ARM: 6751/1: vexpress: select applicable errata workarounds in Kconfig
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ceph / messenger.c
blobdff633d62e5bd5475886b3d6e7dc2d0c0764b66b
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
22 * Ceph uses the messenger to exchange ceph_msg messages with other
23 * hosts in the system. The messenger provides ordered and reliable
24 * delivery. We tolerate TCP disconnects by reconnecting (with
25 * exponential backoff) in the case of a fault (disconnection, bad
26 * crc, protocol error). Acks allow sent messages to be discarded by
27 * the sender.
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
45 * nicely render a sockaddr as a string.
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
55 int i;
56 char *s;
57 struct sockaddr_in *in4 = (void *)ss;
58 struct sockaddr_in6 *in6 = (void *)ss;
60 spin_lock(&addr_str_lock);
61 i = last_addr_str++;
62 if (last_addr_str == MAX_ADDR_STR)
63 last_addr_str = 0;
64 spin_unlock(&addr_str_lock);
65 s = addr_str[i];
67 switch (ss->ss_family) {
68 case AF_INET:
69 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 (unsigned int)ntohs(in4->sin_port));
71 break;
73 case AF_INET6:
74 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 (unsigned int)ntohs(in6->sin6_port));
76 break;
78 default:
79 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
82 return s;
84 EXPORT_SYMBOL(ceph_pr_addr);
86 static void encode_my_addr(struct ceph_messenger *msgr)
88 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
89 ceph_encode_addr(&msgr->my_enc_addr);
93 * work queue for all reading and writing to/from the socket.
95 struct workqueue_struct *ceph_msgr_wq;
97 int ceph_msgr_init(void)
99 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
100 if (!ceph_msgr_wq) {
101 pr_err("msgr_init failed to create workqueue\n");
102 return -ENOMEM;
104 return 0;
106 EXPORT_SYMBOL(ceph_msgr_init);
108 void ceph_msgr_exit(void)
110 destroy_workqueue(ceph_msgr_wq);
112 EXPORT_SYMBOL(ceph_msgr_exit);
114 void ceph_msgr_flush(void)
116 flush_workqueue(ceph_msgr_wq);
118 EXPORT_SYMBOL(ceph_msgr_flush);
122 * socket callback functions
125 /* data available on socket, or listen socket received a connect */
126 static void ceph_data_ready(struct sock *sk, int count_unused)
128 struct ceph_connection *con =
129 (struct ceph_connection *)sk->sk_user_data;
130 if (sk->sk_state != TCP_CLOSE_WAIT) {
131 dout("ceph_data_ready on %p state = %lu, queueing work\n",
132 con, con->state);
133 queue_con(con);
137 /* socket has buffer space for writing */
138 static void ceph_write_space(struct sock *sk)
140 struct ceph_connection *con =
141 (struct ceph_connection *)sk->sk_user_data;
143 /* only queue to workqueue if there is data we want to write. */
144 if (test_bit(WRITE_PENDING, &con->state)) {
145 dout("ceph_write_space %p queueing write work\n", con);
146 queue_con(con);
147 } else {
148 dout("ceph_write_space %p nothing to write\n", con);
151 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
152 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
155 /* socket's state has changed */
156 static void ceph_state_change(struct sock *sk)
158 struct ceph_connection *con =
159 (struct ceph_connection *)sk->sk_user_data;
161 dout("ceph_state_change %p state = %lu sk_state = %u\n",
162 con, con->state, sk->sk_state);
164 if (test_bit(CLOSED, &con->state))
165 return;
167 switch (sk->sk_state) {
168 case TCP_CLOSE:
169 dout("ceph_state_change TCP_CLOSE\n");
170 case TCP_CLOSE_WAIT:
171 dout("ceph_state_change TCP_CLOSE_WAIT\n");
172 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
173 if (test_bit(CONNECTING, &con->state))
174 con->error_msg = "connection failed";
175 else
176 con->error_msg = "socket closed";
177 queue_con(con);
179 break;
180 case TCP_ESTABLISHED:
181 dout("ceph_state_change TCP_ESTABLISHED\n");
182 queue_con(con);
183 break;
188 * set up socket callbacks
190 static void set_sock_callbacks(struct socket *sock,
191 struct ceph_connection *con)
193 struct sock *sk = sock->sk;
194 sk->sk_user_data = (void *)con;
195 sk->sk_data_ready = ceph_data_ready;
196 sk->sk_write_space = ceph_write_space;
197 sk->sk_state_change = ceph_state_change;
202 * socket helpers
206 * initiate connection to a remote socket.
208 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
210 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
211 struct socket *sock;
212 int ret;
214 BUG_ON(con->sock);
215 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
216 IPPROTO_TCP, &sock);
217 if (ret)
218 return ERR_PTR(ret);
219 con->sock = sock;
220 sock->sk->sk_allocation = GFP_NOFS;
222 #ifdef CONFIG_LOCKDEP
223 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
224 #endif
226 set_sock_callbacks(sock, con);
228 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
230 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
231 O_NONBLOCK);
232 if (ret == -EINPROGRESS) {
233 dout("connect %s EINPROGRESS sk_state = %u\n",
234 ceph_pr_addr(&con->peer_addr.in_addr),
235 sock->sk->sk_state);
236 ret = 0;
238 if (ret < 0) {
239 pr_err("connect %s error %d\n",
240 ceph_pr_addr(&con->peer_addr.in_addr), ret);
241 sock_release(sock);
242 con->sock = NULL;
243 con->error_msg = "connect error";
246 if (ret < 0)
247 return ERR_PTR(ret);
248 return sock;
251 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
253 struct kvec iov = {buf, len};
254 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
256 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
260 * write something. @more is true if caller will be sending more data
261 * shortly.
263 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
264 size_t kvlen, size_t len, int more)
266 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
268 if (more)
269 msg.msg_flags |= MSG_MORE;
270 else
271 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
273 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
278 * Shutdown/close the socket for the given connection.
280 static int con_close_socket(struct ceph_connection *con)
282 int rc;
284 dout("con_close_socket on %p sock %p\n", con, con->sock);
285 if (!con->sock)
286 return 0;
287 set_bit(SOCK_CLOSED, &con->state);
288 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
289 sock_release(con->sock);
290 con->sock = NULL;
291 clear_bit(SOCK_CLOSED, &con->state);
292 return rc;
296 * Reset a connection. Discard all incoming and outgoing messages
297 * and clear *_seq state.
299 static void ceph_msg_remove(struct ceph_msg *msg)
301 list_del_init(&msg->list_head);
302 ceph_msg_put(msg);
304 static void ceph_msg_remove_list(struct list_head *head)
306 while (!list_empty(head)) {
307 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
308 list_head);
309 ceph_msg_remove(msg);
313 static void reset_connection(struct ceph_connection *con)
315 /* reset connection, out_queue, msg_ and connect_seq */
316 /* discard existing out_queue and msg_seq */
317 ceph_msg_remove_list(&con->out_queue);
318 ceph_msg_remove_list(&con->out_sent);
320 if (con->in_msg) {
321 ceph_msg_put(con->in_msg);
322 con->in_msg = NULL;
325 con->connect_seq = 0;
326 con->out_seq = 0;
327 if (con->out_msg) {
328 ceph_msg_put(con->out_msg);
329 con->out_msg = NULL;
331 con->out_keepalive_pending = false;
332 con->in_seq = 0;
333 con->in_seq_acked = 0;
337 * mark a peer down. drop any open connections.
339 void ceph_con_close(struct ceph_connection *con)
341 dout("con_close %p peer %s\n", con,
342 ceph_pr_addr(&con->peer_addr.in_addr));
343 set_bit(CLOSED, &con->state); /* in case there's queued work */
344 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
345 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
346 clear_bit(KEEPALIVE_PENDING, &con->state);
347 clear_bit(WRITE_PENDING, &con->state);
348 mutex_lock(&con->mutex);
349 reset_connection(con);
350 con->peer_global_seq = 0;
351 cancel_delayed_work(&con->work);
352 mutex_unlock(&con->mutex);
353 queue_con(con);
355 EXPORT_SYMBOL(ceph_con_close);
358 * Reopen a closed connection, with a new peer address.
360 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
362 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
363 set_bit(OPENING, &con->state);
364 clear_bit(CLOSED, &con->state);
365 memcpy(&con->peer_addr, addr, sizeof(*addr));
366 con->delay = 0; /* reset backoff memory */
367 queue_con(con);
369 EXPORT_SYMBOL(ceph_con_open);
372 * return true if this connection ever successfully opened
374 bool ceph_con_opened(struct ceph_connection *con)
376 return con->connect_seq > 0;
380 * generic get/put
382 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
384 dout("con_get %p nref = %d -> %d\n", con,
385 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
386 if (atomic_inc_not_zero(&con->nref))
387 return con;
388 return NULL;
391 void ceph_con_put(struct ceph_connection *con)
393 dout("con_put %p nref = %d -> %d\n", con,
394 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
395 BUG_ON(atomic_read(&con->nref) == 0);
396 if (atomic_dec_and_test(&con->nref)) {
397 BUG_ON(con->sock);
398 kfree(con);
403 * initialize a new connection.
405 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
407 dout("con_init %p\n", con);
408 memset(con, 0, sizeof(*con));
409 atomic_set(&con->nref, 1);
410 con->msgr = msgr;
411 mutex_init(&con->mutex);
412 INIT_LIST_HEAD(&con->out_queue);
413 INIT_LIST_HEAD(&con->out_sent);
414 INIT_DELAYED_WORK(&con->work, con_work);
416 EXPORT_SYMBOL(ceph_con_init);
420 * We maintain a global counter to order connection attempts. Get
421 * a unique seq greater than @gt.
423 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
425 u32 ret;
427 spin_lock(&msgr->global_seq_lock);
428 if (msgr->global_seq < gt)
429 msgr->global_seq = gt;
430 ret = ++msgr->global_seq;
431 spin_unlock(&msgr->global_seq_lock);
432 return ret;
437 * Prepare footer for currently outgoing message, and finish things
438 * off. Assumes out_kvec* are already valid.. we just add on to the end.
440 static void prepare_write_message_footer(struct ceph_connection *con, int v)
442 struct ceph_msg *m = con->out_msg;
444 dout("prepare_write_message_footer %p\n", con);
445 con->out_kvec_is_msg = true;
446 con->out_kvec[v].iov_base = &m->footer;
447 con->out_kvec[v].iov_len = sizeof(m->footer);
448 con->out_kvec_bytes += sizeof(m->footer);
449 con->out_kvec_left++;
450 con->out_more = m->more_to_follow;
451 con->out_msg_done = true;
455 * Prepare headers for the next outgoing message.
457 static void prepare_write_message(struct ceph_connection *con)
459 struct ceph_msg *m;
460 int v = 0;
462 con->out_kvec_bytes = 0;
463 con->out_kvec_is_msg = true;
464 con->out_msg_done = false;
466 /* Sneak an ack in there first? If we can get it into the same
467 * TCP packet that's a good thing. */
468 if (con->in_seq > con->in_seq_acked) {
469 con->in_seq_acked = con->in_seq;
470 con->out_kvec[v].iov_base = &tag_ack;
471 con->out_kvec[v++].iov_len = 1;
472 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
473 con->out_kvec[v].iov_base = &con->out_temp_ack;
474 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
475 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
478 m = list_first_entry(&con->out_queue,
479 struct ceph_msg, list_head);
480 con->out_msg = m;
481 if (test_bit(LOSSYTX, &con->state)) {
482 list_del_init(&m->list_head);
483 } else {
484 /* put message on sent list */
485 ceph_msg_get(m);
486 list_move_tail(&m->list_head, &con->out_sent);
490 * only assign outgoing seq # if we haven't sent this message
491 * yet. if it is requeued, resend with it's original seq.
493 if (m->needs_out_seq) {
494 m->hdr.seq = cpu_to_le64(++con->out_seq);
495 m->needs_out_seq = false;
498 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
499 m, con->out_seq, le16_to_cpu(m->hdr.type),
500 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
501 le32_to_cpu(m->hdr.data_len),
502 m->nr_pages);
503 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
505 /* tag + hdr + front + middle */
506 con->out_kvec[v].iov_base = &tag_msg;
507 con->out_kvec[v++].iov_len = 1;
508 con->out_kvec[v].iov_base = &m->hdr;
509 con->out_kvec[v++].iov_len = sizeof(m->hdr);
510 con->out_kvec[v++] = m->front;
511 if (m->middle)
512 con->out_kvec[v++] = m->middle->vec;
513 con->out_kvec_left = v;
514 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
515 (m->middle ? m->middle->vec.iov_len : 0);
516 con->out_kvec_cur = con->out_kvec;
518 /* fill in crc (except data pages), footer */
519 con->out_msg->hdr.crc =
520 cpu_to_le32(crc32c(0, (void *)&m->hdr,
521 sizeof(m->hdr) - sizeof(m->hdr.crc)));
522 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
523 con->out_msg->footer.front_crc =
524 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
525 if (m->middle)
526 con->out_msg->footer.middle_crc =
527 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
528 m->middle->vec.iov_len));
529 else
530 con->out_msg->footer.middle_crc = 0;
531 con->out_msg->footer.data_crc = 0;
532 dout("prepare_write_message front_crc %u data_crc %u\n",
533 le32_to_cpu(con->out_msg->footer.front_crc),
534 le32_to_cpu(con->out_msg->footer.middle_crc));
536 /* is there a data payload? */
537 if (le32_to_cpu(m->hdr.data_len) > 0) {
538 /* initialize page iterator */
539 con->out_msg_pos.page = 0;
540 if (m->pages)
541 con->out_msg_pos.page_pos = m->page_alignment;
542 else
543 con->out_msg_pos.page_pos = 0;
544 con->out_msg_pos.data_pos = 0;
545 con->out_msg_pos.did_page_crc = 0;
546 con->out_more = 1; /* data + footer will follow */
547 } else {
548 /* no, queue up footer too and be done */
549 prepare_write_message_footer(con, v);
552 set_bit(WRITE_PENDING, &con->state);
556 * Prepare an ack.
558 static void prepare_write_ack(struct ceph_connection *con)
560 dout("prepare_write_ack %p %llu -> %llu\n", con,
561 con->in_seq_acked, con->in_seq);
562 con->in_seq_acked = con->in_seq;
564 con->out_kvec[0].iov_base = &tag_ack;
565 con->out_kvec[0].iov_len = 1;
566 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
567 con->out_kvec[1].iov_base = &con->out_temp_ack;
568 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
569 con->out_kvec_left = 2;
570 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
571 con->out_kvec_cur = con->out_kvec;
572 con->out_more = 1; /* more will follow.. eventually.. */
573 set_bit(WRITE_PENDING, &con->state);
577 * Prepare to write keepalive byte.
579 static void prepare_write_keepalive(struct ceph_connection *con)
581 dout("prepare_write_keepalive %p\n", con);
582 con->out_kvec[0].iov_base = &tag_keepalive;
583 con->out_kvec[0].iov_len = 1;
584 con->out_kvec_left = 1;
585 con->out_kvec_bytes = 1;
586 con->out_kvec_cur = con->out_kvec;
587 set_bit(WRITE_PENDING, &con->state);
591 * Connection negotiation.
594 static void prepare_connect_authorizer(struct ceph_connection *con)
596 void *auth_buf;
597 int auth_len = 0;
598 int auth_protocol = 0;
600 mutex_unlock(&con->mutex);
601 if (con->ops->get_authorizer)
602 con->ops->get_authorizer(con, &auth_buf, &auth_len,
603 &auth_protocol, &con->auth_reply_buf,
604 &con->auth_reply_buf_len,
605 con->auth_retry);
606 mutex_lock(&con->mutex);
608 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
609 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
611 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
612 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
613 con->out_kvec_left++;
614 con->out_kvec_bytes += auth_len;
618 * We connected to a peer and are saying hello.
620 static void prepare_write_banner(struct ceph_messenger *msgr,
621 struct ceph_connection *con)
623 int len = strlen(CEPH_BANNER);
625 con->out_kvec[0].iov_base = CEPH_BANNER;
626 con->out_kvec[0].iov_len = len;
627 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
628 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
629 con->out_kvec_left = 2;
630 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
631 con->out_kvec_cur = con->out_kvec;
632 con->out_more = 0;
633 set_bit(WRITE_PENDING, &con->state);
636 static void prepare_write_connect(struct ceph_messenger *msgr,
637 struct ceph_connection *con,
638 int after_banner)
640 unsigned global_seq = get_global_seq(con->msgr, 0);
641 int proto;
643 switch (con->peer_name.type) {
644 case CEPH_ENTITY_TYPE_MON:
645 proto = CEPH_MONC_PROTOCOL;
646 break;
647 case CEPH_ENTITY_TYPE_OSD:
648 proto = CEPH_OSDC_PROTOCOL;
649 break;
650 case CEPH_ENTITY_TYPE_MDS:
651 proto = CEPH_MDSC_PROTOCOL;
652 break;
653 default:
654 BUG();
657 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
658 con->connect_seq, global_seq, proto);
660 con->out_connect.features = cpu_to_le64(msgr->supported_features);
661 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
662 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
663 con->out_connect.global_seq = cpu_to_le32(global_seq);
664 con->out_connect.protocol_version = cpu_to_le32(proto);
665 con->out_connect.flags = 0;
667 if (!after_banner) {
668 con->out_kvec_left = 0;
669 con->out_kvec_bytes = 0;
671 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
672 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
673 con->out_kvec_left++;
674 con->out_kvec_bytes += sizeof(con->out_connect);
675 con->out_kvec_cur = con->out_kvec;
676 con->out_more = 0;
677 set_bit(WRITE_PENDING, &con->state);
679 prepare_connect_authorizer(con);
684 * write as much of pending kvecs to the socket as we can.
685 * 1 -> done
686 * 0 -> socket full, but more to do
687 * <0 -> error
689 static int write_partial_kvec(struct ceph_connection *con)
691 int ret;
693 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
694 while (con->out_kvec_bytes > 0) {
695 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
696 con->out_kvec_left, con->out_kvec_bytes,
697 con->out_more);
698 if (ret <= 0)
699 goto out;
700 con->out_kvec_bytes -= ret;
701 if (con->out_kvec_bytes == 0)
702 break; /* done */
703 while (ret > 0) {
704 if (ret >= con->out_kvec_cur->iov_len) {
705 ret -= con->out_kvec_cur->iov_len;
706 con->out_kvec_cur++;
707 con->out_kvec_left--;
708 } else {
709 con->out_kvec_cur->iov_len -= ret;
710 con->out_kvec_cur->iov_base += ret;
711 ret = 0;
712 break;
716 con->out_kvec_left = 0;
717 con->out_kvec_is_msg = false;
718 ret = 1;
719 out:
720 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
721 con->out_kvec_bytes, con->out_kvec_left, ret);
722 return ret; /* done! */
725 #ifdef CONFIG_BLOCK
726 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
728 if (!bio) {
729 *iter = NULL;
730 *seg = 0;
731 return;
733 *iter = bio;
734 *seg = bio->bi_idx;
737 static void iter_bio_next(struct bio **bio_iter, int *seg)
739 if (*bio_iter == NULL)
740 return;
742 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
744 (*seg)++;
745 if (*seg == (*bio_iter)->bi_vcnt)
746 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
748 #endif
751 * Write as much message data payload as we can. If we finish, queue
752 * up the footer.
753 * 1 -> done, footer is now queued in out_kvec[].
754 * 0 -> socket full, but more to do
755 * <0 -> error
757 static int write_partial_msg_pages(struct ceph_connection *con)
759 struct ceph_msg *msg = con->out_msg;
760 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
761 size_t len;
762 int crc = con->msgr->nocrc;
763 int ret;
764 int total_max_write;
765 int in_trail = 0;
766 size_t trail_len = (msg->trail ? msg->trail->length : 0);
768 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
769 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
770 con->out_msg_pos.page_pos);
772 #ifdef CONFIG_BLOCK
773 if (msg->bio && !msg->bio_iter)
774 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
775 #endif
777 while (data_len > con->out_msg_pos.data_pos) {
778 struct page *page = NULL;
779 void *kaddr = NULL;
780 int max_write = PAGE_SIZE;
781 int page_shift = 0;
783 total_max_write = data_len - trail_len -
784 con->out_msg_pos.data_pos;
787 * if we are calculating the data crc (the default), we need
788 * to map the page. if our pages[] has been revoked, use the
789 * zero page.
792 /* have we reached the trail part of the data? */
793 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
794 in_trail = 1;
796 total_max_write = data_len - con->out_msg_pos.data_pos;
798 page = list_first_entry(&msg->trail->head,
799 struct page, lru);
800 if (crc)
801 kaddr = kmap(page);
802 max_write = PAGE_SIZE;
803 } else if (msg->pages) {
804 page = msg->pages[con->out_msg_pos.page];
805 if (crc)
806 kaddr = kmap(page);
807 } else if (msg->pagelist) {
808 page = list_first_entry(&msg->pagelist->head,
809 struct page, lru);
810 if (crc)
811 kaddr = kmap(page);
812 #ifdef CONFIG_BLOCK
813 } else if (msg->bio) {
814 struct bio_vec *bv;
816 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
817 page = bv->bv_page;
818 page_shift = bv->bv_offset;
819 if (crc)
820 kaddr = kmap(page) + page_shift;
821 max_write = bv->bv_len;
822 #endif
823 } else {
824 page = con->msgr->zero_page;
825 if (crc)
826 kaddr = page_address(con->msgr->zero_page);
828 len = min_t(int, max_write - con->out_msg_pos.page_pos,
829 total_max_write);
831 if (crc && !con->out_msg_pos.did_page_crc) {
832 void *base = kaddr + con->out_msg_pos.page_pos;
833 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
835 BUG_ON(kaddr == NULL);
836 con->out_msg->footer.data_crc =
837 cpu_to_le32(crc32c(tmpcrc, base, len));
838 con->out_msg_pos.did_page_crc = 1;
840 ret = kernel_sendpage(con->sock, page,
841 con->out_msg_pos.page_pos + page_shift,
842 len,
843 MSG_DONTWAIT | MSG_NOSIGNAL |
844 MSG_MORE);
846 if (crc &&
847 (msg->pages || msg->pagelist || msg->bio || in_trail))
848 kunmap(page);
850 if (ret <= 0)
851 goto out;
853 con->out_msg_pos.data_pos += ret;
854 con->out_msg_pos.page_pos += ret;
855 if (ret == len) {
856 con->out_msg_pos.page_pos = 0;
857 con->out_msg_pos.page++;
858 con->out_msg_pos.did_page_crc = 0;
859 if (in_trail)
860 list_move_tail(&page->lru,
861 &msg->trail->head);
862 else if (msg->pagelist)
863 list_move_tail(&page->lru,
864 &msg->pagelist->head);
865 #ifdef CONFIG_BLOCK
866 else if (msg->bio)
867 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
868 #endif
872 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
874 /* prepare and queue up footer, too */
875 if (!crc)
876 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
877 con->out_kvec_bytes = 0;
878 con->out_kvec_left = 0;
879 con->out_kvec_cur = con->out_kvec;
880 prepare_write_message_footer(con, 0);
881 ret = 1;
882 out:
883 return ret;
887 * write some zeros
889 static int write_partial_skip(struct ceph_connection *con)
891 int ret;
893 while (con->out_skip > 0) {
894 struct kvec iov = {
895 .iov_base = page_address(con->msgr->zero_page),
896 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
899 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
900 if (ret <= 0)
901 goto out;
902 con->out_skip -= ret;
904 ret = 1;
905 out:
906 return ret;
910 * Prepare to read connection handshake, or an ack.
912 static void prepare_read_banner(struct ceph_connection *con)
914 dout("prepare_read_banner %p\n", con);
915 con->in_base_pos = 0;
918 static void prepare_read_connect(struct ceph_connection *con)
920 dout("prepare_read_connect %p\n", con);
921 con->in_base_pos = 0;
924 static void prepare_read_ack(struct ceph_connection *con)
926 dout("prepare_read_ack %p\n", con);
927 con->in_base_pos = 0;
930 static void prepare_read_tag(struct ceph_connection *con)
932 dout("prepare_read_tag %p\n", con);
933 con->in_base_pos = 0;
934 con->in_tag = CEPH_MSGR_TAG_READY;
938 * Prepare to read a message.
940 static int prepare_read_message(struct ceph_connection *con)
942 dout("prepare_read_message %p\n", con);
943 BUG_ON(con->in_msg != NULL);
944 con->in_base_pos = 0;
945 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
946 return 0;
950 static int read_partial(struct ceph_connection *con,
951 int *to, int size, void *object)
953 *to += size;
954 while (con->in_base_pos < *to) {
955 int left = *to - con->in_base_pos;
956 int have = size - left;
957 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
958 if (ret <= 0)
959 return ret;
960 con->in_base_pos += ret;
962 return 1;
967 * Read all or part of the connect-side handshake on a new connection
969 static int read_partial_banner(struct ceph_connection *con)
971 int ret, to = 0;
973 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
975 /* peer's banner */
976 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
977 if (ret <= 0)
978 goto out;
979 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
980 &con->actual_peer_addr);
981 if (ret <= 0)
982 goto out;
983 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
984 &con->peer_addr_for_me);
985 if (ret <= 0)
986 goto out;
987 out:
988 return ret;
991 static int read_partial_connect(struct ceph_connection *con)
993 int ret, to = 0;
995 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
997 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
998 if (ret <= 0)
999 goto out;
1000 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1001 con->auth_reply_buf);
1002 if (ret <= 0)
1003 goto out;
1005 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1006 con, (int)con->in_reply.tag,
1007 le32_to_cpu(con->in_reply.connect_seq),
1008 le32_to_cpu(con->in_reply.global_seq));
1009 out:
1010 return ret;
1015 * Verify the hello banner looks okay.
1017 static int verify_hello(struct ceph_connection *con)
1019 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1020 pr_err("connect to %s got bad banner\n",
1021 ceph_pr_addr(&con->peer_addr.in_addr));
1022 con->error_msg = "protocol error, bad banner";
1023 return -1;
1025 return 0;
1028 static bool addr_is_blank(struct sockaddr_storage *ss)
1030 switch (ss->ss_family) {
1031 case AF_INET:
1032 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1033 case AF_INET6:
1034 return
1035 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1036 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1037 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1038 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1040 return false;
1043 static int addr_port(struct sockaddr_storage *ss)
1045 switch (ss->ss_family) {
1046 case AF_INET:
1047 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1048 case AF_INET6:
1049 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1051 return 0;
1054 static void addr_set_port(struct sockaddr_storage *ss, int p)
1056 switch (ss->ss_family) {
1057 case AF_INET:
1058 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1059 case AF_INET6:
1060 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1065 * Parse an ip[:port] list into an addr array. Use the default
1066 * monitor port if a port isn't specified.
1068 int ceph_parse_ips(const char *c, const char *end,
1069 struct ceph_entity_addr *addr,
1070 int max_count, int *count)
1072 int i;
1073 const char *p = c;
1075 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1076 for (i = 0; i < max_count; i++) {
1077 const char *ipend;
1078 struct sockaddr_storage *ss = &addr[i].in_addr;
1079 struct sockaddr_in *in4 = (void *)ss;
1080 struct sockaddr_in6 *in6 = (void *)ss;
1081 int port;
1082 char delim = ',';
1084 if (*p == '[') {
1085 delim = ']';
1086 p++;
1089 memset(ss, 0, sizeof(*ss));
1090 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1091 delim, &ipend))
1092 ss->ss_family = AF_INET;
1093 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1094 delim, &ipend))
1095 ss->ss_family = AF_INET6;
1096 else
1097 goto bad;
1098 p = ipend;
1100 if (delim == ']') {
1101 if (*p != ']') {
1102 dout("missing matching ']'\n");
1103 goto bad;
1105 p++;
1108 /* port? */
1109 if (p < end && *p == ':') {
1110 port = 0;
1111 p++;
1112 while (p < end && *p >= '0' && *p <= '9') {
1113 port = (port * 10) + (*p - '0');
1114 p++;
1116 if (port > 65535 || port == 0)
1117 goto bad;
1118 } else {
1119 port = CEPH_MON_PORT;
1122 addr_set_port(ss, port);
1124 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1126 if (p == end)
1127 break;
1128 if (*p != ',')
1129 goto bad;
1130 p++;
1133 if (p != end)
1134 goto bad;
1136 if (count)
1137 *count = i + 1;
1138 return 0;
1140 bad:
1141 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1142 return -EINVAL;
1144 EXPORT_SYMBOL(ceph_parse_ips);
1146 static int process_banner(struct ceph_connection *con)
1148 dout("process_banner on %p\n", con);
1150 if (verify_hello(con) < 0)
1151 return -1;
1153 ceph_decode_addr(&con->actual_peer_addr);
1154 ceph_decode_addr(&con->peer_addr_for_me);
1157 * Make sure the other end is who we wanted. note that the other
1158 * end may not yet know their ip address, so if it's 0.0.0.0, give
1159 * them the benefit of the doubt.
1161 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1162 sizeof(con->peer_addr)) != 0 &&
1163 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1164 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1165 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1166 ceph_pr_addr(&con->peer_addr.in_addr),
1167 (int)le32_to_cpu(con->peer_addr.nonce),
1168 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1169 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1170 con->error_msg = "wrong peer at address";
1171 return -1;
1175 * did we learn our address?
1177 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1178 int port = addr_port(&con->msgr->inst.addr.in_addr);
1180 memcpy(&con->msgr->inst.addr.in_addr,
1181 &con->peer_addr_for_me.in_addr,
1182 sizeof(con->peer_addr_for_me.in_addr));
1183 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1184 encode_my_addr(con->msgr);
1185 dout("process_banner learned my addr is %s\n",
1186 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1189 set_bit(NEGOTIATING, &con->state);
1190 prepare_read_connect(con);
1191 return 0;
1194 static void fail_protocol(struct ceph_connection *con)
1196 reset_connection(con);
1197 set_bit(CLOSED, &con->state); /* in case there's queued work */
1199 mutex_unlock(&con->mutex);
1200 if (con->ops->bad_proto)
1201 con->ops->bad_proto(con);
1202 mutex_lock(&con->mutex);
1205 static int process_connect(struct ceph_connection *con)
1207 u64 sup_feat = con->msgr->supported_features;
1208 u64 req_feat = con->msgr->required_features;
1209 u64 server_feat = le64_to_cpu(con->in_reply.features);
1211 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1213 switch (con->in_reply.tag) {
1214 case CEPH_MSGR_TAG_FEATURES:
1215 pr_err("%s%lld %s feature set mismatch,"
1216 " my %llx < server's %llx, missing %llx\n",
1217 ENTITY_NAME(con->peer_name),
1218 ceph_pr_addr(&con->peer_addr.in_addr),
1219 sup_feat, server_feat, server_feat & ~sup_feat);
1220 con->error_msg = "missing required protocol features";
1221 fail_protocol(con);
1222 return -1;
1224 case CEPH_MSGR_TAG_BADPROTOVER:
1225 pr_err("%s%lld %s protocol version mismatch,"
1226 " my %d != server's %d\n",
1227 ENTITY_NAME(con->peer_name),
1228 ceph_pr_addr(&con->peer_addr.in_addr),
1229 le32_to_cpu(con->out_connect.protocol_version),
1230 le32_to_cpu(con->in_reply.protocol_version));
1231 con->error_msg = "protocol version mismatch";
1232 fail_protocol(con);
1233 return -1;
1235 case CEPH_MSGR_TAG_BADAUTHORIZER:
1236 con->auth_retry++;
1237 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1238 con->auth_retry);
1239 if (con->auth_retry == 2) {
1240 con->error_msg = "connect authorization failure";
1241 reset_connection(con);
1242 set_bit(CLOSED, &con->state);
1243 return -1;
1245 con->auth_retry = 1;
1246 prepare_write_connect(con->msgr, con, 0);
1247 prepare_read_connect(con);
1248 break;
1250 case CEPH_MSGR_TAG_RESETSESSION:
1252 * If we connected with a large connect_seq but the peer
1253 * has no record of a session with us (no connection, or
1254 * connect_seq == 0), they will send RESETSESION to indicate
1255 * that they must have reset their session, and may have
1256 * dropped messages.
1258 dout("process_connect got RESET peer seq %u\n",
1259 le32_to_cpu(con->in_connect.connect_seq));
1260 pr_err("%s%lld %s connection reset\n",
1261 ENTITY_NAME(con->peer_name),
1262 ceph_pr_addr(&con->peer_addr.in_addr));
1263 reset_connection(con);
1264 prepare_write_connect(con->msgr, con, 0);
1265 prepare_read_connect(con);
1267 /* Tell ceph about it. */
1268 mutex_unlock(&con->mutex);
1269 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1270 if (con->ops->peer_reset)
1271 con->ops->peer_reset(con);
1272 mutex_lock(&con->mutex);
1273 break;
1275 case CEPH_MSGR_TAG_RETRY_SESSION:
1277 * If we sent a smaller connect_seq than the peer has, try
1278 * again with a larger value.
1280 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1281 le32_to_cpu(con->out_connect.connect_seq),
1282 le32_to_cpu(con->in_connect.connect_seq));
1283 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1284 prepare_write_connect(con->msgr, con, 0);
1285 prepare_read_connect(con);
1286 break;
1288 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1290 * If we sent a smaller global_seq than the peer has, try
1291 * again with a larger value.
1293 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1294 con->peer_global_seq,
1295 le32_to_cpu(con->in_connect.global_seq));
1296 get_global_seq(con->msgr,
1297 le32_to_cpu(con->in_connect.global_seq));
1298 prepare_write_connect(con->msgr, con, 0);
1299 prepare_read_connect(con);
1300 break;
1302 case CEPH_MSGR_TAG_READY:
1303 if (req_feat & ~server_feat) {
1304 pr_err("%s%lld %s protocol feature mismatch,"
1305 " my required %llx > server's %llx, need %llx\n",
1306 ENTITY_NAME(con->peer_name),
1307 ceph_pr_addr(&con->peer_addr.in_addr),
1308 req_feat, server_feat, req_feat & ~server_feat);
1309 con->error_msg = "missing required protocol features";
1310 fail_protocol(con);
1311 return -1;
1313 clear_bit(CONNECTING, &con->state);
1314 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1315 con->connect_seq++;
1316 con->peer_features = server_feat;
1317 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1318 con->peer_global_seq,
1319 le32_to_cpu(con->in_reply.connect_seq),
1320 con->connect_seq);
1321 WARN_ON(con->connect_seq !=
1322 le32_to_cpu(con->in_reply.connect_seq));
1324 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1325 set_bit(LOSSYTX, &con->state);
1327 prepare_read_tag(con);
1328 break;
1330 case CEPH_MSGR_TAG_WAIT:
1332 * If there is a connection race (we are opening
1333 * connections to each other), one of us may just have
1334 * to WAIT. This shouldn't happen if we are the
1335 * client.
1337 pr_err("process_connect peer connecting WAIT\n");
1339 default:
1340 pr_err("connect protocol error, will retry\n");
1341 con->error_msg = "protocol error, garbage tag during connect";
1342 return -1;
1344 return 0;
1349 * read (part of) an ack
1351 static int read_partial_ack(struct ceph_connection *con)
1353 int to = 0;
1355 return read_partial(con, &to, sizeof(con->in_temp_ack),
1356 &con->in_temp_ack);
1361 * We can finally discard anything that's been acked.
1363 static void process_ack(struct ceph_connection *con)
1365 struct ceph_msg *m;
1366 u64 ack = le64_to_cpu(con->in_temp_ack);
1367 u64 seq;
1369 while (!list_empty(&con->out_sent)) {
1370 m = list_first_entry(&con->out_sent, struct ceph_msg,
1371 list_head);
1372 seq = le64_to_cpu(m->hdr.seq);
1373 if (seq > ack)
1374 break;
1375 dout("got ack for seq %llu type %d at %p\n", seq,
1376 le16_to_cpu(m->hdr.type), m);
1377 ceph_msg_remove(m);
1379 prepare_read_tag(con);
1385 static int read_partial_message_section(struct ceph_connection *con,
1386 struct kvec *section,
1387 unsigned int sec_len, u32 *crc)
1389 int ret, left;
1391 BUG_ON(!section);
1393 while (section->iov_len < sec_len) {
1394 BUG_ON(section->iov_base == NULL);
1395 left = sec_len - section->iov_len;
1396 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1397 section->iov_len, left);
1398 if (ret <= 0)
1399 return ret;
1400 section->iov_len += ret;
1401 if (section->iov_len == sec_len)
1402 *crc = crc32c(0, section->iov_base,
1403 section->iov_len);
1406 return 1;
1409 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1410 struct ceph_msg_header *hdr,
1411 int *skip);
1414 static int read_partial_message_pages(struct ceph_connection *con,
1415 struct page **pages,
1416 unsigned data_len, int datacrc)
1418 void *p;
1419 int ret;
1420 int left;
1422 left = min((int)(data_len - con->in_msg_pos.data_pos),
1423 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1424 /* (page) data */
1425 BUG_ON(pages == NULL);
1426 p = kmap(pages[con->in_msg_pos.page]);
1427 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1428 left);
1429 if (ret > 0 && datacrc)
1430 con->in_data_crc =
1431 crc32c(con->in_data_crc,
1432 p + con->in_msg_pos.page_pos, ret);
1433 kunmap(pages[con->in_msg_pos.page]);
1434 if (ret <= 0)
1435 return ret;
1436 con->in_msg_pos.data_pos += ret;
1437 con->in_msg_pos.page_pos += ret;
1438 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1439 con->in_msg_pos.page_pos = 0;
1440 con->in_msg_pos.page++;
1443 return ret;
1446 #ifdef CONFIG_BLOCK
1447 static int read_partial_message_bio(struct ceph_connection *con,
1448 struct bio **bio_iter, int *bio_seg,
1449 unsigned data_len, int datacrc)
1451 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1452 void *p;
1453 int ret, left;
1455 if (IS_ERR(bv))
1456 return PTR_ERR(bv);
1458 left = min((int)(data_len - con->in_msg_pos.data_pos),
1459 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1461 p = kmap(bv->bv_page) + bv->bv_offset;
1463 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1464 left);
1465 if (ret > 0 && datacrc)
1466 con->in_data_crc =
1467 crc32c(con->in_data_crc,
1468 p + con->in_msg_pos.page_pos, ret);
1469 kunmap(bv->bv_page);
1470 if (ret <= 0)
1471 return ret;
1472 con->in_msg_pos.data_pos += ret;
1473 con->in_msg_pos.page_pos += ret;
1474 if (con->in_msg_pos.page_pos == bv->bv_len) {
1475 con->in_msg_pos.page_pos = 0;
1476 iter_bio_next(bio_iter, bio_seg);
1479 return ret;
1481 #endif
1484 * read (part of) a message.
1486 static int read_partial_message(struct ceph_connection *con)
1488 struct ceph_msg *m = con->in_msg;
1489 int ret;
1490 int to, left;
1491 unsigned front_len, middle_len, data_len;
1492 int datacrc = con->msgr->nocrc;
1493 int skip;
1494 u64 seq;
1496 dout("read_partial_message con %p msg %p\n", con, m);
1498 /* header */
1499 while (con->in_base_pos < sizeof(con->in_hdr)) {
1500 left = sizeof(con->in_hdr) - con->in_base_pos;
1501 ret = ceph_tcp_recvmsg(con->sock,
1502 (char *)&con->in_hdr + con->in_base_pos,
1503 left);
1504 if (ret <= 0)
1505 return ret;
1506 con->in_base_pos += ret;
1507 if (con->in_base_pos == sizeof(con->in_hdr)) {
1508 u32 crc = crc32c(0, (void *)&con->in_hdr,
1509 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1510 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1511 pr_err("read_partial_message bad hdr "
1512 " crc %u != expected %u\n",
1513 crc, con->in_hdr.crc);
1514 return -EBADMSG;
1518 front_len = le32_to_cpu(con->in_hdr.front_len);
1519 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1520 return -EIO;
1521 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1522 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1523 return -EIO;
1524 data_len = le32_to_cpu(con->in_hdr.data_len);
1525 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1526 return -EIO;
1528 /* verify seq# */
1529 seq = le64_to_cpu(con->in_hdr.seq);
1530 if ((s64)seq - (s64)con->in_seq < 1) {
1531 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1532 ENTITY_NAME(con->peer_name),
1533 ceph_pr_addr(&con->peer_addr.in_addr),
1534 seq, con->in_seq + 1);
1535 con->in_base_pos = -front_len - middle_len - data_len -
1536 sizeof(m->footer);
1537 con->in_tag = CEPH_MSGR_TAG_READY;
1538 return 0;
1539 } else if ((s64)seq - (s64)con->in_seq > 1) {
1540 pr_err("read_partial_message bad seq %lld expected %lld\n",
1541 seq, con->in_seq + 1);
1542 con->error_msg = "bad message sequence # for incoming message";
1543 return -EBADMSG;
1546 /* allocate message? */
1547 if (!con->in_msg) {
1548 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1549 con->in_hdr.front_len, con->in_hdr.data_len);
1550 skip = 0;
1551 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1552 if (skip) {
1553 /* skip this message */
1554 dout("alloc_msg said skip message\n");
1555 BUG_ON(con->in_msg);
1556 con->in_base_pos = -front_len - middle_len - data_len -
1557 sizeof(m->footer);
1558 con->in_tag = CEPH_MSGR_TAG_READY;
1559 con->in_seq++;
1560 return 0;
1562 if (!con->in_msg) {
1563 con->error_msg =
1564 "error allocating memory for incoming message";
1565 return -ENOMEM;
1567 m = con->in_msg;
1568 m->front.iov_len = 0; /* haven't read it yet */
1569 if (m->middle)
1570 m->middle->vec.iov_len = 0;
1572 con->in_msg_pos.page = 0;
1573 if (m->pages)
1574 con->in_msg_pos.page_pos = m->page_alignment;
1575 else
1576 con->in_msg_pos.page_pos = 0;
1577 con->in_msg_pos.data_pos = 0;
1580 /* front */
1581 ret = read_partial_message_section(con, &m->front, front_len,
1582 &con->in_front_crc);
1583 if (ret <= 0)
1584 return ret;
1586 /* middle */
1587 if (m->middle) {
1588 ret = read_partial_message_section(con, &m->middle->vec,
1589 middle_len,
1590 &con->in_middle_crc);
1591 if (ret <= 0)
1592 return ret;
1594 #ifdef CONFIG_BLOCK
1595 if (m->bio && !m->bio_iter)
1596 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1597 #endif
1599 /* (page) data */
1600 while (con->in_msg_pos.data_pos < data_len) {
1601 if (m->pages) {
1602 ret = read_partial_message_pages(con, m->pages,
1603 data_len, datacrc);
1604 if (ret <= 0)
1605 return ret;
1606 #ifdef CONFIG_BLOCK
1607 } else if (m->bio) {
1609 ret = read_partial_message_bio(con,
1610 &m->bio_iter, &m->bio_seg,
1611 data_len, datacrc);
1612 if (ret <= 0)
1613 return ret;
1614 #endif
1615 } else {
1616 BUG_ON(1);
1620 /* footer */
1621 to = sizeof(m->hdr) + sizeof(m->footer);
1622 while (con->in_base_pos < to) {
1623 left = to - con->in_base_pos;
1624 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1625 (con->in_base_pos - sizeof(m->hdr)),
1626 left);
1627 if (ret <= 0)
1628 return ret;
1629 con->in_base_pos += ret;
1631 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1632 m, front_len, m->footer.front_crc, middle_len,
1633 m->footer.middle_crc, data_len, m->footer.data_crc);
1635 /* crc ok? */
1636 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1637 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1638 m, con->in_front_crc, m->footer.front_crc);
1639 return -EBADMSG;
1641 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1642 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1643 m, con->in_middle_crc, m->footer.middle_crc);
1644 return -EBADMSG;
1646 if (datacrc &&
1647 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1648 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1649 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1650 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1651 return -EBADMSG;
1654 return 1; /* done! */
1658 * Process message. This happens in the worker thread. The callback should
1659 * be careful not to do anything that waits on other incoming messages or it
1660 * may deadlock.
1662 static void process_message(struct ceph_connection *con)
1664 struct ceph_msg *msg;
1666 msg = con->in_msg;
1667 con->in_msg = NULL;
1669 /* if first message, set peer_name */
1670 if (con->peer_name.type == 0)
1671 con->peer_name = msg->hdr.src;
1673 con->in_seq++;
1674 mutex_unlock(&con->mutex);
1676 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1677 msg, le64_to_cpu(msg->hdr.seq),
1678 ENTITY_NAME(msg->hdr.src),
1679 le16_to_cpu(msg->hdr.type),
1680 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1681 le32_to_cpu(msg->hdr.front_len),
1682 le32_to_cpu(msg->hdr.data_len),
1683 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1684 con->ops->dispatch(con, msg);
1686 mutex_lock(&con->mutex);
1687 prepare_read_tag(con);
1692 * Write something to the socket. Called in a worker thread when the
1693 * socket appears to be writeable and we have something ready to send.
1695 static int try_write(struct ceph_connection *con)
1697 struct ceph_messenger *msgr = con->msgr;
1698 int ret = 1;
1700 dout("try_write start %p state %lu nref %d\n", con, con->state,
1701 atomic_read(&con->nref));
1703 more:
1704 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1706 /* open the socket first? */
1707 if (con->sock == NULL) {
1709 * if we were STANDBY and are reconnecting _this_
1710 * connection, bump connect_seq now. Always bump
1711 * global_seq.
1713 if (test_and_clear_bit(STANDBY, &con->state))
1714 con->connect_seq++;
1716 prepare_write_banner(msgr, con);
1717 prepare_write_connect(msgr, con, 1);
1718 prepare_read_banner(con);
1719 set_bit(CONNECTING, &con->state);
1720 clear_bit(NEGOTIATING, &con->state);
1722 BUG_ON(con->in_msg);
1723 con->in_tag = CEPH_MSGR_TAG_READY;
1724 dout("try_write initiating connect on %p new state %lu\n",
1725 con, con->state);
1726 con->sock = ceph_tcp_connect(con);
1727 if (IS_ERR(con->sock)) {
1728 con->sock = NULL;
1729 con->error_msg = "connect error";
1730 ret = -1;
1731 goto out;
1735 more_kvec:
1736 /* kvec data queued? */
1737 if (con->out_skip) {
1738 ret = write_partial_skip(con);
1739 if (ret <= 0)
1740 goto done;
1741 if (ret < 0) {
1742 dout("try_write write_partial_skip err %d\n", ret);
1743 goto done;
1746 if (con->out_kvec_left) {
1747 ret = write_partial_kvec(con);
1748 if (ret <= 0)
1749 goto done;
1752 /* msg pages? */
1753 if (con->out_msg) {
1754 if (con->out_msg_done) {
1755 ceph_msg_put(con->out_msg);
1756 con->out_msg = NULL; /* we're done with this one */
1757 goto do_next;
1760 ret = write_partial_msg_pages(con);
1761 if (ret == 1)
1762 goto more_kvec; /* we need to send the footer, too! */
1763 if (ret == 0)
1764 goto done;
1765 if (ret < 0) {
1766 dout("try_write write_partial_msg_pages err %d\n",
1767 ret);
1768 goto done;
1772 do_next:
1773 if (!test_bit(CONNECTING, &con->state)) {
1774 /* is anything else pending? */
1775 if (!list_empty(&con->out_queue)) {
1776 prepare_write_message(con);
1777 goto more;
1779 if (con->in_seq > con->in_seq_acked) {
1780 prepare_write_ack(con);
1781 goto more;
1783 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1784 prepare_write_keepalive(con);
1785 goto more;
1789 /* Nothing to do! */
1790 clear_bit(WRITE_PENDING, &con->state);
1791 dout("try_write nothing else to write.\n");
1792 done:
1793 ret = 0;
1794 out:
1795 dout("try_write done on %p\n", con);
1796 return ret;
1802 * Read what we can from the socket.
1804 static int try_read(struct ceph_connection *con)
1806 int ret = -1;
1808 if (!con->sock)
1809 return 0;
1811 if (test_bit(STANDBY, &con->state))
1812 return 0;
1814 dout("try_read start on %p\n", con);
1816 more:
1817 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1818 con->in_base_pos);
1819 if (test_bit(CONNECTING, &con->state)) {
1820 if (!test_bit(NEGOTIATING, &con->state)) {
1821 dout("try_read connecting\n");
1822 ret = read_partial_banner(con);
1823 if (ret <= 0)
1824 goto done;
1825 if (process_banner(con) < 0) {
1826 ret = -1;
1827 goto out;
1830 ret = read_partial_connect(con);
1831 if (ret <= 0)
1832 goto done;
1833 if (process_connect(con) < 0) {
1834 ret = -1;
1835 goto out;
1837 goto more;
1840 if (con->in_base_pos < 0) {
1842 * skipping + discarding content.
1844 * FIXME: there must be a better way to do this!
1846 static char buf[1024];
1847 int skip = min(1024, -con->in_base_pos);
1848 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1849 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1850 if (ret <= 0)
1851 goto done;
1852 con->in_base_pos += ret;
1853 if (con->in_base_pos)
1854 goto more;
1856 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1858 * what's next?
1860 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1861 if (ret <= 0)
1862 goto done;
1863 dout("try_read got tag %d\n", (int)con->in_tag);
1864 switch (con->in_tag) {
1865 case CEPH_MSGR_TAG_MSG:
1866 prepare_read_message(con);
1867 break;
1868 case CEPH_MSGR_TAG_ACK:
1869 prepare_read_ack(con);
1870 break;
1871 case CEPH_MSGR_TAG_CLOSE:
1872 set_bit(CLOSED, &con->state); /* fixme */
1873 goto done;
1874 default:
1875 goto bad_tag;
1878 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1879 ret = read_partial_message(con);
1880 if (ret <= 0) {
1881 switch (ret) {
1882 case -EBADMSG:
1883 con->error_msg = "bad crc";
1884 ret = -EIO;
1885 goto out;
1886 case -EIO:
1887 con->error_msg = "io error";
1888 goto out;
1889 default:
1890 goto done;
1893 if (con->in_tag == CEPH_MSGR_TAG_READY)
1894 goto more;
1895 process_message(con);
1896 goto more;
1898 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1899 ret = read_partial_ack(con);
1900 if (ret <= 0)
1901 goto done;
1902 process_ack(con);
1903 goto more;
1906 done:
1907 ret = 0;
1908 out:
1909 dout("try_read done on %p\n", con);
1910 return ret;
1912 bad_tag:
1913 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1914 con->error_msg = "protocol error, garbage tag";
1915 ret = -1;
1916 goto out;
1921 * Atomically queue work on a connection. Bump @con reference to
1922 * avoid races with connection teardown.
1924 static void queue_con(struct ceph_connection *con)
1926 if (test_bit(DEAD, &con->state)) {
1927 dout("queue_con %p ignoring: DEAD\n",
1928 con);
1929 return;
1932 if (!con->ops->get(con)) {
1933 dout("queue_con %p ref count 0\n", con);
1934 return;
1937 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1938 dout("queue_con %p - already queued\n", con);
1939 con->ops->put(con);
1940 } else {
1941 dout("queue_con %p\n", con);
1946 * Do some work on a connection. Drop a connection ref when we're done.
1948 static void con_work(struct work_struct *work)
1950 struct ceph_connection *con = container_of(work, struct ceph_connection,
1951 work.work);
1953 mutex_lock(&con->mutex);
1955 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1956 dout("con_work CLOSED\n");
1957 con_close_socket(con);
1958 goto done;
1960 if (test_and_clear_bit(OPENING, &con->state)) {
1961 /* reopen w/ new peer */
1962 dout("con_work OPENING\n");
1963 con_close_socket(con);
1966 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1967 try_read(con) < 0 ||
1968 try_write(con) < 0) {
1969 mutex_unlock(&con->mutex);
1970 ceph_fault(con); /* error/fault path */
1971 goto done_unlocked;
1974 done:
1975 mutex_unlock(&con->mutex);
1976 done_unlocked:
1977 con->ops->put(con);
1982 * Generic error/fault handler. A retry mechanism is used with
1983 * exponential backoff
1985 static void ceph_fault(struct ceph_connection *con)
1987 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1988 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
1989 dout("fault %p state %lu to peer %s\n",
1990 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
1992 if (test_bit(LOSSYTX, &con->state)) {
1993 dout("fault on LOSSYTX channel\n");
1994 goto out;
1997 mutex_lock(&con->mutex);
1998 if (test_bit(CLOSED, &con->state))
1999 goto out_unlock;
2001 con_close_socket(con);
2003 if (con->in_msg) {
2004 ceph_msg_put(con->in_msg);
2005 con->in_msg = NULL;
2008 /* Requeue anything that hasn't been acked */
2009 list_splice_init(&con->out_sent, &con->out_queue);
2011 /* If there are no messages in the queue, place the connection
2012 * in a STANDBY state (i.e., don't try to reconnect just yet). */
2013 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
2014 dout("fault setting STANDBY\n");
2015 set_bit(STANDBY, &con->state);
2016 } else {
2017 /* retry after a delay. */
2018 if (con->delay == 0)
2019 con->delay = BASE_DELAY_INTERVAL;
2020 else if (con->delay < MAX_DELAY_INTERVAL)
2021 con->delay *= 2;
2022 dout("fault queueing %p delay %lu\n", con, con->delay);
2023 con->ops->get(con);
2024 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2025 round_jiffies_relative(con->delay)) == 0)
2026 con->ops->put(con);
2029 out_unlock:
2030 mutex_unlock(&con->mutex);
2031 out:
2033 * in case we faulted due to authentication, invalidate our
2034 * current tickets so that we can get new ones.
2036 if (con->auth_retry && con->ops->invalidate_authorizer) {
2037 dout("calling invalidate_authorizer()\n");
2038 con->ops->invalidate_authorizer(con);
2041 if (con->ops->fault)
2042 con->ops->fault(con);
2048 * create a new messenger instance
2050 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2051 u32 supported_features,
2052 u32 required_features)
2054 struct ceph_messenger *msgr;
2056 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2057 if (msgr == NULL)
2058 return ERR_PTR(-ENOMEM);
2060 msgr->supported_features = supported_features;
2061 msgr->required_features = required_features;
2063 spin_lock_init(&msgr->global_seq_lock);
2065 /* the zero page is needed if a request is "canceled" while the message
2066 * is being written over the socket */
2067 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2068 if (!msgr->zero_page) {
2069 kfree(msgr);
2070 return ERR_PTR(-ENOMEM);
2072 kmap(msgr->zero_page);
2074 if (myaddr)
2075 msgr->inst.addr = *myaddr;
2077 /* select a random nonce */
2078 msgr->inst.addr.type = 0;
2079 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2080 encode_my_addr(msgr);
2082 dout("messenger_create %p\n", msgr);
2083 return msgr;
2085 EXPORT_SYMBOL(ceph_messenger_create);
2087 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2089 dout("destroy %p\n", msgr);
2090 kunmap(msgr->zero_page);
2091 __free_page(msgr->zero_page);
2092 kfree(msgr);
2093 dout("destroyed messenger %p\n", msgr);
2095 EXPORT_SYMBOL(ceph_messenger_destroy);
2098 * Queue up an outgoing message on the given connection.
2100 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2102 if (test_bit(CLOSED, &con->state)) {
2103 dout("con_send %p closed, dropping %p\n", con, msg);
2104 ceph_msg_put(msg);
2105 return;
2108 /* set src+dst */
2109 msg->hdr.src = con->msgr->inst.name;
2111 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2113 msg->needs_out_seq = true;
2115 /* queue */
2116 mutex_lock(&con->mutex);
2117 BUG_ON(!list_empty(&msg->list_head));
2118 list_add_tail(&msg->list_head, &con->out_queue);
2119 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2120 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2121 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2122 le32_to_cpu(msg->hdr.front_len),
2123 le32_to_cpu(msg->hdr.middle_len),
2124 le32_to_cpu(msg->hdr.data_len));
2125 mutex_unlock(&con->mutex);
2127 /* if there wasn't anything waiting to send before, queue
2128 * new work */
2129 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2130 queue_con(con);
2132 EXPORT_SYMBOL(ceph_con_send);
2135 * Revoke a message that was previously queued for send
2137 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2139 mutex_lock(&con->mutex);
2140 if (!list_empty(&msg->list_head)) {
2141 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2142 list_del_init(&msg->list_head);
2143 ceph_msg_put(msg);
2144 msg->hdr.seq = 0;
2146 if (con->out_msg == msg) {
2147 dout("con_revoke %p msg %p - was sending\n", con, msg);
2148 con->out_msg = NULL;
2149 if (con->out_kvec_is_msg) {
2150 con->out_skip = con->out_kvec_bytes;
2151 con->out_kvec_is_msg = false;
2153 ceph_msg_put(msg);
2154 msg->hdr.seq = 0;
2156 mutex_unlock(&con->mutex);
2160 * Revoke a message that we may be reading data into
2162 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2164 mutex_lock(&con->mutex);
2165 if (con->in_msg && con->in_msg == msg) {
2166 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2167 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2168 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2170 /* skip rest of message */
2171 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2172 con->in_base_pos = con->in_base_pos -
2173 sizeof(struct ceph_msg_header) -
2174 front_len -
2175 middle_len -
2176 data_len -
2177 sizeof(struct ceph_msg_footer);
2178 ceph_msg_put(con->in_msg);
2179 con->in_msg = NULL;
2180 con->in_tag = CEPH_MSGR_TAG_READY;
2181 con->in_seq++;
2182 } else {
2183 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2184 con, con->in_msg, msg);
2186 mutex_unlock(&con->mutex);
2190 * Queue a keepalive byte to ensure the tcp connection is alive.
2192 void ceph_con_keepalive(struct ceph_connection *con)
2194 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2195 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2196 queue_con(con);
2198 EXPORT_SYMBOL(ceph_con_keepalive);
2202 * construct a new message with given type, size
2203 * the new msg has a ref count of 1.
2205 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2207 struct ceph_msg *m;
2209 m = kmalloc(sizeof(*m), flags);
2210 if (m == NULL)
2211 goto out;
2212 kref_init(&m->kref);
2213 INIT_LIST_HEAD(&m->list_head);
2215 m->hdr.tid = 0;
2216 m->hdr.type = cpu_to_le16(type);
2217 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2218 m->hdr.version = 0;
2219 m->hdr.front_len = cpu_to_le32(front_len);
2220 m->hdr.middle_len = 0;
2221 m->hdr.data_len = 0;
2222 m->hdr.data_off = 0;
2223 m->hdr.reserved = 0;
2224 m->footer.front_crc = 0;
2225 m->footer.middle_crc = 0;
2226 m->footer.data_crc = 0;
2227 m->footer.flags = 0;
2228 m->front_max = front_len;
2229 m->front_is_vmalloc = false;
2230 m->more_to_follow = false;
2231 m->pool = NULL;
2233 /* front */
2234 if (front_len) {
2235 if (front_len > PAGE_CACHE_SIZE) {
2236 m->front.iov_base = __vmalloc(front_len, flags,
2237 PAGE_KERNEL);
2238 m->front_is_vmalloc = true;
2239 } else {
2240 m->front.iov_base = kmalloc(front_len, flags);
2242 if (m->front.iov_base == NULL) {
2243 pr_err("msg_new can't allocate %d bytes\n",
2244 front_len);
2245 goto out2;
2247 } else {
2248 m->front.iov_base = NULL;
2250 m->front.iov_len = front_len;
2252 /* middle */
2253 m->middle = NULL;
2255 /* data */
2256 m->nr_pages = 0;
2257 m->page_alignment = 0;
2258 m->pages = NULL;
2259 m->pagelist = NULL;
2260 m->bio = NULL;
2261 m->bio_iter = NULL;
2262 m->bio_seg = 0;
2263 m->trail = NULL;
2265 dout("ceph_msg_new %p front %d\n", m, front_len);
2266 return m;
2268 out2:
2269 ceph_msg_put(m);
2270 out:
2271 pr_err("msg_new can't create type %d front %d\n", type, front_len);
2272 return NULL;
2274 EXPORT_SYMBOL(ceph_msg_new);
2277 * Allocate "middle" portion of a message, if it is needed and wasn't
2278 * allocated by alloc_msg. This allows us to read a small fixed-size
2279 * per-type header in the front and then gracefully fail (i.e.,
2280 * propagate the error to the caller based on info in the front) when
2281 * the middle is too large.
2283 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2285 int type = le16_to_cpu(msg->hdr.type);
2286 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2288 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2289 ceph_msg_type_name(type), middle_len);
2290 BUG_ON(!middle_len);
2291 BUG_ON(msg->middle);
2293 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2294 if (!msg->middle)
2295 return -ENOMEM;
2296 return 0;
2300 * Generic message allocator, for incoming messages.
2302 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2303 struct ceph_msg_header *hdr,
2304 int *skip)
2306 int type = le16_to_cpu(hdr->type);
2307 int front_len = le32_to_cpu(hdr->front_len);
2308 int middle_len = le32_to_cpu(hdr->middle_len);
2309 struct ceph_msg *msg = NULL;
2310 int ret;
2312 if (con->ops->alloc_msg) {
2313 mutex_unlock(&con->mutex);
2314 msg = con->ops->alloc_msg(con, hdr, skip);
2315 mutex_lock(&con->mutex);
2316 if (!msg || *skip)
2317 return NULL;
2319 if (!msg) {
2320 *skip = 0;
2321 msg = ceph_msg_new(type, front_len, GFP_NOFS);
2322 if (!msg) {
2323 pr_err("unable to allocate msg type %d len %d\n",
2324 type, front_len);
2325 return NULL;
2327 msg->page_alignment = le16_to_cpu(hdr->data_off);
2329 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2331 if (middle_len && !msg->middle) {
2332 ret = ceph_alloc_middle(con, msg);
2333 if (ret < 0) {
2334 ceph_msg_put(msg);
2335 return NULL;
2339 return msg;
2344 * Free a generically kmalloc'd message.
2346 void ceph_msg_kfree(struct ceph_msg *m)
2348 dout("msg_kfree %p\n", m);
2349 if (m->front_is_vmalloc)
2350 vfree(m->front.iov_base);
2351 else
2352 kfree(m->front.iov_base);
2353 kfree(m);
2357 * Drop a msg ref. Destroy as needed.
2359 void ceph_msg_last_put(struct kref *kref)
2361 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2363 dout("ceph_msg_put last one on %p\n", m);
2364 WARN_ON(!list_empty(&m->list_head));
2366 /* drop middle, data, if any */
2367 if (m->middle) {
2368 ceph_buffer_put(m->middle);
2369 m->middle = NULL;
2371 m->nr_pages = 0;
2372 m->pages = NULL;
2374 if (m->pagelist) {
2375 ceph_pagelist_release(m->pagelist);
2376 kfree(m->pagelist);
2377 m->pagelist = NULL;
2380 m->trail = NULL;
2382 if (m->pool)
2383 ceph_msgpool_put(m->pool, m);
2384 else
2385 ceph_msg_kfree(m);
2387 EXPORT_SYMBOL(ceph_msg_last_put);
2389 void ceph_msg_dump(struct ceph_msg *msg)
2391 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2392 msg->front_max, msg->nr_pages);
2393 print_hex_dump(KERN_DEBUG, "header: ",
2394 DUMP_PREFIX_OFFSET, 16, 1,
2395 &msg->hdr, sizeof(msg->hdr), true);
2396 print_hex_dump(KERN_DEBUG, " front: ",
2397 DUMP_PREFIX_OFFSET, 16, 1,
2398 msg->front.iov_base, msg->front.iov_len, true);
2399 if (msg->middle)
2400 print_hex_dump(KERN_DEBUG, "middle: ",
2401 DUMP_PREFIX_OFFSET, 16, 1,
2402 msg->middle->vec.iov_base,
2403 msg->middle->vec.iov_len, true);
2404 print_hex_dump(KERN_DEBUG, "footer: ",
2405 DUMP_PREFIX_OFFSET, 16, 1,
2406 &msg->footer, sizeof(msg->footer), true);
2408 EXPORT_SYMBOL(ceph_msg_dump);