2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
40 #include <asm/uaccess.h>
43 EXPORT_SYMBOL(journal_start
);
44 EXPORT_SYMBOL(journal_restart
);
45 EXPORT_SYMBOL(journal_extend
);
46 EXPORT_SYMBOL(journal_stop
);
47 EXPORT_SYMBOL(journal_lock_updates
);
48 EXPORT_SYMBOL(journal_unlock_updates
);
49 EXPORT_SYMBOL(journal_get_write_access
);
50 EXPORT_SYMBOL(journal_get_create_access
);
51 EXPORT_SYMBOL(journal_get_undo_access
);
52 EXPORT_SYMBOL(journal_dirty_data
);
53 EXPORT_SYMBOL(journal_dirty_metadata
);
54 EXPORT_SYMBOL(journal_release_buffer
);
55 EXPORT_SYMBOL(journal_forget
);
57 EXPORT_SYMBOL(journal_sync_buffer
);
59 EXPORT_SYMBOL(journal_flush
);
60 EXPORT_SYMBOL(journal_revoke
);
62 EXPORT_SYMBOL(journal_init_dev
);
63 EXPORT_SYMBOL(journal_init_inode
);
64 EXPORT_SYMBOL(journal_update_format
);
65 EXPORT_SYMBOL(journal_check_used_features
);
66 EXPORT_SYMBOL(journal_check_available_features
);
67 EXPORT_SYMBOL(journal_set_features
);
68 EXPORT_SYMBOL(journal_create
);
69 EXPORT_SYMBOL(journal_load
);
70 EXPORT_SYMBOL(journal_destroy
);
71 EXPORT_SYMBOL(journal_abort
);
72 EXPORT_SYMBOL(journal_errno
);
73 EXPORT_SYMBOL(journal_ack_err
);
74 EXPORT_SYMBOL(journal_clear_err
);
75 EXPORT_SYMBOL(log_wait_commit
);
76 EXPORT_SYMBOL(log_start_commit
);
77 EXPORT_SYMBOL(journal_start_commit
);
78 EXPORT_SYMBOL(journal_force_commit_nested
);
79 EXPORT_SYMBOL(journal_wipe
);
80 EXPORT_SYMBOL(journal_blocks_per_page
);
81 EXPORT_SYMBOL(journal_invalidatepage
);
82 EXPORT_SYMBOL(journal_try_to_free_buffers
);
83 EXPORT_SYMBOL(journal_force_commit
);
85 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
86 static void __journal_abort_soft (journal_t
*journal
, int errno
);
89 * Helper function used to manage commit timeouts
92 static void commit_timeout(unsigned long __data
)
94 struct task_struct
* p
= (struct task_struct
*) __data
;
100 * kjournald: The main thread function used to manage a logging device
103 * This kernel thread is responsible for two things:
105 * 1) COMMIT: Every so often we need to commit the current state of the
106 * filesystem to disk. The journal thread is responsible for writing
107 * all of the metadata buffers to disk.
109 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
110 * of the data in that part of the log has been rewritten elsewhere on
111 * the disk. Flushing these old buffers to reclaim space in the log is
112 * known as checkpointing, and this thread is responsible for that job.
115 static int kjournald(void *arg
)
117 journal_t
*journal
= arg
;
118 transaction_t
*transaction
;
121 * Set up an interval timer which can be used to trigger a commit wakeup
122 * after the commit interval expires
124 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
125 (unsigned long)current
);
127 /* Record that the journal thread is running */
128 journal
->j_task
= current
;
129 wake_up(&journal
->j_wait_done_commit
);
131 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
132 journal
->j_commit_interval
/ HZ
);
135 * And now, wait forever for commit wakeup events.
137 spin_lock(&journal
->j_state_lock
);
140 if (journal
->j_flags
& JFS_UNMOUNT
)
143 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144 journal
->j_commit_sequence
, journal
->j_commit_request
);
146 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
147 jbd_debug(1, "OK, requests differ\n");
148 spin_unlock(&journal
->j_state_lock
);
149 del_timer_sync(&journal
->j_commit_timer
);
150 journal_commit_transaction(journal
);
151 spin_lock(&journal
->j_state_lock
);
155 wake_up(&journal
->j_wait_done_commit
);
156 if (freezing(current
)) {
158 * The simpler the better. Flushing journal isn't a
159 * good idea, because that depends on threads that may
160 * be already stopped.
162 jbd_debug(1, "Now suspending kjournald\n");
163 spin_unlock(&journal
->j_state_lock
);
165 spin_lock(&journal
->j_state_lock
);
168 * We assume on resume that commits are already there,
172 int should_sleep
= 1;
174 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
176 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
178 transaction
= journal
->j_running_transaction
;
179 if (transaction
&& time_after_eq(jiffies
,
180 transaction
->t_expires
))
182 if (journal
->j_flags
& JFS_UNMOUNT
)
185 spin_unlock(&journal
->j_state_lock
);
187 spin_lock(&journal
->j_state_lock
);
189 finish_wait(&journal
->j_wait_commit
, &wait
);
192 jbd_debug(1, "kjournald wakes\n");
195 * Were we woken up by a commit wakeup event?
197 transaction
= journal
->j_running_transaction
;
198 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
199 journal
->j_commit_request
= transaction
->t_tid
;
200 jbd_debug(1, "woke because of timeout\n");
205 spin_unlock(&journal
->j_state_lock
);
206 del_timer_sync(&journal
->j_commit_timer
);
207 journal
->j_task
= NULL
;
208 wake_up(&journal
->j_wait_done_commit
);
209 jbd_debug(1, "Journal thread exiting.\n");
213 static int journal_start_thread(journal_t
*journal
)
215 struct task_struct
*t
;
217 t
= kthread_run(kjournald
, journal
, "kjournald");
221 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
225 static void journal_kill_thread(journal_t
*journal
)
227 spin_lock(&journal
->j_state_lock
);
228 journal
->j_flags
|= JFS_UNMOUNT
;
230 while (journal
->j_task
) {
231 wake_up(&journal
->j_wait_commit
);
232 spin_unlock(&journal
->j_state_lock
);
233 wait_event(journal
->j_wait_done_commit
,
234 journal
->j_task
== NULL
);
235 spin_lock(&journal
->j_state_lock
);
237 spin_unlock(&journal
->j_state_lock
);
241 * journal_write_metadata_buffer: write a metadata buffer to the journal.
243 * Writes a metadata buffer to a given disk block. The actual IO is not
244 * performed but a new buffer_head is constructed which labels the data
245 * to be written with the correct destination disk block.
247 * Any magic-number escaping which needs to be done will cause a
248 * copy-out here. If the buffer happens to start with the
249 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
250 * magic number is only written to the log for descripter blocks. In
251 * this case, we copy the data and replace the first word with 0, and we
252 * return a result code which indicates that this buffer needs to be
253 * marked as an escaped buffer in the corresponding log descriptor
254 * block. The missing word can then be restored when the block is read
257 * If the source buffer has already been modified by a new transaction
258 * since we took the last commit snapshot, we use the frozen copy of
259 * that data for IO. If we end up using the existing buffer_head's data
260 * for the write, then we *have* to lock the buffer to prevent anyone
261 * else from using and possibly modifying it while the IO is in
264 * The function returns a pointer to the buffer_heads to be used for IO.
266 * We assume that the journal has already been locked in this function.
273 * Bit 0 set == escape performed on the data
274 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
277 int journal_write_metadata_buffer(transaction_t
*transaction
,
278 struct journal_head
*jh_in
,
279 struct journal_head
**jh_out
,
280 unsigned int blocknr
)
282 int need_copy_out
= 0;
283 int done_copy_out
= 0;
286 struct buffer_head
*new_bh
;
287 struct journal_head
*new_jh
;
288 struct page
*new_page
;
289 unsigned int new_offset
;
290 struct buffer_head
*bh_in
= jh2bh(jh_in
);
291 journal_t
*journal
= transaction
->t_journal
;
294 * The buffer really shouldn't be locked: only the current committing
295 * transaction is allowed to write it, so nobody else is allowed
298 * akpm: except if we're journalling data, and write() output is
299 * also part of a shared mapping, and another thread has
300 * decided to launch a writepage() against this buffer.
302 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
304 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
305 /* keep subsequent assertions sane */
307 init_buffer(new_bh
, NULL
, NULL
);
308 atomic_set(&new_bh
->b_count
, 1);
309 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
312 * If a new transaction has already done a buffer copy-out, then
313 * we use that version of the data for the commit.
315 jbd_lock_bh_state(bh_in
);
317 if (jh_in
->b_frozen_data
) {
319 new_page
= virt_to_page(jh_in
->b_frozen_data
);
320 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
322 new_page
= jh2bh(jh_in
)->b_page
;
323 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
326 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
330 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
331 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
335 kunmap_atomic(mapped_data
, KM_USER0
);
338 * Do we need to do a data copy?
340 if (need_copy_out
&& !done_copy_out
) {
343 jbd_unlock_bh_state(bh_in
);
344 tmp
= jbd_alloc(bh_in
->b_size
, GFP_NOFS
);
345 jbd_lock_bh_state(bh_in
);
346 if (jh_in
->b_frozen_data
) {
347 jbd_free(tmp
, bh_in
->b_size
);
351 jh_in
->b_frozen_data
= tmp
;
352 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
353 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
354 kunmap_atomic(mapped_data
, KM_USER0
);
356 new_page
= virt_to_page(tmp
);
357 new_offset
= offset_in_page(tmp
);
362 * Did we need to do an escaping? Now we've done all the
363 * copying, we can finally do so.
366 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
367 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
368 kunmap_atomic(mapped_data
, KM_USER0
);
371 set_bh_page(new_bh
, new_page
, new_offset
);
372 new_jh
->b_transaction
= NULL
;
373 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
374 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
375 new_bh
->b_blocknr
= blocknr
;
376 set_buffer_mapped(new_bh
);
377 set_buffer_dirty(new_bh
);
382 * The to-be-written buffer needs to get moved to the io queue,
383 * and the original buffer whose contents we are shadowing or
384 * copying is moved to the transaction's shadow queue.
386 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
387 spin_lock(&journal
->j_list_lock
);
388 __journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
389 spin_unlock(&journal
->j_list_lock
);
390 jbd_unlock_bh_state(bh_in
);
392 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
393 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
395 return do_escape
| (done_copy_out
<< 1);
399 * Allocation code for the journal file. Manage the space left in the
400 * journal, so that we can begin checkpointing when appropriate.
404 * __log_space_left: Return the number of free blocks left in the journal.
406 * Called with the journal already locked.
408 * Called under j_state_lock
411 int __log_space_left(journal_t
*journal
)
413 int left
= journal
->j_free
;
415 assert_spin_locked(&journal
->j_state_lock
);
418 * Be pessimistic here about the number of those free blocks which
419 * might be required for log descriptor control blocks.
422 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
424 left
-= MIN_LOG_RESERVED_BLOCKS
;
433 * Called under j_state_lock. Returns true if a transaction commit was started.
435 int __log_start_commit(journal_t
*journal
, tid_t target
)
438 * Are we already doing a recent enough commit?
440 if (!tid_geq(journal
->j_commit_request
, target
)) {
442 * We want a new commit: OK, mark the request and wakup the
443 * commit thread. We do _not_ do the commit ourselves.
446 journal
->j_commit_request
= target
;
447 jbd_debug(1, "JBD: requesting commit %d/%d\n",
448 journal
->j_commit_request
,
449 journal
->j_commit_sequence
);
450 wake_up(&journal
->j_wait_commit
);
456 int log_start_commit(journal_t
*journal
, tid_t tid
)
460 spin_lock(&journal
->j_state_lock
);
461 ret
= __log_start_commit(journal
, tid
);
462 spin_unlock(&journal
->j_state_lock
);
467 * Force and wait upon a commit if the calling process is not within
468 * transaction. This is used for forcing out undo-protected data which contains
469 * bitmaps, when the fs is running out of space.
471 * We can only force the running transaction if we don't have an active handle;
472 * otherwise, we will deadlock.
474 * Returns true if a transaction was started.
476 int journal_force_commit_nested(journal_t
*journal
)
478 transaction_t
*transaction
= NULL
;
481 spin_lock(&journal
->j_state_lock
);
482 if (journal
->j_running_transaction
&& !current
->journal_info
) {
483 transaction
= journal
->j_running_transaction
;
484 __log_start_commit(journal
, transaction
->t_tid
);
485 } else if (journal
->j_committing_transaction
)
486 transaction
= journal
->j_committing_transaction
;
489 spin_unlock(&journal
->j_state_lock
);
490 return 0; /* Nothing to retry */
493 tid
= transaction
->t_tid
;
494 spin_unlock(&journal
->j_state_lock
);
495 log_wait_commit(journal
, tid
);
500 * Start a commit of the current running transaction (if any). Returns true
501 * if a transaction is going to be committed (or is currently already
502 * committing), and fills its tid in at *ptid
504 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
508 spin_lock(&journal
->j_state_lock
);
509 if (journal
->j_running_transaction
) {
510 tid_t tid
= journal
->j_running_transaction
->t_tid
;
512 __log_start_commit(journal
, tid
);
513 /* There's a running transaction and we've just made sure
514 * it's commit has been scheduled. */
518 } else if (journal
->j_committing_transaction
) {
520 * If ext3_write_super() recently started a commit, then we
521 * have to wait for completion of that transaction
524 *ptid
= journal
->j_committing_transaction
->t_tid
;
527 spin_unlock(&journal
->j_state_lock
);
532 * Wait for a specified commit to complete.
533 * The caller may not hold the journal lock.
535 int log_wait_commit(journal_t
*journal
, tid_t tid
)
539 #ifdef CONFIG_JBD_DEBUG
540 spin_lock(&journal
->j_state_lock
);
541 if (!tid_geq(journal
->j_commit_request
, tid
)) {
543 "%s: error: j_commit_request=%d, tid=%d\n",
544 __func__
, journal
->j_commit_request
, tid
);
546 spin_unlock(&journal
->j_state_lock
);
548 spin_lock(&journal
->j_state_lock
);
549 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
550 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
551 tid
, journal
->j_commit_sequence
);
552 wake_up(&journal
->j_wait_commit
);
553 spin_unlock(&journal
->j_state_lock
);
554 wait_event(journal
->j_wait_done_commit
,
555 !tid_gt(tid
, journal
->j_commit_sequence
));
556 spin_lock(&journal
->j_state_lock
);
558 spin_unlock(&journal
->j_state_lock
);
560 if (unlikely(is_journal_aborted(journal
))) {
561 printk(KERN_EMERG
"journal commit I/O error\n");
568 * Log buffer allocation routines:
571 int journal_next_log_block(journal_t
*journal
, unsigned int *retp
)
573 unsigned int blocknr
;
575 spin_lock(&journal
->j_state_lock
);
576 J_ASSERT(journal
->j_free
> 1);
578 blocknr
= journal
->j_head
;
581 if (journal
->j_head
== journal
->j_last
)
582 journal
->j_head
= journal
->j_first
;
583 spin_unlock(&journal
->j_state_lock
);
584 return journal_bmap(journal
, blocknr
, retp
);
588 * Conversion of logical to physical block numbers for the journal
590 * On external journals the journal blocks are identity-mapped, so
591 * this is a no-op. If needed, we can use j_blk_offset - everything is
594 int journal_bmap(journal_t
*journal
, unsigned int blocknr
,
600 if (journal
->j_inode
) {
601 ret
= bmap(journal
->j_inode
, blocknr
);
605 char b
[BDEVNAME_SIZE
];
607 printk(KERN_ALERT
"%s: journal block not found "
608 "at offset %u on %s\n",
611 bdevname(journal
->j_dev
, b
));
613 __journal_abort_soft(journal
, err
);
616 *retp
= blocknr
; /* +journal->j_blk_offset */
622 * We play buffer_head aliasing tricks to write data/metadata blocks to
623 * the journal without copying their contents, but for journal
624 * descriptor blocks we do need to generate bona fide buffers.
626 * After the caller of journal_get_descriptor_buffer() has finished modifying
627 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
628 * But we don't bother doing that, so there will be coherency problems with
629 * mmaps of blockdevs which hold live JBD-controlled filesystems.
631 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
633 struct buffer_head
*bh
;
634 unsigned int blocknr
;
637 err
= journal_next_log_block(journal
, &blocknr
);
642 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
646 memset(bh
->b_data
, 0, journal
->j_blocksize
);
647 set_buffer_uptodate(bh
);
649 BUFFER_TRACE(bh
, "return this buffer");
650 return journal_add_journal_head(bh
);
654 * Management for journal control blocks: functions to create and
655 * destroy journal_t structures, and to initialise and read existing
656 * journal blocks from disk. */
658 /* First: create and setup a journal_t object in memory. We initialise
659 * very few fields yet: that has to wait until we have created the
660 * journal structures from from scratch, or loaded them from disk. */
662 static journal_t
* journal_init_common (void)
667 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
671 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
672 init_waitqueue_head(&journal
->j_wait_logspace
);
673 init_waitqueue_head(&journal
->j_wait_done_commit
);
674 init_waitqueue_head(&journal
->j_wait_checkpoint
);
675 init_waitqueue_head(&journal
->j_wait_commit
);
676 init_waitqueue_head(&journal
->j_wait_updates
);
677 mutex_init(&journal
->j_barrier
);
678 mutex_init(&journal
->j_checkpoint_mutex
);
679 spin_lock_init(&journal
->j_revoke_lock
);
680 spin_lock_init(&journal
->j_list_lock
);
681 spin_lock_init(&journal
->j_state_lock
);
683 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
685 /* The journal is marked for error until we succeed with recovery! */
686 journal
->j_flags
= JFS_ABORT
;
688 /* Set up a default-sized revoke table for the new mount. */
689 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
699 /* journal_init_dev and journal_init_inode:
701 * Create a journal structure assigned some fixed set of disk blocks to
702 * the journal. We don't actually touch those disk blocks yet, but we
703 * need to set up all of the mapping information to tell the journaling
704 * system where the journal blocks are.
709 * journal_t * journal_init_dev() - creates and initialises a journal structure
710 * @bdev: Block device on which to create the journal
711 * @fs_dev: Device which hold journalled filesystem for this journal.
712 * @start: Block nr Start of journal.
713 * @len: Length of the journal in blocks.
714 * @blocksize: blocksize of journalling device
716 * Returns: a newly created journal_t *
718 * journal_init_dev creates a journal which maps a fixed contiguous
719 * range of blocks on an arbitrary block device.
722 journal_t
* journal_init_dev(struct block_device
*bdev
,
723 struct block_device
*fs_dev
,
724 int start
, int len
, int blocksize
)
726 journal_t
*journal
= journal_init_common();
727 struct buffer_head
*bh
;
733 /* journal descriptor can store up to n blocks -bzzz */
734 journal
->j_blocksize
= blocksize
;
735 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
736 journal
->j_wbufsize
= n
;
737 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
738 if (!journal
->j_wbuf
) {
739 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
743 journal
->j_dev
= bdev
;
744 journal
->j_fs_dev
= fs_dev
;
745 journal
->j_blk_offset
= start
;
746 journal
->j_maxlen
= len
;
748 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
751 "%s: Cannot get buffer for journal superblock\n",
755 journal
->j_sb_buffer
= bh
;
756 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
760 kfree(journal
->j_wbuf
);
766 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
767 * @inode: An inode to create the journal in
769 * journal_init_inode creates a journal which maps an on-disk inode as
770 * the journal. The inode must exist already, must support bmap() and
771 * must have all data blocks preallocated.
773 journal_t
* journal_init_inode (struct inode
*inode
)
775 struct buffer_head
*bh
;
776 journal_t
*journal
= journal_init_common();
779 unsigned int blocknr
;
784 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
785 journal
->j_inode
= inode
;
787 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
788 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
789 (long long) inode
->i_size
,
790 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
792 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
793 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
795 /* journal descriptor can store up to n blocks -bzzz */
796 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
797 journal
->j_wbufsize
= n
;
798 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
799 if (!journal
->j_wbuf
) {
800 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
805 err
= journal_bmap(journal
, 0, &blocknr
);
806 /* If that failed, give up */
808 printk(KERN_ERR
"%s: Cannnot locate journal superblock\n",
813 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
816 "%s: Cannot get buffer for journal superblock\n",
820 journal
->j_sb_buffer
= bh
;
821 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
825 kfree(journal
->j_wbuf
);
831 * If the journal init or create aborts, we need to mark the journal
832 * superblock as being NULL to prevent the journal destroy from writing
833 * back a bogus superblock.
835 static void journal_fail_superblock (journal_t
*journal
)
837 struct buffer_head
*bh
= journal
->j_sb_buffer
;
839 journal
->j_sb_buffer
= NULL
;
843 * Given a journal_t structure, initialise the various fields for
844 * startup of a new journaling session. We use this both when creating
845 * a journal, and after recovering an old journal to reset it for
849 static int journal_reset(journal_t
*journal
)
851 journal_superblock_t
*sb
= journal
->j_superblock
;
852 unsigned int first
, last
;
854 first
= be32_to_cpu(sb
->s_first
);
855 last
= be32_to_cpu(sb
->s_maxlen
);
856 if (first
+ JFS_MIN_JOURNAL_BLOCKS
> last
+ 1) {
857 printk(KERN_ERR
"JBD: Journal too short (blocks %u-%u).\n",
859 journal_fail_superblock(journal
);
863 journal
->j_first
= first
;
864 journal
->j_last
= last
;
866 journal
->j_head
= first
;
867 journal
->j_tail
= first
;
868 journal
->j_free
= last
- first
;
870 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
871 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
872 journal
->j_commit_request
= journal
->j_commit_sequence
;
874 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
876 /* Add the dynamic fields and write it to disk. */
877 journal_update_superblock(journal
, 1);
878 return journal_start_thread(journal
);
882 * int journal_create() - Initialise the new journal file
883 * @journal: Journal to create. This structure must have been initialised
885 * Given a journal_t structure which tells us which disk blocks we can
886 * use, create a new journal superblock and initialise all of the
887 * journal fields from scratch.
889 int journal_create(journal_t
*journal
)
891 unsigned int blocknr
;
892 struct buffer_head
*bh
;
893 journal_superblock_t
*sb
;
896 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
897 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
899 journal_fail_superblock(journal
);
903 if (journal
->j_inode
== NULL
) {
905 * We don't know what block to start at!
908 "%s: creation of journal on external device!\n",
913 /* Zero out the entire journal on disk. We cannot afford to
914 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
915 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
916 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
917 err
= journal_bmap(journal
, i
, &blocknr
);
920 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
922 memset (bh
->b_data
, 0, journal
->j_blocksize
);
923 BUFFER_TRACE(bh
, "marking dirty");
924 mark_buffer_dirty(bh
);
925 BUFFER_TRACE(bh
, "marking uptodate");
926 set_buffer_uptodate(bh
);
931 sync_blockdev(journal
->j_dev
);
932 jbd_debug(1, "JBD: journal cleared.\n");
934 /* OK, fill in the initial static fields in the new superblock */
935 sb
= journal
->j_superblock
;
937 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
938 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
940 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
941 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
942 sb
->s_first
= cpu_to_be32(1);
944 journal
->j_transaction_sequence
= 1;
946 journal
->j_flags
&= ~JFS_ABORT
;
947 journal
->j_format_version
= 2;
949 return journal_reset(journal
);
953 * void journal_update_superblock() - Update journal sb on disk.
954 * @journal: The journal to update.
955 * @wait: Set to '0' if you don't want to wait for IO completion.
957 * Update a journal's dynamic superblock fields and write it to disk,
958 * optionally waiting for the IO to complete.
960 void journal_update_superblock(journal_t
*journal
, int wait
)
962 journal_superblock_t
*sb
= journal
->j_superblock
;
963 struct buffer_head
*bh
= journal
->j_sb_buffer
;
966 * As a special case, if the on-disk copy is already marked as needing
967 * no recovery (s_start == 0) and there are no outstanding transactions
968 * in the filesystem, then we can safely defer the superblock update
969 * until the next commit by setting JFS_FLUSHED. This avoids
970 * attempting a write to a potential-readonly device.
972 if (sb
->s_start
== 0 && journal
->j_tail_sequence
==
973 journal
->j_transaction_sequence
) {
974 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
975 "(start %u, seq %d, errno %d)\n",
976 journal
->j_tail
, journal
->j_tail_sequence
,
981 spin_lock(&journal
->j_state_lock
);
982 jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
983 journal
->j_tail
, journal
->j_tail_sequence
, journal
->j_errno
);
985 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
986 sb
->s_start
= cpu_to_be32(journal
->j_tail
);
987 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
988 spin_unlock(&journal
->j_state_lock
);
990 BUFFER_TRACE(bh
, "marking dirty");
991 mark_buffer_dirty(bh
);
993 sync_dirty_buffer(bh
);
995 ll_rw_block(SWRITE
, 1, &bh
);
998 /* If we have just flushed the log (by marking s_start==0), then
999 * any future commit will have to be careful to update the
1000 * superblock again to re-record the true start of the log. */
1002 spin_lock(&journal
->j_state_lock
);
1004 journal
->j_flags
&= ~JFS_FLUSHED
;
1006 journal
->j_flags
|= JFS_FLUSHED
;
1007 spin_unlock(&journal
->j_state_lock
);
1011 * Read the superblock for a given journal, performing initial
1012 * validation of the format.
1015 static int journal_get_superblock(journal_t
*journal
)
1017 struct buffer_head
*bh
;
1018 journal_superblock_t
*sb
;
1021 bh
= journal
->j_sb_buffer
;
1023 J_ASSERT(bh
!= NULL
);
1024 if (!buffer_uptodate(bh
)) {
1025 ll_rw_block(READ
, 1, &bh
);
1027 if (!buffer_uptodate(bh
)) {
1029 "JBD: IO error reading journal superblock\n");
1034 sb
= journal
->j_superblock
;
1038 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1039 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1040 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1044 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1045 case JFS_SUPERBLOCK_V1
:
1046 journal
->j_format_version
= 1;
1048 case JFS_SUPERBLOCK_V2
:
1049 journal
->j_format_version
= 2;
1052 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1056 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1057 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1058 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1059 printk (KERN_WARNING
"JBD: journal file too short\n");
1066 journal_fail_superblock(journal
);
1071 * Load the on-disk journal superblock and read the key fields into the
1075 static int load_superblock(journal_t
*journal
)
1078 journal_superblock_t
*sb
;
1080 err
= journal_get_superblock(journal
);
1084 sb
= journal
->j_superblock
;
1086 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1087 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1088 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1089 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1090 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1097 * int journal_load() - Read journal from disk.
1098 * @journal: Journal to act on.
1100 * Given a journal_t structure which tells us which disk blocks contain
1101 * a journal, read the journal from disk to initialise the in-memory
1104 int journal_load(journal_t
*journal
)
1107 journal_superblock_t
*sb
;
1109 err
= load_superblock(journal
);
1113 sb
= journal
->j_superblock
;
1114 /* If this is a V2 superblock, then we have to check the
1115 * features flags on it. */
1117 if (journal
->j_format_version
>= 2) {
1118 if ((sb
->s_feature_ro_compat
&
1119 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1120 (sb
->s_feature_incompat
&
1121 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1122 printk (KERN_WARNING
1123 "JBD: Unrecognised features on journal\n");
1128 /* Let the recovery code check whether it needs to recover any
1129 * data from the journal. */
1130 if (journal_recover(journal
))
1131 goto recovery_error
;
1133 /* OK, we've finished with the dynamic journal bits:
1134 * reinitialise the dynamic contents of the superblock in memory
1135 * and reset them on disk. */
1136 if (journal_reset(journal
))
1137 goto recovery_error
;
1139 journal
->j_flags
&= ~JFS_ABORT
;
1140 journal
->j_flags
|= JFS_LOADED
;
1144 printk (KERN_WARNING
"JBD: recovery failed\n");
1149 * void journal_destroy() - Release a journal_t structure.
1150 * @journal: Journal to act on.
1152 * Release a journal_t structure once it is no longer in use by the
1154 * Return <0 if we couldn't clean up the journal.
1156 int journal_destroy(journal_t
*journal
)
1160 /* Wait for the commit thread to wake up and die. */
1161 journal_kill_thread(journal
);
1163 /* Force a final log commit */
1164 if (journal
->j_running_transaction
)
1165 journal_commit_transaction(journal
);
1167 /* Force any old transactions to disk */
1169 /* Totally anal locking here... */
1170 spin_lock(&journal
->j_list_lock
);
1171 while (journal
->j_checkpoint_transactions
!= NULL
) {
1172 spin_unlock(&journal
->j_list_lock
);
1173 log_do_checkpoint(journal
);
1174 spin_lock(&journal
->j_list_lock
);
1177 J_ASSERT(journal
->j_running_transaction
== NULL
);
1178 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1179 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1180 spin_unlock(&journal
->j_list_lock
);
1182 if (journal
->j_sb_buffer
) {
1183 if (!is_journal_aborted(journal
)) {
1184 /* We can now mark the journal as empty. */
1185 journal
->j_tail
= 0;
1186 journal
->j_tail_sequence
=
1187 ++journal
->j_transaction_sequence
;
1188 journal_update_superblock(journal
, 1);
1192 brelse(journal
->j_sb_buffer
);
1195 if (journal
->j_inode
)
1196 iput(journal
->j_inode
);
1197 if (journal
->j_revoke
)
1198 journal_destroy_revoke(journal
);
1199 kfree(journal
->j_wbuf
);
1207 *int journal_check_used_features () - Check if features specified are used.
1208 * @journal: Journal to check.
1209 * @compat: bitmask of compatible features
1210 * @ro: bitmask of features that force read-only mount
1211 * @incompat: bitmask of incompatible features
1213 * Check whether the journal uses all of a given set of
1214 * features. Return true (non-zero) if it does.
1217 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1218 unsigned long ro
, unsigned long incompat
)
1220 journal_superblock_t
*sb
;
1222 if (!compat
&& !ro
&& !incompat
)
1224 if (journal
->j_format_version
== 1)
1227 sb
= journal
->j_superblock
;
1229 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1230 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1231 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1238 * int journal_check_available_features() - Check feature set in journalling layer
1239 * @journal: Journal to check.
1240 * @compat: bitmask of compatible features
1241 * @ro: bitmask of features that force read-only mount
1242 * @incompat: bitmask of incompatible features
1244 * Check whether the journaling code supports the use of
1245 * all of a given set of features on this journal. Return true
1246 * (non-zero) if it can. */
1248 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1249 unsigned long ro
, unsigned long incompat
)
1251 journal_superblock_t
*sb
;
1253 if (!compat
&& !ro
&& !incompat
)
1256 sb
= journal
->j_superblock
;
1258 /* We can support any known requested features iff the
1259 * superblock is in version 2. Otherwise we fail to support any
1260 * extended sb features. */
1262 if (journal
->j_format_version
!= 2)
1265 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1266 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1267 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1274 * int journal_set_features () - Mark a given journal feature in the superblock
1275 * @journal: Journal to act on.
1276 * @compat: bitmask of compatible features
1277 * @ro: bitmask of features that force read-only mount
1278 * @incompat: bitmask of incompatible features
1280 * Mark a given journal feature as present on the
1281 * superblock. Returns true if the requested features could be set.
1285 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1286 unsigned long ro
, unsigned long incompat
)
1288 journal_superblock_t
*sb
;
1290 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1293 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1296 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1297 compat
, ro
, incompat
);
1299 sb
= journal
->j_superblock
;
1301 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1302 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1303 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1310 * int journal_update_format () - Update on-disk journal structure.
1311 * @journal: Journal to act on.
1313 * Given an initialised but unloaded journal struct, poke about in the
1314 * on-disk structure to update it to the most recent supported version.
1316 int journal_update_format (journal_t
*journal
)
1318 journal_superblock_t
*sb
;
1321 err
= journal_get_superblock(journal
);
1325 sb
= journal
->j_superblock
;
1327 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1328 case JFS_SUPERBLOCK_V2
:
1330 case JFS_SUPERBLOCK_V1
:
1331 return journal_convert_superblock_v1(journal
, sb
);
1338 static int journal_convert_superblock_v1(journal_t
*journal
,
1339 journal_superblock_t
*sb
)
1341 int offset
, blocksize
;
1342 struct buffer_head
*bh
;
1345 "JBD: Converting superblock from version 1 to 2.\n");
1347 /* Pre-initialise new fields to zero */
1348 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1349 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1350 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1352 sb
->s_nr_users
= cpu_to_be32(1);
1353 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1354 journal
->j_format_version
= 2;
1356 bh
= journal
->j_sb_buffer
;
1357 BUFFER_TRACE(bh
, "marking dirty");
1358 mark_buffer_dirty(bh
);
1359 sync_dirty_buffer(bh
);
1365 * int journal_flush () - Flush journal
1366 * @journal: Journal to act on.
1368 * Flush all data for a given journal to disk and empty the journal.
1369 * Filesystems can use this when remounting readonly to ensure that
1370 * recovery does not need to happen on remount.
1373 int journal_flush(journal_t
*journal
)
1376 transaction_t
*transaction
= NULL
;
1377 unsigned int old_tail
;
1379 spin_lock(&journal
->j_state_lock
);
1381 /* Force everything buffered to the log... */
1382 if (journal
->j_running_transaction
) {
1383 transaction
= journal
->j_running_transaction
;
1384 __log_start_commit(journal
, transaction
->t_tid
);
1385 } else if (journal
->j_committing_transaction
)
1386 transaction
= journal
->j_committing_transaction
;
1388 /* Wait for the log commit to complete... */
1390 tid_t tid
= transaction
->t_tid
;
1392 spin_unlock(&journal
->j_state_lock
);
1393 log_wait_commit(journal
, tid
);
1395 spin_unlock(&journal
->j_state_lock
);
1398 /* ...and flush everything in the log out to disk. */
1399 spin_lock(&journal
->j_list_lock
);
1400 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1401 spin_unlock(&journal
->j_list_lock
);
1402 mutex_lock(&journal
->j_checkpoint_mutex
);
1403 err
= log_do_checkpoint(journal
);
1404 mutex_unlock(&journal
->j_checkpoint_mutex
);
1405 spin_lock(&journal
->j_list_lock
);
1407 spin_unlock(&journal
->j_list_lock
);
1409 if (is_journal_aborted(journal
))
1412 cleanup_journal_tail(journal
);
1414 /* Finally, mark the journal as really needing no recovery.
1415 * This sets s_start==0 in the underlying superblock, which is
1416 * the magic code for a fully-recovered superblock. Any future
1417 * commits of data to the journal will restore the current
1419 spin_lock(&journal
->j_state_lock
);
1420 old_tail
= journal
->j_tail
;
1421 journal
->j_tail
= 0;
1422 spin_unlock(&journal
->j_state_lock
);
1423 journal_update_superblock(journal
, 1);
1424 spin_lock(&journal
->j_state_lock
);
1425 journal
->j_tail
= old_tail
;
1427 J_ASSERT(!journal
->j_running_transaction
);
1428 J_ASSERT(!journal
->j_committing_transaction
);
1429 J_ASSERT(!journal
->j_checkpoint_transactions
);
1430 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1431 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1432 spin_unlock(&journal
->j_state_lock
);
1437 * int journal_wipe() - Wipe journal contents
1438 * @journal: Journal to act on.
1439 * @write: flag (see below)
1441 * Wipe out all of the contents of a journal, safely. This will produce
1442 * a warning if the journal contains any valid recovery information.
1443 * Must be called between journal_init_*() and journal_load().
1445 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1446 * we merely suppress recovery.
1449 int journal_wipe(journal_t
*journal
, int write
)
1451 journal_superblock_t
*sb
;
1454 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1456 err
= load_superblock(journal
);
1460 sb
= journal
->j_superblock
;
1462 if (!journal
->j_tail
)
1465 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1466 write
? "Clearing" : "Ignoring");
1468 err
= journal_skip_recovery(journal
);
1470 journal_update_superblock(journal
, 1);
1477 * journal_dev_name: format a character string to describe on what
1478 * device this journal is present.
1481 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1483 struct block_device
*bdev
;
1485 if (journal
->j_inode
)
1486 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1488 bdev
= journal
->j_dev
;
1490 return bdevname(bdev
, buffer
);
1494 * Journal abort has very specific semantics, which we describe
1495 * for journal abort.
1497 * Two internal function, which provide abort to te jbd layer
1502 * Quick version for internal journal use (doesn't lock the journal).
1503 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1504 * and don't attempt to make any other journal updates.
1506 static void __journal_abort_hard(journal_t
*journal
)
1508 transaction_t
*transaction
;
1509 char b
[BDEVNAME_SIZE
];
1511 if (journal
->j_flags
& JFS_ABORT
)
1514 printk(KERN_ERR
"Aborting journal on device %s.\n",
1515 journal_dev_name(journal
, b
));
1517 spin_lock(&journal
->j_state_lock
);
1518 journal
->j_flags
|= JFS_ABORT
;
1519 transaction
= journal
->j_running_transaction
;
1521 __log_start_commit(journal
, transaction
->t_tid
);
1522 spin_unlock(&journal
->j_state_lock
);
1525 /* Soft abort: record the abort error status in the journal superblock,
1526 * but don't do any other IO. */
1527 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1529 if (journal
->j_flags
& JFS_ABORT
)
1532 if (!journal
->j_errno
)
1533 journal
->j_errno
= errno
;
1535 __journal_abort_hard(journal
);
1538 journal_update_superblock(journal
, 1);
1542 * void journal_abort () - Shutdown the journal immediately.
1543 * @journal: the journal to shutdown.
1544 * @errno: an error number to record in the journal indicating
1545 * the reason for the shutdown.
1547 * Perform a complete, immediate shutdown of the ENTIRE
1548 * journal (not of a single transaction). This operation cannot be
1549 * undone without closing and reopening the journal.
1551 * The journal_abort function is intended to support higher level error
1552 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1555 * Journal abort has very specific semantics. Any existing dirty,
1556 * unjournaled buffers in the main filesystem will still be written to
1557 * disk by bdflush, but the journaling mechanism will be suspended
1558 * immediately and no further transaction commits will be honoured.
1560 * Any dirty, journaled buffers will be written back to disk without
1561 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1562 * filesystem, but we _do_ attempt to leave as much data as possible
1563 * behind for fsck to use for cleanup.
1565 * Any attempt to get a new transaction handle on a journal which is in
1566 * ABORT state will just result in an -EROFS error return. A
1567 * journal_stop on an existing handle will return -EIO if we have
1568 * entered abort state during the update.
1570 * Recursive transactions are not disturbed by journal abort until the
1571 * final journal_stop, which will receive the -EIO error.
1573 * Finally, the journal_abort call allows the caller to supply an errno
1574 * which will be recorded (if possible) in the journal superblock. This
1575 * allows a client to record failure conditions in the middle of a
1576 * transaction without having to complete the transaction to record the
1577 * failure to disk. ext3_error, for example, now uses this
1580 * Errors which originate from within the journaling layer will NOT
1581 * supply an errno; a null errno implies that absolutely no further
1582 * writes are done to the journal (unless there are any already in
1587 void journal_abort(journal_t
*journal
, int errno
)
1589 __journal_abort_soft(journal
, errno
);
1593 * int journal_errno () - returns the journal's error state.
1594 * @journal: journal to examine.
1596 * This is the errno numbet set with journal_abort(), the last
1597 * time the journal was mounted - if the journal was stopped
1598 * without calling abort this will be 0.
1600 * If the journal has been aborted on this mount time -EROFS will
1603 int journal_errno(journal_t
*journal
)
1607 spin_lock(&journal
->j_state_lock
);
1608 if (journal
->j_flags
& JFS_ABORT
)
1611 err
= journal
->j_errno
;
1612 spin_unlock(&journal
->j_state_lock
);
1617 * int journal_clear_err () - clears the journal's error state
1618 * @journal: journal to act on.
1620 * An error must be cleared or Acked to take a FS out of readonly
1623 int journal_clear_err(journal_t
*journal
)
1627 spin_lock(&journal
->j_state_lock
);
1628 if (journal
->j_flags
& JFS_ABORT
)
1631 journal
->j_errno
= 0;
1632 spin_unlock(&journal
->j_state_lock
);
1637 * void journal_ack_err() - Ack journal err.
1638 * @journal: journal to act on.
1640 * An error must be cleared or Acked to take a FS out of readonly
1643 void journal_ack_err(journal_t
*journal
)
1645 spin_lock(&journal
->j_state_lock
);
1646 if (journal
->j_errno
)
1647 journal
->j_flags
|= JFS_ACK_ERR
;
1648 spin_unlock(&journal
->j_state_lock
);
1651 int journal_blocks_per_page(struct inode
*inode
)
1653 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1657 * Journal_head storage management
1659 static struct kmem_cache
*journal_head_cache
;
1660 #ifdef CONFIG_JBD_DEBUG
1661 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1664 static int journal_init_journal_head_cache(void)
1668 J_ASSERT(journal_head_cache
== NULL
);
1669 journal_head_cache
= kmem_cache_create("journal_head",
1670 sizeof(struct journal_head
),
1672 SLAB_TEMPORARY
, /* flags */
1675 if (!journal_head_cache
) {
1677 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1682 static void journal_destroy_journal_head_cache(void)
1684 if (journal_head_cache
) {
1685 kmem_cache_destroy(journal_head_cache
);
1686 journal_head_cache
= NULL
;
1691 * journal_head splicing and dicing
1693 static struct journal_head
*journal_alloc_journal_head(void)
1695 struct journal_head
*ret
;
1696 static unsigned long last_warning
;
1698 #ifdef CONFIG_JBD_DEBUG
1699 atomic_inc(&nr_journal_heads
);
1701 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1703 jbd_debug(1, "out of memory for journal_head\n");
1704 if (time_after(jiffies
, last_warning
+ 5*HZ
)) {
1705 printk(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1707 last_warning
= jiffies
;
1709 while (ret
== NULL
) {
1711 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1717 static void journal_free_journal_head(struct journal_head
*jh
)
1719 #ifdef CONFIG_JBD_DEBUG
1720 atomic_dec(&nr_journal_heads
);
1721 memset(jh
, JBD_POISON_FREE
, sizeof(*jh
));
1723 kmem_cache_free(journal_head_cache
, jh
);
1727 * A journal_head is attached to a buffer_head whenever JBD has an
1728 * interest in the buffer.
1730 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1731 * is set. This bit is tested in core kernel code where we need to take
1732 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1735 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1737 * When a buffer has its BH_JBD bit set it is immune from being released by
1738 * core kernel code, mainly via ->b_count.
1740 * A journal_head may be detached from its buffer_head when the journal_head's
1741 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1742 * Various places in JBD call journal_remove_journal_head() to indicate that the
1743 * journal_head can be dropped if needed.
1745 * Various places in the kernel want to attach a journal_head to a buffer_head
1746 * _before_ attaching the journal_head to a transaction. To protect the
1747 * journal_head in this situation, journal_add_journal_head elevates the
1748 * journal_head's b_jcount refcount by one. The caller must call
1749 * journal_put_journal_head() to undo this.
1751 * So the typical usage would be:
1753 * (Attach a journal_head if needed. Increments b_jcount)
1754 * struct journal_head *jh = journal_add_journal_head(bh);
1756 * jh->b_transaction = xxx;
1757 * journal_put_journal_head(jh);
1759 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1760 * because it has a non-zero b_transaction.
1764 * Give a buffer_head a journal_head.
1766 * Doesn't need the journal lock.
1769 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1771 struct journal_head
*jh
;
1772 struct journal_head
*new_jh
= NULL
;
1775 if (!buffer_jbd(bh
)) {
1776 new_jh
= journal_alloc_journal_head();
1777 memset(new_jh
, 0, sizeof(*new_jh
));
1780 jbd_lock_bh_journal_head(bh
);
1781 if (buffer_jbd(bh
)) {
1785 (atomic_read(&bh
->b_count
) > 0) ||
1786 (bh
->b_page
&& bh
->b_page
->mapping
));
1789 jbd_unlock_bh_journal_head(bh
);
1794 new_jh
= NULL
; /* We consumed it */
1799 BUFFER_TRACE(bh
, "added journal_head");
1802 jbd_unlock_bh_journal_head(bh
);
1804 journal_free_journal_head(new_jh
);
1805 return bh
->b_private
;
1809 * Grab a ref against this buffer_head's journal_head. If it ended up not
1810 * having a journal_head, return NULL
1812 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1814 struct journal_head
*jh
= NULL
;
1816 jbd_lock_bh_journal_head(bh
);
1817 if (buffer_jbd(bh
)) {
1821 jbd_unlock_bh_journal_head(bh
);
1825 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1827 struct journal_head
*jh
= bh2jh(bh
);
1829 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1832 if (jh
->b_jcount
== 0) {
1833 if (jh
->b_transaction
== NULL
&&
1834 jh
->b_next_transaction
== NULL
&&
1835 jh
->b_cp_transaction
== NULL
) {
1836 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1837 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1838 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1839 BUFFER_TRACE(bh
, "remove journal_head");
1840 if (jh
->b_frozen_data
) {
1841 printk(KERN_WARNING
"%s: freeing "
1844 jbd_free(jh
->b_frozen_data
, bh
->b_size
);
1846 if (jh
->b_committed_data
) {
1847 printk(KERN_WARNING
"%s: freeing "
1848 "b_committed_data\n",
1850 jbd_free(jh
->b_committed_data
, bh
->b_size
);
1852 bh
->b_private
= NULL
;
1853 jh
->b_bh
= NULL
; /* debug, really */
1854 clear_buffer_jbd(bh
);
1856 journal_free_journal_head(jh
);
1858 BUFFER_TRACE(bh
, "journal_head was locked");
1864 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1865 * and has a zero b_jcount then remove and release its journal_head. If we did
1866 * see that the buffer is not used by any transaction we also "logically"
1867 * decrement ->b_count.
1869 * We in fact take an additional increment on ->b_count as a convenience,
1870 * because the caller usually wants to do additional things with the bh
1871 * after calling here.
1872 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1873 * time. Once the caller has run __brelse(), the buffer is eligible for
1874 * reaping by try_to_free_buffers().
1876 void journal_remove_journal_head(struct buffer_head
*bh
)
1878 jbd_lock_bh_journal_head(bh
);
1879 __journal_remove_journal_head(bh
);
1880 jbd_unlock_bh_journal_head(bh
);
1884 * Drop a reference on the passed journal_head. If it fell to zero then try to
1885 * release the journal_head from the buffer_head.
1887 void journal_put_journal_head(struct journal_head
*jh
)
1889 struct buffer_head
*bh
= jh2bh(jh
);
1891 jbd_lock_bh_journal_head(bh
);
1892 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
1894 if (!jh
->b_jcount
&& !jh
->b_transaction
) {
1895 __journal_remove_journal_head(bh
);
1898 jbd_unlock_bh_journal_head(bh
);
1904 #ifdef CONFIG_JBD_DEBUG
1906 u8 journal_enable_debug __read_mostly
;
1907 EXPORT_SYMBOL(journal_enable_debug
);
1909 static struct dentry
*jbd_debugfs_dir
;
1910 static struct dentry
*jbd_debug
;
1912 static void __init
jbd_create_debugfs_entry(void)
1914 jbd_debugfs_dir
= debugfs_create_dir("jbd", NULL
);
1915 if (jbd_debugfs_dir
)
1916 jbd_debug
= debugfs_create_u8("jbd-debug", S_IRUGO
| S_IWUSR
,
1918 &journal_enable_debug
);
1921 static void __exit
jbd_remove_debugfs_entry(void)
1923 debugfs_remove(jbd_debug
);
1924 debugfs_remove(jbd_debugfs_dir
);
1929 static inline void jbd_create_debugfs_entry(void)
1933 static inline void jbd_remove_debugfs_entry(void)
1939 struct kmem_cache
*jbd_handle_cache
;
1941 static int __init
journal_init_handle_cache(void)
1943 jbd_handle_cache
= kmem_cache_create("journal_handle",
1946 SLAB_TEMPORARY
, /* flags */
1948 if (jbd_handle_cache
== NULL
) {
1949 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
1955 static void journal_destroy_handle_cache(void)
1957 if (jbd_handle_cache
)
1958 kmem_cache_destroy(jbd_handle_cache
);
1962 * Module startup and shutdown
1965 static int __init
journal_init_caches(void)
1969 ret
= journal_init_revoke_caches();
1971 ret
= journal_init_journal_head_cache();
1973 ret
= journal_init_handle_cache();
1977 static void journal_destroy_caches(void)
1979 journal_destroy_revoke_caches();
1980 journal_destroy_journal_head_cache();
1981 journal_destroy_handle_cache();
1984 static int __init
journal_init(void)
1988 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
1990 ret
= journal_init_caches();
1992 journal_destroy_caches();
1993 jbd_create_debugfs_entry();
1997 static void __exit
journal_exit(void)
1999 #ifdef CONFIG_JBD_DEBUG
2000 int n
= atomic_read(&nr_journal_heads
);
2002 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2004 jbd_remove_debugfs_entry();
2005 journal_destroy_caches();
2008 MODULE_LICENSE("GPL");
2009 module_init(journal_init
);
2010 module_exit(journal_exit
);