2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when pdflush is doing background
41 * write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. At "normal"
42 * work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. in the
43 * "sys_write -> alloc_pages -> direct reclaim path". So, in 'ubifs_writepage()'
44 * we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_LOCK flag is not
49 * set as well. However, UBIFS disables readahead.
53 #include <linux/mount.h>
54 #include <linux/namei.h>
56 static int read_block(struct inode
*inode
, void *addr
, unsigned int block
,
57 struct ubifs_data_node
*dn
)
59 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
60 int err
, len
, out_len
;
64 data_key_init(c
, &key
, inode
->i_ino
, block
);
65 err
= ubifs_tnc_lookup(c
, &key
, dn
);
68 /* Not found, so it must be a hole */
69 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
73 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
74 ubifs_inode(inode
)->creat_sqnum
);
75 len
= le32_to_cpu(dn
->size
);
76 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
79 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
80 out_len
= UBIFS_BLOCK_SIZE
;
81 err
= ubifs_decompress(&dn
->data
, dlen
, addr
, &out_len
,
82 le16_to_cpu(dn
->compr_type
));
83 if (err
|| len
!= out_len
)
87 * Data length can be less than a full block, even for blocks that are
88 * not the last in the file (e.g., as a result of making a hole and
89 * appending data). Ensure that the remainder is zeroed out.
91 if (len
< UBIFS_BLOCK_SIZE
)
92 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
97 ubifs_err("bad data node (block %u, inode %lu)",
103 static int do_readpage(struct page
*page
)
107 unsigned int block
, beyond
;
108 struct ubifs_data_node
*dn
;
109 struct inode
*inode
= page
->mapping
->host
;
110 loff_t i_size
= i_size_read(inode
);
112 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
113 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
114 ubifs_assert(!PageChecked(page
));
115 ubifs_assert(!PagePrivate(page
));
119 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
120 beyond
= (i_size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
121 if (block
>= beyond
) {
122 /* Reading beyond inode */
123 SetPageChecked(page
);
124 memset(addr
, 0, PAGE_CACHE_SIZE
);
128 dn
= kmalloc(UBIFS_MAX_DATA_NODE_SZ
, GFP_NOFS
);
138 if (block
>= beyond
) {
139 /* Reading beyond inode */
141 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
143 ret
= read_block(inode
, addr
, block
, dn
);
148 } else if (block
+ 1 == beyond
) {
149 int dlen
= le32_to_cpu(dn
->size
);
150 int ilen
= i_size
& (UBIFS_BLOCK_SIZE
- 1);
152 if (ilen
&& ilen
< dlen
)
153 memset(addr
+ ilen
, 0, dlen
- ilen
);
156 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
159 addr
+= UBIFS_BLOCK_SIZE
;
162 if (err
== -ENOENT
) {
163 /* Not found, so it must be a hole */
164 SetPageChecked(page
);
168 ubifs_err("cannot read page %lu of inode %lu, error %d",
169 page
->index
, inode
->i_ino
, err
);
176 SetPageUptodate(page
);
177 ClearPageError(page
);
178 flush_dcache_page(page
);
184 ClearPageUptodate(page
);
186 flush_dcache_page(page
);
192 * release_new_page_budget - release budget of a new page.
193 * @c: UBIFS file-system description object
195 * This is a helper function which releases budget corresponding to the budget
196 * of one new page of data.
198 static void release_new_page_budget(struct ubifs_info
*c
)
200 struct ubifs_budget_req req
= { .recalculate
= 1, .new_page
= 1 };
202 ubifs_release_budget(c
, &req
);
206 * release_existing_page_budget - release budget of an existing page.
207 * @c: UBIFS file-system description object
209 * This is a helper function which releases budget corresponding to the budget
210 * of changing one one page of data which already exists on the flash media.
212 static void release_existing_page_budget(struct ubifs_info
*c
)
214 struct ubifs_budget_req req
= { .dd_growth
= c
->page_budget
};
216 ubifs_release_budget(c
, &req
);
219 static int write_begin_slow(struct address_space
*mapping
,
220 loff_t pos
, unsigned len
, struct page
**pagep
,
223 struct inode
*inode
= mapping
->host
;
224 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
225 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
226 struct ubifs_budget_req req
= { .new_page
= 1 };
227 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
230 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
231 inode
->i_ino
, pos
, len
, inode
->i_size
);
234 * At the slow path we have to budget before locking the page, because
235 * budgeting may force write-back, which would wait on locked pages and
236 * deadlock if we had the page locked. At this point we do not know
237 * anything about the page, so assume that this is a new page which is
238 * written to a hole. This corresponds to largest budget. Later the
239 * budget will be amended if this is not true.
242 /* We are appending data, budget for inode change */
245 err
= ubifs_budget_space(c
, &req
);
249 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
250 if (unlikely(!page
)) {
251 ubifs_release_budget(c
, &req
);
255 if (!PageUptodate(page
)) {
256 if (!(pos
& ~PAGE_CACHE_MASK
) && len
== PAGE_CACHE_SIZE
)
257 SetPageChecked(page
);
259 err
= do_readpage(page
);
262 page_cache_release(page
);
267 SetPageUptodate(page
);
268 ClearPageError(page
);
271 if (PagePrivate(page
))
273 * The page is dirty, which means it was budgeted twice:
274 * o first time the budget was allocated by the task which
275 * made the page dirty and set the PG_private flag;
276 * o and then we budgeted for it for the second time at the
277 * very beginning of this function.
279 * So what we have to do is to release the page budget we
282 release_new_page_budget(c
);
283 else if (!PageChecked(page
))
285 * We are changing a page which already exists on the media.
286 * This means that changing the page does not make the amount
287 * of indexing information larger, and this part of the budget
288 * which we have already acquired may be released.
290 ubifs_convert_page_budget(c
);
293 struct ubifs_inode
*ui
= ubifs_inode(inode
);
296 * 'ubifs_write_end()' is optimized from the fast-path part of
297 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
298 * if data is appended.
300 mutex_lock(&ui
->ui_mutex
);
303 * The inode is dirty already, so we may free the
304 * budget we allocated.
306 ubifs_release_dirty_inode_budget(c
, ui
);
314 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
315 * @c: UBIFS file-system description object
316 * @page: page to allocate budget for
317 * @ui: UBIFS inode object the page belongs to
318 * @appending: non-zero if the page is appended
320 * This is a helper function for 'ubifs_write_begin()' which allocates budget
321 * for the operation. The budget is allocated differently depending on whether
322 * this is appending, whether the page is dirty or not, and so on. This
323 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
324 * in case of success and %-ENOSPC in case of failure.
326 static int allocate_budget(struct ubifs_info
*c
, struct page
*page
,
327 struct ubifs_inode
*ui
, int appending
)
329 struct ubifs_budget_req req
= { .fast
= 1 };
331 if (PagePrivate(page
)) {
334 * The page is dirty and we are not appending, which
335 * means no budget is needed at all.
339 mutex_lock(&ui
->ui_mutex
);
342 * The page is dirty and we are appending, so the inode
343 * has to be marked as dirty. However, it is already
344 * dirty, so we do not need any budget. We may return,
345 * but @ui->ui_mutex hast to be left locked because we
346 * should prevent write-back from flushing the inode
347 * and freeing the budget. The lock will be released in
348 * 'ubifs_write_end()'.
353 * The page is dirty, we are appending, the inode is clean, so
354 * we need to budget the inode change.
358 if (PageChecked(page
))
360 * The page corresponds to a hole and does not
361 * exist on the media. So changing it makes
362 * make the amount of indexing information
363 * larger, and we have to budget for a new
369 * Not a hole, the change will not add any new
370 * indexing information, budget for page
373 req
.dirtied_page
= 1;
376 mutex_lock(&ui
->ui_mutex
);
379 * The inode is clean but we will have to mark
380 * it as dirty because we are appending. This
387 return ubifs_budget_space(c
, &req
);
391 * This function is called when a page of data is going to be written. Since
392 * the page of data will not necessarily go to the flash straight away, UBIFS
393 * has to reserve space on the media for it, which is done by means of
396 * This is the hot-path of the file-system and we are trying to optimize it as
397 * much as possible. For this reasons it is split on 2 parts - slow and fast.
399 * There many budgeting cases:
400 * o a new page is appended - we have to budget for a new page and for
401 * changing the inode; however, if the inode is already dirty, there is
402 * no need to budget for it;
403 * o an existing clean page is changed - we have budget for it; if the page
404 * does not exist on the media (a hole), we have to budget for a new
405 * page; otherwise, we may budget for changing an existing page; the
406 * difference between these cases is that changing an existing page does
407 * not introduce anything new to the FS indexing information, so it does
408 * not grow, and smaller budget is acquired in this case;
409 * o an existing dirty page is changed - no need to budget at all, because
410 * the page budget has been acquired by earlier, when the page has been
413 * UBIFS budgeting sub-system may force write-back if it thinks there is no
414 * space to reserve. This imposes some locking restrictions and makes it
415 * impossible to take into account the above cases, and makes it impossible to
416 * optimize budgeting.
418 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
419 * there is a plenty of flash space and the budget will be acquired quickly,
420 * without forcing write-back. The slow path does not make this assumption.
422 static int ubifs_write_begin(struct file
*file
, struct address_space
*mapping
,
423 loff_t pos
, unsigned len
, unsigned flags
,
424 struct page
**pagep
, void **fsdata
)
426 struct inode
*inode
= mapping
->host
;
427 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
428 struct ubifs_inode
*ui
= ubifs_inode(inode
);
429 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
430 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
431 int skipped_read
= 0;
434 ubifs_assert(ubifs_inode(inode
)->ui_size
== inode
->i_size
);
436 if (unlikely(c
->ro_media
))
439 /* Try out the fast-path part first */
440 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
444 if (!PageUptodate(page
)) {
445 /* The page is not loaded from the flash */
446 if (!(pos
& ~PAGE_CACHE_MASK
) && len
== PAGE_CACHE_SIZE
) {
448 * We change whole page so no need to load it. But we
449 * have to set the @PG_checked flag to make the further
450 * code know that the page is new. This might be not
451 * true, but it is better to budget more than to read
452 * the page from the media.
454 SetPageChecked(page
);
457 err
= do_readpage(page
);
460 page_cache_release(page
);
465 SetPageUptodate(page
);
466 ClearPageError(page
);
469 err
= allocate_budget(c
, page
, ui
, appending
);
471 ubifs_assert(err
== -ENOSPC
);
473 * If we skipped reading the page because we were going to
474 * write all of it, then it is not up to date.
477 ClearPageChecked(page
);
478 ClearPageUptodate(page
);
481 * Budgeting failed which means it would have to force
482 * write-back but didn't, because we set the @fast flag in the
483 * request. Write-back cannot be done now, while we have the
484 * page locked, because it would deadlock. Unlock and free
485 * everything and fall-back to slow-path.
488 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
489 mutex_unlock(&ui
->ui_mutex
);
492 page_cache_release(page
);
494 return write_begin_slow(mapping
, pos
, len
, pagep
, flags
);
498 * Whee, we acquired budgeting quickly - without involving
499 * garbage-collection, committing or forcing write-back. We return
500 * with @ui->ui_mutex locked if we are appending pages, and unlocked
501 * otherwise. This is an optimization (slightly hacky though).
509 * cancel_budget - cancel budget.
510 * @c: UBIFS file-system description object
511 * @page: page to cancel budget for
512 * @ui: UBIFS inode object the page belongs to
513 * @appending: non-zero if the page is appended
515 * This is a helper function for a page write operation. It unlocks the
516 * @ui->ui_mutex in case of appending.
518 static void cancel_budget(struct ubifs_info
*c
, struct page
*page
,
519 struct ubifs_inode
*ui
, int appending
)
523 ubifs_release_dirty_inode_budget(c
, ui
);
524 mutex_unlock(&ui
->ui_mutex
);
526 if (!PagePrivate(page
)) {
527 if (PageChecked(page
))
528 release_new_page_budget(c
);
530 release_existing_page_budget(c
);
534 static int ubifs_write_end(struct file
*file
, struct address_space
*mapping
,
535 loff_t pos
, unsigned len
, unsigned copied
,
536 struct page
*page
, void *fsdata
)
538 struct inode
*inode
= mapping
->host
;
539 struct ubifs_inode
*ui
= ubifs_inode(inode
);
540 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
541 loff_t end_pos
= pos
+ len
;
542 int appending
= !!(end_pos
> inode
->i_size
);
544 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
545 inode
->i_ino
, pos
, page
->index
, len
, copied
, inode
->i_size
);
547 if (unlikely(copied
< len
&& len
== PAGE_CACHE_SIZE
)) {
549 * VFS copied less data to the page that it intended and
550 * declared in its '->write_begin()' call via the @len
551 * argument. If the page was not up-to-date, and @len was
552 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
553 * not load it from the media (for optimization reasons). This
554 * means that part of the page contains garbage. So read the
557 dbg_gen("copied %d instead of %d, read page and repeat",
559 cancel_budget(c
, page
, ui
, appending
);
562 * Return 0 to force VFS to repeat the whole operation, or the
563 * error code if 'do_readpage()' fails.
565 copied
= do_readpage(page
);
569 if (!PagePrivate(page
)) {
570 SetPagePrivate(page
);
571 atomic_long_inc(&c
->dirty_pg_cnt
);
572 __set_page_dirty_nobuffers(page
);
576 i_size_write(inode
, end_pos
);
577 ui
->ui_size
= end_pos
;
579 * Note, we do not set @I_DIRTY_PAGES (which means that the
580 * inode has dirty pages), this has been done in
581 * '__set_page_dirty_nobuffers()'.
583 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
584 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
585 mutex_unlock(&ui
->ui_mutex
);
590 page_cache_release(page
);
595 * populate_page - copy data nodes into a page for bulk-read.
596 * @c: UBIFS file-system description object
598 * @bu: bulk-read information
599 * @n: next zbranch slot
601 * This function returns %0 on success and a negative error code on failure.
603 static int populate_page(struct ubifs_info
*c
, struct page
*page
,
604 struct bu_info
*bu
, int *n
)
606 int i
= 0, nn
= *n
, offs
= bu
->zbranch
[0].offs
, hole
= 0, read
= 0;
607 struct inode
*inode
= page
->mapping
->host
;
608 loff_t i_size
= i_size_read(inode
);
609 unsigned int page_block
;
613 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
614 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
616 addr
= zaddr
= kmap(page
);
618 end_index
= (i_size
- 1) >> PAGE_CACHE_SHIFT
;
619 if (!i_size
|| page
->index
> end_index
) {
621 memset(addr
, 0, PAGE_CACHE_SIZE
);
625 page_block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
627 int err
, len
, out_len
, dlen
;
631 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
632 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) == page_block
) {
633 struct ubifs_data_node
*dn
;
635 dn
= bu
->buf
+ (bu
->zbranch
[nn
].offs
- offs
);
637 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
638 ubifs_inode(inode
)->creat_sqnum
);
640 len
= le32_to_cpu(dn
->size
);
641 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
644 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
645 out_len
= UBIFS_BLOCK_SIZE
;
646 err
= ubifs_decompress(&dn
->data
, dlen
, addr
, &out_len
,
647 le16_to_cpu(dn
->compr_type
));
648 if (err
|| len
!= out_len
)
651 if (len
< UBIFS_BLOCK_SIZE
)
652 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
655 read
= (i
<< UBIFS_BLOCK_SHIFT
) + len
;
656 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) < page_block
) {
661 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
663 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
665 addr
+= UBIFS_BLOCK_SIZE
;
669 if (end_index
== page
->index
) {
670 int len
= i_size
& (PAGE_CACHE_SIZE
- 1);
672 if (len
&& len
< read
)
673 memset(zaddr
+ len
, 0, read
- len
);
678 SetPageChecked(page
);
682 SetPageUptodate(page
);
683 ClearPageError(page
);
684 flush_dcache_page(page
);
690 ClearPageUptodate(page
);
692 flush_dcache_page(page
);
694 ubifs_err("bad data node (block %u, inode %lu)",
695 page_block
, inode
->i_ino
);
700 * ubifs_do_bulk_read - do bulk-read.
701 * @c: UBIFS file-system description object
702 * @bu: bulk-read information
703 * @page1: first page to read
705 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
707 static int ubifs_do_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
,
710 pgoff_t offset
= page1
->index
, end_index
;
711 struct address_space
*mapping
= page1
->mapping
;
712 struct inode
*inode
= mapping
->host
;
713 struct ubifs_inode
*ui
= ubifs_inode(inode
);
714 int err
, page_idx
, page_cnt
, ret
= 0, n
= 0;
715 int allocate
= bu
->buf
? 0 : 1;
718 err
= ubifs_tnc_get_bu_keys(c
, bu
);
723 /* Turn off bulk-read at the end of the file */
724 ui
->read_in_a_row
= 1;
728 page_cnt
= bu
->blk_cnt
>> UBIFS_BLOCKS_PER_PAGE_SHIFT
;
731 * This happens when there are multiple blocks per page and the
732 * blocks for the first page we are looking for, are not
733 * together. If all the pages were like this, bulk-read would
734 * reduce performance, so we turn it off for a while.
742 * Allocate bulk-read buffer depending on how many data
743 * nodes we are going to read.
745 bu
->buf_len
= bu
->zbranch
[bu
->cnt
- 1].offs
+
746 bu
->zbranch
[bu
->cnt
- 1].len
-
748 ubifs_assert(bu
->buf_len
> 0);
749 ubifs_assert(bu
->buf_len
<= c
->leb_size
);
750 bu
->buf
= kmalloc(bu
->buf_len
, GFP_NOFS
| __GFP_NOWARN
);
755 err
= ubifs_tnc_bulk_read(c
, bu
);
760 err
= populate_page(c
, page1
, bu
, &n
);
767 isize
= i_size_read(inode
);
770 end_index
= ((isize
- 1) >> PAGE_CACHE_SHIFT
);
772 for (page_idx
= 1; page_idx
< page_cnt
; page_idx
++) {
773 pgoff_t page_offset
= offset
+ page_idx
;
776 if (page_offset
> end_index
)
778 page
= find_or_create_page(mapping
, page_offset
,
779 GFP_NOFS
| __GFP_COLD
);
782 if (!PageUptodate(page
))
783 err
= populate_page(c
, page
, bu
, &n
);
785 page_cache_release(page
);
790 ui
->last_page_read
= offset
+ page_idx
- 1;
798 ubifs_warn("ignoring error %d and skipping bulk-read", err
);
802 ui
->read_in_a_row
= ui
->bulk_read
= 0;
807 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
808 * @page: page from which to start bulk-read.
810 * Some flash media are capable of reading sequentially at faster rates. UBIFS
811 * bulk-read facility is designed to take advantage of that, by reading in one
812 * go consecutive data nodes that are also located consecutively in the same
813 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
815 static int ubifs_bulk_read(struct page
*page
)
817 struct inode
*inode
= page
->mapping
->host
;
818 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
819 struct ubifs_inode
*ui
= ubifs_inode(inode
);
820 pgoff_t index
= page
->index
, last_page_read
= ui
->last_page_read
;
822 int err
= 0, allocated
= 0;
824 ui
->last_page_read
= index
;
829 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
830 * so don't bother if we cannot lock the mutex.
832 if (!mutex_trylock(&ui
->ui_mutex
))
835 if (index
!= last_page_read
+ 1) {
836 /* Turn off bulk-read if we stop reading sequentially */
837 ui
->read_in_a_row
= 1;
843 if (!ui
->bulk_read
) {
844 ui
->read_in_a_row
+= 1;
845 if (ui
->read_in_a_row
< 3)
847 /* Three reads in a row, so switch on bulk-read */
852 * If possible, try to use pre-allocated bulk-read information, which
853 * is protected by @c->bu_mutex.
855 if (mutex_trylock(&c
->bu_mutex
))
858 bu
= kmalloc(sizeof(struct bu_info
), GFP_NOFS
| __GFP_NOWARN
);
866 bu
->buf_len
= c
->max_bu_buf_len
;
867 data_key_init(c
, &bu
->key
, inode
->i_ino
,
868 page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
);
869 err
= ubifs_do_bulk_read(c
, bu
, page
);
872 mutex_unlock(&c
->bu_mutex
);
877 mutex_unlock(&ui
->ui_mutex
);
881 static int ubifs_readpage(struct file
*file
, struct page
*page
)
883 if (ubifs_bulk_read(page
))
890 static int do_writepage(struct page
*page
, int len
)
892 int err
= 0, i
, blen
;
896 struct inode
*inode
= page
->mapping
->host
;
897 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
900 spin_lock(&ui
->ui_lock
);
901 ubifs_assert(page
->index
<= ui
->synced_i_size
<< PAGE_CACHE_SIZE
);
902 spin_unlock(&ui
->ui_lock
);
905 /* Update radix tree tags */
906 set_page_writeback(page
);
909 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
912 blen
= min_t(int, len
, UBIFS_BLOCK_SIZE
);
913 data_key_init(c
, &key
, inode
->i_ino
, block
);
914 err
= ubifs_jnl_write_data(c
, inode
, &key
, addr
, blen
);
917 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
925 ubifs_err("cannot write page %lu of inode %lu, error %d",
926 page
->index
, inode
->i_ino
, err
);
927 ubifs_ro_mode(c
, err
);
930 ubifs_assert(PagePrivate(page
));
931 if (PageChecked(page
))
932 release_new_page_budget(c
);
934 release_existing_page_budget(c
);
936 atomic_long_dec(&c
->dirty_pg_cnt
);
937 ClearPagePrivate(page
);
938 ClearPageChecked(page
);
942 end_page_writeback(page
);
947 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
948 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
949 * situation when a we have an inode with size 0, then a megabyte of data is
950 * appended to the inode, then write-back starts and flushes some amount of the
951 * dirty pages, the journal becomes full, commit happens and finishes, and then
952 * an unclean reboot happens. When the file system is mounted next time, the
953 * inode size would still be 0, but there would be many pages which are beyond
954 * the inode size, they would be indexed and consume flash space. Because the
955 * journal has been committed, the replay would not be able to detect this
956 * situation and correct the inode size. This means UBIFS would have to scan
957 * whole index and correct all inode sizes, which is long an unacceptable.
959 * To prevent situations like this, UBIFS writes pages back only if they are
960 * within the last synchronized inode size, i.e. the size which has been
961 * written to the flash media last time. Otherwise, UBIFS forces inode
962 * write-back, thus making sure the on-flash inode contains current inode size,
963 * and then keeps writing pages back.
965 * Some locking issues explanation. 'ubifs_writepage()' first is called with
966 * the page locked, and it locks @ui_mutex. However, write-back does take inode
967 * @i_mutex, which means other VFS operations may be run on this inode at the
968 * same time. And the problematic one is truncation to smaller size, from where
969 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
970 * drops the truncated pages. And while dropping the pages, it takes the page
971 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
972 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
973 * means that @inode->i_size is changed while @ui_mutex is unlocked.
975 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
976 * inode size. How do we do this if @inode->i_size may became smaller while we
977 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
978 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
979 * internally and updates it under @ui_mutex.
981 * Q: why we do not worry that if we race with truncation, we may end up with a
982 * situation when the inode is truncated while we are in the middle of
983 * 'do_writepage()', so we do write beyond inode size?
984 * A: If we are in the middle of 'do_writepage()', truncation would be locked
985 * on the page lock and it would not write the truncated inode node to the
986 * journal before we have finished.
988 static int ubifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
990 struct inode
*inode
= page
->mapping
->host
;
991 struct ubifs_inode
*ui
= ubifs_inode(inode
);
992 loff_t i_size
= i_size_read(inode
), synced_i_size
;
993 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
994 int err
, len
= i_size
& (PAGE_CACHE_SIZE
- 1);
997 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
998 inode
->i_ino
, page
->index
, page
->flags
);
999 ubifs_assert(PagePrivate(page
));
1001 /* Is the page fully outside @i_size? (truncate in progress) */
1002 if (page
->index
> end_index
|| (page
->index
== end_index
&& !len
)) {
1007 spin_lock(&ui
->ui_lock
);
1008 synced_i_size
= ui
->synced_i_size
;
1009 spin_unlock(&ui
->ui_lock
);
1011 /* Is the page fully inside @i_size? */
1012 if (page
->index
< end_index
) {
1013 if (page
->index
>= synced_i_size
>> PAGE_CACHE_SHIFT
) {
1014 err
= inode
->i_sb
->s_op
->write_inode(inode
, 1);
1018 * The inode has been written, but the write-buffer has
1019 * not been synchronized, so in case of an unclean
1020 * reboot we may end up with some pages beyond inode
1021 * size, but they would be in the journal (because
1022 * commit flushes write buffers) and recovery would deal
1026 return do_writepage(page
, PAGE_CACHE_SIZE
);
1030 * The page straddles @i_size. It must be zeroed out on each and every
1031 * writepage invocation because it may be mmapped. "A file is mapped
1032 * in multiples of the page size. For a file that is not a multiple of
1033 * the page size, the remaining memory is zeroed when mapped, and
1034 * writes to that region are not written out to the file."
1036 kaddr
= kmap_atomic(page
, KM_USER0
);
1037 memset(kaddr
+ len
, 0, PAGE_CACHE_SIZE
- len
);
1038 flush_dcache_page(page
);
1039 kunmap_atomic(kaddr
, KM_USER0
);
1041 if (i_size
> synced_i_size
) {
1042 err
= inode
->i_sb
->s_op
->write_inode(inode
, 1);
1047 return do_writepage(page
, len
);
1055 * do_attr_changes - change inode attributes.
1056 * @inode: inode to change attributes for
1057 * @attr: describes attributes to change
1059 static void do_attr_changes(struct inode
*inode
, const struct iattr
*attr
)
1061 if (attr
->ia_valid
& ATTR_UID
)
1062 inode
->i_uid
= attr
->ia_uid
;
1063 if (attr
->ia_valid
& ATTR_GID
)
1064 inode
->i_gid
= attr
->ia_gid
;
1065 if (attr
->ia_valid
& ATTR_ATIME
)
1066 inode
->i_atime
= timespec_trunc(attr
->ia_atime
,
1067 inode
->i_sb
->s_time_gran
);
1068 if (attr
->ia_valid
& ATTR_MTIME
)
1069 inode
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
1070 inode
->i_sb
->s_time_gran
);
1071 if (attr
->ia_valid
& ATTR_CTIME
)
1072 inode
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
1073 inode
->i_sb
->s_time_gran
);
1074 if (attr
->ia_valid
& ATTR_MODE
) {
1075 umode_t mode
= attr
->ia_mode
;
1077 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
1079 inode
->i_mode
= mode
;
1084 * do_truncation - truncate an inode.
1085 * @c: UBIFS file-system description object
1086 * @inode: inode to truncate
1087 * @attr: inode attribute changes description
1089 * This function implements VFS '->setattr()' call when the inode is truncated
1090 * to a smaller size. Returns zero in case of success and a negative error code
1091 * in case of failure.
1093 static int do_truncation(struct ubifs_info
*c
, struct inode
*inode
,
1094 const struct iattr
*attr
)
1097 struct ubifs_budget_req req
;
1098 loff_t old_size
= inode
->i_size
, new_size
= attr
->ia_size
;
1099 int offset
= new_size
& (UBIFS_BLOCK_SIZE
- 1), budgeted
= 1;
1100 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1102 dbg_gen("ino %lu, size %lld -> %lld", inode
->i_ino
, old_size
, new_size
);
1103 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
1106 * If this is truncation to a smaller size, and we do not truncate on a
1107 * block boundary, budget for changing one data block, because the last
1108 * block will be re-written.
1110 if (new_size
& (UBIFS_BLOCK_SIZE
- 1))
1111 req
.dirtied_page
= 1;
1113 req
.dirtied_ino
= 1;
1114 /* A funny way to budget for truncation node */
1115 req
.dirtied_ino_d
= UBIFS_TRUN_NODE_SZ
;
1116 err
= ubifs_budget_space(c
, &req
);
1119 * Treat truncations to zero as deletion and always allow them,
1120 * just like we do for '->unlink()'.
1122 if (new_size
|| err
!= -ENOSPC
)
1127 err
= vmtruncate(inode
, new_size
);
1132 pgoff_t index
= new_size
>> PAGE_CACHE_SHIFT
;
1135 page
= find_lock_page(inode
->i_mapping
, index
);
1137 if (PageDirty(page
)) {
1139 * 'ubifs_jnl_truncate()' will try to truncate
1140 * the last data node, but it contains
1141 * out-of-date data because the page is dirty.
1142 * Write the page now, so that
1143 * 'ubifs_jnl_truncate()' will see an already
1144 * truncated (and up to date) data node.
1146 ubifs_assert(PagePrivate(page
));
1148 clear_page_dirty_for_io(page
);
1149 if (UBIFS_BLOCKS_PER_PAGE_SHIFT
)
1151 (PAGE_CACHE_SIZE
- 1);
1152 err
= do_writepage(page
, offset
);
1153 page_cache_release(page
);
1157 * We could now tell 'ubifs_jnl_truncate()' not
1158 * to read the last block.
1162 * We could 'kmap()' the page and pass the data
1163 * to 'ubifs_jnl_truncate()' to save it from
1164 * having to read it.
1167 page_cache_release(page
);
1172 mutex_lock(&ui
->ui_mutex
);
1173 ui
->ui_size
= inode
->i_size
;
1174 /* Truncation changes inode [mc]time */
1175 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1176 /* Other attributes may be changed at the same time as well */
1177 do_attr_changes(inode
, attr
);
1178 err
= ubifs_jnl_truncate(c
, inode
, old_size
, new_size
);
1179 mutex_unlock(&ui
->ui_mutex
);
1183 ubifs_release_budget(c
, &req
);
1185 c
->nospace
= c
->nospace_rp
= 0;
1192 * do_setattr - change inode attributes.
1193 * @c: UBIFS file-system description object
1194 * @inode: inode to change attributes for
1195 * @attr: inode attribute changes description
1197 * This function implements VFS '->setattr()' call for all cases except
1198 * truncations to smaller size. Returns zero in case of success and a negative
1199 * error code in case of failure.
1201 static int do_setattr(struct ubifs_info
*c
, struct inode
*inode
,
1202 const struct iattr
*attr
)
1205 loff_t new_size
= attr
->ia_size
;
1206 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1207 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1208 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1210 err
= ubifs_budget_space(c
, &req
);
1214 if (attr
->ia_valid
& ATTR_SIZE
) {
1215 dbg_gen("size %lld -> %lld", inode
->i_size
, new_size
);
1216 err
= vmtruncate(inode
, new_size
);
1221 mutex_lock(&ui
->ui_mutex
);
1222 if (attr
->ia_valid
& ATTR_SIZE
) {
1223 /* Truncation changes inode [mc]time */
1224 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1225 /* 'vmtruncate()' changed @i_size, update @ui_size */
1226 ui
->ui_size
= inode
->i_size
;
1229 do_attr_changes(inode
, attr
);
1231 release
= ui
->dirty
;
1232 if (attr
->ia_valid
& ATTR_SIZE
)
1234 * Inode length changed, so we have to make sure
1235 * @I_DIRTY_DATASYNC is set.
1237 __mark_inode_dirty(inode
, I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
1239 mark_inode_dirty_sync(inode
);
1240 mutex_unlock(&ui
->ui_mutex
);
1243 ubifs_release_budget(c
, &req
);
1245 err
= inode
->i_sb
->s_op
->write_inode(inode
, 1);
1249 ubifs_release_budget(c
, &req
);
1253 int ubifs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1256 struct inode
*inode
= dentry
->d_inode
;
1257 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1259 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1260 inode
->i_ino
, inode
->i_mode
, attr
->ia_valid
);
1261 err
= inode_change_ok(inode
, attr
);
1265 err
= dbg_check_synced_i_size(inode
);
1269 if ((attr
->ia_valid
& ATTR_SIZE
) && attr
->ia_size
< inode
->i_size
)
1270 /* Truncation to a smaller size */
1271 err
= do_truncation(c
, inode
, attr
);
1273 err
= do_setattr(c
, inode
, attr
);
1278 static void ubifs_invalidatepage(struct page
*page
, unsigned long offset
)
1280 struct inode
*inode
= page
->mapping
->host
;
1281 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1283 ubifs_assert(PagePrivate(page
));
1285 /* Partial page remains dirty */
1288 if (PageChecked(page
))
1289 release_new_page_budget(c
);
1291 release_existing_page_budget(c
);
1293 atomic_long_dec(&c
->dirty_pg_cnt
);
1294 ClearPagePrivate(page
);
1295 ClearPageChecked(page
);
1298 static void *ubifs_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1300 struct ubifs_inode
*ui
= ubifs_inode(dentry
->d_inode
);
1302 nd_set_link(nd
, ui
->data
);
1306 int ubifs_fsync(struct file
*file
, struct dentry
*dentry
, int datasync
)
1308 struct inode
*inode
= dentry
->d_inode
;
1309 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1312 dbg_gen("syncing inode %lu", inode
->i_ino
);
1314 if (inode
->i_sb
->s_flags
& MS_RDONLY
)
1318 * VFS has already synchronized dirty pages for this inode. Synchronize
1319 * the inode unless this is a 'datasync()' call.
1321 if (!datasync
|| (inode
->i_state
& I_DIRTY_DATASYNC
)) {
1322 err
= inode
->i_sb
->s_op
->write_inode(inode
, 1);
1328 * Nodes related to this inode may still sit in a write-buffer. Flush
1331 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1339 * mctime_update_needed - check if mtime or ctime update is needed.
1340 * @inode: the inode to do the check for
1341 * @now: current time
1343 * This helper function checks if the inode mtime/ctime should be updated or
1344 * not. If current values of the time-stamps are within the UBIFS inode time
1345 * granularity, they are not updated. This is an optimization.
1347 static inline int mctime_update_needed(const struct inode
*inode
,
1348 const struct timespec
*now
)
1350 if (!timespec_equal(&inode
->i_mtime
, now
) ||
1351 !timespec_equal(&inode
->i_ctime
, now
))
1357 * update_ctime - update mtime and ctime of an inode.
1358 * @c: UBIFS file-system description object
1359 * @inode: inode to update
1361 * This function updates mtime and ctime of the inode if it is not equivalent to
1362 * current time. Returns zero in case of success and a negative error code in
1365 static int update_mctime(struct ubifs_info
*c
, struct inode
*inode
)
1367 struct timespec now
= ubifs_current_time(inode
);
1368 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1370 if (mctime_update_needed(inode
, &now
)) {
1372 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1373 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1375 err
= ubifs_budget_space(c
, &req
);
1379 mutex_lock(&ui
->ui_mutex
);
1380 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1381 release
= ui
->dirty
;
1382 mark_inode_dirty_sync(inode
);
1383 mutex_unlock(&ui
->ui_mutex
);
1385 ubifs_release_budget(c
, &req
);
1391 static ssize_t
ubifs_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1392 unsigned long nr_segs
, loff_t pos
)
1396 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1397 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1399 err
= update_mctime(c
, inode
);
1403 ret
= generic_file_aio_write(iocb
, iov
, nr_segs
, pos
);
1407 if (ret
> 0 && (IS_SYNC(inode
) || iocb
->ki_filp
->f_flags
& O_SYNC
)) {
1408 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1416 static int ubifs_set_page_dirty(struct page
*page
)
1420 ret
= __set_page_dirty_nobuffers(page
);
1422 * An attempt to dirty a page without budgeting for it - should not
1425 ubifs_assert(ret
== 0);
1429 static int ubifs_releasepage(struct page
*page
, gfp_t unused_gfp_flags
)
1432 * An attempt to release a dirty page without budgeting for it - should
1435 if (PageWriteback(page
))
1437 ubifs_assert(PagePrivate(page
));
1439 ClearPagePrivate(page
);
1440 ClearPageChecked(page
);
1445 * mmap()d file has taken write protection fault and is being made
1446 * writable. UBIFS must ensure page is budgeted for.
1448 static int ubifs_vm_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1450 struct page
*page
= vmf
->page
;
1451 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1452 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1453 struct timespec now
= ubifs_current_time(inode
);
1454 struct ubifs_budget_req req
= { .new_page
= 1 };
1455 int err
, update_time
;
1457 dbg_gen("ino %lu, pg %lu, i_size %lld", inode
->i_ino
, page
->index
,
1458 i_size_read(inode
));
1459 ubifs_assert(!(inode
->i_sb
->s_flags
& MS_RDONLY
));
1461 if (unlikely(c
->ro_media
))
1462 return VM_FAULT_SIGBUS
; /* -EROFS */
1465 * We have not locked @page so far so we may budget for changing the
1466 * page. Note, we cannot do this after we locked the page, because
1467 * budgeting may cause write-back which would cause deadlock.
1469 * At the moment we do not know whether the page is dirty or not, so we
1470 * assume that it is not and budget for a new page. We could look at
1471 * the @PG_private flag and figure this out, but we may race with write
1472 * back and the page state may change by the time we lock it, so this
1473 * would need additional care. We do not bother with this at the
1474 * moment, although it might be good idea to do. Instead, we allocate
1475 * budget for a new page and amend it later on if the page was in fact
1478 * The budgeting-related logic of this function is similar to what we
1479 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1480 * for more comments.
1482 update_time
= mctime_update_needed(inode
, &now
);
1485 * We have to change inode time stamp which requires extra
1488 req
.dirtied_ino
= 1;
1490 err
= ubifs_budget_space(c
, &req
);
1491 if (unlikely(err
)) {
1493 ubifs_warn("out of space for mmapped file "
1494 "(inode number %lu)", inode
->i_ino
);
1495 return VM_FAULT_SIGBUS
;
1499 if (unlikely(page
->mapping
!= inode
->i_mapping
||
1500 page_offset(page
) > i_size_read(inode
))) {
1501 /* Page got truncated out from underneath us */
1506 if (PagePrivate(page
))
1507 release_new_page_budget(c
);
1509 if (!PageChecked(page
))
1510 ubifs_convert_page_budget(c
);
1511 SetPagePrivate(page
);
1512 atomic_long_inc(&c
->dirty_pg_cnt
);
1513 __set_page_dirty_nobuffers(page
);
1518 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1520 mutex_lock(&ui
->ui_mutex
);
1521 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1522 release
= ui
->dirty
;
1523 mark_inode_dirty_sync(inode
);
1524 mutex_unlock(&ui
->ui_mutex
);
1526 ubifs_release_dirty_inode_budget(c
, ui
);
1534 ubifs_release_budget(c
, &req
);
1536 err
= VM_FAULT_SIGBUS
;
1540 static const struct vm_operations_struct ubifs_file_vm_ops
= {
1541 .fault
= filemap_fault
,
1542 .page_mkwrite
= ubifs_vm_page_mkwrite
,
1545 static int ubifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1549 /* 'generic_file_mmap()' takes care of NOMMU case */
1550 err
= generic_file_mmap(file
, vma
);
1553 vma
->vm_ops
= &ubifs_file_vm_ops
;
1557 const struct address_space_operations ubifs_file_address_operations
= {
1558 .readpage
= ubifs_readpage
,
1559 .writepage
= ubifs_writepage
,
1560 .write_begin
= ubifs_write_begin
,
1561 .write_end
= ubifs_write_end
,
1562 .invalidatepage
= ubifs_invalidatepage
,
1563 .set_page_dirty
= ubifs_set_page_dirty
,
1564 .releasepage
= ubifs_releasepage
,
1567 const struct inode_operations ubifs_file_inode_operations
= {
1568 .setattr
= ubifs_setattr
,
1569 .getattr
= ubifs_getattr
,
1570 #ifdef CONFIG_UBIFS_FS_XATTR
1571 .setxattr
= ubifs_setxattr
,
1572 .getxattr
= ubifs_getxattr
,
1573 .listxattr
= ubifs_listxattr
,
1574 .removexattr
= ubifs_removexattr
,
1578 const struct inode_operations ubifs_symlink_inode_operations
= {
1579 .readlink
= generic_readlink
,
1580 .follow_link
= ubifs_follow_link
,
1581 .setattr
= ubifs_setattr
,
1582 .getattr
= ubifs_getattr
,
1585 const struct file_operations ubifs_file_operations
= {
1586 .llseek
= generic_file_llseek
,
1587 .read
= do_sync_read
,
1588 .write
= do_sync_write
,
1589 .aio_read
= generic_file_aio_read
,
1590 .aio_write
= ubifs_aio_write
,
1591 .mmap
= ubifs_file_mmap
,
1592 .fsync
= ubifs_fsync
,
1593 .unlocked_ioctl
= ubifs_ioctl
,
1594 .splice_read
= generic_file_splice_read
,
1595 .splice_write
= generic_file_splice_write
,
1596 #ifdef CONFIG_COMPAT
1597 .compat_ioctl
= ubifs_compat_ioctl
,