2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
41 struct pipe_buffer
*buf
)
43 struct page
*page
= buf
->page
;
44 struct address_space
*mapping
;
48 mapping
= page_mapping(page
);
50 WARN_ON(!PageUptodate(page
));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
60 wait_on_page_writeback(page
);
62 if (page_has_private(page
) &&
63 !try_to_release_page(page
, GFP_KERNEL
))
67 * If we succeeded in removing the mapping, set LRU flag
70 if (remove_mapping(mapping
, page
)) {
71 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
85 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
86 struct pipe_buffer
*buf
)
88 page_cache_release(buf
->page
);
89 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
97 struct pipe_buffer
*buf
)
99 struct page
*page
= buf
->page
;
102 if (!PageUptodate(page
)) {
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page
->mapping
) {
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page
)) {
123 * Page is ok afterall, we are done.
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
136 .map
= generic_pipe_buf_map
,
137 .unmap
= generic_pipe_buf_unmap
,
138 .confirm
= page_cache_pipe_buf_confirm
,
139 .release
= page_cache_pipe_buf_release
,
140 .steal
= page_cache_pipe_buf_steal
,
141 .get
= generic_pipe_buf_get
,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
145 struct pipe_buffer
*buf
)
147 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
150 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
151 return generic_pipe_buf_steal(pipe
, buf
);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
156 .map
= generic_pipe_buf_map
,
157 .unmap
= generic_pipe_buf_unmap
,
158 .confirm
= generic_pipe_buf_confirm
,
159 .release
= page_cache_pipe_buf_release
,
160 .steal
= user_page_pipe_buf_steal
,
161 .get
= generic_pipe_buf_get
,
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
175 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
176 struct splice_pipe_desc
*spd
)
178 unsigned int spd_pages
= spd
->nr_pages
;
179 int ret
, do_wakeup
, page_nr
;
188 if (!pipe
->readers
) {
189 send_sig(SIGPIPE
, current
, 0);
195 if (pipe
->nrbufs
< PIPE_BUFFERS
) {
196 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
197 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
199 buf
->page
= spd
->pages
[page_nr
];
200 buf
->offset
= spd
->partial
[page_nr
].offset
;
201 buf
->len
= spd
->partial
[page_nr
].len
;
202 buf
->private = spd
->partial
[page_nr
].private;
204 if (spd
->flags
& SPLICE_F_GIFT
)
205 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
214 if (!--spd
->nr_pages
)
216 if (pipe
->nrbufs
< PIPE_BUFFERS
)
222 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
228 if (signal_pending(current
)) {
236 if (waitqueue_active(&pipe
->wait
))
237 wake_up_interruptible_sync(&pipe
->wait
);
238 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
242 pipe
->waiting_writers
++;
244 pipe
->waiting_writers
--;
251 if (waitqueue_active(&pipe
->wait
))
252 wake_up_interruptible(&pipe
->wait
);
253 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
256 while (page_nr
< spd_pages
)
257 spd
->spd_release(spd
, page_nr
++);
262 static void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
264 page_cache_release(spd
->pages
[i
]);
268 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
269 struct pipe_inode_info
*pipe
, size_t len
,
272 struct address_space
*mapping
= in
->f_mapping
;
273 unsigned int loff
, nr_pages
, req_pages
;
274 struct page
*pages
[PIPE_BUFFERS
];
275 struct partial_page partial
[PIPE_BUFFERS
];
277 pgoff_t index
, end_index
;
280 struct splice_pipe_desc spd
= {
284 .ops
= &page_cache_pipe_buf_ops
,
285 .spd_release
= spd_release_page
,
288 index
= *ppos
>> PAGE_CACHE_SHIFT
;
289 loff
= *ppos
& ~PAGE_CACHE_MASK
;
290 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
291 nr_pages
= min(req_pages
, (unsigned)PIPE_BUFFERS
);
294 * Lookup the (hopefully) full range of pages we need.
296 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, pages
);
297 index
+= spd
.nr_pages
;
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
303 if (spd
.nr_pages
< nr_pages
)
304 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
305 index
, req_pages
- spd
.nr_pages
);
308 while (spd
.nr_pages
< nr_pages
) {
310 * Page could be there, find_get_pages_contig() breaks on
313 page
= find_get_page(mapping
, index
);
316 * page didn't exist, allocate one.
318 page
= page_cache_alloc_cold(mapping
);
322 error
= add_to_page_cache_lru(page
, mapping
, index
,
323 mapping_gfp_mask(mapping
));
324 if (unlikely(error
)) {
325 page_cache_release(page
);
326 if (error
== -EEXIST
)
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
337 pages
[spd
.nr_pages
++] = page
;
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
345 index
= *ppos
>> PAGE_CACHE_SHIFT
;
346 nr_pages
= spd
.nr_pages
;
348 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
349 unsigned int this_len
;
355 * this_len is the max we'll use from this page
357 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
358 page
= pages
[page_nr
];
360 if (PageReadahead(page
))
361 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
362 page
, index
, req_pages
- page_nr
);
365 * If the page isn't uptodate, we may need to start io on it
367 if (!PageUptodate(page
)) {
371 * Page was truncated, or invalidated by the
372 * filesystem. Redo the find/create, but this time the
373 * page is kept locked, so there's no chance of another
374 * race with truncate/invalidate.
376 if (!page
->mapping
) {
378 page
= find_or_create_page(mapping
, index
,
379 mapping_gfp_mask(mapping
));
385 page_cache_release(pages
[page_nr
]);
386 pages
[page_nr
] = page
;
389 * page was already under io and is now done, great
391 if (PageUptodate(page
)) {
397 * need to read in the page
399 error
= mapping
->a_ops
->readpage(in
, page
);
400 if (unlikely(error
)) {
402 * We really should re-lookup the page here,
403 * but it complicates things a lot. Instead
404 * lets just do what we already stored, and
405 * we'll get it the next time we are called.
407 if (error
== AOP_TRUNCATED_PAGE
)
415 * i_size must be checked after PageUptodate.
417 isize
= i_size_read(mapping
->host
);
418 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
419 if (unlikely(!isize
|| index
> end_index
))
423 * if this is the last page, see if we need to shrink
424 * the length and stop
426 if (end_index
== index
) {
430 * max good bytes in this page
432 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
437 * force quit after adding this page
439 this_len
= min(this_len
, plen
- loff
);
443 partial
[page_nr
].offset
= loff
;
444 partial
[page_nr
].len
= this_len
;
452 * Release any pages at the end, if we quit early. 'page_nr' is how far
453 * we got, 'nr_pages' is how many pages are in the map.
455 while (page_nr
< nr_pages
)
456 page_cache_release(pages
[page_nr
++]);
457 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
460 return splice_to_pipe(pipe
, &spd
);
466 * generic_file_splice_read - splice data from file to a pipe
467 * @in: file to splice from
468 * @ppos: position in @in
469 * @pipe: pipe to splice to
470 * @len: number of bytes to splice
471 * @flags: splice modifier flags
474 * Will read pages from given file and fill them into a pipe. Can be
475 * used as long as the address_space operations for the source implements
479 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
480 struct pipe_inode_info
*pipe
, size_t len
,
486 isize
= i_size_read(in
->f_mapping
->host
);
487 if (unlikely(*ppos
>= isize
))
490 left
= isize
- *ppos
;
491 if (unlikely(left
< len
))
494 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
502 EXPORT_SYMBOL(generic_file_splice_read
);
504 static const struct pipe_buf_operations default_pipe_buf_ops
= {
506 .map
= generic_pipe_buf_map
,
507 .unmap
= generic_pipe_buf_unmap
,
508 .confirm
= generic_pipe_buf_confirm
,
509 .release
= generic_pipe_buf_release
,
510 .steal
= generic_pipe_buf_steal
,
511 .get
= generic_pipe_buf_get
,
514 static ssize_t
kernel_readv(struct file
*file
, const struct iovec
*vec
,
515 unsigned long vlen
, loff_t offset
)
523 /* The cast to a user pointer is valid due to the set_fs() */
524 res
= vfs_readv(file
, (const struct iovec __user
*)vec
, vlen
, &pos
);
530 static ssize_t
kernel_write(struct file
*file
, const char *buf
, size_t count
,
538 /* The cast to a user pointer is valid due to the set_fs() */
539 res
= vfs_write(file
, (const char __user
*)buf
, count
, &pos
);
545 ssize_t
default_file_splice_read(struct file
*in
, loff_t
*ppos
,
546 struct pipe_inode_info
*pipe
, size_t len
,
549 unsigned int nr_pages
;
550 unsigned int nr_freed
;
552 struct page
*pages
[PIPE_BUFFERS
];
553 struct partial_page partial
[PIPE_BUFFERS
];
554 struct iovec vec
[PIPE_BUFFERS
];
560 struct splice_pipe_desc spd
= {
564 .ops
= &default_pipe_buf_ops
,
565 .spd_release
= spd_release_page
,
568 index
= *ppos
>> PAGE_CACHE_SHIFT
;
569 offset
= *ppos
& ~PAGE_CACHE_MASK
;
570 nr_pages
= (len
+ offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
572 for (i
= 0; i
< nr_pages
&& i
< PIPE_BUFFERS
&& len
; i
++) {
575 page
= alloc_page(GFP_USER
);
580 this_len
= min_t(size_t, len
, PAGE_CACHE_SIZE
- offset
);
581 vec
[i
].iov_base
= (void __user
*) page_address(page
);
582 vec
[i
].iov_len
= this_len
;
589 res
= kernel_readv(in
, vec
, spd
.nr_pages
, *ppos
);
600 for (i
= 0; i
< spd
.nr_pages
; i
++) {
601 this_len
= min_t(size_t, vec
[i
].iov_len
, res
);
602 partial
[i
].offset
= 0;
603 partial
[i
].len
= this_len
;
605 __free_page(pages
[i
]);
611 spd
.nr_pages
-= nr_freed
;
613 res
= splice_to_pipe(pipe
, &spd
);
620 for (i
= 0; i
< spd
.nr_pages
; i
++)
621 __free_page(pages
[i
]);
625 EXPORT_SYMBOL(default_file_splice_read
);
628 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
629 * using sendpage(). Return the number of bytes sent.
631 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
632 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
634 struct file
*file
= sd
->u
.file
;
635 loff_t pos
= sd
->pos
;
638 ret
= buf
->ops
->confirm(pipe
, buf
);
640 more
= (sd
->flags
& SPLICE_F_MORE
) || sd
->len
< sd
->total_len
;
641 if (file
->f_op
&& file
->f_op
->sendpage
)
642 ret
= file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
643 sd
->len
, &pos
, more
);
652 * This is a little more tricky than the file -> pipe splicing. There are
653 * basically three cases:
655 * - Destination page already exists in the address space and there
656 * are users of it. For that case we have no other option that
657 * copying the data. Tough luck.
658 * - Destination page already exists in the address space, but there
659 * are no users of it. Make sure it's uptodate, then drop it. Fall
660 * through to last case.
661 * - Destination page does not exist, we can add the pipe page to
662 * the page cache and avoid the copy.
664 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
665 * sd->flags), we attempt to migrate pages from the pipe to the output
666 * file address space page cache. This is possible if no one else has
667 * the pipe page referenced outside of the pipe and page cache. If
668 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
669 * a new page in the output file page cache and fill/dirty that.
671 int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
672 struct splice_desc
*sd
)
674 struct file
*file
= sd
->u
.file
;
675 struct address_space
*mapping
= file
->f_mapping
;
676 unsigned int offset
, this_len
;
682 * make sure the data in this buffer is uptodate
684 ret
= buf
->ops
->confirm(pipe
, buf
);
688 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
691 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
692 this_len
= PAGE_CACHE_SIZE
- offset
;
694 ret
= pagecache_write_begin(file
, mapping
, sd
->pos
, this_len
,
695 AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
699 if (buf
->page
!= page
) {
701 * Careful, ->map() uses KM_USER0!
703 char *src
= buf
->ops
->map(pipe
, buf
, 1);
704 char *dst
= kmap_atomic(page
, KM_USER1
);
706 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
707 flush_dcache_page(page
);
708 kunmap_atomic(dst
, KM_USER1
);
709 buf
->ops
->unmap(pipe
, buf
, src
);
711 ret
= pagecache_write_end(file
, mapping
, sd
->pos
, this_len
, this_len
,
716 EXPORT_SYMBOL(pipe_to_file
);
718 static void wakeup_pipe_writers(struct pipe_inode_info
*pipe
)
721 if (waitqueue_active(&pipe
->wait
))
722 wake_up_interruptible(&pipe
->wait
);
723 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
727 * splice_from_pipe_feed - feed available data from a pipe to a file
728 * @pipe: pipe to splice from
729 * @sd: information to @actor
730 * @actor: handler that splices the data
733 * This function loops over the pipe and calls @actor to do the
734 * actual moving of a single struct pipe_buffer to the desired
735 * destination. It returns when there's no more buffers left in
736 * the pipe or if the requested number of bytes (@sd->total_len)
737 * have been copied. It returns a positive number (one) if the
738 * pipe needs to be filled with more data, zero if the required
739 * number of bytes have been copied and -errno on error.
741 * This, together with splice_from_pipe_{begin,end,next}, may be
742 * used to implement the functionality of __splice_from_pipe() when
743 * locking is required around copying the pipe buffers to the
746 int splice_from_pipe_feed(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
751 while (pipe
->nrbufs
) {
752 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
753 const struct pipe_buf_operations
*ops
= buf
->ops
;
756 if (sd
->len
> sd
->total_len
)
757 sd
->len
= sd
->total_len
;
759 ret
= actor(pipe
, buf
, sd
);
768 sd
->num_spliced
+= ret
;
771 sd
->total_len
-= ret
;
775 ops
->release(pipe
, buf
);
776 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (PIPE_BUFFERS
- 1);
779 sd
->need_wakeup
= true;
788 EXPORT_SYMBOL(splice_from_pipe_feed
);
791 * splice_from_pipe_next - wait for some data to splice from
792 * @pipe: pipe to splice from
793 * @sd: information about the splice operation
796 * This function will wait for some data and return a positive
797 * value (one) if pipe buffers are available. It will return zero
798 * or -errno if no more data needs to be spliced.
800 int splice_from_pipe_next(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
802 while (!pipe
->nrbufs
) {
806 if (!pipe
->waiting_writers
&& sd
->num_spliced
)
809 if (sd
->flags
& SPLICE_F_NONBLOCK
)
812 if (signal_pending(current
))
815 if (sd
->need_wakeup
) {
816 wakeup_pipe_writers(pipe
);
817 sd
->need_wakeup
= false;
825 EXPORT_SYMBOL(splice_from_pipe_next
);
828 * splice_from_pipe_begin - start splicing from pipe
829 * @sd: information about the splice operation
832 * This function should be called before a loop containing
833 * splice_from_pipe_next() and splice_from_pipe_feed() to
834 * initialize the necessary fields of @sd.
836 void splice_from_pipe_begin(struct splice_desc
*sd
)
839 sd
->need_wakeup
= false;
841 EXPORT_SYMBOL(splice_from_pipe_begin
);
844 * splice_from_pipe_end - finish splicing from pipe
845 * @pipe: pipe to splice from
846 * @sd: information about the splice operation
849 * This function will wake up pipe writers if necessary. It should
850 * be called after a loop containing splice_from_pipe_next() and
851 * splice_from_pipe_feed().
853 void splice_from_pipe_end(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
856 wakeup_pipe_writers(pipe
);
858 EXPORT_SYMBOL(splice_from_pipe_end
);
861 * __splice_from_pipe - splice data from a pipe to given actor
862 * @pipe: pipe to splice from
863 * @sd: information to @actor
864 * @actor: handler that splices the data
867 * This function does little more than loop over the pipe and call
868 * @actor to do the actual moving of a single struct pipe_buffer to
869 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
873 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
878 splice_from_pipe_begin(sd
);
880 ret
= splice_from_pipe_next(pipe
, sd
);
882 ret
= splice_from_pipe_feed(pipe
, sd
, actor
);
884 splice_from_pipe_end(pipe
, sd
);
886 return sd
->num_spliced
? sd
->num_spliced
: ret
;
888 EXPORT_SYMBOL(__splice_from_pipe
);
891 * splice_from_pipe - splice data from a pipe to a file
892 * @pipe: pipe to splice from
893 * @out: file to splice to
894 * @ppos: position in @out
895 * @len: how many bytes to splice
896 * @flags: splice modifier flags
897 * @actor: handler that splices the data
900 * See __splice_from_pipe. This function locks the pipe inode,
901 * otherwise it's identical to __splice_from_pipe().
904 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
905 loff_t
*ppos
, size_t len
, unsigned int flags
,
909 struct splice_desc sd
= {
917 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
924 * generic_file_splice_write - splice data from a pipe to a file
926 * @out: file to write to
927 * @ppos: position in @out
928 * @len: number of bytes to splice
929 * @flags: splice modifier flags
932 * Will either move or copy pages (determined by @flags options) from
933 * the given pipe inode to the given file.
937 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
938 loff_t
*ppos
, size_t len
, unsigned int flags
)
940 struct address_space
*mapping
= out
->f_mapping
;
941 struct inode
*inode
= mapping
->host
;
942 struct splice_desc sd
= {
952 splice_from_pipe_begin(&sd
);
954 ret
= splice_from_pipe_next(pipe
, &sd
);
958 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
959 ret
= file_remove_suid(out
);
961 file_update_time(out
);
962 ret
= splice_from_pipe_feed(pipe
, &sd
, pipe_to_file
);
964 mutex_unlock(&inode
->i_mutex
);
966 splice_from_pipe_end(pipe
, &sd
);
971 ret
= sd
.num_spliced
;
974 unsigned long nr_pages
;
977 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
979 err
= generic_write_sync(out
, *ppos
, ret
);
984 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
990 EXPORT_SYMBOL(generic_file_splice_write
);
992 static int write_pipe_buf(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
993 struct splice_desc
*sd
)
998 ret
= buf
->ops
->confirm(pipe
, buf
);
1002 data
= buf
->ops
->map(pipe
, buf
, 0);
1003 ret
= kernel_write(sd
->u
.file
, data
+ buf
->offset
, sd
->len
, sd
->pos
);
1004 buf
->ops
->unmap(pipe
, buf
, data
);
1009 static ssize_t
default_file_splice_write(struct pipe_inode_info
*pipe
,
1010 struct file
*out
, loff_t
*ppos
,
1011 size_t len
, unsigned int flags
)
1015 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, write_pipe_buf
);
1023 * generic_splice_sendpage - splice data from a pipe to a socket
1024 * @pipe: pipe to splice from
1025 * @out: socket to write to
1026 * @ppos: position in @out
1027 * @len: number of bytes to splice
1028 * @flags: splice modifier flags
1031 * Will send @len bytes from the pipe to a network socket. No data copying
1035 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
1036 loff_t
*ppos
, size_t len
, unsigned int flags
)
1038 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
1041 EXPORT_SYMBOL(generic_splice_sendpage
);
1044 * Attempt to initiate a splice from pipe to file.
1046 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
1047 loff_t
*ppos
, size_t len
, unsigned int flags
)
1049 ssize_t (*splice_write
)(struct pipe_inode_info
*, struct file
*,
1050 loff_t
*, size_t, unsigned int);
1053 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1056 if (unlikely(out
->f_flags
& O_APPEND
))
1059 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
1060 if (unlikely(ret
< 0))
1063 if (out
->f_op
&& out
->f_op
->splice_write
)
1064 splice_write
= out
->f_op
->splice_write
;
1066 splice_write
= default_file_splice_write
;
1068 return splice_write(pipe
, out
, ppos
, len
, flags
);
1072 * Attempt to initiate a splice from a file to a pipe.
1074 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
1075 struct pipe_inode_info
*pipe
, size_t len
,
1078 ssize_t (*splice_read
)(struct file
*, loff_t
*,
1079 struct pipe_inode_info
*, size_t, unsigned int);
1082 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
1085 ret
= rw_verify_area(READ
, in
, ppos
, len
);
1086 if (unlikely(ret
< 0))
1089 if (in
->f_op
&& in
->f_op
->splice_read
)
1090 splice_read
= in
->f_op
->splice_read
;
1092 splice_read
= default_file_splice_read
;
1094 return splice_read(in
, ppos
, pipe
, len
, flags
);
1098 * splice_direct_to_actor - splices data directly between two non-pipes
1099 * @in: file to splice from
1100 * @sd: actor information on where to splice to
1101 * @actor: handles the data splicing
1104 * This is a special case helper to splice directly between two
1105 * points, without requiring an explicit pipe. Internally an allocated
1106 * pipe is cached in the process, and reused during the lifetime of
1110 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
1111 splice_direct_actor
*actor
)
1113 struct pipe_inode_info
*pipe
;
1120 * We require the input being a regular file, as we don't want to
1121 * randomly drop data for eg socket -> socket splicing. Use the
1122 * piped splicing for that!
1124 i_mode
= in
->f_path
.dentry
->d_inode
->i_mode
;
1125 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
1129 * neither in nor out is a pipe, setup an internal pipe attached to
1130 * 'out' and transfer the wanted data from 'in' to 'out' through that
1132 pipe
= current
->splice_pipe
;
1133 if (unlikely(!pipe
)) {
1134 pipe
= alloc_pipe_info(NULL
);
1139 * We don't have an immediate reader, but we'll read the stuff
1140 * out of the pipe right after the splice_to_pipe(). So set
1141 * PIPE_READERS appropriately.
1145 current
->splice_pipe
= pipe
;
1153 len
= sd
->total_len
;
1157 * Don't block on output, we have to drain the direct pipe.
1159 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
1163 loff_t pos
= sd
->pos
, prev_pos
= pos
;
1165 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
1166 if (unlikely(ret
<= 0))
1170 sd
->total_len
= read_len
;
1173 * NOTE: nonblocking mode only applies to the input. We
1174 * must not do the output in nonblocking mode as then we
1175 * could get stuck data in the internal pipe:
1177 ret
= actor(pipe
, sd
);
1178 if (unlikely(ret
<= 0)) {
1187 if (ret
< read_len
) {
1188 sd
->pos
= prev_pos
+ ret
;
1194 pipe
->nrbufs
= pipe
->curbuf
= 0;
1200 * If we did an incomplete transfer we must release
1201 * the pipe buffers in question:
1203 for (i
= 0; i
< PIPE_BUFFERS
; i
++) {
1204 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1207 buf
->ops
->release(pipe
, buf
);
1217 EXPORT_SYMBOL(splice_direct_to_actor
);
1219 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1220 struct splice_desc
*sd
)
1222 struct file
*file
= sd
->u
.file
;
1224 return do_splice_from(pipe
, file
, &sd
->pos
, sd
->total_len
, sd
->flags
);
1228 * do_splice_direct - splices data directly between two files
1229 * @in: file to splice from
1230 * @ppos: input file offset
1231 * @out: file to splice to
1232 * @len: number of bytes to splice
1233 * @flags: splice modifier flags
1236 * For use by do_sendfile(). splice can easily emulate sendfile, but
1237 * doing it in the application would incur an extra system call
1238 * (splice in + splice out, as compared to just sendfile()). So this helper
1239 * can splice directly through a process-private pipe.
1242 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1243 size_t len
, unsigned int flags
)
1245 struct splice_desc sd
= {
1254 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1261 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1262 struct pipe_inode_info
*opipe
,
1263 size_t len
, unsigned int flags
);
1265 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1266 * location, so checking ->i_pipe is not enough to verify that this is a
1269 static inline struct pipe_inode_info
*pipe_info(struct inode
*inode
)
1271 if (S_ISFIFO(inode
->i_mode
))
1272 return inode
->i_pipe
;
1278 * Determine where to splice to/from.
1280 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1281 struct file
*out
, loff_t __user
*off_out
,
1282 size_t len
, unsigned int flags
)
1284 struct pipe_inode_info
*ipipe
;
1285 struct pipe_inode_info
*opipe
;
1286 loff_t offset
, *off
;
1289 ipipe
= pipe_info(in
->f_path
.dentry
->d_inode
);
1290 opipe
= pipe_info(out
->f_path
.dentry
->d_inode
);
1292 if (ipipe
&& opipe
) {
1293 if (off_in
|| off_out
)
1296 if (!(in
->f_mode
& FMODE_READ
))
1299 if (!(out
->f_mode
& FMODE_WRITE
))
1302 /* Splicing to self would be fun, but... */
1306 return splice_pipe_to_pipe(ipipe
, opipe
, len
, flags
);
1313 if (!out
->f_op
|| !out
->f_op
->llseek
||
1314 out
->f_op
->llseek
== no_llseek
)
1316 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1322 ret
= do_splice_from(ipipe
, out
, off
, len
, flags
);
1324 if (off_out
&& copy_to_user(off_out
, off
, sizeof(loff_t
)))
1334 if (!in
->f_op
|| !in
->f_op
->llseek
||
1335 in
->f_op
->llseek
== no_llseek
)
1337 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1343 ret
= do_splice_to(in
, off
, opipe
, len
, flags
);
1345 if (off_in
&& copy_to_user(off_in
, off
, sizeof(loff_t
)))
1355 * Map an iov into an array of pages and offset/length tupples. With the
1356 * partial_page structure, we can map several non-contiguous ranges into
1357 * our ones pages[] map instead of splitting that operation into pieces.
1358 * Could easily be exported as a generic helper for other users, in which
1359 * case one would probably want to add a 'max_nr_pages' parameter as well.
1361 static int get_iovec_page_array(const struct iovec __user
*iov
,
1362 unsigned int nr_vecs
, struct page
**pages
,
1363 struct partial_page
*partial
, int aligned
)
1365 int buffers
= 0, error
= 0;
1368 unsigned long off
, npages
;
1375 if (copy_from_user(&entry
, iov
, sizeof(entry
)))
1378 base
= entry
.iov_base
;
1379 len
= entry
.iov_len
;
1382 * Sanity check this iovec. 0 read succeeds.
1388 if (!access_ok(VERIFY_READ
, base
, len
))
1392 * Get this base offset and number of pages, then map
1393 * in the user pages.
1395 off
= (unsigned long) base
& ~PAGE_MASK
;
1398 * If asked for alignment, the offset must be zero and the
1399 * length a multiple of the PAGE_SIZE.
1402 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1405 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1406 if (npages
> PIPE_BUFFERS
- buffers
)
1407 npages
= PIPE_BUFFERS
- buffers
;
1409 error
= get_user_pages_fast((unsigned long)base
, npages
,
1410 0, &pages
[buffers
]);
1412 if (unlikely(error
<= 0))
1416 * Fill this contiguous range into the partial page map.
1418 for (i
= 0; i
< error
; i
++) {
1419 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1421 partial
[buffers
].offset
= off
;
1422 partial
[buffers
].len
= plen
;
1430 * We didn't complete this iov, stop here since it probably
1431 * means we have to move some of this into a pipe to
1432 * be able to continue.
1438 * Don't continue if we mapped fewer pages than we asked for,
1439 * or if we mapped the max number of pages that we have
1442 if (error
< npages
|| buffers
== PIPE_BUFFERS
)
1455 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1456 struct splice_desc
*sd
)
1461 ret
= buf
->ops
->confirm(pipe
, buf
);
1466 * See if we can use the atomic maps, by prefaulting in the
1467 * pages and doing an atomic copy
1469 if (!fault_in_pages_writeable(sd
->u
.userptr
, sd
->len
)) {
1470 src
= buf
->ops
->map(pipe
, buf
, 1);
1471 ret
= __copy_to_user_inatomic(sd
->u
.userptr
, src
+ buf
->offset
,
1473 buf
->ops
->unmap(pipe
, buf
, src
);
1481 * No dice, use slow non-atomic map and copy
1483 src
= buf
->ops
->map(pipe
, buf
, 0);
1486 if (copy_to_user(sd
->u
.userptr
, src
+ buf
->offset
, sd
->len
))
1489 buf
->ops
->unmap(pipe
, buf
, src
);
1492 sd
->u
.userptr
+= ret
;
1497 * For lack of a better implementation, implement vmsplice() to userspace
1498 * as a simple copy of the pipes pages to the user iov.
1500 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*iov
,
1501 unsigned long nr_segs
, unsigned int flags
)
1503 struct pipe_inode_info
*pipe
;
1504 struct splice_desc sd
;
1509 pipe
= pipe_info(file
->f_path
.dentry
->d_inode
);
1521 * Get user address base and length for this iovec.
1523 error
= get_user(base
, &iov
->iov_base
);
1524 if (unlikely(error
))
1526 error
= get_user(len
, &iov
->iov_len
);
1527 if (unlikely(error
))
1531 * Sanity check this iovec. 0 read succeeds.
1535 if (unlikely(!base
)) {
1540 if (unlikely(!access_ok(VERIFY_WRITE
, base
, len
))) {
1548 sd
.u
.userptr
= base
;
1551 size
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1577 * vmsplice splices a user address range into a pipe. It can be thought of
1578 * as splice-from-memory, where the regular splice is splice-from-file (or
1579 * to file). In both cases the output is a pipe, naturally.
1581 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1582 unsigned long nr_segs
, unsigned int flags
)
1584 struct pipe_inode_info
*pipe
;
1585 struct page
*pages
[PIPE_BUFFERS
];
1586 struct partial_page partial
[PIPE_BUFFERS
];
1587 struct splice_pipe_desc spd
= {
1591 .ops
= &user_page_pipe_buf_ops
,
1592 .spd_release
= spd_release_page
,
1595 pipe
= pipe_info(file
->f_path
.dentry
->d_inode
);
1599 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, pages
, partial
,
1600 flags
& SPLICE_F_GIFT
);
1601 if (spd
.nr_pages
<= 0)
1602 return spd
.nr_pages
;
1604 return splice_to_pipe(pipe
, &spd
);
1608 * Note that vmsplice only really supports true splicing _from_ user memory
1609 * to a pipe, not the other way around. Splicing from user memory is a simple
1610 * operation that can be supported without any funky alignment restrictions
1611 * or nasty vm tricks. We simply map in the user memory and fill them into
1612 * a pipe. The reverse isn't quite as easy, though. There are two possible
1613 * solutions for that:
1615 * - memcpy() the data internally, at which point we might as well just
1616 * do a regular read() on the buffer anyway.
1617 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1618 * has restriction limitations on both ends of the pipe).
1620 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1623 SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct iovec __user
*, iov
,
1624 unsigned long, nr_segs
, unsigned int, flags
)
1630 if (unlikely(nr_segs
> UIO_MAXIOV
))
1632 else if (unlikely(!nr_segs
))
1636 file
= fget_light(fd
, &fput
);
1638 if (file
->f_mode
& FMODE_WRITE
)
1639 error
= vmsplice_to_pipe(file
, iov
, nr_segs
, flags
);
1640 else if (file
->f_mode
& FMODE_READ
)
1641 error
= vmsplice_to_user(file
, iov
, nr_segs
, flags
);
1643 fput_light(file
, fput
);
1649 SYSCALL_DEFINE6(splice
, int, fd_in
, loff_t __user
*, off_in
,
1650 int, fd_out
, loff_t __user
*, off_out
,
1651 size_t, len
, unsigned int, flags
)
1654 struct file
*in
, *out
;
1655 int fput_in
, fput_out
;
1661 in
= fget_light(fd_in
, &fput_in
);
1663 if (in
->f_mode
& FMODE_READ
) {
1664 out
= fget_light(fd_out
, &fput_out
);
1666 if (out
->f_mode
& FMODE_WRITE
)
1667 error
= do_splice(in
, off_in
,
1670 fput_light(out
, fput_out
);
1674 fput_light(in
, fput_in
);
1681 * Make sure there's data to read. Wait for input if we can, otherwise
1682 * return an appropriate error.
1684 static int ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1689 * Check ->nrbufs without the inode lock first. This function
1690 * is speculative anyways, so missing one is ok.
1698 while (!pipe
->nrbufs
) {
1699 if (signal_pending(current
)) {
1705 if (!pipe
->waiting_writers
) {
1706 if (flags
& SPLICE_F_NONBLOCK
) {
1719 * Make sure there's writeable room. Wait for room if we can, otherwise
1720 * return an appropriate error.
1722 static int opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1727 * Check ->nrbufs without the inode lock first. This function
1728 * is speculative anyways, so missing one is ok.
1730 if (pipe
->nrbufs
< PIPE_BUFFERS
)
1736 while (pipe
->nrbufs
>= PIPE_BUFFERS
) {
1737 if (!pipe
->readers
) {
1738 send_sig(SIGPIPE
, current
, 0);
1742 if (flags
& SPLICE_F_NONBLOCK
) {
1746 if (signal_pending(current
)) {
1750 pipe
->waiting_writers
++;
1752 pipe
->waiting_writers
--;
1760 * Splice contents of ipipe to opipe.
1762 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1763 struct pipe_inode_info
*opipe
,
1764 size_t len
, unsigned int flags
)
1766 struct pipe_buffer
*ibuf
, *obuf
;
1768 bool input_wakeup
= false;
1772 ret
= ipipe_prep(ipipe
, flags
);
1776 ret
= opipe_prep(opipe
, flags
);
1781 * Potential ABBA deadlock, work around it by ordering lock
1782 * grabbing by pipe info address. Otherwise two different processes
1783 * could deadlock (one doing tee from A -> B, the other from B -> A).
1785 pipe_double_lock(ipipe
, opipe
);
1788 if (!opipe
->readers
) {
1789 send_sig(SIGPIPE
, current
, 0);
1795 if (!ipipe
->nrbufs
&& !ipipe
->writers
)
1799 * Cannot make any progress, because either the input
1800 * pipe is empty or the output pipe is full.
1802 if (!ipipe
->nrbufs
|| opipe
->nrbufs
>= PIPE_BUFFERS
) {
1803 /* Already processed some buffers, break */
1807 if (flags
& SPLICE_F_NONBLOCK
) {
1813 * We raced with another reader/writer and haven't
1814 * managed to process any buffers. A zero return
1815 * value means EOF, so retry instead.
1822 ibuf
= ipipe
->bufs
+ ipipe
->curbuf
;
1823 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) % PIPE_BUFFERS
;
1824 obuf
= opipe
->bufs
+ nbuf
;
1826 if (len
>= ibuf
->len
) {
1828 * Simply move the whole buffer from ipipe to opipe
1833 ipipe
->curbuf
= (ipipe
->curbuf
+ 1) % PIPE_BUFFERS
;
1835 input_wakeup
= true;
1838 * Get a reference to this pipe buffer,
1839 * so we can copy the contents over.
1841 ibuf
->ops
->get(ipipe
, ibuf
);
1845 * Don't inherit the gift flag, we need to
1846 * prevent multiple steals of this page.
1848 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1852 ibuf
->offset
+= obuf
->len
;
1853 ibuf
->len
-= obuf
->len
;
1863 * If we put data in the output pipe, wakeup any potential readers.
1867 if (waitqueue_active(&opipe
->wait
))
1868 wake_up_interruptible(&opipe
->wait
);
1869 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
1872 wakeup_pipe_writers(ipipe
);
1878 * Link contents of ipipe to opipe.
1880 static int link_pipe(struct pipe_inode_info
*ipipe
,
1881 struct pipe_inode_info
*opipe
,
1882 size_t len
, unsigned int flags
)
1884 struct pipe_buffer
*ibuf
, *obuf
;
1885 int ret
= 0, i
= 0, nbuf
;
1888 * Potential ABBA deadlock, work around it by ordering lock
1889 * grabbing by pipe info address. Otherwise two different processes
1890 * could deadlock (one doing tee from A -> B, the other from B -> A).
1892 pipe_double_lock(ipipe
, opipe
);
1895 if (!opipe
->readers
) {
1896 send_sig(SIGPIPE
, current
, 0);
1903 * If we have iterated all input buffers or ran out of
1904 * output room, break.
1906 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= PIPE_BUFFERS
)
1909 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (PIPE_BUFFERS
- 1));
1910 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
1913 * Get a reference to this pipe buffer,
1914 * so we can copy the contents over.
1916 ibuf
->ops
->get(ipipe
, ibuf
);
1918 obuf
= opipe
->bufs
+ nbuf
;
1922 * Don't inherit the gift flag, we need to
1923 * prevent multiple steals of this page.
1925 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1927 if (obuf
->len
> len
)
1937 * return EAGAIN if we have the potential of some data in the
1938 * future, otherwise just return 0
1940 if (!ret
&& ipipe
->waiting_writers
&& (flags
& SPLICE_F_NONBLOCK
))
1947 * If we put data in the output pipe, wakeup any potential readers.
1951 if (waitqueue_active(&opipe
->wait
))
1952 wake_up_interruptible(&opipe
->wait
);
1953 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
1960 * This is a tee(1) implementation that works on pipes. It doesn't copy
1961 * any data, it simply references the 'in' pages on the 'out' pipe.
1962 * The 'flags' used are the SPLICE_F_* variants, currently the only
1963 * applicable one is SPLICE_F_NONBLOCK.
1965 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
1968 struct pipe_inode_info
*ipipe
= pipe_info(in
->f_path
.dentry
->d_inode
);
1969 struct pipe_inode_info
*opipe
= pipe_info(out
->f_path
.dentry
->d_inode
);
1973 * Duplicate the contents of ipipe to opipe without actually
1976 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
1978 * Keep going, unless we encounter an error. The ipipe/opipe
1979 * ordering doesn't really matter.
1981 ret
= ipipe_prep(ipipe
, flags
);
1983 ret
= opipe_prep(opipe
, flags
);
1985 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
1992 SYSCALL_DEFINE4(tee
, int, fdin
, int, fdout
, size_t, len
, unsigned int, flags
)
2001 in
= fget_light(fdin
, &fput_in
);
2003 if (in
->f_mode
& FMODE_READ
) {
2005 struct file
*out
= fget_light(fdout
, &fput_out
);
2008 if (out
->f_mode
& FMODE_WRITE
)
2009 error
= do_tee(in
, out
, len
, flags
);
2010 fput_light(out
, fput_out
);
2013 fput_light(in
, fput_in
);