dm: fix idr leak on module removal
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / splice.c
blob773793368a791b44e34f5fd561c81d970878cfbf
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
46 lock_page(page);
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
60 wait_on_page_writeback(page);
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
80 out_unlock:
81 unlock_page(page);
82 return 1;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
99 struct page *page = buf->page;
100 int err;
102 if (!PageUptodate(page)) {
103 lock_page(page);
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
123 * Page is ok afterall, we are done.
125 unlock_page(page);
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 pipe_lock(pipe);
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 pipe_unlock(pipe);
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
259 return ret;
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 page_cache_release(spd->pages[i]);
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
294 * Lookup the (hopefully) full range of pages we need.
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
313 page = find_get_page(mapping, index);
314 if (!page) {
316 * page didn't exist, allocate one.
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
334 unlock_page(page);
337 pages[spd.nr_pages++] = page;
338 index++;
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
351 if (!len)
352 break;
355 * this_len is the max we'll use from this page
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
365 * If the page isn't uptodate, we may need to start io on it
367 if (!PageUptodate(page)) {
368 lock_page(page);
371 * Page was truncated, or invalidated by the
372 * filesystem. Redo the find/create, but this time the
373 * page is kept locked, so there's no chance of another
374 * race with truncate/invalidate.
376 if (!page->mapping) {
377 unlock_page(page);
378 page = find_or_create_page(mapping, index,
379 mapping_gfp_mask(mapping));
381 if (!page) {
382 error = -ENOMEM;
383 break;
385 page_cache_release(pages[page_nr]);
386 pages[page_nr] = page;
389 * page was already under io and is now done, great
391 if (PageUptodate(page)) {
392 unlock_page(page);
393 goto fill_it;
397 * need to read in the page
399 error = mapping->a_ops->readpage(in, page);
400 if (unlikely(error)) {
402 * We really should re-lookup the page here,
403 * but it complicates things a lot. Instead
404 * lets just do what we already stored, and
405 * we'll get it the next time we are called.
407 if (error == AOP_TRUNCATED_PAGE)
408 error = 0;
410 break;
413 fill_it:
415 * i_size must be checked after PageUptodate.
417 isize = i_size_read(mapping->host);
418 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
419 if (unlikely(!isize || index > end_index))
420 break;
423 * if this is the last page, see if we need to shrink
424 * the length and stop
426 if (end_index == index) {
427 unsigned int plen;
430 * max good bytes in this page
432 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
433 if (plen <= loff)
434 break;
437 * force quit after adding this page
439 this_len = min(this_len, plen - loff);
440 len = this_len;
443 partial[page_nr].offset = loff;
444 partial[page_nr].len = this_len;
445 len -= this_len;
446 loff = 0;
447 spd.nr_pages++;
448 index++;
452 * Release any pages at the end, if we quit early. 'page_nr' is how far
453 * we got, 'nr_pages' is how many pages are in the map.
455 while (page_nr < nr_pages)
456 page_cache_release(pages[page_nr++]);
457 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
459 if (spd.nr_pages)
460 return splice_to_pipe(pipe, &spd);
462 return error;
466 * generic_file_splice_read - splice data from file to a pipe
467 * @in: file to splice from
468 * @ppos: position in @in
469 * @pipe: pipe to splice to
470 * @len: number of bytes to splice
471 * @flags: splice modifier flags
473 * Description:
474 * Will read pages from given file and fill them into a pipe. Can be
475 * used as long as the address_space operations for the source implements
476 * a readpage() hook.
479 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
480 struct pipe_inode_info *pipe, size_t len,
481 unsigned int flags)
483 loff_t isize, left;
484 int ret;
486 isize = i_size_read(in->f_mapping->host);
487 if (unlikely(*ppos >= isize))
488 return 0;
490 left = isize - *ppos;
491 if (unlikely(left < len))
492 len = left;
494 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
495 if (ret > 0) {
496 *ppos += ret;
497 file_accessed(in);
500 return ret;
502 EXPORT_SYMBOL(generic_file_splice_read);
504 static const struct pipe_buf_operations default_pipe_buf_ops = {
505 .can_merge = 0,
506 .map = generic_pipe_buf_map,
507 .unmap = generic_pipe_buf_unmap,
508 .confirm = generic_pipe_buf_confirm,
509 .release = generic_pipe_buf_release,
510 .steal = generic_pipe_buf_steal,
511 .get = generic_pipe_buf_get,
514 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
515 unsigned long vlen, loff_t offset)
517 mm_segment_t old_fs;
518 loff_t pos = offset;
519 ssize_t res;
521 old_fs = get_fs();
522 set_fs(get_ds());
523 /* The cast to a user pointer is valid due to the set_fs() */
524 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
525 set_fs(old_fs);
527 return res;
530 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
531 loff_t pos)
533 mm_segment_t old_fs;
534 ssize_t res;
536 old_fs = get_fs();
537 set_fs(get_ds());
538 /* The cast to a user pointer is valid due to the set_fs() */
539 res = vfs_write(file, (const char __user *)buf, count, &pos);
540 set_fs(old_fs);
542 return res;
545 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
546 struct pipe_inode_info *pipe, size_t len,
547 unsigned int flags)
549 unsigned int nr_pages;
550 unsigned int nr_freed;
551 size_t offset;
552 struct page *pages[PIPE_BUFFERS];
553 struct partial_page partial[PIPE_BUFFERS];
554 struct iovec vec[PIPE_BUFFERS];
555 pgoff_t index;
556 ssize_t res;
557 size_t this_len;
558 int error;
559 int i;
560 struct splice_pipe_desc spd = {
561 .pages = pages,
562 .partial = partial,
563 .flags = flags,
564 .ops = &default_pipe_buf_ops,
565 .spd_release = spd_release_page,
568 index = *ppos >> PAGE_CACHE_SHIFT;
569 offset = *ppos & ~PAGE_CACHE_MASK;
570 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
572 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
573 struct page *page;
575 page = alloc_page(GFP_USER);
576 error = -ENOMEM;
577 if (!page)
578 goto err;
580 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
581 vec[i].iov_base = (void __user *) page_address(page);
582 vec[i].iov_len = this_len;
583 pages[i] = page;
584 spd.nr_pages++;
585 len -= this_len;
586 offset = 0;
589 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
590 if (res < 0) {
591 error = res;
592 goto err;
595 error = 0;
596 if (!res)
597 goto err;
599 nr_freed = 0;
600 for (i = 0; i < spd.nr_pages; i++) {
601 this_len = min_t(size_t, vec[i].iov_len, res);
602 partial[i].offset = 0;
603 partial[i].len = this_len;
604 if (!this_len) {
605 __free_page(pages[i]);
606 pages[i] = NULL;
607 nr_freed++;
609 res -= this_len;
611 spd.nr_pages -= nr_freed;
613 res = splice_to_pipe(pipe, &spd);
614 if (res > 0)
615 *ppos += res;
617 return res;
619 err:
620 for (i = 0; i < spd.nr_pages; i++)
621 __free_page(pages[i]);
623 return error;
625 EXPORT_SYMBOL(default_file_splice_read);
628 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
629 * using sendpage(). Return the number of bytes sent.
631 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
632 struct pipe_buffer *buf, struct splice_desc *sd)
634 struct file *file = sd->u.file;
635 loff_t pos = sd->pos;
636 int ret, more;
638 ret = buf->ops->confirm(pipe, buf);
639 if (!ret) {
640 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
641 if (file->f_op && file->f_op->sendpage)
642 ret = file->f_op->sendpage(file, buf->page, buf->offset,
643 sd->len, &pos, more);
644 else
645 ret = -EINVAL;
648 return ret;
652 * This is a little more tricky than the file -> pipe splicing. There are
653 * basically three cases:
655 * - Destination page already exists in the address space and there
656 * are users of it. For that case we have no other option that
657 * copying the data. Tough luck.
658 * - Destination page already exists in the address space, but there
659 * are no users of it. Make sure it's uptodate, then drop it. Fall
660 * through to last case.
661 * - Destination page does not exist, we can add the pipe page to
662 * the page cache and avoid the copy.
664 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
665 * sd->flags), we attempt to migrate pages from the pipe to the output
666 * file address space page cache. This is possible if no one else has
667 * the pipe page referenced outside of the pipe and page cache. If
668 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
669 * a new page in the output file page cache and fill/dirty that.
671 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
672 struct splice_desc *sd)
674 struct file *file = sd->u.file;
675 struct address_space *mapping = file->f_mapping;
676 unsigned int offset, this_len;
677 struct page *page;
678 void *fsdata;
679 int ret;
682 * make sure the data in this buffer is uptodate
684 ret = buf->ops->confirm(pipe, buf);
685 if (unlikely(ret))
686 return ret;
688 offset = sd->pos & ~PAGE_CACHE_MASK;
690 this_len = sd->len;
691 if (this_len + offset > PAGE_CACHE_SIZE)
692 this_len = PAGE_CACHE_SIZE - offset;
694 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
695 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
696 if (unlikely(ret))
697 goto out;
699 if (buf->page != page) {
701 * Careful, ->map() uses KM_USER0!
703 char *src = buf->ops->map(pipe, buf, 1);
704 char *dst = kmap_atomic(page, KM_USER1);
706 memcpy(dst + offset, src + buf->offset, this_len);
707 flush_dcache_page(page);
708 kunmap_atomic(dst, KM_USER1);
709 buf->ops->unmap(pipe, buf, src);
711 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
712 page, fsdata);
713 out:
714 return ret;
716 EXPORT_SYMBOL(pipe_to_file);
718 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
720 smp_mb();
721 if (waitqueue_active(&pipe->wait))
722 wake_up_interruptible(&pipe->wait);
723 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
727 * splice_from_pipe_feed - feed available data from a pipe to a file
728 * @pipe: pipe to splice from
729 * @sd: information to @actor
730 * @actor: handler that splices the data
732 * Description:
733 * This function loops over the pipe and calls @actor to do the
734 * actual moving of a single struct pipe_buffer to the desired
735 * destination. It returns when there's no more buffers left in
736 * the pipe or if the requested number of bytes (@sd->total_len)
737 * have been copied. It returns a positive number (one) if the
738 * pipe needs to be filled with more data, zero if the required
739 * number of bytes have been copied and -errno on error.
741 * This, together with splice_from_pipe_{begin,end,next}, may be
742 * used to implement the functionality of __splice_from_pipe() when
743 * locking is required around copying the pipe buffers to the
744 * destination.
746 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
747 splice_actor *actor)
749 int ret;
751 while (pipe->nrbufs) {
752 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
753 const struct pipe_buf_operations *ops = buf->ops;
755 sd->len = buf->len;
756 if (sd->len > sd->total_len)
757 sd->len = sd->total_len;
759 ret = actor(pipe, buf, sd);
760 if (ret <= 0) {
761 if (ret == -ENODATA)
762 ret = 0;
763 return ret;
765 buf->offset += ret;
766 buf->len -= ret;
768 sd->num_spliced += ret;
769 sd->len -= ret;
770 sd->pos += ret;
771 sd->total_len -= ret;
773 if (!buf->len) {
774 buf->ops = NULL;
775 ops->release(pipe, buf);
776 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
777 pipe->nrbufs--;
778 if (pipe->inode)
779 sd->need_wakeup = true;
782 if (!sd->total_len)
783 return 0;
786 return 1;
788 EXPORT_SYMBOL(splice_from_pipe_feed);
791 * splice_from_pipe_next - wait for some data to splice from
792 * @pipe: pipe to splice from
793 * @sd: information about the splice operation
795 * Description:
796 * This function will wait for some data and return a positive
797 * value (one) if pipe buffers are available. It will return zero
798 * or -errno if no more data needs to be spliced.
800 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
802 while (!pipe->nrbufs) {
803 if (!pipe->writers)
804 return 0;
806 if (!pipe->waiting_writers && sd->num_spliced)
807 return 0;
809 if (sd->flags & SPLICE_F_NONBLOCK)
810 return -EAGAIN;
812 if (signal_pending(current))
813 return -ERESTARTSYS;
815 if (sd->need_wakeup) {
816 wakeup_pipe_writers(pipe);
817 sd->need_wakeup = false;
820 pipe_wait(pipe);
823 return 1;
825 EXPORT_SYMBOL(splice_from_pipe_next);
828 * splice_from_pipe_begin - start splicing from pipe
829 * @sd: information about the splice operation
831 * Description:
832 * This function should be called before a loop containing
833 * splice_from_pipe_next() and splice_from_pipe_feed() to
834 * initialize the necessary fields of @sd.
836 void splice_from_pipe_begin(struct splice_desc *sd)
838 sd->num_spliced = 0;
839 sd->need_wakeup = false;
841 EXPORT_SYMBOL(splice_from_pipe_begin);
844 * splice_from_pipe_end - finish splicing from pipe
845 * @pipe: pipe to splice from
846 * @sd: information about the splice operation
848 * Description:
849 * This function will wake up pipe writers if necessary. It should
850 * be called after a loop containing splice_from_pipe_next() and
851 * splice_from_pipe_feed().
853 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
855 if (sd->need_wakeup)
856 wakeup_pipe_writers(pipe);
858 EXPORT_SYMBOL(splice_from_pipe_end);
861 * __splice_from_pipe - splice data from a pipe to given actor
862 * @pipe: pipe to splice from
863 * @sd: information to @actor
864 * @actor: handler that splices the data
866 * Description:
867 * This function does little more than loop over the pipe and call
868 * @actor to do the actual moving of a single struct pipe_buffer to
869 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
870 * pipe_to_user.
873 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
874 splice_actor *actor)
876 int ret;
878 splice_from_pipe_begin(sd);
879 do {
880 ret = splice_from_pipe_next(pipe, sd);
881 if (ret > 0)
882 ret = splice_from_pipe_feed(pipe, sd, actor);
883 } while (ret > 0);
884 splice_from_pipe_end(pipe, sd);
886 return sd->num_spliced ? sd->num_spliced : ret;
888 EXPORT_SYMBOL(__splice_from_pipe);
891 * splice_from_pipe - splice data from a pipe to a file
892 * @pipe: pipe to splice from
893 * @out: file to splice to
894 * @ppos: position in @out
895 * @len: how many bytes to splice
896 * @flags: splice modifier flags
897 * @actor: handler that splices the data
899 * Description:
900 * See __splice_from_pipe. This function locks the pipe inode,
901 * otherwise it's identical to __splice_from_pipe().
904 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
905 loff_t *ppos, size_t len, unsigned int flags,
906 splice_actor *actor)
908 ssize_t ret;
909 struct splice_desc sd = {
910 .total_len = len,
911 .flags = flags,
912 .pos = *ppos,
913 .u.file = out,
916 pipe_lock(pipe);
917 ret = __splice_from_pipe(pipe, &sd, actor);
918 pipe_unlock(pipe);
920 return ret;
924 * generic_file_splice_write - splice data from a pipe to a file
925 * @pipe: pipe info
926 * @out: file to write to
927 * @ppos: position in @out
928 * @len: number of bytes to splice
929 * @flags: splice modifier flags
931 * Description:
932 * Will either move or copy pages (determined by @flags options) from
933 * the given pipe inode to the given file.
936 ssize_t
937 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
938 loff_t *ppos, size_t len, unsigned int flags)
940 struct address_space *mapping = out->f_mapping;
941 struct inode *inode = mapping->host;
942 struct splice_desc sd = {
943 .total_len = len,
944 .flags = flags,
945 .pos = *ppos,
946 .u.file = out,
948 ssize_t ret;
950 pipe_lock(pipe);
952 splice_from_pipe_begin(&sd);
953 do {
954 ret = splice_from_pipe_next(pipe, &sd);
955 if (ret <= 0)
956 break;
958 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
959 ret = file_remove_suid(out);
960 if (!ret) {
961 file_update_time(out);
962 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
964 mutex_unlock(&inode->i_mutex);
965 } while (ret > 0);
966 splice_from_pipe_end(pipe, &sd);
968 pipe_unlock(pipe);
970 if (sd.num_spliced)
971 ret = sd.num_spliced;
973 if (ret > 0) {
974 unsigned long nr_pages;
975 int err;
977 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
979 err = generic_write_sync(out, *ppos, ret);
980 if (err)
981 ret = err;
982 else
983 *ppos += ret;
984 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
987 return ret;
990 EXPORT_SYMBOL(generic_file_splice_write);
992 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
993 struct splice_desc *sd)
995 int ret;
996 void *data;
998 ret = buf->ops->confirm(pipe, buf);
999 if (ret)
1000 return ret;
1002 data = buf->ops->map(pipe, buf, 0);
1003 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1004 buf->ops->unmap(pipe, buf, data);
1006 return ret;
1009 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1010 struct file *out, loff_t *ppos,
1011 size_t len, unsigned int flags)
1013 ssize_t ret;
1015 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1016 if (ret > 0)
1017 *ppos += ret;
1019 return ret;
1023 * generic_splice_sendpage - splice data from a pipe to a socket
1024 * @pipe: pipe to splice from
1025 * @out: socket to write to
1026 * @ppos: position in @out
1027 * @len: number of bytes to splice
1028 * @flags: splice modifier flags
1030 * Description:
1031 * Will send @len bytes from the pipe to a network socket. No data copying
1032 * is involved.
1035 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1036 loff_t *ppos, size_t len, unsigned int flags)
1038 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1041 EXPORT_SYMBOL(generic_splice_sendpage);
1044 * Attempt to initiate a splice from pipe to file.
1046 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1047 loff_t *ppos, size_t len, unsigned int flags)
1049 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1050 loff_t *, size_t, unsigned int);
1051 int ret;
1053 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1054 return -EBADF;
1056 if (unlikely(out->f_flags & O_APPEND))
1057 return -EINVAL;
1059 ret = rw_verify_area(WRITE, out, ppos, len);
1060 if (unlikely(ret < 0))
1061 return ret;
1063 if (out->f_op && out->f_op->splice_write)
1064 splice_write = out->f_op->splice_write;
1065 else
1066 splice_write = default_file_splice_write;
1068 return splice_write(pipe, out, ppos, len, flags);
1072 * Attempt to initiate a splice from a file to a pipe.
1074 static long do_splice_to(struct file *in, loff_t *ppos,
1075 struct pipe_inode_info *pipe, size_t len,
1076 unsigned int flags)
1078 ssize_t (*splice_read)(struct file *, loff_t *,
1079 struct pipe_inode_info *, size_t, unsigned int);
1080 int ret;
1082 if (unlikely(!(in->f_mode & FMODE_READ)))
1083 return -EBADF;
1085 ret = rw_verify_area(READ, in, ppos, len);
1086 if (unlikely(ret < 0))
1087 return ret;
1089 if (in->f_op && in->f_op->splice_read)
1090 splice_read = in->f_op->splice_read;
1091 else
1092 splice_read = default_file_splice_read;
1094 return splice_read(in, ppos, pipe, len, flags);
1098 * splice_direct_to_actor - splices data directly between two non-pipes
1099 * @in: file to splice from
1100 * @sd: actor information on where to splice to
1101 * @actor: handles the data splicing
1103 * Description:
1104 * This is a special case helper to splice directly between two
1105 * points, without requiring an explicit pipe. Internally an allocated
1106 * pipe is cached in the process, and reused during the lifetime of
1107 * that process.
1110 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1111 splice_direct_actor *actor)
1113 struct pipe_inode_info *pipe;
1114 long ret, bytes;
1115 umode_t i_mode;
1116 size_t len;
1117 int i, flags;
1120 * We require the input being a regular file, as we don't want to
1121 * randomly drop data for eg socket -> socket splicing. Use the
1122 * piped splicing for that!
1124 i_mode = in->f_path.dentry->d_inode->i_mode;
1125 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1126 return -EINVAL;
1129 * neither in nor out is a pipe, setup an internal pipe attached to
1130 * 'out' and transfer the wanted data from 'in' to 'out' through that
1132 pipe = current->splice_pipe;
1133 if (unlikely(!pipe)) {
1134 pipe = alloc_pipe_info(NULL);
1135 if (!pipe)
1136 return -ENOMEM;
1139 * We don't have an immediate reader, but we'll read the stuff
1140 * out of the pipe right after the splice_to_pipe(). So set
1141 * PIPE_READERS appropriately.
1143 pipe->readers = 1;
1145 current->splice_pipe = pipe;
1149 * Do the splice.
1151 ret = 0;
1152 bytes = 0;
1153 len = sd->total_len;
1154 flags = sd->flags;
1157 * Don't block on output, we have to drain the direct pipe.
1159 sd->flags &= ~SPLICE_F_NONBLOCK;
1161 while (len) {
1162 size_t read_len;
1163 loff_t pos = sd->pos, prev_pos = pos;
1165 ret = do_splice_to(in, &pos, pipe, len, flags);
1166 if (unlikely(ret <= 0))
1167 goto out_release;
1169 read_len = ret;
1170 sd->total_len = read_len;
1173 * NOTE: nonblocking mode only applies to the input. We
1174 * must not do the output in nonblocking mode as then we
1175 * could get stuck data in the internal pipe:
1177 ret = actor(pipe, sd);
1178 if (unlikely(ret <= 0)) {
1179 sd->pos = prev_pos;
1180 goto out_release;
1183 bytes += ret;
1184 len -= ret;
1185 sd->pos = pos;
1187 if (ret < read_len) {
1188 sd->pos = prev_pos + ret;
1189 goto out_release;
1193 done:
1194 pipe->nrbufs = pipe->curbuf = 0;
1195 file_accessed(in);
1196 return bytes;
1198 out_release:
1200 * If we did an incomplete transfer we must release
1201 * the pipe buffers in question:
1203 for (i = 0; i < PIPE_BUFFERS; i++) {
1204 struct pipe_buffer *buf = pipe->bufs + i;
1206 if (buf->ops) {
1207 buf->ops->release(pipe, buf);
1208 buf->ops = NULL;
1212 if (!bytes)
1213 bytes = ret;
1215 goto done;
1217 EXPORT_SYMBOL(splice_direct_to_actor);
1219 static int direct_splice_actor(struct pipe_inode_info *pipe,
1220 struct splice_desc *sd)
1222 struct file *file = sd->u.file;
1224 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1228 * do_splice_direct - splices data directly between two files
1229 * @in: file to splice from
1230 * @ppos: input file offset
1231 * @out: file to splice to
1232 * @len: number of bytes to splice
1233 * @flags: splice modifier flags
1235 * Description:
1236 * For use by do_sendfile(). splice can easily emulate sendfile, but
1237 * doing it in the application would incur an extra system call
1238 * (splice in + splice out, as compared to just sendfile()). So this helper
1239 * can splice directly through a process-private pipe.
1242 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1243 size_t len, unsigned int flags)
1245 struct splice_desc sd = {
1246 .len = len,
1247 .total_len = len,
1248 .flags = flags,
1249 .pos = *ppos,
1250 .u.file = out,
1252 long ret;
1254 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1255 if (ret > 0)
1256 *ppos = sd.pos;
1258 return ret;
1261 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1262 struct pipe_inode_info *opipe,
1263 size_t len, unsigned int flags);
1265 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1266 * location, so checking ->i_pipe is not enough to verify that this is a
1267 * pipe.
1269 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1271 if (S_ISFIFO(inode->i_mode))
1272 return inode->i_pipe;
1274 return NULL;
1278 * Determine where to splice to/from.
1280 static long do_splice(struct file *in, loff_t __user *off_in,
1281 struct file *out, loff_t __user *off_out,
1282 size_t len, unsigned int flags)
1284 struct pipe_inode_info *ipipe;
1285 struct pipe_inode_info *opipe;
1286 loff_t offset, *off;
1287 long ret;
1289 ipipe = pipe_info(in->f_path.dentry->d_inode);
1290 opipe = pipe_info(out->f_path.dentry->d_inode);
1292 if (ipipe && opipe) {
1293 if (off_in || off_out)
1294 return -ESPIPE;
1296 if (!(in->f_mode & FMODE_READ))
1297 return -EBADF;
1299 if (!(out->f_mode & FMODE_WRITE))
1300 return -EBADF;
1302 /* Splicing to self would be fun, but... */
1303 if (ipipe == opipe)
1304 return -EINVAL;
1306 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1309 if (ipipe) {
1310 if (off_in)
1311 return -ESPIPE;
1312 if (off_out) {
1313 if (!out->f_op || !out->f_op->llseek ||
1314 out->f_op->llseek == no_llseek)
1315 return -EINVAL;
1316 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1317 return -EFAULT;
1318 off = &offset;
1319 } else
1320 off = &out->f_pos;
1322 ret = do_splice_from(ipipe, out, off, len, flags);
1324 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1325 ret = -EFAULT;
1327 return ret;
1330 if (opipe) {
1331 if (off_out)
1332 return -ESPIPE;
1333 if (off_in) {
1334 if (!in->f_op || !in->f_op->llseek ||
1335 in->f_op->llseek == no_llseek)
1336 return -EINVAL;
1337 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1338 return -EFAULT;
1339 off = &offset;
1340 } else
1341 off = &in->f_pos;
1343 ret = do_splice_to(in, off, opipe, len, flags);
1345 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1346 ret = -EFAULT;
1348 return ret;
1351 return -EINVAL;
1355 * Map an iov into an array of pages and offset/length tupples. With the
1356 * partial_page structure, we can map several non-contiguous ranges into
1357 * our ones pages[] map instead of splitting that operation into pieces.
1358 * Could easily be exported as a generic helper for other users, in which
1359 * case one would probably want to add a 'max_nr_pages' parameter as well.
1361 static int get_iovec_page_array(const struct iovec __user *iov,
1362 unsigned int nr_vecs, struct page **pages,
1363 struct partial_page *partial, int aligned)
1365 int buffers = 0, error = 0;
1367 while (nr_vecs) {
1368 unsigned long off, npages;
1369 struct iovec entry;
1370 void __user *base;
1371 size_t len;
1372 int i;
1374 error = -EFAULT;
1375 if (copy_from_user(&entry, iov, sizeof(entry)))
1376 break;
1378 base = entry.iov_base;
1379 len = entry.iov_len;
1382 * Sanity check this iovec. 0 read succeeds.
1384 error = 0;
1385 if (unlikely(!len))
1386 break;
1387 error = -EFAULT;
1388 if (!access_ok(VERIFY_READ, base, len))
1389 break;
1392 * Get this base offset and number of pages, then map
1393 * in the user pages.
1395 off = (unsigned long) base & ~PAGE_MASK;
1398 * If asked for alignment, the offset must be zero and the
1399 * length a multiple of the PAGE_SIZE.
1401 error = -EINVAL;
1402 if (aligned && (off || len & ~PAGE_MASK))
1403 break;
1405 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1406 if (npages > PIPE_BUFFERS - buffers)
1407 npages = PIPE_BUFFERS - buffers;
1409 error = get_user_pages_fast((unsigned long)base, npages,
1410 0, &pages[buffers]);
1412 if (unlikely(error <= 0))
1413 break;
1416 * Fill this contiguous range into the partial page map.
1418 for (i = 0; i < error; i++) {
1419 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1421 partial[buffers].offset = off;
1422 partial[buffers].len = plen;
1424 off = 0;
1425 len -= plen;
1426 buffers++;
1430 * We didn't complete this iov, stop here since it probably
1431 * means we have to move some of this into a pipe to
1432 * be able to continue.
1434 if (len)
1435 break;
1438 * Don't continue if we mapped fewer pages than we asked for,
1439 * or if we mapped the max number of pages that we have
1440 * room for.
1442 if (error < npages || buffers == PIPE_BUFFERS)
1443 break;
1445 nr_vecs--;
1446 iov++;
1449 if (buffers)
1450 return buffers;
1452 return error;
1455 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1456 struct splice_desc *sd)
1458 char *src;
1459 int ret;
1461 ret = buf->ops->confirm(pipe, buf);
1462 if (unlikely(ret))
1463 return ret;
1466 * See if we can use the atomic maps, by prefaulting in the
1467 * pages and doing an atomic copy
1469 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1470 src = buf->ops->map(pipe, buf, 1);
1471 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1472 sd->len);
1473 buf->ops->unmap(pipe, buf, src);
1474 if (!ret) {
1475 ret = sd->len;
1476 goto out;
1481 * No dice, use slow non-atomic map and copy
1483 src = buf->ops->map(pipe, buf, 0);
1485 ret = sd->len;
1486 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1487 ret = -EFAULT;
1489 buf->ops->unmap(pipe, buf, src);
1490 out:
1491 if (ret > 0)
1492 sd->u.userptr += ret;
1493 return ret;
1497 * For lack of a better implementation, implement vmsplice() to userspace
1498 * as a simple copy of the pipes pages to the user iov.
1500 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1501 unsigned long nr_segs, unsigned int flags)
1503 struct pipe_inode_info *pipe;
1504 struct splice_desc sd;
1505 ssize_t size;
1506 int error;
1507 long ret;
1509 pipe = pipe_info(file->f_path.dentry->d_inode);
1510 if (!pipe)
1511 return -EBADF;
1513 pipe_lock(pipe);
1515 error = ret = 0;
1516 while (nr_segs) {
1517 void __user *base;
1518 size_t len;
1521 * Get user address base and length for this iovec.
1523 error = get_user(base, &iov->iov_base);
1524 if (unlikely(error))
1525 break;
1526 error = get_user(len, &iov->iov_len);
1527 if (unlikely(error))
1528 break;
1531 * Sanity check this iovec. 0 read succeeds.
1533 if (unlikely(!len))
1534 break;
1535 if (unlikely(!base)) {
1536 error = -EFAULT;
1537 break;
1540 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1541 error = -EFAULT;
1542 break;
1545 sd.len = 0;
1546 sd.total_len = len;
1547 sd.flags = flags;
1548 sd.u.userptr = base;
1549 sd.pos = 0;
1551 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1552 if (size < 0) {
1553 if (!ret)
1554 ret = size;
1556 break;
1559 ret += size;
1561 if (size < len)
1562 break;
1564 nr_segs--;
1565 iov++;
1568 pipe_unlock(pipe);
1570 if (!ret)
1571 ret = error;
1573 return ret;
1577 * vmsplice splices a user address range into a pipe. It can be thought of
1578 * as splice-from-memory, where the regular splice is splice-from-file (or
1579 * to file). In both cases the output is a pipe, naturally.
1581 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1582 unsigned long nr_segs, unsigned int flags)
1584 struct pipe_inode_info *pipe;
1585 struct page *pages[PIPE_BUFFERS];
1586 struct partial_page partial[PIPE_BUFFERS];
1587 struct splice_pipe_desc spd = {
1588 .pages = pages,
1589 .partial = partial,
1590 .flags = flags,
1591 .ops = &user_page_pipe_buf_ops,
1592 .spd_release = spd_release_page,
1595 pipe = pipe_info(file->f_path.dentry->d_inode);
1596 if (!pipe)
1597 return -EBADF;
1599 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1600 flags & SPLICE_F_GIFT);
1601 if (spd.nr_pages <= 0)
1602 return spd.nr_pages;
1604 return splice_to_pipe(pipe, &spd);
1608 * Note that vmsplice only really supports true splicing _from_ user memory
1609 * to a pipe, not the other way around. Splicing from user memory is a simple
1610 * operation that can be supported without any funky alignment restrictions
1611 * or nasty vm tricks. We simply map in the user memory and fill them into
1612 * a pipe. The reverse isn't quite as easy, though. There are two possible
1613 * solutions for that:
1615 * - memcpy() the data internally, at which point we might as well just
1616 * do a regular read() on the buffer anyway.
1617 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1618 * has restriction limitations on both ends of the pipe).
1620 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1623 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1624 unsigned long, nr_segs, unsigned int, flags)
1626 struct file *file;
1627 long error;
1628 int fput;
1630 if (unlikely(nr_segs > UIO_MAXIOV))
1631 return -EINVAL;
1632 else if (unlikely(!nr_segs))
1633 return 0;
1635 error = -EBADF;
1636 file = fget_light(fd, &fput);
1637 if (file) {
1638 if (file->f_mode & FMODE_WRITE)
1639 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1640 else if (file->f_mode & FMODE_READ)
1641 error = vmsplice_to_user(file, iov, nr_segs, flags);
1643 fput_light(file, fput);
1646 return error;
1649 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1650 int, fd_out, loff_t __user *, off_out,
1651 size_t, len, unsigned int, flags)
1653 long error;
1654 struct file *in, *out;
1655 int fput_in, fput_out;
1657 if (unlikely(!len))
1658 return 0;
1660 error = -EBADF;
1661 in = fget_light(fd_in, &fput_in);
1662 if (in) {
1663 if (in->f_mode & FMODE_READ) {
1664 out = fget_light(fd_out, &fput_out);
1665 if (out) {
1666 if (out->f_mode & FMODE_WRITE)
1667 error = do_splice(in, off_in,
1668 out, off_out,
1669 len, flags);
1670 fput_light(out, fput_out);
1674 fput_light(in, fput_in);
1677 return error;
1681 * Make sure there's data to read. Wait for input if we can, otherwise
1682 * return an appropriate error.
1684 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1686 int ret;
1689 * Check ->nrbufs without the inode lock first. This function
1690 * is speculative anyways, so missing one is ok.
1692 if (pipe->nrbufs)
1693 return 0;
1695 ret = 0;
1696 pipe_lock(pipe);
1698 while (!pipe->nrbufs) {
1699 if (signal_pending(current)) {
1700 ret = -ERESTARTSYS;
1701 break;
1703 if (!pipe->writers)
1704 break;
1705 if (!pipe->waiting_writers) {
1706 if (flags & SPLICE_F_NONBLOCK) {
1707 ret = -EAGAIN;
1708 break;
1711 pipe_wait(pipe);
1714 pipe_unlock(pipe);
1715 return ret;
1719 * Make sure there's writeable room. Wait for room if we can, otherwise
1720 * return an appropriate error.
1722 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1724 int ret;
1727 * Check ->nrbufs without the inode lock first. This function
1728 * is speculative anyways, so missing one is ok.
1730 if (pipe->nrbufs < PIPE_BUFFERS)
1731 return 0;
1733 ret = 0;
1734 pipe_lock(pipe);
1736 while (pipe->nrbufs >= PIPE_BUFFERS) {
1737 if (!pipe->readers) {
1738 send_sig(SIGPIPE, current, 0);
1739 ret = -EPIPE;
1740 break;
1742 if (flags & SPLICE_F_NONBLOCK) {
1743 ret = -EAGAIN;
1744 break;
1746 if (signal_pending(current)) {
1747 ret = -ERESTARTSYS;
1748 break;
1750 pipe->waiting_writers++;
1751 pipe_wait(pipe);
1752 pipe->waiting_writers--;
1755 pipe_unlock(pipe);
1756 return ret;
1760 * Splice contents of ipipe to opipe.
1762 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1763 struct pipe_inode_info *opipe,
1764 size_t len, unsigned int flags)
1766 struct pipe_buffer *ibuf, *obuf;
1767 int ret = 0, nbuf;
1768 bool input_wakeup = false;
1771 retry:
1772 ret = ipipe_prep(ipipe, flags);
1773 if (ret)
1774 return ret;
1776 ret = opipe_prep(opipe, flags);
1777 if (ret)
1778 return ret;
1781 * Potential ABBA deadlock, work around it by ordering lock
1782 * grabbing by pipe info address. Otherwise two different processes
1783 * could deadlock (one doing tee from A -> B, the other from B -> A).
1785 pipe_double_lock(ipipe, opipe);
1787 do {
1788 if (!opipe->readers) {
1789 send_sig(SIGPIPE, current, 0);
1790 if (!ret)
1791 ret = -EPIPE;
1792 break;
1795 if (!ipipe->nrbufs && !ipipe->writers)
1796 break;
1799 * Cannot make any progress, because either the input
1800 * pipe is empty or the output pipe is full.
1802 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1803 /* Already processed some buffers, break */
1804 if (ret)
1805 break;
1807 if (flags & SPLICE_F_NONBLOCK) {
1808 ret = -EAGAIN;
1809 break;
1813 * We raced with another reader/writer and haven't
1814 * managed to process any buffers. A zero return
1815 * value means EOF, so retry instead.
1817 pipe_unlock(ipipe);
1818 pipe_unlock(opipe);
1819 goto retry;
1822 ibuf = ipipe->bufs + ipipe->curbuf;
1823 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1824 obuf = opipe->bufs + nbuf;
1826 if (len >= ibuf->len) {
1828 * Simply move the whole buffer from ipipe to opipe
1830 *obuf = *ibuf;
1831 ibuf->ops = NULL;
1832 opipe->nrbufs++;
1833 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1834 ipipe->nrbufs--;
1835 input_wakeup = true;
1836 } else {
1838 * Get a reference to this pipe buffer,
1839 * so we can copy the contents over.
1841 ibuf->ops->get(ipipe, ibuf);
1842 *obuf = *ibuf;
1845 * Don't inherit the gift flag, we need to
1846 * prevent multiple steals of this page.
1848 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1850 obuf->len = len;
1851 opipe->nrbufs++;
1852 ibuf->offset += obuf->len;
1853 ibuf->len -= obuf->len;
1855 ret += obuf->len;
1856 len -= obuf->len;
1857 } while (len);
1859 pipe_unlock(ipipe);
1860 pipe_unlock(opipe);
1863 * If we put data in the output pipe, wakeup any potential readers.
1865 if (ret > 0) {
1866 smp_mb();
1867 if (waitqueue_active(&opipe->wait))
1868 wake_up_interruptible(&opipe->wait);
1869 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1871 if (input_wakeup)
1872 wakeup_pipe_writers(ipipe);
1874 return ret;
1878 * Link contents of ipipe to opipe.
1880 static int link_pipe(struct pipe_inode_info *ipipe,
1881 struct pipe_inode_info *opipe,
1882 size_t len, unsigned int flags)
1884 struct pipe_buffer *ibuf, *obuf;
1885 int ret = 0, i = 0, nbuf;
1888 * Potential ABBA deadlock, work around it by ordering lock
1889 * grabbing by pipe info address. Otherwise two different processes
1890 * could deadlock (one doing tee from A -> B, the other from B -> A).
1892 pipe_double_lock(ipipe, opipe);
1894 do {
1895 if (!opipe->readers) {
1896 send_sig(SIGPIPE, current, 0);
1897 if (!ret)
1898 ret = -EPIPE;
1899 break;
1903 * If we have iterated all input buffers or ran out of
1904 * output room, break.
1906 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1907 break;
1909 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1910 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1913 * Get a reference to this pipe buffer,
1914 * so we can copy the contents over.
1916 ibuf->ops->get(ipipe, ibuf);
1918 obuf = opipe->bufs + nbuf;
1919 *obuf = *ibuf;
1922 * Don't inherit the gift flag, we need to
1923 * prevent multiple steals of this page.
1925 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1927 if (obuf->len > len)
1928 obuf->len = len;
1930 opipe->nrbufs++;
1931 ret += obuf->len;
1932 len -= obuf->len;
1933 i++;
1934 } while (len);
1937 * return EAGAIN if we have the potential of some data in the
1938 * future, otherwise just return 0
1940 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1941 ret = -EAGAIN;
1943 pipe_unlock(ipipe);
1944 pipe_unlock(opipe);
1947 * If we put data in the output pipe, wakeup any potential readers.
1949 if (ret > 0) {
1950 smp_mb();
1951 if (waitqueue_active(&opipe->wait))
1952 wake_up_interruptible(&opipe->wait);
1953 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1956 return ret;
1960 * This is a tee(1) implementation that works on pipes. It doesn't copy
1961 * any data, it simply references the 'in' pages on the 'out' pipe.
1962 * The 'flags' used are the SPLICE_F_* variants, currently the only
1963 * applicable one is SPLICE_F_NONBLOCK.
1965 static long do_tee(struct file *in, struct file *out, size_t len,
1966 unsigned int flags)
1968 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1969 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1970 int ret = -EINVAL;
1973 * Duplicate the contents of ipipe to opipe without actually
1974 * copying the data.
1976 if (ipipe && opipe && ipipe != opipe) {
1978 * Keep going, unless we encounter an error. The ipipe/opipe
1979 * ordering doesn't really matter.
1981 ret = ipipe_prep(ipipe, flags);
1982 if (!ret) {
1983 ret = opipe_prep(opipe, flags);
1984 if (!ret)
1985 ret = link_pipe(ipipe, opipe, len, flags);
1989 return ret;
1992 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1994 struct file *in;
1995 int error, fput_in;
1997 if (unlikely(!len))
1998 return 0;
2000 error = -EBADF;
2001 in = fget_light(fdin, &fput_in);
2002 if (in) {
2003 if (in->f_mode & FMODE_READ) {
2004 int fput_out;
2005 struct file *out = fget_light(fdout, &fput_out);
2007 if (out) {
2008 if (out->f_mode & FMODE_WRITE)
2009 error = do_tee(in, out, len, flags);
2010 fput_light(out, fput_out);
2013 fput_light(in, fput_in);
2016 return error;