ARM: 6751/1: vexpress: select applicable errata workarounds in Kconfig
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sched / cls_rsvp.h
blob425a1790b0480327b1ae9d2c4e1adec0a132a686
1 /*
2 * net/sched/cls_rsvp.h Template file for RSVPv[46] classifiers.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 Comparing to general packet classification problem,
14 RSVP needs only sevaral relatively simple rules:
16 * (dst, protocol) are always specified,
17 so that we are able to hash them.
18 * src may be exact, or may be wildcard, so that
19 we can keep a hash table plus one wildcard entry.
20 * source port (or flow label) is important only if src is given.
22 IMPLEMENTATION.
24 We use a two level hash table: The top level is keyed by
25 destination address and protocol ID, every bucket contains a list
26 of "rsvp sessions", identified by destination address, protocol and
27 DPI(="Destination Port ID"): triple (key, mask, offset).
29 Every bucket has a smaller hash table keyed by source address
30 (cf. RSVP flowspec) and one wildcard entry for wildcard reservations.
31 Every bucket is again a list of "RSVP flows", selected by
32 source address and SPI(="Source Port ID" here rather than
33 "security parameter index"): triple (key, mask, offset).
36 NOTE 1. All the packets with IPv6 extension headers (but AH and ESP)
37 and all fragmented packets go to the best-effort traffic class.
40 NOTE 2. Two "port id"'s seems to be redundant, rfc2207 requires
41 only one "Generalized Port Identifier". So that for classic
42 ah, esp (and udp,tcp) both *pi should coincide or one of them
43 should be wildcard.
45 At first sight, this redundancy is just a waste of CPU
46 resources. But DPI and SPI add the possibility to assign different
47 priorities to GPIs. Look also at note 4 about tunnels below.
50 NOTE 3. One complication is the case of tunneled packets.
51 We implement it as following: if the first lookup
52 matches a special session with "tunnelhdr" value not zero,
53 flowid doesn't contain the true flow ID, but the tunnel ID (1...255).
54 In this case, we pull tunnelhdr bytes and restart lookup
55 with tunnel ID added to the list of keys. Simple and stupid 8)8)
56 It's enough for PIMREG and IPIP.
59 NOTE 4. Two GPIs make it possible to parse even GRE packets.
60 F.e. DPI can select ETH_P_IP (and necessary flags to make
61 tunnelhdr correct) in GRE protocol field and SPI matches
62 GRE key. Is it not nice? 8)8)
65 Well, as result, despite its simplicity, we get a pretty
66 powerful classification engine. */
69 struct rsvp_head
71 u32 tmap[256/32];
72 u32 hgenerator;
73 u8 tgenerator;
74 struct rsvp_session *ht[256];
77 struct rsvp_session
79 struct rsvp_session *next;
80 __be32 dst[RSVP_DST_LEN];
81 struct tc_rsvp_gpi dpi;
82 u8 protocol;
83 u8 tunnelid;
84 /* 16 (src,sport) hash slots, and one wildcard source slot */
85 struct rsvp_filter *ht[16+1];
89 struct rsvp_filter
91 struct rsvp_filter *next;
92 __be32 src[RSVP_DST_LEN];
93 struct tc_rsvp_gpi spi;
94 u8 tunnelhdr;
96 struct tcf_result res;
97 struct tcf_exts exts;
99 u32 handle;
100 struct rsvp_session *sess;
103 static __inline__ unsigned hash_dst(__be32 *dst, u8 protocol, u8 tunnelid)
105 unsigned h = (__force __u32)dst[RSVP_DST_LEN-1];
106 h ^= h>>16;
107 h ^= h>>8;
108 return (h ^ protocol ^ tunnelid) & 0xFF;
111 static __inline__ unsigned hash_src(__be32 *src)
113 unsigned h = (__force __u32)src[RSVP_DST_LEN-1];
114 h ^= h>>16;
115 h ^= h>>8;
116 h ^= h>>4;
117 return h & 0xF;
120 static struct tcf_ext_map rsvp_ext_map = {
121 .police = TCA_RSVP_POLICE,
122 .action = TCA_RSVP_ACT
125 #define RSVP_APPLY_RESULT() \
127 int r = tcf_exts_exec(skb, &f->exts, res); \
128 if (r < 0) \
129 continue; \
130 else if (r > 0) \
131 return r; \
134 static int rsvp_classify(struct sk_buff *skb, struct tcf_proto *tp,
135 struct tcf_result *res)
137 struct rsvp_session **sht = ((struct rsvp_head*)tp->root)->ht;
138 struct rsvp_session *s;
139 struct rsvp_filter *f;
140 unsigned h1, h2;
141 __be32 *dst, *src;
142 u8 protocol;
143 u8 tunnelid = 0;
144 u8 *xprt;
145 #if RSVP_DST_LEN == 4
146 struct ipv6hdr *nhptr;
148 if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
149 return -1;
150 nhptr = ipv6_hdr(skb);
151 #else
152 struct iphdr *nhptr;
154 if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
155 return -1;
156 nhptr = ip_hdr(skb);
157 #endif
159 restart:
161 #if RSVP_DST_LEN == 4
162 src = &nhptr->saddr.s6_addr32[0];
163 dst = &nhptr->daddr.s6_addr32[0];
164 protocol = nhptr->nexthdr;
165 xprt = ((u8*)nhptr) + sizeof(struct ipv6hdr);
166 #else
167 src = &nhptr->saddr;
168 dst = &nhptr->daddr;
169 protocol = nhptr->protocol;
170 xprt = ((u8*)nhptr) + (nhptr->ihl<<2);
171 if (nhptr->frag_off & htons(IP_MF|IP_OFFSET))
172 return -1;
173 #endif
175 h1 = hash_dst(dst, protocol, tunnelid);
176 h2 = hash_src(src);
178 for (s = sht[h1]; s; s = s->next) {
179 if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
180 protocol == s->protocol &&
181 !(s->dpi.mask &
182 (*(u32*)(xprt+s->dpi.offset)^s->dpi.key)) &&
183 #if RSVP_DST_LEN == 4
184 dst[0] == s->dst[0] &&
185 dst[1] == s->dst[1] &&
186 dst[2] == s->dst[2] &&
187 #endif
188 tunnelid == s->tunnelid) {
190 for (f = s->ht[h2]; f; f = f->next) {
191 if (src[RSVP_DST_LEN-1] == f->src[RSVP_DST_LEN-1] &&
192 !(f->spi.mask & (*(u32*)(xprt+f->spi.offset)^f->spi.key))
193 #if RSVP_DST_LEN == 4
195 src[0] == f->src[0] &&
196 src[1] == f->src[1] &&
197 src[2] == f->src[2]
198 #endif
200 *res = f->res;
201 RSVP_APPLY_RESULT();
203 matched:
204 if (f->tunnelhdr == 0)
205 return 0;
207 tunnelid = f->res.classid;
208 nhptr = (void*)(xprt + f->tunnelhdr - sizeof(*nhptr));
209 goto restart;
213 /* And wildcard bucket... */
214 for (f = s->ht[16]; f; f = f->next) {
215 *res = f->res;
216 RSVP_APPLY_RESULT();
217 goto matched;
219 return -1;
222 return -1;
225 static unsigned long rsvp_get(struct tcf_proto *tp, u32 handle)
227 struct rsvp_session **sht = ((struct rsvp_head*)tp->root)->ht;
228 struct rsvp_session *s;
229 struct rsvp_filter *f;
230 unsigned h1 = handle&0xFF;
231 unsigned h2 = (handle>>8)&0xFF;
233 if (h2 > 16)
234 return 0;
236 for (s = sht[h1]; s; s = s->next) {
237 for (f = s->ht[h2]; f; f = f->next) {
238 if (f->handle == handle)
239 return (unsigned long)f;
242 return 0;
245 static void rsvp_put(struct tcf_proto *tp, unsigned long f)
249 static int rsvp_init(struct tcf_proto *tp)
251 struct rsvp_head *data;
253 data = kzalloc(sizeof(struct rsvp_head), GFP_KERNEL);
254 if (data) {
255 tp->root = data;
256 return 0;
258 return -ENOBUFS;
261 static inline void
262 rsvp_delete_filter(struct tcf_proto *tp, struct rsvp_filter *f)
264 tcf_unbind_filter(tp, &f->res);
265 tcf_exts_destroy(tp, &f->exts);
266 kfree(f);
269 static void rsvp_destroy(struct tcf_proto *tp)
271 struct rsvp_head *data = xchg(&tp->root, NULL);
272 struct rsvp_session **sht;
273 int h1, h2;
275 if (data == NULL)
276 return;
278 sht = data->ht;
280 for (h1=0; h1<256; h1++) {
281 struct rsvp_session *s;
283 while ((s = sht[h1]) != NULL) {
284 sht[h1] = s->next;
286 for (h2=0; h2<=16; h2++) {
287 struct rsvp_filter *f;
289 while ((f = s->ht[h2]) != NULL) {
290 s->ht[h2] = f->next;
291 rsvp_delete_filter(tp, f);
294 kfree(s);
297 kfree(data);
300 static int rsvp_delete(struct tcf_proto *tp, unsigned long arg)
302 struct rsvp_filter **fp, *f = (struct rsvp_filter*)arg;
303 unsigned h = f->handle;
304 struct rsvp_session **sp;
305 struct rsvp_session *s = f->sess;
306 int i;
308 for (fp = &s->ht[(h>>8)&0xFF]; *fp; fp = &(*fp)->next) {
309 if (*fp == f) {
310 tcf_tree_lock(tp);
311 *fp = f->next;
312 tcf_tree_unlock(tp);
313 rsvp_delete_filter(tp, f);
315 /* Strip tree */
317 for (i=0; i<=16; i++)
318 if (s->ht[i])
319 return 0;
321 /* OK, session has no flows */
322 for (sp = &((struct rsvp_head*)tp->root)->ht[h&0xFF];
323 *sp; sp = &(*sp)->next) {
324 if (*sp == s) {
325 tcf_tree_lock(tp);
326 *sp = s->next;
327 tcf_tree_unlock(tp);
329 kfree(s);
330 return 0;
334 return 0;
337 return 0;
340 static unsigned gen_handle(struct tcf_proto *tp, unsigned salt)
342 struct rsvp_head *data = tp->root;
343 int i = 0xFFFF;
345 while (i-- > 0) {
346 u32 h;
347 if ((data->hgenerator += 0x10000) == 0)
348 data->hgenerator = 0x10000;
349 h = data->hgenerator|salt;
350 if (rsvp_get(tp, h) == 0)
351 return h;
353 return 0;
356 static int tunnel_bts(struct rsvp_head *data)
358 int n = data->tgenerator>>5;
359 u32 b = 1<<(data->tgenerator&0x1F);
361 if (data->tmap[n]&b)
362 return 0;
363 data->tmap[n] |= b;
364 return 1;
367 static void tunnel_recycle(struct rsvp_head *data)
369 struct rsvp_session **sht = data->ht;
370 u32 tmap[256/32];
371 int h1, h2;
373 memset(tmap, 0, sizeof(tmap));
375 for (h1=0; h1<256; h1++) {
376 struct rsvp_session *s;
377 for (s = sht[h1]; s; s = s->next) {
378 for (h2=0; h2<=16; h2++) {
379 struct rsvp_filter *f;
381 for (f = s->ht[h2]; f; f = f->next) {
382 if (f->tunnelhdr == 0)
383 continue;
384 data->tgenerator = f->res.classid;
385 tunnel_bts(data);
391 memcpy(data->tmap, tmap, sizeof(tmap));
394 static u32 gen_tunnel(struct rsvp_head *data)
396 int i, k;
398 for (k=0; k<2; k++) {
399 for (i=255; i>0; i--) {
400 if (++data->tgenerator == 0)
401 data->tgenerator = 1;
402 if (tunnel_bts(data))
403 return data->tgenerator;
405 tunnel_recycle(data);
407 return 0;
410 static const struct nla_policy rsvp_policy[TCA_RSVP_MAX + 1] = {
411 [TCA_RSVP_CLASSID] = { .type = NLA_U32 },
412 [TCA_RSVP_DST] = { .type = NLA_BINARY,
413 .len = RSVP_DST_LEN * sizeof(u32) },
414 [TCA_RSVP_SRC] = { .type = NLA_BINARY,
415 .len = RSVP_DST_LEN * sizeof(u32) },
416 [TCA_RSVP_PINFO] = { .len = sizeof(struct tc_rsvp_pinfo) },
419 static int rsvp_change(struct tcf_proto *tp, unsigned long base,
420 u32 handle,
421 struct nlattr **tca,
422 unsigned long *arg)
424 struct rsvp_head *data = tp->root;
425 struct rsvp_filter *f, **fp;
426 struct rsvp_session *s, **sp;
427 struct tc_rsvp_pinfo *pinfo = NULL;
428 struct nlattr *opt = tca[TCA_OPTIONS-1];
429 struct nlattr *tb[TCA_RSVP_MAX + 1];
430 struct tcf_exts e;
431 unsigned h1, h2;
432 __be32 *dst;
433 int err;
435 if (opt == NULL)
436 return handle ? -EINVAL : 0;
438 err = nla_parse_nested(tb, TCA_RSVP_MAX, opt, rsvp_policy);
439 if (err < 0)
440 return err;
442 err = tcf_exts_validate(tp, tb, tca[TCA_RATE-1], &e, &rsvp_ext_map);
443 if (err < 0)
444 return err;
446 if ((f = (struct rsvp_filter*)*arg) != NULL) {
447 /* Node exists: adjust only classid */
449 if (f->handle != handle && handle)
450 goto errout2;
451 if (tb[TCA_RSVP_CLASSID-1]) {
452 f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID-1]);
453 tcf_bind_filter(tp, &f->res, base);
456 tcf_exts_change(tp, &f->exts, &e);
457 return 0;
460 /* Now more serious part... */
461 err = -EINVAL;
462 if (handle)
463 goto errout2;
464 if (tb[TCA_RSVP_DST-1] == NULL)
465 goto errout2;
467 err = -ENOBUFS;
468 f = kzalloc(sizeof(struct rsvp_filter), GFP_KERNEL);
469 if (f == NULL)
470 goto errout2;
472 h2 = 16;
473 if (tb[TCA_RSVP_SRC-1]) {
474 memcpy(f->src, nla_data(tb[TCA_RSVP_SRC-1]), sizeof(f->src));
475 h2 = hash_src(f->src);
477 if (tb[TCA_RSVP_PINFO-1]) {
478 pinfo = nla_data(tb[TCA_RSVP_PINFO-1]);
479 f->spi = pinfo->spi;
480 f->tunnelhdr = pinfo->tunnelhdr;
482 if (tb[TCA_RSVP_CLASSID-1])
483 f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID-1]);
485 dst = nla_data(tb[TCA_RSVP_DST-1]);
486 h1 = hash_dst(dst, pinfo ? pinfo->protocol : 0, pinfo ? pinfo->tunnelid : 0);
488 err = -ENOMEM;
489 if ((f->handle = gen_handle(tp, h1 | (h2<<8))) == 0)
490 goto errout;
492 if (f->tunnelhdr) {
493 err = -EINVAL;
494 if (f->res.classid > 255)
495 goto errout;
497 err = -ENOMEM;
498 if (f->res.classid == 0 &&
499 (f->res.classid = gen_tunnel(data)) == 0)
500 goto errout;
503 for (sp = &data->ht[h1]; (s=*sp) != NULL; sp = &s->next) {
504 if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
505 pinfo && pinfo->protocol == s->protocol &&
506 memcmp(&pinfo->dpi, &s->dpi, sizeof(s->dpi)) == 0 &&
507 #if RSVP_DST_LEN == 4
508 dst[0] == s->dst[0] &&
509 dst[1] == s->dst[1] &&
510 dst[2] == s->dst[2] &&
511 #endif
512 pinfo->tunnelid == s->tunnelid) {
514 insert:
515 /* OK, we found appropriate session */
517 fp = &s->ht[h2];
519 f->sess = s;
520 if (f->tunnelhdr == 0)
521 tcf_bind_filter(tp, &f->res, base);
523 tcf_exts_change(tp, &f->exts, &e);
525 for (fp = &s->ht[h2]; *fp; fp = &(*fp)->next)
526 if (((*fp)->spi.mask&f->spi.mask) != f->spi.mask)
527 break;
528 f->next = *fp;
529 wmb();
530 *fp = f;
532 *arg = (unsigned long)f;
533 return 0;
537 /* No session found. Create new one. */
539 err = -ENOBUFS;
540 s = kzalloc(sizeof(struct rsvp_session), GFP_KERNEL);
541 if (s == NULL)
542 goto errout;
543 memcpy(s->dst, dst, sizeof(s->dst));
545 if (pinfo) {
546 s->dpi = pinfo->dpi;
547 s->protocol = pinfo->protocol;
548 s->tunnelid = pinfo->tunnelid;
550 for (sp = &data->ht[h1]; *sp; sp = &(*sp)->next) {
551 if (((*sp)->dpi.mask&s->dpi.mask) != s->dpi.mask)
552 break;
554 s->next = *sp;
555 wmb();
556 *sp = s;
558 goto insert;
560 errout:
561 kfree(f);
562 errout2:
563 tcf_exts_destroy(tp, &e);
564 return err;
567 static void rsvp_walk(struct tcf_proto *tp, struct tcf_walker *arg)
569 struct rsvp_head *head = tp->root;
570 unsigned h, h1;
572 if (arg->stop)
573 return;
575 for (h = 0; h < 256; h++) {
576 struct rsvp_session *s;
578 for (s = head->ht[h]; s; s = s->next) {
579 for (h1 = 0; h1 <= 16; h1++) {
580 struct rsvp_filter *f;
582 for (f = s->ht[h1]; f; f = f->next) {
583 if (arg->count < arg->skip) {
584 arg->count++;
585 continue;
587 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
588 arg->stop = 1;
589 return;
591 arg->count++;
598 static int rsvp_dump(struct tcf_proto *tp, unsigned long fh,
599 struct sk_buff *skb, struct tcmsg *t)
601 struct rsvp_filter *f = (struct rsvp_filter*)fh;
602 struct rsvp_session *s;
603 unsigned char *b = skb_tail_pointer(skb);
604 struct nlattr *nest;
605 struct tc_rsvp_pinfo pinfo;
607 if (f == NULL)
608 return skb->len;
609 s = f->sess;
611 t->tcm_handle = f->handle;
613 nest = nla_nest_start(skb, TCA_OPTIONS);
614 if (nest == NULL)
615 goto nla_put_failure;
617 NLA_PUT(skb, TCA_RSVP_DST, sizeof(s->dst), &s->dst);
618 pinfo.dpi = s->dpi;
619 pinfo.spi = f->spi;
620 pinfo.protocol = s->protocol;
621 pinfo.tunnelid = s->tunnelid;
622 pinfo.tunnelhdr = f->tunnelhdr;
623 pinfo.pad = 0;
624 NLA_PUT(skb, TCA_RSVP_PINFO, sizeof(pinfo), &pinfo);
625 if (f->res.classid)
626 NLA_PUT_U32(skb, TCA_RSVP_CLASSID, f->res.classid);
627 if (((f->handle>>8)&0xFF) != 16)
628 NLA_PUT(skb, TCA_RSVP_SRC, sizeof(f->src), f->src);
630 if (tcf_exts_dump(skb, &f->exts, &rsvp_ext_map) < 0)
631 goto nla_put_failure;
633 nla_nest_end(skb, nest);
635 if (tcf_exts_dump_stats(skb, &f->exts, &rsvp_ext_map) < 0)
636 goto nla_put_failure;
637 return skb->len;
639 nla_put_failure:
640 nlmsg_trim(skb, b);
641 return -1;
644 static struct tcf_proto_ops RSVP_OPS = {
645 .next = NULL,
646 .kind = RSVP_ID,
647 .classify = rsvp_classify,
648 .init = rsvp_init,
649 .destroy = rsvp_destroy,
650 .get = rsvp_get,
651 .put = rsvp_put,
652 .change = rsvp_change,
653 .delete = rsvp_delete,
654 .walk = rsvp_walk,
655 .dump = rsvp_dump,
656 .owner = THIS_MODULE,
659 static int __init init_rsvp(void)
661 return register_tcf_proto_ops(&RSVP_OPS);
664 static void __exit exit_rsvp(void)
666 unregister_tcf_proto_ops(&RSVP_OPS);
669 module_init(init_rsvp)
670 module_exit(exit_rsvp)