2 * linux/kernel/power/snapshot.c
4 * This file provide system snapshot/restore functionality.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
8 * This file is released under the GPLv2, and is based on swsusp.c.
13 #include <linux/version.h>
14 #include <linux/module.h>
16 #include <linux/suspend.h>
17 #include <linux/smp_lock.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
37 /* List of PBEs used for creating and restoring the suspend image */
38 struct pbe
*restore_pblist
;
40 static unsigned int nr_copy_pages
;
41 static unsigned int nr_meta_pages
;
45 unsigned int count_highmem_pages(void)
48 unsigned long zone_pfn
;
52 if (is_highmem(zone
)) {
53 mark_free_pages(zone
);
54 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; zone_pfn
++) {
56 unsigned long pfn
= zone_pfn
+ zone
->zone_start_pfn
;
59 page
= pfn_to_page(pfn
);
60 if (PageReserved(page
))
62 if (PageNosaveFree(page
))
73 struct highmem_page
*next
;
76 static struct highmem_page
*highmem_copy
;
78 static int save_highmem_zone(struct zone
*zone
)
80 unsigned long zone_pfn
;
81 mark_free_pages(zone
);
82 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
) {
84 struct highmem_page
*save
;
86 unsigned long pfn
= zone_pfn
+ zone
->zone_start_pfn
;
92 page
= pfn_to_page(pfn
);
94 * This condition results from rvmalloc() sans vmalloc_32()
95 * and architectural memory reservations. This should be
96 * corrected eventually when the cases giving rise to this
97 * are better understood.
99 if (PageReserved(page
))
101 BUG_ON(PageNosave(page
));
102 if (PageNosaveFree(page
))
104 save
= kmalloc(sizeof(struct highmem_page
), GFP_ATOMIC
);
107 save
->next
= highmem_copy
;
109 save
->data
= (void *) get_zeroed_page(GFP_ATOMIC
);
114 kaddr
= kmap_atomic(page
, KM_USER0
);
115 memcpy(save
->data
, kaddr
, PAGE_SIZE
);
116 kunmap_atomic(kaddr
, KM_USER0
);
122 int save_highmem(void)
127 pr_debug("swsusp: Saving Highmem");
129 for_each_zone (zone
) {
130 if (is_highmem(zone
))
131 res
= save_highmem_zone(zone
);
139 int restore_highmem(void)
141 printk("swsusp: Restoring Highmem\n");
142 while (highmem_copy
) {
143 struct highmem_page
*save
= highmem_copy
;
145 highmem_copy
= save
->next
;
147 kaddr
= kmap_atomic(save
->page
, KM_USER0
);
148 memcpy(kaddr
, save
->data
, PAGE_SIZE
);
149 kunmap_atomic(kaddr
, KM_USER0
);
150 free_page((long) save
->data
);
156 static inline unsigned int count_highmem_pages(void) {return 0;}
157 static inline int save_highmem(void) {return 0;}
158 static inline int restore_highmem(void) {return 0;}
162 * @safe_needed - on resume, for storing the PBE list and the image,
163 * we can only use memory pages that do not conflict with the pages
164 * used before suspend.
166 * The unsafe pages are marked with the PG_nosave_free flag
167 * and we count them using unsafe_pages
172 #define PG_UNSAFE_CLEAR 1
173 #define PG_UNSAFE_KEEP 0
175 static unsigned int allocated_unsafe_pages
;
177 static void *alloc_image_page(gfp_t gfp_mask
, int safe_needed
)
181 res
= (void *)get_zeroed_page(gfp_mask
);
183 while (res
&& PageNosaveFree(virt_to_page(res
))) {
184 /* The page is unsafe, mark it for swsusp_free() */
185 SetPageNosave(virt_to_page(res
));
186 allocated_unsafe_pages
++;
187 res
= (void *)get_zeroed_page(gfp_mask
);
190 SetPageNosave(virt_to_page(res
));
191 SetPageNosaveFree(virt_to_page(res
));
196 unsigned long get_safe_page(gfp_t gfp_mask
)
198 return (unsigned long)alloc_image_page(gfp_mask
, PG_SAFE
);
202 * free_image_page - free page represented by @addr, allocated with
203 * alloc_image_page (page flags set by it must be cleared)
206 static inline void free_image_page(void *addr
, int clear_nosave_free
)
208 ClearPageNosave(virt_to_page(addr
));
209 if (clear_nosave_free
)
210 ClearPageNosaveFree(virt_to_page(addr
));
211 free_page((unsigned long)addr
);
214 /* struct linked_page is used to build chains of pages */
216 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
219 struct linked_page
*next
;
220 char data
[LINKED_PAGE_DATA_SIZE
];
221 } __attribute__((packed
));
224 free_list_of_pages(struct linked_page
*list
, int clear_page_nosave
)
227 struct linked_page
*lp
= list
->next
;
229 free_image_page(list
, clear_page_nosave
);
235 * struct chain_allocator is used for allocating small objects out of
236 * a linked list of pages called 'the chain'.
238 * The chain grows each time when there is no room for a new object in
239 * the current page. The allocated objects cannot be freed individually.
240 * It is only possible to free them all at once, by freeing the entire
243 * NOTE: The chain allocator may be inefficient if the allocated objects
244 * are not much smaller than PAGE_SIZE.
247 struct chain_allocator
{
248 struct linked_page
*chain
; /* the chain */
249 unsigned int used_space
; /* total size of objects allocated out
250 * of the current page
252 gfp_t gfp_mask
; /* mask for allocating pages */
253 int safe_needed
; /* if set, only "safe" pages are allocated */
257 chain_init(struct chain_allocator
*ca
, gfp_t gfp_mask
, int safe_needed
)
260 ca
->used_space
= LINKED_PAGE_DATA_SIZE
;
261 ca
->gfp_mask
= gfp_mask
;
262 ca
->safe_needed
= safe_needed
;
265 static void *chain_alloc(struct chain_allocator
*ca
, unsigned int size
)
269 if (LINKED_PAGE_DATA_SIZE
- ca
->used_space
< size
) {
270 struct linked_page
*lp
;
272 lp
= alloc_image_page(ca
->gfp_mask
, ca
->safe_needed
);
276 lp
->next
= ca
->chain
;
280 ret
= ca
->chain
->data
+ ca
->used_space
;
281 ca
->used_space
+= size
;
285 static void chain_free(struct chain_allocator
*ca
, int clear_page_nosave
)
287 free_list_of_pages(ca
->chain
, clear_page_nosave
);
288 memset(ca
, 0, sizeof(struct chain_allocator
));
292 * Data types related to memory bitmaps.
294 * Memory bitmap is a structure consiting of many linked lists of
295 * objects. The main list's elements are of type struct zone_bitmap
296 * and each of them corresonds to one zone. For each zone bitmap
297 * object there is a list of objects of type struct bm_block that
298 * represent each blocks of bit chunks in which information is
301 * struct memory_bitmap contains a pointer to the main list of zone
302 * bitmap objects, a struct bm_position used for browsing the bitmap,
303 * and a pointer to the list of pages used for allocating all of the
304 * zone bitmap objects and bitmap block objects.
306 * NOTE: It has to be possible to lay out the bitmap in memory
307 * using only allocations of order 0. Additionally, the bitmap is
308 * designed to work with arbitrary number of zones (this is over the
309 * top for now, but let's avoid making unnecessary assumptions ;-).
311 * struct zone_bitmap contains a pointer to a list of bitmap block
312 * objects and a pointer to the bitmap block object that has been
313 * most recently used for setting bits. Additionally, it contains the
314 * pfns that correspond to the start and end of the represented zone.
316 * struct bm_block contains a pointer to the memory page in which
317 * information is stored (in the form of a block of bit chunks
318 * of type unsigned long each). It also contains the pfns that
319 * correspond to the start and end of the represented memory area and
320 * the number of bit chunks in the block.
322 * NOTE: Memory bitmaps are used for two types of operations only:
323 * "set a bit" and "find the next bit set". Moreover, the searching
324 * is always carried out after all of the "set a bit" operations
328 #define BM_END_OF_MAP (~0UL)
330 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
331 #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
332 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
335 struct bm_block
*next
; /* next element of the list */
336 unsigned long start_pfn
; /* pfn represented by the first bit */
337 unsigned long end_pfn
; /* pfn represented by the last bit plus 1 */
338 unsigned int size
; /* number of bit chunks */
339 unsigned long *data
; /* chunks of bits representing pages */
343 struct zone_bitmap
*next
; /* next element of the list */
344 unsigned long start_pfn
; /* minimal pfn in this zone */
345 unsigned long end_pfn
; /* maximal pfn in this zone plus 1 */
346 struct bm_block
*bm_blocks
; /* list of bitmap blocks */
347 struct bm_block
*cur_block
; /* recently used bitmap block */
350 /* strcut bm_position is used for browsing memory bitmaps */
353 struct zone_bitmap
*zone_bm
;
354 struct bm_block
*block
;
359 struct memory_bitmap
{
360 struct zone_bitmap
*zone_bm_list
; /* list of zone bitmaps */
361 struct linked_page
*p_list
; /* list of pages used to store zone
362 * bitmap objects and bitmap block
365 struct bm_position cur
; /* most recently used bit position */
368 /* Functions that operate on memory bitmaps */
370 static inline void memory_bm_reset_chunk(struct memory_bitmap
*bm
)
376 static void memory_bm_position_reset(struct memory_bitmap
*bm
)
378 struct zone_bitmap
*zone_bm
;
380 zone_bm
= bm
->zone_bm_list
;
381 bm
->cur
.zone_bm
= zone_bm
;
382 bm
->cur
.block
= zone_bm
->bm_blocks
;
383 memory_bm_reset_chunk(bm
);
386 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
);
389 * create_bm_block_list - create a list of block bitmap objects
392 static inline struct bm_block
*
393 create_bm_block_list(unsigned int nr_blocks
, struct chain_allocator
*ca
)
395 struct bm_block
*bblist
= NULL
;
397 while (nr_blocks
-- > 0) {
400 bb
= chain_alloc(ca
, sizeof(struct bm_block
));
411 * create_zone_bm_list - create a list of zone bitmap objects
414 static inline struct zone_bitmap
*
415 create_zone_bm_list(unsigned int nr_zones
, struct chain_allocator
*ca
)
417 struct zone_bitmap
*zbmlist
= NULL
;
419 while (nr_zones
-- > 0) {
420 struct zone_bitmap
*zbm
;
422 zbm
= chain_alloc(ca
, sizeof(struct zone_bitmap
));
433 * memory_bm_create - allocate memory for a memory bitmap
437 memory_bm_create(struct memory_bitmap
*bm
, gfp_t gfp_mask
, int safe_needed
)
439 struct chain_allocator ca
;
441 struct zone_bitmap
*zone_bm
;
445 chain_init(&ca
, gfp_mask
, safe_needed
);
447 /* Compute the number of zones */
450 if (populated_zone(zone
) && !is_highmem(zone
))
453 /* Allocate the list of zones bitmap objects */
454 zone_bm
= create_zone_bm_list(nr
, &ca
);
455 bm
->zone_bm_list
= zone_bm
;
457 chain_free(&ca
, PG_UNSAFE_CLEAR
);
461 /* Initialize the zone bitmap objects */
462 for_each_zone (zone
) {
465 if (!populated_zone(zone
) || is_highmem(zone
))
468 zone_bm
->start_pfn
= zone
->zone_start_pfn
;
469 zone_bm
->end_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
470 /* Allocate the list of bitmap block objects */
471 nr
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
472 bb
= create_bm_block_list(nr
, &ca
);
473 zone_bm
->bm_blocks
= bb
;
474 zone_bm
->cur_block
= bb
;
478 nr
= zone
->spanned_pages
;
479 pfn
= zone
->zone_start_pfn
;
480 /* Initialize the bitmap block objects */
484 ptr
= alloc_image_page(gfp_mask
, safe_needed
);
490 if (nr
>= BM_BITS_PER_BLOCK
) {
491 pfn
+= BM_BITS_PER_BLOCK
;
492 bb
->size
= BM_CHUNKS_PER_BLOCK
;
493 nr
-= BM_BITS_PER_BLOCK
;
495 /* This is executed only once in the loop */
497 bb
->size
= DIV_ROUND_UP(nr
, BM_BITS_PER_CHUNK
);
502 zone_bm
= zone_bm
->next
;
504 bm
->p_list
= ca
.chain
;
505 memory_bm_position_reset(bm
);
509 bm
->p_list
= ca
.chain
;
510 memory_bm_free(bm
, PG_UNSAFE_CLEAR
);
515 * memory_bm_free - free memory occupied by the memory bitmap @bm
518 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
)
520 struct zone_bitmap
*zone_bm
;
522 /* Free the list of bit blocks for each zone_bitmap object */
523 zone_bm
= bm
->zone_bm_list
;
527 bb
= zone_bm
->bm_blocks
;
530 free_image_page(bb
->data
, clear_nosave_free
);
533 zone_bm
= zone_bm
->next
;
535 free_list_of_pages(bm
->p_list
, clear_nosave_free
);
536 bm
->zone_bm_list
= NULL
;
540 * memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
541 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
542 * of @bm->cur_zone_bm are updated.
544 * If the bit cannot be set, the function returns -EINVAL .
548 memory_bm_set_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
550 struct zone_bitmap
*zone_bm
;
553 /* Check if the pfn is from the current zone */
554 zone_bm
= bm
->cur
.zone_bm
;
555 if (pfn
< zone_bm
->start_pfn
|| pfn
>= zone_bm
->end_pfn
) {
556 zone_bm
= bm
->zone_bm_list
;
557 /* We don't assume that the zones are sorted by pfns */
558 while (pfn
< zone_bm
->start_pfn
|| pfn
>= zone_bm
->end_pfn
) {
559 zone_bm
= zone_bm
->next
;
560 if (unlikely(!zone_bm
))
563 bm
->cur
.zone_bm
= zone_bm
;
565 /* Check if the pfn corresponds to the current bitmap block */
566 bb
= zone_bm
->cur_block
;
567 if (pfn
< bb
->start_pfn
)
568 bb
= zone_bm
->bm_blocks
;
570 while (pfn
>= bb
->end_pfn
) {
575 zone_bm
->cur_block
= bb
;
576 pfn
-= bb
->start_pfn
;
577 set_bit(pfn
% BM_BITS_PER_CHUNK
, bb
->data
+ pfn
/ BM_BITS_PER_CHUNK
);
581 /* Two auxiliary functions for memory_bm_next_pfn */
583 /* Find the first set bit in the given chunk, if there is one */
585 static inline int next_bit_in_chunk(int bit
, unsigned long *chunk_p
)
588 while (bit
< BM_BITS_PER_CHUNK
) {
589 if (test_bit(bit
, chunk_p
))
597 /* Find a chunk containing some bits set in given block of bits */
599 static inline int next_chunk_in_block(int n
, struct bm_block
*bb
)
602 while (n
< bb
->size
) {
612 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
613 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
616 * It is required to run memory_bm_position_reset() before the first call to
620 static unsigned long memory_bm_next_pfn(struct memory_bitmap
*bm
)
622 struct zone_bitmap
*zone_bm
;
630 chunk
= bm
->cur
.chunk
;
633 bit
= next_bit_in_chunk(bit
, bb
->data
+ chunk
);
637 chunk
= next_chunk_in_block(chunk
, bb
);
639 } while (chunk
>= 0);
642 memory_bm_reset_chunk(bm
);
644 zone_bm
= bm
->cur
.zone_bm
->next
;
646 bm
->cur
.zone_bm
= zone_bm
;
647 bm
->cur
.block
= zone_bm
->bm_blocks
;
648 memory_bm_reset_chunk(bm
);
651 memory_bm_position_reset(bm
);
652 return BM_END_OF_MAP
;
655 bm
->cur
.chunk
= chunk
;
657 return bb
->start_pfn
+ chunk
* BM_BITS_PER_CHUNK
+ bit
;
661 * snapshot_additional_pages - estimate the number of additional pages
662 * be needed for setting up the suspend image data structures for given
663 * zone (usually the returned value is greater than the exact number)
666 unsigned int snapshot_additional_pages(struct zone
*zone
)
670 res
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
671 res
+= DIV_ROUND_UP(res
* sizeof(struct bm_block
), PAGE_SIZE
);
676 * pfn_is_nosave - check if given pfn is in the 'nosave' section
679 static inline int pfn_is_nosave(unsigned long pfn
)
681 unsigned long nosave_begin_pfn
= __pa(&__nosave_begin
) >> PAGE_SHIFT
;
682 unsigned long nosave_end_pfn
= PAGE_ALIGN(__pa(&__nosave_end
)) >> PAGE_SHIFT
;
683 return (pfn
>= nosave_begin_pfn
) && (pfn
< nosave_end_pfn
);
687 * saveable - Determine whether a page should be cloned or not.
690 * We save a page if it isn't Nosave, and is not in the range of pages
691 * statically defined as 'unsaveable', and it
692 * isn't a part of a free chunk of pages.
695 static struct page
*saveable_page(unsigned long pfn
)
702 page
= pfn_to_page(pfn
);
704 if (PageNosave(page
))
706 if (PageReserved(page
) && pfn_is_nosave(pfn
))
708 if (PageNosaveFree(page
))
714 unsigned int count_data_pages(void)
717 unsigned long pfn
, max_zone_pfn
;
720 for_each_zone (zone
) {
721 if (is_highmem(zone
))
723 mark_free_pages(zone
);
724 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
725 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
726 n
+= !!saveable_page(pfn
);
731 static inline void copy_data_page(long *dst
, long *src
)
735 /* copy_page and memcpy are not usable for copying task structs. */
736 for (n
= PAGE_SIZE
/ sizeof(long); n
; n
--)
741 copy_data_pages(struct memory_bitmap
*copy_bm
, struct memory_bitmap
*orig_bm
)
746 for_each_zone (zone
) {
747 unsigned long max_zone_pfn
;
749 if (is_highmem(zone
))
752 mark_free_pages(zone
);
753 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
754 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
755 if (saveable_page(pfn
))
756 memory_bm_set_bit(orig_bm
, pfn
);
758 memory_bm_position_reset(orig_bm
);
759 memory_bm_position_reset(copy_bm
);
761 pfn
= memory_bm_next_pfn(orig_bm
);
762 if (likely(pfn
!= BM_END_OF_MAP
)) {
766 page
= pfn_to_page(pfn
);
767 src
= page_address(page
);
768 page
= pfn_to_page(memory_bm_next_pfn(copy_bm
));
769 copy_data_page(page_address(page
), src
);
771 } while (pfn
!= BM_END_OF_MAP
);
775 * swsusp_free - free pages allocated for the suspend.
777 * Suspend pages are alocated before the atomic copy is made, so we
778 * need to release them after the resume.
781 void swsusp_free(void)
784 unsigned long pfn
, max_zone_pfn
;
786 for_each_zone(zone
) {
787 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
788 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
789 if (pfn_valid(pfn
)) {
790 struct page
*page
= pfn_to_page(pfn
);
792 if (PageNosave(page
) && PageNosaveFree(page
)) {
793 ClearPageNosave(page
);
794 ClearPageNosaveFree(page
);
795 free_page((long) page_address(page
));
801 restore_pblist
= NULL
;
807 * enough_free_mem - Make sure we enough free memory to snapshot.
809 * Returns TRUE or FALSE after checking the number of available
813 static int enough_free_mem(unsigned int nr_pages
)
816 unsigned int free
= 0, meta
= 0;
819 if (!is_highmem(zone
)) {
820 free
+= zone
->free_pages
;
821 meta
+= snapshot_additional_pages(zone
);
824 pr_debug("swsusp: pages needed: %u + %u + %u, available pages: %u\n",
825 nr_pages
, PAGES_FOR_IO
, meta
, free
);
827 return free
> nr_pages
+ PAGES_FOR_IO
+ meta
;
831 swsusp_alloc(struct memory_bitmap
*orig_bm
, struct memory_bitmap
*copy_bm
,
832 unsigned int nr_pages
)
836 error
= memory_bm_create(orig_bm
, GFP_ATOMIC
| __GFP_COLD
, PG_ANY
);
840 error
= memory_bm_create(copy_bm
, GFP_ATOMIC
| __GFP_COLD
, PG_ANY
);
844 while (nr_pages
-- > 0) {
845 struct page
*page
= alloc_page(GFP_ATOMIC
| __GFP_COLD
);
850 SetPageNosaveFree(page
);
851 memory_bm_set_bit(copy_bm
, page_to_pfn(page
));
860 /* Memory bitmap used for marking saveable pages */
861 static struct memory_bitmap orig_bm
;
862 /* Memory bitmap used for marking allocated pages that will contain the copies
865 static struct memory_bitmap copy_bm
;
867 asmlinkage
int swsusp_save(void)
869 unsigned int nr_pages
;
871 pr_debug("swsusp: critical section: \n");
874 nr_pages
= count_data_pages();
875 printk("swsusp: Need to copy %u pages\n", nr_pages
);
877 if (!enough_free_mem(nr_pages
)) {
878 printk(KERN_ERR
"swsusp: Not enough free memory\n");
882 if (swsusp_alloc(&orig_bm
, ©_bm
, nr_pages
))
885 /* During allocating of suspend pagedir, new cold pages may appear.
889 copy_data_pages(©_bm
, &orig_bm
);
892 * End of critical section. From now on, we can write to memory,
893 * but we should not touch disk. This specially means we must _not_
894 * touch swap space! Except we must write out our image of course.
897 nr_copy_pages
= nr_pages
;
898 nr_meta_pages
= (nr_pages
* sizeof(long) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
900 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages
);
904 static void init_header(struct swsusp_info
*info
)
906 memset(info
, 0, sizeof(struct swsusp_info
));
907 info
->version_code
= LINUX_VERSION_CODE
;
908 info
->num_physpages
= num_physpages
;
909 memcpy(&info
->uts
, init_utsname(), sizeof(struct new_utsname
));
910 info
->cpus
= num_online_cpus();
911 info
->image_pages
= nr_copy_pages
;
912 info
->pages
= nr_copy_pages
+ nr_meta_pages
+ 1;
913 info
->size
= info
->pages
;
914 info
->size
<<= PAGE_SHIFT
;
918 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
919 * are stored in the array @buf[] (1 page at a time)
923 pack_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
927 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
928 buf
[j
] = memory_bm_next_pfn(bm
);
929 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
935 * snapshot_read_next - used for reading the system memory snapshot.
937 * On the first call to it @handle should point to a zeroed
938 * snapshot_handle structure. The structure gets updated and a pointer
939 * to it should be passed to this function every next time.
941 * The @count parameter should contain the number of bytes the caller
942 * wants to read from the snapshot. It must not be zero.
944 * On success the function returns a positive number. Then, the caller
945 * is allowed to read up to the returned number of bytes from the memory
946 * location computed by the data_of() macro. The number returned
947 * may be smaller than @count, but this only happens if the read would
948 * cross a page boundary otherwise.
950 * The function returns 0 to indicate the end of data stream condition,
951 * and a negative number is returned on error. In such cases the
952 * structure pointed to by @handle is not updated and should not be used
956 int snapshot_read_next(struct snapshot_handle
*handle
, size_t count
)
958 if (handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
962 /* This makes the buffer be freed by swsusp_free() */
963 buffer
= alloc_image_page(GFP_ATOMIC
, PG_ANY
);
967 if (!handle
->offset
) {
968 init_header((struct swsusp_info
*)buffer
);
969 handle
->buffer
= buffer
;
970 memory_bm_position_reset(&orig_bm
);
971 memory_bm_position_reset(©_bm
);
973 if (handle
->prev
< handle
->cur
) {
974 if (handle
->cur
<= nr_meta_pages
) {
975 memset(buffer
, 0, PAGE_SIZE
);
976 pack_pfns(buffer
, &orig_bm
);
978 unsigned long pfn
= memory_bm_next_pfn(©_bm
);
980 handle
->buffer
= page_address(pfn_to_page(pfn
));
982 handle
->prev
= handle
->cur
;
984 handle
->buf_offset
= handle
->cur_offset
;
985 if (handle
->cur_offset
+ count
>= PAGE_SIZE
) {
986 count
= PAGE_SIZE
- handle
->cur_offset
;
987 handle
->cur_offset
= 0;
990 handle
->cur_offset
+= count
;
992 handle
->offset
+= count
;
997 * mark_unsafe_pages - mark the pages that cannot be used for storing
998 * the image during resume, because they conflict with the pages that
999 * had been used before suspend
1002 static int mark_unsafe_pages(struct memory_bitmap
*bm
)
1005 unsigned long pfn
, max_zone_pfn
;
1007 /* Clear page flags */
1008 for_each_zone (zone
) {
1009 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1010 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1012 ClearPageNosaveFree(pfn_to_page(pfn
));
1015 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1016 memory_bm_position_reset(bm
);
1018 pfn
= memory_bm_next_pfn(bm
);
1019 if (likely(pfn
!= BM_END_OF_MAP
)) {
1020 if (likely(pfn_valid(pfn
)))
1021 SetPageNosaveFree(pfn_to_page(pfn
));
1025 } while (pfn
!= BM_END_OF_MAP
);
1027 allocated_unsafe_pages
= 0;
1033 duplicate_memory_bitmap(struct memory_bitmap
*dst
, struct memory_bitmap
*src
)
1037 memory_bm_position_reset(src
);
1038 pfn
= memory_bm_next_pfn(src
);
1039 while (pfn
!= BM_END_OF_MAP
) {
1040 memory_bm_set_bit(dst
, pfn
);
1041 pfn
= memory_bm_next_pfn(src
);
1045 static inline int check_header(struct swsusp_info
*info
)
1047 char *reason
= NULL
;
1049 if (info
->version_code
!= LINUX_VERSION_CODE
)
1050 reason
= "kernel version";
1051 if (info
->num_physpages
!= num_physpages
)
1052 reason
= "memory size";
1053 if (strcmp(info
->uts
.sysname
,init_utsname()->sysname
))
1054 reason
= "system type";
1055 if (strcmp(info
->uts
.release
,init_utsname()->release
))
1056 reason
= "kernel release";
1057 if (strcmp(info
->uts
.version
,init_utsname()->version
))
1059 if (strcmp(info
->uts
.machine
,init_utsname()->machine
))
1062 printk(KERN_ERR
"swsusp: Resume mismatch: %s\n", reason
);
1069 * load header - check the image header and copy data from it
1073 load_header(struct swsusp_info
*info
)
1077 restore_pblist
= NULL
;
1078 error
= check_header(info
);
1080 nr_copy_pages
= info
->image_pages
;
1081 nr_meta_pages
= info
->pages
- info
->image_pages
- 1;
1087 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1088 * the corresponding bit in the memory bitmap @bm
1092 unpack_orig_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1096 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1097 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1100 memory_bm_set_bit(bm
, buf
[j
]);
1105 * prepare_image - use the memory bitmap @bm to mark the pages that will
1106 * be overwritten in the process of restoring the system memory state
1107 * from the suspend image ("unsafe" pages) and allocate memory for the
1110 * The idea is to allocate a new memory bitmap first and then allocate
1111 * as many pages as needed for the image data, but not to assign these
1112 * pages to specific tasks initially. Instead, we just mark them as
1113 * allocated and create a list of "safe" pages that will be used later.
1116 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1118 static struct linked_page
*safe_pages_list
;
1121 prepare_image(struct memory_bitmap
*new_bm
, struct memory_bitmap
*bm
)
1123 unsigned int nr_pages
;
1124 struct linked_page
*sp_list
, *lp
;
1127 error
= mark_unsafe_pages(bm
);
1131 error
= memory_bm_create(new_bm
, GFP_ATOMIC
, PG_SAFE
);
1135 duplicate_memory_bitmap(new_bm
, bm
);
1136 memory_bm_free(bm
, PG_UNSAFE_KEEP
);
1137 /* Reserve some safe pages for potential later use.
1139 * NOTE: This way we make sure there will be enough safe pages for the
1140 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1141 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1144 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1145 nr_pages
= nr_copy_pages
- allocated_unsafe_pages
;
1146 nr_pages
= DIV_ROUND_UP(nr_pages
, PBES_PER_LINKED_PAGE
);
1147 while (nr_pages
> 0) {
1148 lp
= alloc_image_page(GFP_ATOMIC
, PG_SAFE
);
1157 /* Preallocate memory for the image */
1158 safe_pages_list
= NULL
;
1159 nr_pages
= nr_copy_pages
- allocated_unsafe_pages
;
1160 while (nr_pages
> 0) {
1161 lp
= (struct linked_page
*)get_zeroed_page(GFP_ATOMIC
);
1166 if (!PageNosaveFree(virt_to_page(lp
))) {
1167 /* The page is "safe", add it to the list */
1168 lp
->next
= safe_pages_list
;
1169 safe_pages_list
= lp
;
1171 /* Mark the page as allocated */
1172 SetPageNosave(virt_to_page(lp
));
1173 SetPageNosaveFree(virt_to_page(lp
));
1176 /* Free the reserved safe pages so that chain_alloc() can use them */
1179 free_image_page(sp_list
, PG_UNSAFE_CLEAR
);
1190 * get_buffer - compute the address that snapshot_write_next() should
1191 * set for its caller to write to.
1194 static void *get_buffer(struct memory_bitmap
*bm
, struct chain_allocator
*ca
)
1197 struct page
*page
= pfn_to_page(memory_bm_next_pfn(bm
));
1199 if (PageNosave(page
) && PageNosaveFree(page
))
1200 /* We have allocated the "original" page frame and we can
1201 * use it directly to store the loaded page.
1203 return page_address(page
);
1205 /* The "original" page frame has not been allocated and we have to
1206 * use a "safe" page frame to store the loaded page.
1208 pbe
= chain_alloc(ca
, sizeof(struct pbe
));
1213 pbe
->orig_address
= (unsigned long)page_address(page
);
1214 pbe
->address
= (unsigned long)safe_pages_list
;
1215 safe_pages_list
= safe_pages_list
->next
;
1216 pbe
->next
= restore_pblist
;
1217 restore_pblist
= pbe
;
1218 return (void *)pbe
->address
;
1222 * snapshot_write_next - used for writing the system memory snapshot.
1224 * On the first call to it @handle should point to a zeroed
1225 * snapshot_handle structure. The structure gets updated and a pointer
1226 * to it should be passed to this function every next time.
1228 * The @count parameter should contain the number of bytes the caller
1229 * wants to write to the image. It must not be zero.
1231 * On success the function returns a positive number. Then, the caller
1232 * is allowed to write up to the returned number of bytes to the memory
1233 * location computed by the data_of() macro. The number returned
1234 * may be smaller than @count, but this only happens if the write would
1235 * cross a page boundary otherwise.
1237 * The function returns 0 to indicate the "end of file" condition,
1238 * and a negative number is returned on error. In such cases the
1239 * structure pointed to by @handle is not updated and should not be used
1243 int snapshot_write_next(struct snapshot_handle
*handle
, size_t count
)
1245 static struct chain_allocator ca
;
1248 /* Check if we have already loaded the entire image */
1249 if (handle
->prev
&& handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
1253 /* This makes the buffer be freed by swsusp_free() */
1254 buffer
= alloc_image_page(GFP_ATOMIC
, PG_ANY
);
1258 if (!handle
->offset
)
1259 handle
->buffer
= buffer
;
1260 handle
->sync_read
= 1;
1261 if (handle
->prev
< handle
->cur
) {
1262 if (handle
->prev
== 0) {
1263 error
= load_header(buffer
);
1267 error
= memory_bm_create(©_bm
, GFP_ATOMIC
, PG_ANY
);
1271 } else if (handle
->prev
<= nr_meta_pages
) {
1272 unpack_orig_pfns(buffer
, ©_bm
);
1273 if (handle
->prev
== nr_meta_pages
) {
1274 error
= prepare_image(&orig_bm
, ©_bm
);
1278 chain_init(&ca
, GFP_ATOMIC
, PG_SAFE
);
1279 memory_bm_position_reset(&orig_bm
);
1280 restore_pblist
= NULL
;
1281 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
1282 handle
->sync_read
= 0;
1283 if (!handle
->buffer
)
1287 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
1288 handle
->sync_read
= 0;
1290 handle
->prev
= handle
->cur
;
1292 handle
->buf_offset
= handle
->cur_offset
;
1293 if (handle
->cur_offset
+ count
>= PAGE_SIZE
) {
1294 count
= PAGE_SIZE
- handle
->cur_offset
;
1295 handle
->cur_offset
= 0;
1298 handle
->cur_offset
+= count
;
1300 handle
->offset
+= count
;
1304 int snapshot_image_loaded(struct snapshot_handle
*handle
)
1306 return !(!nr_copy_pages
||
1307 handle
->cur
<= nr_meta_pages
+ nr_copy_pages
);
1310 void snapshot_free_unused_memory(struct snapshot_handle
*handle
)
1312 /* Free only if we have loaded the image entirely */
1313 if (handle
->prev
&& handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
1314 memory_bm_free(&orig_bm
, PG_UNSAFE_CLEAR
);