter
->rx_itr
= e1000_update_itr(adapter
,
2585 adapter
->total_rx_packets
,
2586 adapter
->total_rx_bytes
);
2587 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2588 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2589 adapter
->rx_itr
= low_latency
;
2591 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2593 switch (current_itr
) {
2594 /* counts and packets in update_itr are dependent on these numbers */
2595 case lowest_latency
:
2599 new_itr
= 20000; /* aka hwitr = ~200 */
2609 if (new_itr
!= adapter
->itr
) {
2610 /* this attempts to bias the interrupt rate towards Bulk
2611 * by adding intermediate steps when interrupt rate is
2613 new_itr
= new_itr
> adapter
->itr
?
2614 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2616 adapter
->itr
= new_itr
;
2617 ew32(ITR
, 1000000000 / (new_itr
* 256));
2621 #define E1000_TX_FLAGS_CSUM 0x00000001
2622 #define E1000_TX_FLAGS_VLAN 0x00000002
2623 #define E1000_TX_FLAGS_TSO 0x00000004
2624 #define E1000_TX_FLAGS_IPV4 0x00000008
2625 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2626 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2628 static int e1000_tso(struct e1000_adapter
*adapter
,
2629 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2631 struct e1000_context_desc
*context_desc
;
2632 struct e1000_buffer
*buffer_info
;
2635 u16 ipcse
= 0, tucse
, mss
;
2636 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2639 if (skb_is_gso(skb
)) {
2640 if (skb_header_cloned(skb
)) {
2641 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2646 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2647 mss
= skb_shinfo(skb
)->gso_size
;
2648 if (skb
->protocol
== htons(ETH_P_IP
)) {
2649 struct iphdr
*iph
= ip_hdr(skb
);
2652 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2656 cmd_length
= E1000_TXD_CMD_IP
;
2657 ipcse
= skb_transport_offset(skb
) - 1;
2658 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2659 ipv6_hdr(skb
)->payload_len
= 0;
2660 tcp_hdr(skb
)->check
=
2661 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2662 &ipv6_hdr(skb
)->daddr
,
2666 ipcss
= skb_network_offset(skb
);
2667 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2668 tucss
= skb_transport_offset(skb
);
2669 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2672 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2673 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2675 i
= tx_ring
->next_to_use
;
2676 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2677 buffer_info
= &tx_ring
->buffer_info
[i
];
2679 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2680 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2681 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2682 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2683 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2684 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2685 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2686 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2687 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2689 buffer_info
->time_stamp
= jiffies
;
2690 buffer_info
->next_to_watch
= i
;
2692 if (++i
== tx_ring
->count
) i
= 0;
2693 tx_ring
->next_to_use
= i
;
2700 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2701 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2703 struct e1000_context_desc
*context_desc
;
2704 struct e1000_buffer
*buffer_info
;
2707 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2709 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2712 switch (skb
->protocol
) {
2713 case cpu_to_be16(ETH_P_IP
):
2714 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2715 cmd_len
|= E1000_TXD_CMD_TCP
;
2717 case cpu_to_be16(ETH_P_IPV6
):
2718 /* XXX not handling all IPV6 headers */
2719 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2720 cmd_len
|= E1000_TXD_CMD_TCP
;
2723 if (unlikely(net_ratelimit()))
2724 e_warn(drv
, "checksum_partial proto=%x!\n",
2729 css
= skb_checksum_start_offset(skb
);
2731 i
= tx_ring
->next_to_use
;
2732 buffer_info
= &tx_ring
->buffer_info
[i
];
2733 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2735 context_desc
->lower_setup
.ip_config
= 0;
2736 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2737 context_desc
->upper_setup
.tcp_fields
.tucso
=
2738 css
+ skb
->csum_offset
;
2739 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2740 context_desc
->tcp_seg_setup
.data
= 0;
2741 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2743 buffer_info
->time_stamp
= jiffies
;
2744 buffer_info
->next_to_watch
= i
;
2746 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2747 tx_ring
->next_to_use
= i
;
2752 #define E1000_MAX_TXD_PWR 12
2753 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2755 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2756 struct e1000_tx_ring
*tx_ring
,
2757 struct sk_buff
*skb
, unsigned int first
,
2758 unsigned int max_per_txd
, unsigned int nr_frags
,
2761 struct e1000_hw
*hw
= &adapter
->hw
;
2762 struct pci_dev
*pdev
= adapter
->pdev
;
2763 struct e1000_buffer
*buffer_info
;
2764 unsigned int len
= skb_headlen(skb
);
2765 unsigned int offset
= 0, size
, count
= 0, i
;
2768 i
= tx_ring
->next_to_use
;
2771 buffer_info
= &tx_ring
->buffer_info
[i
];
2772 size
= min(len
, max_per_txd
);
2773 /* Workaround for Controller erratum --
2774 * descriptor for non-tso packet in a linear SKB that follows a
2775 * tso gets written back prematurely before the data is fully
2776 * DMA'd to the controller */
2777 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2779 tx_ring
->last_tx_tso
= 0;
2783 /* Workaround for premature desc write-backs
2784 * in TSO mode. Append 4-byte sentinel desc */
2785 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2787 /* work-around for errata 10 and it applies
2788 * to all controllers in PCI-X mode
2789 * The fix is to make sure that the first descriptor of a
2790 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2792 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2793 (size
> 2015) && count
== 0))
2796 /* Workaround for potential 82544 hang in PCI-X. Avoid
2797 * terminating buffers within evenly-aligned dwords. */
2798 if (unlikely(adapter
->pcix_82544
&&
2799 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2803 buffer_info
->length
= size
;
2804 /* set time_stamp *before* dma to help avoid a possible race */
2805 buffer_info
->time_stamp
= jiffies
;
2806 buffer_info
->mapped_as_page
= false;
2807 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2809 size
, DMA_TO_DEVICE
);
2810 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2812 buffer_info
->next_to_watch
= i
;
2819 if (unlikely(i
== tx_ring
->count
))
2824 for (f
= 0; f
< nr_frags
; f
++) {
2825 struct skb_frag_struct
*frag
;
2827 frag
= &skb_shinfo(skb
)->frags
[f
];
2829 offset
= frag
->page_offset
;
2833 if (unlikely(i
== tx_ring
->count
))
2836 buffer_info
= &tx_ring
->buffer_info
[i
];
2837 size
= min(len
, max_per_txd
);
2838 /* Workaround for premature desc write-backs
2839 * in TSO mode. Append 4-byte sentinel desc */
2840 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2842 /* Workaround for potential 82544 hang in PCI-X.
2843 * Avoid terminating buffers within evenly-aligned
2845 if (unlikely(adapter
->pcix_82544
&&
2846 !((unsigned long)(page_to_phys(frag
->page
) + offset
2851 buffer_info
->length
= size
;
2852 buffer_info
->time_stamp
= jiffies
;
2853 buffer_info
->mapped_as_page
= true;
2854 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
2857 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2859 buffer_info
->next_to_watch
= i
;
2867 tx_ring
->buffer_info
[i
].skb
= skb
;
2868 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2873 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2874 buffer_info
->dma
= 0;
2880 i
+= tx_ring
->count
;
2882 buffer_info
= &tx_ring
->buffer_info
[i
];
2883 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2889 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2890 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2893 struct e1000_hw
*hw
= &adapter
->hw
;
2894 struct e1000_tx_desc
*tx_desc
= NULL
;
2895 struct e1000_buffer
*buffer_info
;
2896 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2899 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2900 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2902 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2904 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2905 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2908 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2909 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2910 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2913 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2914 txd_lower
|= E1000_TXD_CMD_VLE
;
2915 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2918 i
= tx_ring
->next_to_use
;
2921 buffer_info
= &tx_ring
->buffer_info
[i
];
2922 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2923 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2924 tx_desc
->lower
.data
=
2925 cpu_to_le32(txd_lower
| buffer_info
->length
);
2926 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2927 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2930 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2932 /* Force memory writes to complete before letting h/w
2933 * know there are new descriptors to fetch. (Only
2934 * applicable for weak-ordered memory model archs,
2935 * such as IA-64). */
2938 tx_ring
->next_to_use
= i
;
2939 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
2940 /* we need this if more than one processor can write to our tail
2941 * at a time, it syncronizes IO on IA64/Altix systems */
2946 * 82547 workaround to avoid controller hang in half-duplex environment.
2947 * The workaround is to avoid queuing a large packet that would span
2948 * the internal Tx FIFO ring boundary by notifying the stack to resend
2949 * the packet at a later time. This gives the Tx FIFO an opportunity to
2950 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2951 * to the beginning of the Tx FIFO.
2954 #define E1000_FIFO_HDR 0x10
2955 #define E1000_82547_PAD_LEN 0x3E0
2957 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
2958 struct sk_buff
*skb
)
2960 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2961 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2963 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
2965 if (adapter
->link_duplex
!= HALF_DUPLEX
)
2966 goto no_fifo_stall_required
;
2968 if (atomic_read(&adapter
->tx_fifo_stall
))
2971 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2972 atomic_set(&adapter
->tx_fifo_stall
, 1);
2976 no_fifo_stall_required
:
2977 adapter
->tx_fifo_head
+= skb_fifo_len
;
2978 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2979 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2983 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
2985 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2986 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
2988 netif_stop_queue(netdev
);
2989 /* Herbert's original patch had:
2990 * smp_mb__after_netif_stop_queue();
2991 * but since that doesn't exist yet, just open code it. */
2994 /* We need to check again in a case another CPU has just
2995 * made room available. */
2996 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3000 netif_start_queue(netdev
);
3001 ++adapter
->restart_queue
;
3005 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3006 struct e1000_tx_ring
*tx_ring
, int size
)
3008 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3010 return __e1000_maybe_stop_tx(netdev
, size
);
3013 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3014 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
3015 struct net_device
*netdev
)
3017 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3018 struct e1000_hw
*hw
= &adapter
->hw
;
3019 struct e1000_tx_ring
*tx_ring
;
3020 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3021 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3022 unsigned int tx_flags
= 0;
3023 unsigned int len
= skb_headlen(skb
);
3024 unsigned int nr_frags
;
3030 /* This goes back to the question of how to logically map a tx queue
3031 * to a flow. Right now, performance is impacted slightly negatively
3032 * if using multiple tx queues. If the stack breaks away from a
3033 * single qdisc implementation, we can look at this again. */
3034 tx_ring
= adapter
->tx_ring
;
3036 if (unlikely(skb
->len
<= 0)) {
3037 dev_kfree_skb_any(skb
);
3038 return NETDEV_TX_OK
;
3041 mss
= skb_shinfo(skb
)->gso_size
;
3042 /* The controller does a simple calculation to
3043 * make sure there is enough room in the FIFO before
3044 * initiating the DMA for each buffer. The calc is:
3045 * 4 = ceil(buffer len/mss). To make sure we don't
3046 * overrun the FIFO, adjust the max buffer len if mss
3050 max_per_txd
= min(mss
<< 2, max_per_txd
);
3051 max_txd_pwr
= fls(max_per_txd
) - 1;
3053 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3054 if (skb
->data_len
&& hdr_len
== len
) {
3055 switch (hw
->mac_type
) {
3056 unsigned int pull_size
;
3058 /* Make sure we have room to chop off 4 bytes,
3059 * and that the end alignment will work out to
3060 * this hardware's requirements
3061 * NOTE: this is a TSO only workaround
3062 * if end byte alignment not correct move us
3063 * into the next dword */
3064 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3067 pull_size
= min((unsigned int)4, skb
->data_len
);
3068 if (!__pskb_pull_tail(skb
, pull_size
)) {
3069 e_err(drv
, "__pskb_pull_tail "
3071 dev_kfree_skb_any(skb
);
3072 return NETDEV_TX_OK
;
3074 len
= skb_headlen(skb
);
3083 /* reserve a descriptor for the offload context */
3084 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3088 /* Controller Erratum workaround */
3089 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3092 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3094 if (adapter
->pcix_82544
)
3097 /* work-around for errata 10 and it applies to all controllers
3098 * in PCI-X mode, so add one more descriptor to the count
3100 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3104 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3105 for (f
= 0; f
< nr_frags
; f
++)
3106 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3108 if (adapter
->pcix_82544
)
3111 /* need: count + 2 desc gap to keep tail from touching
3112 * head, otherwise try next time */
3113 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3114 return NETDEV_TX_BUSY
;
3116 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3117 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3118 netif_stop_queue(netdev
);
3119 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3120 mod_timer(&adapter
->tx_fifo_stall_timer
,
3122 return NETDEV_TX_BUSY
;
3126 if (unlikely(vlan_tx_tag_present(skb
))) {
3127 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3128 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3131 first
= tx_ring
->next_to_use
;
3133 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3135 dev_kfree_skb_any(skb
);
3136 return NETDEV_TX_OK
;
3140 if (likely(hw
->mac_type
!= e1000_82544
))
3141 tx_ring
->last_tx_tso
= 1;
3142 tx_flags
|= E1000_TX_FLAGS_TSO
;
3143 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3144 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3146 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3147 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3149 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3153 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3154 /* Make sure there is space in the ring for the next send. */
3155 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3158 dev_kfree_skb_any(skb
);
3159 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3160 tx_ring
->next_to_use
= first
;
3163 return NETDEV_TX_OK
;
3167 * e1000_tx_timeout - Respond to a Tx Hang
3168 * @netdev: network interface device structure
3171 static void e1000_tx_timeout(struct net_device
*netdev
)
3173 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3175 /* Do the reset outside of interrupt context */
3176 adapter
->tx_timeout_count
++;
3177 schedule_work(&adapter
->reset_task
);
3180 static void e1000_reset_task(struct work_struct
*work
)
3182 struct e1000_adapter
*adapter
=
3183 container_of(work
, struct e1000_adapter
, reset_task
);
3185 e1000_reinit_safe(adapter
);
3189 * e1000_get_stats - Get System Network Statistics
3190 * @netdev: network interface device structure
3192 * Returns the address of the device statistics structure.
3193 * The statistics are actually updated from the timer callback.
3196 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3198 /* only return the current stats */
3199 return &netdev
->stats
;
3203 * e1000_change_mtu - Change the Maximum Transfer Unit
3204 * @netdev: network interface device structure
3205 * @new_mtu: new value for maximum frame size
3207 * Returns 0 on success, negative on failure
3210 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3212 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3213 struct e1000_hw
*hw
= &adapter
->hw
;
3214 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3216 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3217 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3218 e_err(probe
, "Invalid MTU setting\n");
3222 /* Adapter-specific max frame size limits. */
3223 switch (hw
->mac_type
) {
3224 case e1000_undefined
... e1000_82542_rev2_1
:
3225 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3226 e_err(probe
, "Jumbo Frames not supported.\n");
3231 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3235 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3237 /* e1000_down has a dependency on max_frame_size */
3238 hw
->max_frame_size
= max_frame
;
3239 if (netif_running(netdev
))
3240 e1000_down(adapter
);
3242 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3243 * means we reserve 2 more, this pushes us to allocate from the next
3245 * i.e. RXBUFFER_2048 --> size-4096 slab
3246 * however with the new *_jumbo_rx* routines, jumbo receives will use
3247 * fragmented skbs */
3249 if (max_frame
<= E1000_RXBUFFER_2048
)
3250 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3252 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3253 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3254 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3255 adapter
->rx_buffer_len
= PAGE_SIZE
;
3258 /* adjust allocation if LPE protects us, and we aren't using SBP */
3259 if (!hw
->tbi_compatibility_on
&&
3260 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3261 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3262 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3264 pr_info("%s changing MTU from %d to %d\n",
3265 netdev
->name
, netdev
->mtu
, new_mtu
);
3266 netdev
->mtu
= new_mtu
;
3268 if (netif_running(netdev
))
3271 e1000_reset(adapter
);
3273 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3279 * e1000_update_stats - Update the board statistics counters
3280 * @adapter: board private structure
3283 void e1000_update_stats(struct e1000_adapter
*adapter
)
3285 struct net_device
*netdev
= adapter
->netdev
;
3286 struct e1000_hw
*hw
= &adapter
->hw
;
3287 struct pci_dev
*pdev
= adapter
->pdev
;
3288 unsigned long flags
;
3291 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3294 * Prevent stats update while adapter is being reset, or if the pci
3295 * connection is down.
3297 if (adapter
->link_speed
== 0)
3299 if (pci_channel_offline(pdev
))
3302 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3304 /* these counters are modified from e1000_tbi_adjust_stats,
3305 * called from the interrupt context, so they must only
3306 * be written while holding adapter->stats_lock
3309 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3310 adapter
->stats
.gprc
+= er32(GPRC
);
3311 adapter
->stats
.gorcl
+= er32(GORCL
);
3312 adapter
->stats
.gorch
+= er32(GORCH
);
3313 adapter
->stats
.bprc
+= er32(BPRC
);
3314 adapter
->stats
.mprc
+= er32(MPRC
);
3315 adapter
->stats
.roc
+= er32(ROC
);
3317 adapter
->stats
.prc64
+= er32(PRC64
);
3318 adapter
->stats
.prc127
+= er32(PRC127
);
3319 adapter
->stats
.prc255
+= er32(PRC255
);
3320 adapter
->stats
.prc511
+= er32(PRC511
);
3321 adapter
->stats
.prc1023
+= er32(PRC1023
);
3322 adapter
->stats
.prc1522
+= er32(PRC1522
);
3324 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3325 adapter
->stats
.mpc
+= er32(MPC
);
3326 adapter
->stats
.scc
+= er32(SCC
);
3327 adapter
->stats
.ecol
+= er32(ECOL
);
3328 adapter
->stats
.mcc
+= er32(MCC
);
3329 adapter
->stats
.latecol
+= er32(LATECOL
);
3330 adapter
->stats
.dc
+= er32(DC
);
3331 adapter
->stats
.sec
+= er32(SEC
);
3332 adapter
->stats
.rlec
+= er32(RLEC
);
3333 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3334 adapter
->stats
.xontxc
+= er32(XONTXC
);
3335 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3336 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3337 adapter
->stats
.fcruc
+= er32(FCRUC
);
3338 adapter
->stats
.gptc
+= er32(GPTC
);
3339 adapter
->stats
.gotcl
+= er32(GOTCL
);
3340 adapter
->stats
.gotch
+= er32(GOTCH
);
3341 adapter
->stats
.rnbc
+= er32(RNBC
);
3342 adapter
->stats
.ruc
+= er32(RUC
);
3343 adapter
->stats
.rfc
+= er32(RFC
);
3344 adapter
->stats
.rjc
+= er32(RJC
);
3345 adapter
->stats
.torl
+= er32(TORL
);
3346 adapter
->stats
.torh
+= er32(TORH
);
3347 adapter
->stats
.totl
+= er32(TOTL
);
3348 adapter
->stats
.toth
+= er32(TOTH
);
3349 adapter
->stats
.tpr
+= er32(TPR
);
3351 adapter
->stats
.ptc64
+= er32(PTC64
);
3352 adapter
->stats
.ptc127
+= er32(PTC127
);
3353 adapter
->stats
.ptc255
+= er32(PTC255
);
3354 adapter
->stats
.ptc511
+= er32(PTC511
);
3355 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3356 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3358 adapter
->stats
.mptc
+= er32(MPTC
);
3359 adapter
->stats
.bptc
+= er32(BPTC
);
3361 /* used for adaptive IFS */
3363 hw
->tx_packet_delta
= er32(TPT
);
3364 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3365 hw
->collision_delta
= er32(COLC
);
3366 adapter
->stats
.colc
+= hw
->collision_delta
;
3368 if (hw
->mac_type
>= e1000_82543
) {
3369 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3370 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3371 adapter
->stats
.tncrs
+= er32(TNCRS
);
3372 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3373 adapter
->stats
.tsctc
+= er32(TSCTC
);
3374 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3377 /* Fill out the OS statistics structure */
3378 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3379 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3383 /* RLEC on some newer hardware can be incorrect so build
3384 * our own version based on RUC and ROC */
3385 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3386 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3387 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3388 adapter
->stats
.cexterr
;
3389 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3390 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3391 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3392 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3393 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3396 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3397 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3398 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3399 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3400 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3401 if (hw
->bad_tx_carr_stats_fd
&&
3402 adapter
->link_duplex
== FULL_DUPLEX
) {
3403 netdev
->stats
.tx_carrier_errors
= 0;
3404 adapter
->stats
.tncrs
= 0;
3407 /* Tx Dropped needs to be maintained elsewhere */
3410 if (hw
->media_type
== e1000_media_type_copper
) {
3411 if ((adapter
->link_speed
== SPEED_1000
) &&
3412 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3413 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3414 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3417 if ((hw
->mac_type
<= e1000_82546
) &&
3418 (hw
->phy_type
== e1000_phy_m88
) &&
3419 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3420 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3423 /* Management Stats */
3424 if (hw
->has_smbus
) {
3425 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3426 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3427 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3430 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3434 * e1000_intr - Interrupt Handler
3435 * @irq: interrupt number
3436 * @data: pointer to a network interface device structure
3439 static irqreturn_t
e1000_intr(int irq
, void *data
)
3441 struct net_device
*netdev
= data
;
3442 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3443 struct e1000_hw
*hw
= &adapter
->hw
;
3444 u32 icr
= er32(ICR
);
3446 if (unlikely((!icr
) || test_bit(__E1000_DOWN
, &adapter
->flags
)))
3447 return IRQ_NONE
; /* Not our interrupt */
3449 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3450 hw
->get_link_status
= 1;
3451 /* guard against interrupt when we're going down */
3452 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3453 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3456 /* disable interrupts, without the synchronize_irq bit */
3458 E1000_WRITE_FLUSH();
3460 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3461 adapter
->total_tx_bytes
= 0;
3462 adapter
->total_tx_packets
= 0;
3463 adapter
->total_rx_bytes
= 0;
3464 adapter
->total_rx_packets
= 0;
3465 __napi_schedule(&adapter
->napi
);
3467 /* this really should not happen! if it does it is basically a
3468 * bug, but not a hard error, so enable ints and continue */
3469 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3470 e1000_irq_enable(adapter
);
3477 * e1000_clean - NAPI Rx polling callback
3478 * @adapter: board private structure
3480 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3482 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3483 int tx_clean_complete
= 0, work_done
= 0;
3485 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3487 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3489 if (!tx_clean_complete
)
3492 /* If budget not fully consumed, exit the polling mode */
3493 if (work_done
< budget
) {
3494 if (likely(adapter
->itr_setting
& 3))
3495 e1000_set_itr(adapter
);
3496 napi_complete(napi
);
3497 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3498 e1000_irq_enable(adapter
);
3505 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3506 * @adapter: board private structure
3508 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3509 struct e1000_tx_ring
*tx_ring
)
3511 struct e1000_hw
*hw
= &adapter
->hw
;
3512 struct net_device
*netdev
= adapter
->netdev
;
3513 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3514 struct e1000_buffer
*buffer_info
;
3515 unsigned int i
, eop
;
3516 unsigned int count
= 0;
3517 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3519 i
= tx_ring
->next_to_clean
;
3520 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3521 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3523 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3524 (count
< tx_ring
->count
)) {
3525 bool cleaned
= false;
3526 rmb(); /* read buffer_info after eop_desc */
3527 for ( ; !cleaned
; count
++) {
3528 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3529 buffer_info
= &tx_ring
->buffer_info
[i
];
3530 cleaned
= (i
== eop
);
3533 struct sk_buff
*skb
= buffer_info
->skb
;
3534 unsigned int segs
, bytecount
;
3535 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3536 /* multiply data chunks by size of headers */
3537 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3539 total_tx_packets
+= segs
;
3540 total_tx_bytes
+= bytecount
;
3542 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3543 tx_desc
->upper
.data
= 0;
3545 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3548 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3549 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3552 tx_ring
->next_to_clean
= i
;
3554 #define TX_WAKE_THRESHOLD 32
3555 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3556 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3557 /* Make sure that anybody stopping the queue after this
3558 * sees the new next_to_clean.
3562 if (netif_queue_stopped(netdev
) &&
3563 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3564 netif_wake_queue(netdev
);
3565 ++adapter
->restart_queue
;
3569 if (adapter
->detect_tx_hung
) {
3570 /* Detect a transmit hang in hardware, this serializes the
3571 * check with the clearing of time_stamp and movement of i */
3572 adapter
->detect_tx_hung
= false;
3573 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3574 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3575 (adapter
->tx_timeout_factor
* HZ
)) &&
3576 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3578 /* detected Tx unit hang */
3579 e_err(drv
, "Detected Tx Unit Hang\n"
3583 " next_to_use <%x>\n"
3584 " next_to_clean <%x>\n"
3585 "buffer_info[next_to_clean]\n"
3586 " time_stamp <%lx>\n"
3587 " next_to_watch <%x>\n"
3589 " next_to_watch.status <%x>\n",
3590 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3591 sizeof(struct e1000_tx_ring
)),
3592 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3593 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3594 tx_ring
->next_to_use
,
3595 tx_ring
->next_to_clean
,
3596 tx_ring
->buffer_info
[eop
].time_stamp
,
3599 eop_desc
->upper
.fields
.status
);
3600 netif_stop_queue(netdev
);
3603 adapter
->total_tx_bytes
+= total_tx_bytes
;
3604 adapter
->total_tx_packets
+= total_tx_packets
;
3605 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3606 netdev
->stats
.tx_packets
+= total_tx_packets
;
3607 return count
< tx_ring
->count
;
3611 * e1000_rx_checksum - Receive Checksum Offload for 82543
3612 * @adapter: board private structure
3613 * @status_err: receive descriptor status and error fields
3614 * @csum: receive descriptor csum field
3615 * @sk_buff: socket buffer with received data
3618 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3619 u32 csum
, struct sk_buff
*skb
)
3621 struct e1000_hw
*hw
= &adapter
->hw
;
3622 u16 status
= (u16
)status_err
;
3623 u8 errors
= (u8
)(status_err
>> 24);
3625 skb_checksum_none_assert(skb
);
3627 /* 82543 or newer only */
3628 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3629 /* Ignore Checksum bit is set */
3630 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3631 /* TCP/UDP checksum error bit is set */
3632 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3633 /* let the stack verify checksum errors */
3634 adapter
->hw_csum_err
++;
3637 /* TCP/UDP Checksum has not been calculated */
3638 if (!(status
& E1000_RXD_STAT_TCPCS
))
3641 /* It must be a TCP or UDP packet with a valid checksum */
3642 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3643 /* TCP checksum is good */
3644 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3646 adapter
->hw_csum_good
++;
3650 * e1000_consume_page - helper function
3652 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3657 skb
->data_len
+= length
;
3658 skb
->truesize
+= length
;
3662 * e1000_receive_skb - helper function to handle rx indications
3663 * @adapter: board private structure
3664 * @status: descriptor status field as written by hardware
3665 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3666 * @skb: pointer to sk_buff to be indicated to stack
3668 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3669 __le16 vlan
, struct sk_buff
*skb
)
3671 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
3673 if ((unlikely(adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))))
3674 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
3675 le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
,
3678 napi_gro_receive(&adapter
->napi
, skb
);
3682 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3683 * @adapter: board private structure
3684 * @rx_ring: ring to clean
3685 * @work_done: amount of napi work completed this call
3686 * @work_to_do: max amount of work allowed for this call to do
3688 * the return value indicates whether actual cleaning was done, there
3689 * is no guarantee that everything was cleaned
3691 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3692 struct e1000_rx_ring
*rx_ring
,
3693 int *work_done
, int work_to_do
)
3695 struct e1000_hw
*hw
= &adapter
->hw
;
3696 struct net_device
*netdev
= adapter
->netdev
;
3697 struct pci_dev
*pdev
= adapter
->pdev
;
3698 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3699 struct e1000_buffer
*buffer_info
, *next_buffer
;
3700 unsigned long irq_flags
;
3703 int cleaned_count
= 0;
3704 bool cleaned
= false;
3705 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3707 i
= rx_ring
->next_to_clean
;
3708 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3709 buffer_info
= &rx_ring
->buffer_info
[i
];
3711 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3712 struct sk_buff
*skb
;
3715 if (*work_done
>= work_to_do
)
3718 rmb(); /* read descriptor and rx_buffer_info after status DD */
3720 status
= rx_desc
->status
;
3721 skb
= buffer_info
->skb
;
3722 buffer_info
->skb
= NULL
;
3724 if (++i
== rx_ring
->count
) i
= 0;
3725 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3728 next_buffer
= &rx_ring
->buffer_info
[i
];
3732 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
3733 buffer_info
->length
, DMA_FROM_DEVICE
);
3734 buffer_info
->dma
= 0;
3736 length
= le16_to_cpu(rx_desc
->length
);
3738 /* errors is only valid for DD + EOP descriptors */
3739 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3740 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3741 u8 last_byte
= *(skb
->data
+ length
- 1);
3742 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3744 spin_lock_irqsave(&adapter
->stats_lock
,
3746 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3748 spin_unlock_irqrestore(&adapter
->stats_lock
,
3752 /* recycle both page and skb */
3753 buffer_info
->skb
= skb
;
3754 /* an error means any chain goes out the window
3756 if (rx_ring
->rx_skb_top
)
3757 dev_kfree_skb(rx_ring
->rx_skb_top
);
3758 rx_ring
->rx_skb_top
= NULL
;
3763 #define rxtop rx_ring->rx_skb_top
3764 if (!(status
& E1000_RXD_STAT_EOP
)) {
3765 /* this descriptor is only the beginning (or middle) */
3767 /* this is the beginning of a chain */
3769 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3772 /* this is the middle of a chain */
3773 skb_fill_page_desc(rxtop
,
3774 skb_shinfo(rxtop
)->nr_frags
,
3775 buffer_info
->page
, 0, length
);
3776 /* re-use the skb, only consumed the page */
3777 buffer_info
->skb
= skb
;
3779 e1000_consume_page(buffer_info
, rxtop
, length
);
3783 /* end of the chain */
3784 skb_fill_page_desc(rxtop
,
3785 skb_shinfo(rxtop
)->nr_frags
,
3786 buffer_info
->page
, 0, length
);
3787 /* re-use the current skb, we only consumed the
3789 buffer_info
->skb
= skb
;
3792 e1000_consume_page(buffer_info
, skb
, length
);
3794 /* no chain, got EOP, this buf is the packet
3795 * copybreak to save the put_page/alloc_page */
3796 if (length
<= copybreak
&&
3797 skb_tailroom(skb
) >= length
) {
3799 vaddr
= kmap_atomic(buffer_info
->page
,
3800 KM_SKB_DATA_SOFTIRQ
);
3801 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3802 kunmap_atomic(vaddr
,
3803 KM_SKB_DATA_SOFTIRQ
);
3804 /* re-use the page, so don't erase
3805 * buffer_info->page */
3806 skb_put(skb
, length
);
3808 skb_fill_page_desc(skb
, 0,
3809 buffer_info
->page
, 0,
3811 e1000_consume_page(buffer_info
, skb
,
3817 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3818 e1000_rx_checksum(adapter
,
3820 ((u32
)(rx_desc
->errors
) << 24),
3821 le16_to_cpu(rx_desc
->csum
), skb
);
3823 pskb_trim(skb
, skb
->len
- 4);
3825 /* probably a little skewed due to removing CRC */
3826 total_rx_bytes
+= skb
->len
;
3829 /* eth type trans needs skb->data to point to something */
3830 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3831 e_err(drv
, "pskb_may_pull failed.\n");
3836 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3839 rx_desc
->status
= 0;
3841 /* return some buffers to hardware, one at a time is too slow */
3842 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3843 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3847 /* use prefetched values */
3849 buffer_info
= next_buffer
;
3851 rx_ring
->next_to_clean
= i
;
3853 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3855 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3857 adapter
->total_rx_packets
+= total_rx_packets
;
3858 adapter
->total_rx_bytes
+= total_rx_bytes
;
3859 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3860 netdev
->stats
.rx_packets
+= total_rx_packets
;
3865 * this should improve performance for small packets with large amounts
3866 * of reassembly being done in the stack
3868 static void e1000_check_copybreak(struct net_device
*netdev
,
3869 struct e1000_buffer
*buffer_info
,
3870 u32 length
, struct sk_buff
**skb
)
3872 struct sk_buff
*new_skb
;
3874 if (length
> copybreak
)
3877 new_skb
= netdev_alloc_skb_ip_align(netdev
, length
);
3881 skb_copy_to_linear_data_offset(new_skb
, -NET_IP_ALIGN
,
3882 (*skb
)->data
- NET_IP_ALIGN
,
3883 length
+ NET_IP_ALIGN
);
3884 /* save the skb in buffer_info as good */
3885 buffer_info
->skb
= *skb
;
3890 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3891 * @adapter: board private structure
3892 * @rx_ring: ring to clean
3893 * @work_done: amount of napi work completed this call
3894 * @work_to_do: max amount of work allowed for this call to do
3896 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3897 struct e1000_rx_ring
*rx_ring
,
3898 int *work_done
, int work_to_do
)
3900 struct e1000_hw
*hw
= &adapter
->hw
;
3901 struct net_device
*netdev
= adapter
->netdev
;
3902 struct pci_dev
*pdev
= adapter
->pdev
;
3903 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3904 struct e1000_buffer
*buffer_info
, *next_buffer
;
3905 unsigned long flags
;
3908 int cleaned_count
= 0;
3909 bool cleaned
= false;
3910 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3912 i
= rx_ring
->next_to_clean
;
3913 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3914 buffer_info
= &rx_ring
->buffer_info
[i
];
3916 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3917 struct sk_buff
*skb
;
3920 if (*work_done
>= work_to_do
)
3923 rmb(); /* read descriptor and rx_buffer_info after status DD */
3925 status
= rx_desc
->status
;
3926 skb
= buffer_info
->skb
;
3927 buffer_info
->skb
= NULL
;
3929 prefetch(skb
->data
- NET_IP_ALIGN
);
3931 if (++i
== rx_ring
->count
) i
= 0;
3932 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3935 next_buffer
= &rx_ring
->buffer_info
[i
];
3939 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
3940 buffer_info
->length
, DMA_FROM_DEVICE
);
3941 buffer_info
->dma
= 0;
3943 length
= le16_to_cpu(rx_desc
->length
);
3944 /* !EOP means multiple descriptors were used to store a single
3945 * packet, if thats the case we need to toss it. In fact, we
3946 * to toss every packet with the EOP bit clear and the next
3947 * frame that _does_ have the EOP bit set, as it is by
3948 * definition only a frame fragment
3950 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
3951 adapter
->discarding
= true;
3953 if (adapter
->discarding
) {
3954 /* All receives must fit into a single buffer */
3955 e_dbg("Receive packet consumed multiple buffers\n");
3957 buffer_info
->skb
= skb
;
3958 if (status
& E1000_RXD_STAT_EOP
)
3959 adapter
->discarding
= false;
3963 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3964 u8 last_byte
= *(skb
->data
+ length
- 1);
3965 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3967 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3968 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3970 spin_unlock_irqrestore(&adapter
->stats_lock
,
3975 buffer_info
->skb
= skb
;
3980 /* adjust length to remove Ethernet CRC, this must be
3981 * done after the TBI_ACCEPT workaround above */
3984 /* probably a little skewed due to removing CRC */
3985 total_rx_bytes
+= length
;
3988 e1000_check_copybreak(netdev
, buffer_info
, length
, &skb
);
3990 skb_put(skb
, length
);
3992 /* Receive Checksum Offload */
3993 e1000_rx_checksum(adapter
,
3995 ((u32
)(rx_desc
->errors
) << 24),
3996 le16_to_cpu(rx_desc
->csum
), skb
);
3998 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4001 rx_desc
->status
= 0;
4003 /* return some buffers to hardware, one at a time is too slow */
4004 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4005 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4009 /* use prefetched values */
4011 buffer_info
= next_buffer
;
4013 rx_ring
->next_to_clean
= i
;
4015 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4017 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4019 adapter
->total_rx_packets
+= total_rx_packets
;
4020 adapter
->total_rx_bytes
+= total_rx_bytes
;
4021 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4022 netdev
->stats
.rx_packets
+= total_rx_packets
;
4027 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4028 * @adapter: address of board private structure
4029 * @rx_ring: pointer to receive ring structure
4030 * @cleaned_count: number of buffers to allocate this pass
4034 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4035 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4037 struct net_device
*netdev
= adapter
->netdev
;
4038 struct pci_dev
*pdev
= adapter
->pdev
;
4039 struct e1000_rx_desc
*rx_desc
;
4040 struct e1000_buffer
*buffer_info
;
4041 struct sk_buff
*skb
;
4043 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
4045 i
= rx_ring
->next_to_use
;
4046 buffer_info
= &rx_ring
->buffer_info
[i
];
4048 while (cleaned_count
--) {
4049 skb
= buffer_info
->skb
;
4055 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4056 if (unlikely(!skb
)) {
4057 /* Better luck next round */
4058 adapter
->alloc_rx_buff_failed
++;
4062 /* Fix for errata 23, can't cross 64kB boundary */
4063 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4064 struct sk_buff
*oldskb
= skb
;
4065 e_err(rx_err
, "skb align check failed: %u bytes at "
4066 "%p\n", bufsz
, skb
->data
);
4067 /* Try again, without freeing the previous */
4068 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4069 /* Failed allocation, critical failure */
4071 dev_kfree_skb(oldskb
);
4072 adapter
->alloc_rx_buff_failed
++;
4076 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4079 dev_kfree_skb(oldskb
);
4080 break; /* while (cleaned_count--) */
4083 /* Use new allocation */
4084 dev_kfree_skb(oldskb
);
4086 buffer_info
->skb
= skb
;
4087 buffer_info
->length
= adapter
->rx_buffer_len
;
4089 /* allocate a new page if necessary */
4090 if (!buffer_info
->page
) {
4091 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4092 if (unlikely(!buffer_info
->page
)) {
4093 adapter
->alloc_rx_buff_failed
++;
4098 if (!buffer_info
->dma
) {
4099 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4100 buffer_info
->page
, 0,
4101 buffer_info
->length
,
4103 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4104 put_page(buffer_info
->page
);
4106 buffer_info
->page
= NULL
;
4107 buffer_info
->skb
= NULL
;
4108 buffer_info
->dma
= 0;
4109 adapter
->alloc_rx_buff_failed
++;
4110 break; /* while !buffer_info->skb */
4114 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4115 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4117 if (unlikely(++i
== rx_ring
->count
))
4119 buffer_info
= &rx_ring
->buffer_info
[i
];
4122 if (likely(rx_ring
->next_to_use
!= i
)) {
4123 rx_ring
->next_to_use
= i
;
4124 if (unlikely(i
-- == 0))
4125 i
= (rx_ring
->count
- 1);
4127 /* Force memory writes to complete before letting h/w
4128 * know there are new descriptors to fetch. (Only
4129 * applicable for weak-ordered memory model archs,
4130 * such as IA-64). */
4132 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4137 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4138 * @adapter: address of board private structure
4141 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4142 struct e1000_rx_ring
*rx_ring
,
4145 struct e1000_hw
*hw
= &adapter
->hw
;
4146 struct net_device
*netdev
= adapter
->netdev
;
4147 struct pci_dev
*pdev
= adapter
->pdev
;
4148 struct e1000_rx_desc
*rx_desc
;
4149 struct e1000_buffer
*buffer_info
;
4150 struct sk_buff
*skb
;
4152 unsigned int bufsz
= adapter
->rx_buffer_len
;
4154 i
= rx_ring
->next_to_use
;
4155 buffer_info
= &rx_ring
->buffer_info
[i
];
4157 while (cleaned_count
--) {
4158 skb
= buffer_info
->skb
;
4164 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4165 if (unlikely(!skb
)) {
4166 /* Better luck next round */
4167 adapter
->alloc_rx_buff_failed
++;
4171 /* Fix for errata 23, can't cross 64kB boundary */
4172 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4173 struct sk_buff
*oldskb
= skb
;
4174 e_err(rx_err
, "skb align check failed: %u bytes at "
4175 "%p\n", bufsz
, skb
->data
);
4176 /* Try again, without freeing the previous */
4177 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4178 /* Failed allocation, critical failure */
4180 dev_kfree_skb(oldskb
);
4181 adapter
->alloc_rx_buff_failed
++;
4185 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4188 dev_kfree_skb(oldskb
);
4189 adapter
->alloc_rx_buff_failed
++;
4190 break; /* while !buffer_info->skb */
4193 /* Use new allocation */
4194 dev_kfree_skb(oldskb
);
4196 buffer_info
->skb
= skb
;
4197 buffer_info
->length
= adapter
->rx_buffer_len
;
4199 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4201 buffer_info
->length
,
4203 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4205 buffer_info
->skb
= NULL
;
4206 buffer_info
->dma
= 0;
4207 adapter
->alloc_rx_buff_failed
++;
4208 break; /* while !buffer_info->skb */
4212 * XXX if it was allocated cleanly it will never map to a
4216 /* Fix for errata 23, can't cross 64kB boundary */
4217 if (!e1000_check_64k_bound(adapter
,
4218 (void *)(unsigned long)buffer_info
->dma
,
4219 adapter
->rx_buffer_len
)) {
4220 e_err(rx_err
, "dma align check failed: %u bytes at "
4221 "%p\n", adapter
->rx_buffer_len
,
4222 (void *)(unsigned long)buffer_info
->dma
);
4224 buffer_info
->skb
= NULL
;
4226 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4227 adapter
->rx_buffer_len
,
4229 buffer_info
->dma
= 0;
4231 adapter
->alloc_rx_buff_failed
++;
4232 break; /* while !buffer_info->skb */
4234 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4235 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4237 if (unlikely(++i
== rx_ring
->count
))
4239 buffer_info
= &rx_ring
->buffer_info
[i
];
4242 if (likely(rx_ring
->next_to_use
!= i
)) {
4243 rx_ring
->next_to_use
= i
;
4244 if (unlikely(i
-- == 0))
4245 i
= (rx_ring
->count
- 1);
4247 /* Force memory writes to complete before letting h/w
4248 * know there are new descriptors to fetch. (Only
4249 * applicable for weak-ordered memory model archs,
4250 * such as IA-64). */
4252 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4257 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4261 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4263 struct e1000_hw
*hw
= &adapter
->hw
;
4267 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4268 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4271 if (adapter
->smartspeed
== 0) {
4272 /* If Master/Slave config fault is asserted twice,
4273 * we assume back-to-back */
4274 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4275 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4276 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4277 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4278 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4279 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4280 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4281 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4283 adapter
->smartspeed
++;
4284 if (!e1000_phy_setup_autoneg(hw
) &&
4285 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4287 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4288 MII_CR_RESTART_AUTO_NEG
);
4289 e1000_write_phy_reg(hw
, PHY_CTRL
,
4294 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4295 /* If still no link, perhaps using 2/3 pair cable */
4296 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4297 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4298 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4299 if (!e1000_phy_setup_autoneg(hw
) &&
4300 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4301 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4302 MII_CR_RESTART_AUTO_NEG
);
4303 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4306 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4307 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4308 adapter
->smartspeed
= 0;
4318 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4324 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4337 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4340 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4341 struct e1000_hw
*hw
= &adapter
->hw
;
4342 struct mii_ioctl_data
*data
= if_mii(ifr
);
4346 unsigned long flags
;
4348 if (hw
->media_type
!= e1000_media_type_copper
)
4353 data
->phy_id
= hw
->phy_addr
;
4356 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4357 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4359 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4362 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4365 if (data
->reg_num
& ~(0x1F))
4367 mii_reg
= data
->val_in
;
4368 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4369 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4371 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4374 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4375 if (hw
->media_type
== e1000_media_type_copper
) {
4376 switch (data
->reg_num
) {
4378 if (mii_reg
& MII_CR_POWER_DOWN
)
4380 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4382 hw
->autoneg_advertised
= 0x2F;
4385 spddplx
= SPEED_1000
;
4386 else if (mii_reg
& 0x2000)
4387 spddplx
= SPEED_100
;
4390 spddplx
+= (mii_reg
& 0x100)
4393 retval
= e1000_set_spd_dplx(adapter
,
4398 if (netif_running(adapter
->netdev
))
4399 e1000_reinit_locked(adapter
);
4401 e1000_reset(adapter
);
4403 case M88E1000_PHY_SPEC_CTRL
:
4404 case M88E1000_EXT_PHY_SPEC_CTRL
:
4405 if (e1000_phy_reset(hw
))
4410 switch (data
->reg_num
) {
4412 if (mii_reg
& MII_CR_POWER_DOWN
)
4414 if (netif_running(adapter
->netdev
))
4415 e1000_reinit_locked(adapter
);
4417 e1000_reset(adapter
);
4425 return E1000_SUCCESS
;
4428 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4430 struct e1000_adapter
*adapter
= hw
->back
;
4431 int ret_val
= pci_set_mwi(adapter
->pdev
);
4434 e_err(probe
, "Error in setting MWI\n");
4437 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4439 struct e1000_adapter
*adapter
= hw
->back
;
4441 pci_clear_mwi(adapter
->pdev
);
4444 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4446 struct e1000_adapter
*adapter
= hw
->back
;
4447 return pcix_get_mmrbc(adapter
->pdev
);
4450 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4452 struct e1000_adapter
*adapter
= hw
->back
;
4453 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4456 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4461 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4462 struct vlan_group
*grp
)
4464 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4465 struct e1000_hw
*hw
= &adapter
->hw
;
4468 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4469 e1000_irq_disable(adapter
);
4470 adapter
->vlgrp
= grp
;
4473 /* enable VLAN tag insert/strip */
4475 ctrl
|= E1000_CTRL_VME
;
4478 /* enable VLAN receive filtering */
4480 rctl
&= ~E1000_RCTL_CFIEN
;
4481 if (!(netdev
->flags
& IFF_PROMISC
))
4482 rctl
|= E1000_RCTL_VFE
;
4484 e1000_update_mng_vlan(adapter
);
4486 /* disable VLAN tag insert/strip */
4488 ctrl
&= ~E1000_CTRL_VME
;
4491 /* disable VLAN receive filtering */
4493 rctl
&= ~E1000_RCTL_VFE
;
4496 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
4497 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4498 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4502 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4503 e1000_irq_enable(adapter
);
4506 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4508 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4509 struct e1000_hw
*hw
= &adapter
->hw
;
4512 if ((hw
->mng_cookie
.status
&
4513 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4514 (vid
== adapter
->mng_vlan_id
))
4516 /* add VID to filter table */
4517 index
= (vid
>> 5) & 0x7F;
4518 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4519 vfta
|= (1 << (vid
& 0x1F));
4520 e1000_write_vfta(hw
, index
, vfta
);
4523 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4525 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4526 struct e1000_hw
*hw
= &adapter
->hw
;
4529 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4530 e1000_irq_disable(adapter
);
4531 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4532 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4533 e1000_irq_enable(adapter
);
4535 /* remove VID from filter table */
4536 index
= (vid
>> 5) & 0x7F;
4537 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4538 vfta
&= ~(1 << (vid
& 0x1F));
4539 e1000_write_vfta(hw
, index
, vfta
);
4542 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4544 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4546 if (adapter
->vlgrp
) {
4548 for (vid
= 0; vid
< VLAN_N_VID
; vid
++) {
4549 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4551 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4556 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4558 struct e1000_hw
*hw
= &adapter
->hw
;
4562 /* Fiber NICs only allow 1000 gbps Full duplex */
4563 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4564 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4565 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4570 case SPEED_10
+ DUPLEX_HALF
:
4571 hw
->forced_speed_duplex
= e1000_10_half
;
4573 case SPEED_10
+ DUPLEX_FULL
:
4574 hw
->forced_speed_duplex
= e1000_10_full
;
4576 case SPEED_100
+ DUPLEX_HALF
:
4577 hw
->forced_speed_duplex
= e1000_100_half
;
4579 case SPEED_100
+ DUPLEX_FULL
:
4580 hw
->forced_speed_duplex
= e1000_100_full
;
4582 case SPEED_1000
+ DUPLEX_FULL
:
4584 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4586 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4588 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4594 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4596 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4597 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4598 struct e1000_hw
*hw
= &adapter
->hw
;
4599 u32 ctrl
, ctrl_ext
, rctl
, status
;
4600 u32 wufc
= adapter
->wol
;
4605 netif_device_detach(netdev
);
4607 if (netif_running(netdev
)) {
4608 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4609 e1000_down(adapter
);
4613 retval
= pci_save_state(pdev
);
4618 status
= er32(STATUS
);
4619 if (status
& E1000_STATUS_LU
)
4620 wufc
&= ~E1000_WUFC_LNKC
;
4623 e1000_setup_rctl(adapter
);
4624 e1000_set_rx_mode(netdev
);
4626 /* turn on all-multi mode if wake on multicast is enabled */
4627 if (wufc
& E1000_WUFC_MC
) {
4629 rctl
|= E1000_RCTL_MPE
;
4633 if (hw
->mac_type
>= e1000_82540
) {
4635 /* advertise wake from D3Cold */
4636 #define E1000_CTRL_ADVD3WUC 0x00100000
4637 /* phy power management enable */
4638 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4639 ctrl
|= E1000_CTRL_ADVD3WUC
|
4640 E1000_CTRL_EN_PHY_PWR_MGMT
;
4644 if (hw
->media_type
== e1000_media_type_fiber
||
4645 hw
->media_type
== e1000_media_type_internal_serdes
) {
4646 /* keep the laser running in D3 */
4647 ctrl_ext
= er32(CTRL_EXT
);
4648 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4649 ew32(CTRL_EXT
, ctrl_ext
);
4652 ew32(WUC
, E1000_WUC_PME_EN
);
4659 e1000_release_manageability(adapter
);
4661 *enable_wake
= !!wufc
;
4663 /* make sure adapter isn't asleep if manageability is enabled */
4664 if (adapter
->en_mng_pt
)
4665 *enable_wake
= true;
4667 if (netif_running(netdev
))
4668 e1000_free_irq(adapter
);
4670 pci_disable_device(pdev
);
4676 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4681 retval
= __e1000_shutdown(pdev
, &wake
);
4686 pci_prepare_to_sleep(pdev
);
4688 pci_wake_from_d3(pdev
, false);
4689 pci_set_power_state(pdev
, PCI_D3hot
);
4695 static int e1000_resume(struct pci_dev
*pdev
)
4697 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4698 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4699 struct e1000_hw
*hw
= &adapter
->hw
;
4702 pci_set_power_state(pdev
, PCI_D0
);
4703 pci_restore_state(pdev
);
4704 pci_save_state(pdev
);
4706 if (adapter
->need_ioport
)
4707 err
= pci_enable_device(pdev
);
4709 err
= pci_enable_device_mem(pdev
);
4711 pr_err("Cannot enable PCI device from suspend\n");
4714 pci_set_master(pdev
);
4716 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4717 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4719 if (netif_running(netdev
)) {
4720 err
= e1000_request_irq(adapter
);
4725 e1000_power_up_phy(adapter
);
4726 e1000_reset(adapter
);
4729 e1000_init_manageability(adapter
);
4731 if (netif_running(netdev
))
4734 netif_device_attach(netdev
);
4740 static void e1000_shutdown(struct pci_dev
*pdev
)
4744 __e1000_shutdown(pdev
, &wake
);
4746 if (system_state
== SYSTEM_POWER_OFF
) {
4747 pci_wake_from_d3(pdev
, wake
);
4748 pci_set_power_state(pdev
, PCI_D3hot
);
4752 #ifdef CONFIG_NET_POLL_CONTROLLER
4754 * Polling 'interrupt' - used by things like netconsole to send skbs
4755 * without having to re-enable interrupts. It's not called while
4756 * the interrupt routine is executing.
4758 static void e1000_netpoll(struct net_device
*netdev
)
4760 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4762 disable_irq(adapter
->pdev
->irq
);
4763 e1000_intr(adapter
->pdev
->irq
, netdev
);
4764 enable_irq(adapter
->pdev
->irq
);
4769 * e1000_io_error_detected - called when PCI error is detected
4770 * @pdev: Pointer to PCI device
4771 * @state: The current pci connection state
4773 * This function is called after a PCI bus error affecting
4774 * this device has been detected.
4776 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4777 pci_channel_state_t state
)
4779 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4780 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4782 netif_device_detach(netdev
);
4784 if (state
== pci_channel_io_perm_failure
)
4785 return PCI_ERS_RESULT_DISCONNECT
;
4787 if (netif_running(netdev
))
4788 e1000_down(adapter
);
4789 pci_disable_device(pdev
);
4791 /* Request a slot slot reset. */
4792 return PCI_ERS_RESULT_NEED_RESET
;
4796 * e1000_io_slot_reset - called after the pci bus has been reset.
4797 * @pdev: Pointer to PCI device
4799 * Restart the card from scratch, as if from a cold-boot. Implementation
4800 * resembles the first-half of the e1000_resume routine.
4802 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4804 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4805 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4806 struct e1000_hw
*hw
= &adapter
->hw
;
4809 if (adapter
->need_ioport
)
4810 err
= pci_enable_device(pdev
);
4812 err
= pci_enable_device_mem(pdev
);
4814 pr_err("Cannot re-enable PCI device after reset.\n");
4815 return PCI_ERS_RESULT_DISCONNECT
;
4817 pci_set_master(pdev
);
4819 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4820 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4822 e1000_reset(adapter
);
4825 return PCI_ERS_RESULT_RECOVERED
;
4829 * e1000_io_resume - called when traffic can start flowing again.
4830 * @pdev: Pointer to PCI device
4832 * This callback is called when the error recovery driver tells us that
4833 * its OK to resume normal operation. Implementation resembles the
4834 * second-half of the e1000_resume routine.
4836 static void e1000_io_resume(struct pci_dev
*pdev
)
4838 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4839 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4841 e1000_init_manageability(adapter
);
4843 if (netif_running(netdev
)) {
4844 if (e1000_up(adapter
)) {
4845 pr_info("can't bring device back up after reset\n");
4850 netif_device_attach(netdev
);