ACPI: thinkpad-acpi: make EC-based thermal readings non-experimental
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / hrtimer.c
blobeb1ddebd2c0413bbcc3c857aa568ac31150c35c0
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
47 #include <asm/uaccess.h>
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t ktime_get(void)
56 struct timespec now;
58 ktime_get_ts(&now);
60 return timespec_to_ktime(now);
62 EXPORT_SYMBOL_GPL(ktime_get);
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
67 * returns the time in ktime_t format
69 ktime_t ktime_get_real(void)
71 struct timespec now;
73 getnstimeofday(&now);
75 return timespec_to_ktime(now);
78 EXPORT_SYMBOL_GPL(ktime_get_real);
81 * The timer bases:
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92 .clock_base =
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
115 void ktime_get_ts(struct timespec *ts)
117 struct timespec tomono;
118 unsigned long seq;
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
125 } while (read_seqretry(&xtime_lock, seq));
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 #ifdef CONFIG_NO_HZ
145 getnstimeofday(&xts);
146 #else
147 xts = xtime;
148 #endif
149 tom = wall_to_monotonic;
150 } while (read_seqretry(&xtime_lock, seq));
152 xtim = timespec_to_ktime(xts);
153 tomono = timespec_to_ktime(tom);
154 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
155 base->clock_base[CLOCK_MONOTONIC].softirq_time =
156 ktime_add(xtim, tomono);
160 * Helper function to check, whether the timer is running the callback
161 * function
163 static inline int hrtimer_callback_running(struct hrtimer *timer)
165 return timer->state & HRTIMER_STATE_CALLBACK;
169 * Functions and macros which are different for UP/SMP systems are kept in a
170 * single place
172 #ifdef CONFIG_SMP
175 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
176 * means that all timers which are tied to this base via timer->base are
177 * locked, and the base itself is locked too.
179 * So __run_timers/migrate_timers can safely modify all timers which could
180 * be found on the lists/queues.
182 * When the timer's base is locked, and the timer removed from list, it is
183 * possible to set timer->base = NULL and drop the lock: the timer remains
184 * locked.
186 static
187 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
188 unsigned long *flags)
190 struct hrtimer_clock_base *base;
192 for (;;) {
193 base = timer->base;
194 if (likely(base != NULL)) {
195 spin_lock_irqsave(&base->cpu_base->lock, *flags);
196 if (likely(base == timer->base))
197 return base;
198 /* The timer has migrated to another CPU: */
199 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
201 cpu_relax();
206 * Switch the timer base to the current CPU when possible.
208 static inline struct hrtimer_clock_base *
209 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
211 struct hrtimer_clock_base *new_base;
212 struct hrtimer_cpu_base *new_cpu_base;
214 new_cpu_base = &__get_cpu_var(hrtimer_bases);
215 new_base = &new_cpu_base->clock_base[base->index];
217 if (base != new_base) {
219 * We are trying to schedule the timer on the local CPU.
220 * However we can't change timer's base while it is running,
221 * so we keep it on the same CPU. No hassle vs. reprogramming
222 * the event source in the high resolution case. The softirq
223 * code will take care of this when the timer function has
224 * completed. There is no conflict as we hold the lock until
225 * the timer is enqueued.
227 if (unlikely(hrtimer_callback_running(timer)))
228 return base;
230 /* See the comment in lock_timer_base() */
231 timer->base = NULL;
232 spin_unlock(&base->cpu_base->lock);
233 spin_lock(&new_base->cpu_base->lock);
234 timer->base = new_base;
236 return new_base;
239 #else /* CONFIG_SMP */
241 static inline struct hrtimer_clock_base *
242 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
244 struct hrtimer_clock_base *base = timer->base;
246 spin_lock_irqsave(&base->cpu_base->lock, *flags);
248 return base;
251 # define switch_hrtimer_base(t, b) (b)
253 #endif /* !CONFIG_SMP */
256 * Functions for the union type storage format of ktime_t which are
257 * too large for inlining:
259 #if BITS_PER_LONG < 64
260 # ifndef CONFIG_KTIME_SCALAR
262 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
263 * @kt: addend
264 * @nsec: the scalar nsec value to add
266 * Returns the sum of kt and nsec in ktime_t format
268 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
270 ktime_t tmp;
272 if (likely(nsec < NSEC_PER_SEC)) {
273 tmp.tv64 = nsec;
274 } else {
275 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
277 tmp = ktime_set((long)nsec, rem);
280 return ktime_add(kt, tmp);
283 EXPORT_SYMBOL_GPL(ktime_add_ns);
284 # endif /* !CONFIG_KTIME_SCALAR */
287 * Divide a ktime value by a nanosecond value
289 unsigned long ktime_divns(const ktime_t kt, s64 div)
291 u64 dclc, inc, dns;
292 int sft = 0;
294 dclc = dns = ktime_to_ns(kt);
295 inc = div;
296 /* Make sure the divisor is less than 2^32: */
297 while (div >> 32) {
298 sft++;
299 div >>= 1;
301 dclc >>= sft;
302 do_div(dclc, (unsigned long) div);
304 return (unsigned long) dclc;
306 #endif /* BITS_PER_LONG >= 64 */
308 /* High resolution timer related functions */
309 #ifdef CONFIG_HIGH_RES_TIMERS
312 * High resolution timer enabled ?
314 static int hrtimer_hres_enabled __read_mostly = 1;
317 * Enable / Disable high resolution mode
319 static int __init setup_hrtimer_hres(char *str)
321 if (!strcmp(str, "off"))
322 hrtimer_hres_enabled = 0;
323 else if (!strcmp(str, "on"))
324 hrtimer_hres_enabled = 1;
325 else
326 return 0;
327 return 1;
330 __setup("highres=", setup_hrtimer_hres);
333 * hrtimer_high_res_enabled - query, if the highres mode is enabled
335 static inline int hrtimer_is_hres_enabled(void)
337 return hrtimer_hres_enabled;
341 * Is the high resolution mode active ?
343 static inline int hrtimer_hres_active(void)
345 return __get_cpu_var(hrtimer_bases).hres_active;
349 * Reprogram the event source with checking both queues for the
350 * next event
351 * Called with interrupts disabled and base->lock held
353 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
355 int i;
356 struct hrtimer_clock_base *base = cpu_base->clock_base;
357 ktime_t expires;
359 cpu_base->expires_next.tv64 = KTIME_MAX;
361 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
362 struct hrtimer *timer;
364 if (!base->first)
365 continue;
366 timer = rb_entry(base->first, struct hrtimer, node);
367 expires = ktime_sub(timer->expires, base->offset);
368 if (expires.tv64 < cpu_base->expires_next.tv64)
369 cpu_base->expires_next = expires;
372 if (cpu_base->expires_next.tv64 != KTIME_MAX)
373 tick_program_event(cpu_base->expires_next, 1);
377 * Shared reprogramming for clock_realtime and clock_monotonic
379 * When a timer is enqueued and expires earlier than the already enqueued
380 * timers, we have to check, whether it expires earlier than the timer for
381 * which the clock event device was armed.
383 * Called with interrupts disabled and base->cpu_base.lock held
385 static int hrtimer_reprogram(struct hrtimer *timer,
386 struct hrtimer_clock_base *base)
388 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
389 ktime_t expires = ktime_sub(timer->expires, base->offset);
390 int res;
393 * When the callback is running, we do not reprogram the clock event
394 * device. The timer callback is either running on a different CPU or
395 * the callback is executed in the hrtimer_interupt context. The
396 * reprogramming is handled either by the softirq, which called the
397 * callback or at the end of the hrtimer_interrupt.
399 if (hrtimer_callback_running(timer))
400 return 0;
402 if (expires.tv64 >= expires_next->tv64)
403 return 0;
406 * Clockevents returns -ETIME, when the event was in the past.
408 res = tick_program_event(expires, 0);
409 if (!IS_ERR_VALUE(res))
410 *expires_next = expires;
411 return res;
416 * Retrigger next event is called after clock was set
418 * Called with interrupts disabled via on_each_cpu()
420 static void retrigger_next_event(void *arg)
422 struct hrtimer_cpu_base *base;
423 struct timespec realtime_offset;
424 unsigned long seq;
426 if (!hrtimer_hres_active())
427 return;
429 do {
430 seq = read_seqbegin(&xtime_lock);
431 set_normalized_timespec(&realtime_offset,
432 -wall_to_monotonic.tv_sec,
433 -wall_to_monotonic.tv_nsec);
434 } while (read_seqretry(&xtime_lock, seq));
436 base = &__get_cpu_var(hrtimer_bases);
438 /* Adjust CLOCK_REALTIME offset */
439 spin_lock(&base->lock);
440 base->clock_base[CLOCK_REALTIME].offset =
441 timespec_to_ktime(realtime_offset);
443 hrtimer_force_reprogram(base);
444 spin_unlock(&base->lock);
448 * Clock realtime was set
450 * Change the offset of the realtime clock vs. the monotonic
451 * clock.
453 * We might have to reprogram the high resolution timer interrupt. On
454 * SMP we call the architecture specific code to retrigger _all_ high
455 * resolution timer interrupts. On UP we just disable interrupts and
456 * call the high resolution interrupt code.
458 void clock_was_set(void)
460 /* Retrigger the CPU local events everywhere */
461 on_each_cpu(retrigger_next_event, NULL, 0, 1);
465 * During resume we might have to reprogram the high resolution timer
466 * interrupt (on the local CPU):
468 void hres_timers_resume(void)
470 WARN_ON_ONCE(num_online_cpus() > 1);
472 /* Retrigger the CPU local events: */
473 retrigger_next_event(NULL);
477 * Check, whether the timer is on the callback pending list
479 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
481 return timer->state & HRTIMER_STATE_PENDING;
485 * Remove a timer from the callback pending list
487 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
489 list_del_init(&timer->cb_entry);
493 * Initialize the high resolution related parts of cpu_base
495 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
497 base->expires_next.tv64 = KTIME_MAX;
498 base->hres_active = 0;
499 INIT_LIST_HEAD(&base->cb_pending);
503 * Initialize the high resolution related parts of a hrtimer
505 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
507 INIT_LIST_HEAD(&timer->cb_entry);
511 * When High resolution timers are active, try to reprogram. Note, that in case
512 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
513 * check happens. The timer gets enqueued into the rbtree. The reprogramming
514 * and expiry check is done in the hrtimer_interrupt or in the softirq.
516 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
517 struct hrtimer_clock_base *base)
519 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
521 /* Timer is expired, act upon the callback mode */
522 switch(timer->cb_mode) {
523 case HRTIMER_CB_IRQSAFE_NO_RESTART:
525 * We can call the callback from here. No restart
526 * happens, so no danger of recursion
528 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
529 return 1;
530 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
532 * This is solely for the sched tick emulation with
533 * dynamic tick support to ensure that we do not
534 * restart the tick right on the edge and end up with
535 * the tick timer in the softirq ! The calling site
536 * takes care of this.
538 return 1;
539 case HRTIMER_CB_IRQSAFE:
540 case HRTIMER_CB_SOFTIRQ:
542 * Move everything else into the softirq pending list !
544 list_add_tail(&timer->cb_entry,
545 &base->cpu_base->cb_pending);
546 timer->state = HRTIMER_STATE_PENDING;
547 raise_softirq(HRTIMER_SOFTIRQ);
548 return 1;
549 default:
550 BUG();
553 return 0;
557 * Switch to high resolution mode
559 static int hrtimer_switch_to_hres(void)
561 int cpu = smp_processor_id();
562 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
563 unsigned long flags;
565 if (base->hres_active)
566 return 1;
568 local_irq_save(flags);
570 if (tick_init_highres()) {
571 local_irq_restore(flags);
572 printk(KERN_WARNING "Could not switch to high resolution "
573 "mode on CPU %d\n", cpu);
574 return 0;
576 base->hres_active = 1;
577 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
578 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
580 tick_setup_sched_timer();
582 /* "Retrigger" the interrupt to get things going */
583 retrigger_next_event(NULL);
584 local_irq_restore(flags);
585 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
586 smp_processor_id());
587 return 1;
590 #else
592 static inline int hrtimer_hres_active(void) { return 0; }
593 static inline int hrtimer_is_hres_enabled(void) { return 0; }
594 static inline int hrtimer_switch_to_hres(void) { return 0; }
595 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
596 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
597 struct hrtimer_clock_base *base)
599 return 0;
601 static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
602 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
603 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
604 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
606 #endif /* CONFIG_HIGH_RES_TIMERS */
608 #ifdef CONFIG_TIMER_STATS
609 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
611 if (timer->start_site)
612 return;
614 timer->start_site = addr;
615 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
616 timer->start_pid = current->pid;
618 #endif
621 * Counterpart to lock_timer_base above:
623 static inline
624 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
626 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
630 * hrtimer_forward - forward the timer expiry
631 * @timer: hrtimer to forward
632 * @now: forward past this time
633 * @interval: the interval to forward
635 * Forward the timer expiry so it will expire in the future.
636 * Returns the number of overruns.
638 unsigned long
639 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
641 unsigned long orun = 1;
642 ktime_t delta;
644 delta = ktime_sub(now, timer->expires);
646 if (delta.tv64 < 0)
647 return 0;
649 if (interval.tv64 < timer->base->resolution.tv64)
650 interval.tv64 = timer->base->resolution.tv64;
652 if (unlikely(delta.tv64 >= interval.tv64)) {
653 s64 incr = ktime_to_ns(interval);
655 orun = ktime_divns(delta, incr);
656 timer->expires = ktime_add_ns(timer->expires, incr * orun);
657 if (timer->expires.tv64 > now.tv64)
658 return orun;
660 * This (and the ktime_add() below) is the
661 * correction for exact:
663 orun++;
665 timer->expires = ktime_add(timer->expires, interval);
667 * Make sure, that the result did not wrap with a very large
668 * interval.
670 if (timer->expires.tv64 < 0)
671 timer->expires = ktime_set(KTIME_SEC_MAX, 0);
673 return orun;
675 EXPORT_SYMBOL_GPL(hrtimer_forward);
678 * enqueue_hrtimer - internal function to (re)start a timer
680 * The timer is inserted in expiry order. Insertion into the
681 * red black tree is O(log(n)). Must hold the base lock.
683 static void enqueue_hrtimer(struct hrtimer *timer,
684 struct hrtimer_clock_base *base, int reprogram)
686 struct rb_node **link = &base->active.rb_node;
687 struct rb_node *parent = NULL;
688 struct hrtimer *entry;
689 int leftmost = 1;
692 * Find the right place in the rbtree:
694 while (*link) {
695 parent = *link;
696 entry = rb_entry(parent, struct hrtimer, node);
698 * We dont care about collisions. Nodes with
699 * the same expiry time stay together.
701 if (timer->expires.tv64 < entry->expires.tv64) {
702 link = &(*link)->rb_left;
703 } else {
704 link = &(*link)->rb_right;
705 leftmost = 0;
710 * Insert the timer to the rbtree and check whether it
711 * replaces the first pending timer
713 if (leftmost) {
715 * Reprogram the clock event device. When the timer is already
716 * expired hrtimer_enqueue_reprogram has either called the
717 * callback or added it to the pending list and raised the
718 * softirq.
720 * This is a NOP for !HIGHRES
722 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
723 return;
725 base->first = &timer->node;
728 rb_link_node(&timer->node, parent, link);
729 rb_insert_color(&timer->node, &base->active);
731 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
732 * state of a possibly running callback.
734 timer->state |= HRTIMER_STATE_ENQUEUED;
738 * __remove_hrtimer - internal function to remove a timer
740 * Caller must hold the base lock.
742 * High resolution timer mode reprograms the clock event device when the
743 * timer is the one which expires next. The caller can disable this by setting
744 * reprogram to zero. This is useful, when the context does a reprogramming
745 * anyway (e.g. timer interrupt)
747 static void __remove_hrtimer(struct hrtimer *timer,
748 struct hrtimer_clock_base *base,
749 unsigned long newstate, int reprogram)
751 /* High res. callback list. NOP for !HIGHRES */
752 if (hrtimer_cb_pending(timer))
753 hrtimer_remove_cb_pending(timer);
754 else {
756 * Remove the timer from the rbtree and replace the
757 * first entry pointer if necessary.
759 if (base->first == &timer->node) {
760 base->first = rb_next(&timer->node);
761 /* Reprogram the clock event device. if enabled */
762 if (reprogram && hrtimer_hres_active())
763 hrtimer_force_reprogram(base->cpu_base);
765 rb_erase(&timer->node, &base->active);
767 timer->state = newstate;
771 * remove hrtimer, called with base lock held
773 static inline int
774 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
776 if (hrtimer_is_queued(timer)) {
777 int reprogram;
780 * Remove the timer and force reprogramming when high
781 * resolution mode is active and the timer is on the current
782 * CPU. If we remove a timer on another CPU, reprogramming is
783 * skipped. The interrupt event on this CPU is fired and
784 * reprogramming happens in the interrupt handler. This is a
785 * rare case and less expensive than a smp call.
787 timer_stats_hrtimer_clear_start_info(timer);
788 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
789 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
790 reprogram);
791 return 1;
793 return 0;
797 * hrtimer_start - (re)start an relative timer on the current CPU
798 * @timer: the timer to be added
799 * @tim: expiry time
800 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
802 * Returns:
803 * 0 on success
804 * 1 when the timer was active
807 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
809 struct hrtimer_clock_base *base, *new_base;
810 unsigned long flags;
811 int ret;
813 base = lock_hrtimer_base(timer, &flags);
815 /* Remove an active timer from the queue: */
816 ret = remove_hrtimer(timer, base);
818 /* Switch the timer base, if necessary: */
819 new_base = switch_hrtimer_base(timer, base);
821 if (mode == HRTIMER_MODE_REL) {
822 tim = ktime_add(tim, new_base->get_time());
824 * CONFIG_TIME_LOW_RES is a temporary way for architectures
825 * to signal that they simply return xtime in
826 * do_gettimeoffset(). In this case we want to round up by
827 * resolution when starting a relative timer, to avoid short
828 * timeouts. This will go away with the GTOD framework.
830 #ifdef CONFIG_TIME_LOW_RES
831 tim = ktime_add(tim, base->resolution);
832 #endif
834 timer->expires = tim;
836 timer_stats_hrtimer_set_start_info(timer);
839 * Only allow reprogramming if the new base is on this CPU.
840 * (it might still be on another CPU if the timer was pending)
842 enqueue_hrtimer(timer, new_base,
843 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
845 unlock_hrtimer_base(timer, &flags);
847 return ret;
849 EXPORT_SYMBOL_GPL(hrtimer_start);
852 * hrtimer_try_to_cancel - try to deactivate a timer
853 * @timer: hrtimer to stop
855 * Returns:
856 * 0 when the timer was not active
857 * 1 when the timer was active
858 * -1 when the timer is currently excuting the callback function and
859 * cannot be stopped
861 int hrtimer_try_to_cancel(struct hrtimer *timer)
863 struct hrtimer_clock_base *base;
864 unsigned long flags;
865 int ret = -1;
867 base = lock_hrtimer_base(timer, &flags);
869 if (!hrtimer_callback_running(timer))
870 ret = remove_hrtimer(timer, base);
872 unlock_hrtimer_base(timer, &flags);
874 return ret;
877 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
880 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
881 * @timer: the timer to be cancelled
883 * Returns:
884 * 0 when the timer was not active
885 * 1 when the timer was active
887 int hrtimer_cancel(struct hrtimer *timer)
889 for (;;) {
890 int ret = hrtimer_try_to_cancel(timer);
892 if (ret >= 0)
893 return ret;
894 cpu_relax();
897 EXPORT_SYMBOL_GPL(hrtimer_cancel);
900 * hrtimer_get_remaining - get remaining time for the timer
901 * @timer: the timer to read
903 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
905 struct hrtimer_clock_base *base;
906 unsigned long flags;
907 ktime_t rem;
909 base = lock_hrtimer_base(timer, &flags);
910 rem = ktime_sub(timer->expires, base->get_time());
911 unlock_hrtimer_base(timer, &flags);
913 return rem;
915 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
917 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
919 * hrtimer_get_next_event - get the time until next expiry event
921 * Returns the delta to the next expiry event or KTIME_MAX if no timer
922 * is pending.
924 ktime_t hrtimer_get_next_event(void)
926 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
927 struct hrtimer_clock_base *base = cpu_base->clock_base;
928 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
929 unsigned long flags;
930 int i;
932 spin_lock_irqsave(&cpu_base->lock, flags);
934 if (!hrtimer_hres_active()) {
935 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
936 struct hrtimer *timer;
938 if (!base->first)
939 continue;
941 timer = rb_entry(base->first, struct hrtimer, node);
942 delta.tv64 = timer->expires.tv64;
943 delta = ktime_sub(delta, base->get_time());
944 if (delta.tv64 < mindelta.tv64)
945 mindelta.tv64 = delta.tv64;
949 spin_unlock_irqrestore(&cpu_base->lock, flags);
951 if (mindelta.tv64 < 0)
952 mindelta.tv64 = 0;
953 return mindelta;
955 #endif
958 * hrtimer_init - initialize a timer to the given clock
959 * @timer: the timer to be initialized
960 * @clock_id: the clock to be used
961 * @mode: timer mode abs/rel
963 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
964 enum hrtimer_mode mode)
966 struct hrtimer_cpu_base *cpu_base;
968 memset(timer, 0, sizeof(struct hrtimer));
970 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
972 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
973 clock_id = CLOCK_MONOTONIC;
975 timer->base = &cpu_base->clock_base[clock_id];
976 hrtimer_init_timer_hres(timer);
978 #ifdef CONFIG_TIMER_STATS
979 timer->start_site = NULL;
980 timer->start_pid = -1;
981 memset(timer->start_comm, 0, TASK_COMM_LEN);
982 #endif
984 EXPORT_SYMBOL_GPL(hrtimer_init);
987 * hrtimer_get_res - get the timer resolution for a clock
988 * @which_clock: which clock to query
989 * @tp: pointer to timespec variable to store the resolution
991 * Store the resolution of the clock selected by @which_clock in the
992 * variable pointed to by @tp.
994 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
996 struct hrtimer_cpu_base *cpu_base;
998 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
999 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1001 return 0;
1003 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1005 #ifdef CONFIG_HIGH_RES_TIMERS
1008 * High resolution timer interrupt
1009 * Called with interrupts disabled
1011 void hrtimer_interrupt(struct clock_event_device *dev)
1013 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1014 struct hrtimer_clock_base *base;
1015 ktime_t expires_next, now;
1016 int i, raise = 0;
1018 BUG_ON(!cpu_base->hres_active);
1019 cpu_base->nr_events++;
1020 dev->next_event.tv64 = KTIME_MAX;
1022 retry:
1023 now = ktime_get();
1025 expires_next.tv64 = KTIME_MAX;
1027 base = cpu_base->clock_base;
1029 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1030 ktime_t basenow;
1031 struct rb_node *node;
1033 spin_lock(&cpu_base->lock);
1035 basenow = ktime_add(now, base->offset);
1037 while ((node = base->first)) {
1038 struct hrtimer *timer;
1040 timer = rb_entry(node, struct hrtimer, node);
1042 if (basenow.tv64 < timer->expires.tv64) {
1043 ktime_t expires;
1045 expires = ktime_sub(timer->expires,
1046 base->offset);
1047 if (expires.tv64 < expires_next.tv64)
1048 expires_next = expires;
1049 break;
1052 /* Move softirq callbacks to the pending list */
1053 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1054 __remove_hrtimer(timer, base,
1055 HRTIMER_STATE_PENDING, 0);
1056 list_add_tail(&timer->cb_entry,
1057 &base->cpu_base->cb_pending);
1058 raise = 1;
1059 continue;
1062 __remove_hrtimer(timer, base,
1063 HRTIMER_STATE_CALLBACK, 0);
1064 timer_stats_account_hrtimer(timer);
1067 * Note: We clear the CALLBACK bit after
1068 * enqueue_hrtimer to avoid reprogramming of
1069 * the event hardware. This happens at the end
1070 * of this function anyway.
1072 if (timer->function(timer) != HRTIMER_NORESTART) {
1073 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1074 enqueue_hrtimer(timer, base, 0);
1076 timer->state &= ~HRTIMER_STATE_CALLBACK;
1078 spin_unlock(&cpu_base->lock);
1079 base++;
1082 cpu_base->expires_next = expires_next;
1084 /* Reprogramming necessary ? */
1085 if (expires_next.tv64 != KTIME_MAX) {
1086 if (tick_program_event(expires_next, 0))
1087 goto retry;
1090 /* Raise softirq ? */
1091 if (raise)
1092 raise_softirq(HRTIMER_SOFTIRQ);
1095 static void run_hrtimer_softirq(struct softirq_action *h)
1097 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1099 spin_lock_irq(&cpu_base->lock);
1101 while (!list_empty(&cpu_base->cb_pending)) {
1102 enum hrtimer_restart (*fn)(struct hrtimer *);
1103 struct hrtimer *timer;
1104 int restart;
1106 timer = list_entry(cpu_base->cb_pending.next,
1107 struct hrtimer, cb_entry);
1109 timer_stats_account_hrtimer(timer);
1111 fn = timer->function;
1112 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1113 spin_unlock_irq(&cpu_base->lock);
1115 restart = fn(timer);
1117 spin_lock_irq(&cpu_base->lock);
1119 timer->state &= ~HRTIMER_STATE_CALLBACK;
1120 if (restart == HRTIMER_RESTART) {
1121 BUG_ON(hrtimer_active(timer));
1123 * Enqueue the timer, allow reprogramming of the event
1124 * device
1126 enqueue_hrtimer(timer, timer->base, 1);
1127 } else if (hrtimer_active(timer)) {
1129 * If the timer was rearmed on another CPU, reprogram
1130 * the event device.
1132 if (timer->base->first == &timer->node)
1133 hrtimer_reprogram(timer, timer->base);
1136 spin_unlock_irq(&cpu_base->lock);
1139 #endif /* CONFIG_HIGH_RES_TIMERS */
1142 * Expire the per base hrtimer-queue:
1144 static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1145 int index)
1147 struct rb_node *node;
1148 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1150 if (!base->first)
1151 return;
1153 if (base->get_softirq_time)
1154 base->softirq_time = base->get_softirq_time();
1156 spin_lock_irq(&cpu_base->lock);
1158 while ((node = base->first)) {
1159 struct hrtimer *timer;
1160 enum hrtimer_restart (*fn)(struct hrtimer *);
1161 int restart;
1163 timer = rb_entry(node, struct hrtimer, node);
1164 if (base->softirq_time.tv64 <= timer->expires.tv64)
1165 break;
1167 #ifdef CONFIG_HIGH_RES_TIMERS
1168 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1169 #endif
1170 timer_stats_account_hrtimer(timer);
1172 fn = timer->function;
1173 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1174 spin_unlock_irq(&cpu_base->lock);
1176 restart = fn(timer);
1178 spin_lock_irq(&cpu_base->lock);
1180 timer->state &= ~HRTIMER_STATE_CALLBACK;
1181 if (restart != HRTIMER_NORESTART) {
1182 BUG_ON(hrtimer_active(timer));
1183 enqueue_hrtimer(timer, base, 0);
1186 spin_unlock_irq(&cpu_base->lock);
1190 * Called from timer softirq every jiffy, expire hrtimers:
1192 * For HRT its the fall back code to run the softirq in the timer
1193 * softirq context in case the hrtimer initialization failed or has
1194 * not been done yet.
1196 void hrtimer_run_queues(void)
1198 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1199 int i;
1201 if (hrtimer_hres_active())
1202 return;
1205 * This _is_ ugly: We have to check in the softirq context,
1206 * whether we can switch to highres and / or nohz mode. The
1207 * clocksource switch happens in the timer interrupt with
1208 * xtime_lock held. Notification from there only sets the
1209 * check bit in the tick_oneshot code, otherwise we might
1210 * deadlock vs. xtime_lock.
1212 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1213 if (hrtimer_switch_to_hres())
1214 return;
1216 hrtimer_get_softirq_time(cpu_base);
1218 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1219 run_hrtimer_queue(cpu_base, i);
1223 * Sleep related functions:
1225 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1227 struct hrtimer_sleeper *t =
1228 container_of(timer, struct hrtimer_sleeper, timer);
1229 struct task_struct *task = t->task;
1231 t->task = NULL;
1232 if (task)
1233 wake_up_process(task);
1235 return HRTIMER_NORESTART;
1238 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1240 sl->timer.function = hrtimer_wakeup;
1241 sl->task = task;
1242 #ifdef CONFIG_HIGH_RES_TIMERS
1243 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1244 #endif
1247 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1249 hrtimer_init_sleeper(t, current);
1251 do {
1252 set_current_state(TASK_INTERRUPTIBLE);
1253 hrtimer_start(&t->timer, t->timer.expires, mode);
1255 if (likely(t->task))
1256 schedule();
1258 hrtimer_cancel(&t->timer);
1259 mode = HRTIMER_MODE_ABS;
1261 } while (t->task && !signal_pending(current));
1263 return t->task == NULL;
1266 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1268 struct hrtimer_sleeper t;
1269 struct timespec __user *rmtp;
1270 struct timespec tu;
1271 ktime_t time;
1273 restart->fn = do_no_restart_syscall;
1275 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1276 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1278 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1279 return 0;
1281 rmtp = (struct timespec __user *) restart->arg1;
1282 if (rmtp) {
1283 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1284 if (time.tv64 <= 0)
1285 return 0;
1286 tu = ktime_to_timespec(time);
1287 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1288 return -EFAULT;
1291 restart->fn = hrtimer_nanosleep_restart;
1293 /* The other values in restart are already filled in */
1294 return -ERESTART_RESTARTBLOCK;
1297 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1298 const enum hrtimer_mode mode, const clockid_t clockid)
1300 struct restart_block *restart;
1301 struct hrtimer_sleeper t;
1302 struct timespec tu;
1303 ktime_t rem;
1305 hrtimer_init(&t.timer, clockid, mode);
1306 t.timer.expires = timespec_to_ktime(*rqtp);
1307 if (do_nanosleep(&t, mode))
1308 return 0;
1310 /* Absolute timers do not update the rmtp value and restart: */
1311 if (mode == HRTIMER_MODE_ABS)
1312 return -ERESTARTNOHAND;
1314 if (rmtp) {
1315 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1316 if (rem.tv64 <= 0)
1317 return 0;
1318 tu = ktime_to_timespec(rem);
1319 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1320 return -EFAULT;
1323 restart = &current_thread_info()->restart_block;
1324 restart->fn = hrtimer_nanosleep_restart;
1325 restart->arg0 = (unsigned long) t.timer.base->index;
1326 restart->arg1 = (unsigned long) rmtp;
1327 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1328 restart->arg3 = t.timer.expires.tv64 >> 32;
1330 return -ERESTART_RESTARTBLOCK;
1333 asmlinkage long
1334 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1336 struct timespec tu;
1338 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1339 return -EFAULT;
1341 if (!timespec_valid(&tu))
1342 return -EINVAL;
1344 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1348 * Functions related to boot-time initialization:
1350 static void __devinit init_hrtimers_cpu(int cpu)
1352 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1353 int i;
1355 spin_lock_init(&cpu_base->lock);
1356 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1358 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1359 cpu_base->clock_base[i].cpu_base = cpu_base;
1361 hrtimer_init_hres(cpu_base);
1364 #ifdef CONFIG_HOTPLUG_CPU
1366 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1367 struct hrtimer_clock_base *new_base)
1369 struct hrtimer *timer;
1370 struct rb_node *node;
1372 while ((node = rb_first(&old_base->active))) {
1373 timer = rb_entry(node, struct hrtimer, node);
1374 BUG_ON(hrtimer_callback_running(timer));
1375 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1376 timer->base = new_base;
1378 * Enqueue the timer. Allow reprogramming of the event device
1380 enqueue_hrtimer(timer, new_base, 1);
1384 static void migrate_hrtimers(int cpu)
1386 struct hrtimer_cpu_base *old_base, *new_base;
1387 int i;
1389 BUG_ON(cpu_online(cpu));
1390 old_base = &per_cpu(hrtimer_bases, cpu);
1391 new_base = &get_cpu_var(hrtimer_bases);
1393 tick_cancel_sched_timer(cpu);
1395 local_irq_disable();
1396 double_spin_lock(&new_base->lock, &old_base->lock,
1397 smp_processor_id() < cpu);
1399 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1400 migrate_hrtimer_list(&old_base->clock_base[i],
1401 &new_base->clock_base[i]);
1404 double_spin_unlock(&new_base->lock, &old_base->lock,
1405 smp_processor_id() < cpu);
1406 local_irq_enable();
1407 put_cpu_var(hrtimer_bases);
1409 #endif /* CONFIG_HOTPLUG_CPU */
1411 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1412 unsigned long action, void *hcpu)
1414 unsigned int cpu = (long)hcpu;
1416 switch (action) {
1418 case CPU_UP_PREPARE:
1419 case CPU_UP_PREPARE_FROZEN:
1420 init_hrtimers_cpu(cpu);
1421 break;
1423 #ifdef CONFIG_HOTPLUG_CPU
1424 case CPU_DEAD:
1425 case CPU_DEAD_FROZEN:
1426 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1427 migrate_hrtimers(cpu);
1428 break;
1429 #endif
1431 default:
1432 break;
1435 return NOTIFY_OK;
1438 static struct notifier_block __cpuinitdata hrtimers_nb = {
1439 .notifier_call = hrtimer_cpu_notify,
1442 void __init hrtimers_init(void)
1444 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1445 (void *)(long)smp_processor_id());
1446 register_cpu_notifier(&hrtimers_nb);
1447 #ifdef CONFIG_HIGH_RES_TIMERS
1448 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1449 #endif