2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
41 #include <asm/atomic.h>
42 #include <asm/byteorder.h>
44 #include <asm/system.h>
46 #ifdef CONFIG_PPC_PMAC
47 #include <asm/pmac_feature.h>
53 #define DESCRIPTOR_OUTPUT_MORE 0
54 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
55 #define DESCRIPTOR_INPUT_MORE (2 << 12)
56 #define DESCRIPTOR_INPUT_LAST (3 << 12)
57 #define DESCRIPTOR_STATUS (1 << 11)
58 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
59 #define DESCRIPTOR_PING (1 << 7)
60 #define DESCRIPTOR_YY (1 << 6)
61 #define DESCRIPTOR_NO_IRQ (0 << 4)
62 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
63 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
64 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
65 #define DESCRIPTOR_WAIT (3 << 0)
71 __le32 branch_address
;
73 __le16 transfer_status
;
74 } __attribute__((aligned(16)));
76 struct db_descriptor
{
79 __le16 second_req_count
;
80 __le16 first_req_count
;
81 __le32 branch_address
;
82 __le16 second_res_count
;
83 __le16 first_res_count
;
88 } __attribute__((aligned(16)));
90 #define CONTROL_SET(regs) (regs)
91 #define CONTROL_CLEAR(regs) ((regs) + 4)
92 #define COMMAND_PTR(regs) ((regs) + 12)
93 #define CONTEXT_MATCH(regs) ((regs) + 16)
96 struct descriptor descriptor
;
97 struct ar_buffer
*next
;
102 struct fw_ohci
*ohci
;
103 struct ar_buffer
*current_buffer
;
104 struct ar_buffer
*last_buffer
;
107 struct tasklet_struct tasklet
;
112 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
113 struct descriptor
*d
,
114 struct descriptor
*last
);
117 * A buffer that contains a block of DMA-able coherent memory used for
118 * storing a portion of a DMA descriptor program.
120 struct descriptor_buffer
{
121 struct list_head list
;
122 dma_addr_t buffer_bus
;
125 struct descriptor buffer
[0];
129 struct fw_ohci
*ohci
;
131 int total_allocation
;
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
138 struct list_head buffer_list
;
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
144 struct descriptor_buffer
*buffer_tail
;
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
150 struct descriptor
*last
;
153 * The last descriptor in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
156 struct descriptor
*prev
;
158 descriptor_callback_t callback
;
160 struct tasklet_struct tasklet
;
163 #define IT_HEADER_SY(v) ((v) << 0)
164 #define IT_HEADER_TCODE(v) ((v) << 4)
165 #define IT_HEADER_CHANNEL(v) ((v) << 8)
166 #define IT_HEADER_TAG(v) ((v) << 14)
167 #define IT_HEADER_SPEED(v) ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
171 struct fw_iso_context base
;
172 struct context context
;
175 size_t header_length
;
178 #define CONFIG_ROM_SIZE 1024
183 __iomem
char *registers
;
184 dma_addr_t self_id_bus
;
186 struct tasklet_struct bus_reset_tasklet
;
189 int request_generation
; /* for timestamping incoming requests */
190 atomic_t bus_seconds
;
194 bool bus_reset_packet_quirk
;
197 * Spinlock for accessing fw_ohci data. Never call out of
198 * this driver with this lock held.
201 u32 self_id_buffer
[512];
203 /* Config rom buffers */
205 dma_addr_t config_rom_bus
;
206 __be32
*next_config_rom
;
207 dma_addr_t next_config_rom_bus
;
210 struct ar_context ar_request_ctx
;
211 struct ar_context ar_response_ctx
;
212 struct context at_request_ctx
;
213 struct context at_response_ctx
;
216 struct iso_context
*it_context_list
;
217 u64 ir_context_channels
;
219 struct iso_context
*ir_context_list
;
222 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
224 return container_of(card
, struct fw_ohci
, card
);
227 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
228 #define IR_CONTEXT_BUFFER_FILL 0x80000000
229 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
230 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
231 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
232 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
234 #define CONTEXT_RUN 0x8000
235 #define CONTEXT_WAKE 0x1000
236 #define CONTEXT_DEAD 0x0800
237 #define CONTEXT_ACTIVE 0x0400
239 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
240 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
241 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
243 #define OHCI1394_REGISTER_SIZE 0x800
244 #define OHCI_LOOP_COUNT 500
245 #define OHCI1394_PCI_HCI_Control 0x40
246 #define SELF_ID_BUF_SIZE 0x800
247 #define OHCI_TCODE_PHY_PACKET 0x0e
248 #define OHCI_VERSION_1_1 0x010010
250 static char ohci_driver_name
[] = KBUILD_MODNAME
;
252 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
254 #define OHCI_PARAM_DEBUG_AT_AR 1
255 #define OHCI_PARAM_DEBUG_SELFIDS 2
256 #define OHCI_PARAM_DEBUG_IRQS 4
257 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
259 static int param_debug
;
260 module_param_named(debug
, param_debug
, int, 0644);
261 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
262 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
263 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
264 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
265 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
266 ", or a combination, or all = -1)");
268 static void log_irqs(u32 evt
)
270 if (likely(!(param_debug
&
271 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
274 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
275 !(evt
& OHCI1394_busReset
))
278 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
279 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
280 evt
& OHCI1394_RQPkt
? " AR_req" : "",
281 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
282 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
283 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
284 evt
& OHCI1394_isochRx
? " IR" : "",
285 evt
& OHCI1394_isochTx
? " IT" : "",
286 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
287 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
288 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
289 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
290 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
291 evt
& OHCI1394_busReset
? " busReset" : "",
292 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
293 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
294 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
295 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
296 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
297 OHCI1394_cycleInconsistent
|
298 OHCI1394_regAccessFail
| OHCI1394_busReset
)
302 static const char *speed
[] = {
303 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
305 static const char *power
[] = {
306 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
307 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
309 static const char port
[] = { '.', '-', 'p', 'c', };
311 static char _p(u32
*s
, int shift
)
313 return port
[*s
>> shift
& 3];
316 static void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
)
318 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
321 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
322 self_id_count
, generation
, node_id
);
324 for (; self_id_count
--; ++s
)
325 if ((*s
& 1 << 23) == 0)
326 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
327 "%s gc=%d %s %s%s%s\n",
328 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
329 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
330 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
331 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
333 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
335 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
336 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
339 static const char *evts
[] = {
340 [0x00] = "evt_no_status", [0x01] = "-reserved-",
341 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
342 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
343 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
344 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
345 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
346 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
347 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
348 [0x10] = "-reserved-", [0x11] = "ack_complete",
349 [0x12] = "ack_pending ", [0x13] = "-reserved-",
350 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
351 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
352 [0x18] = "-reserved-", [0x19] = "-reserved-",
353 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
354 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
355 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
356 [0x20] = "pending/cancelled",
358 static const char *tcodes
[] = {
359 [0x0] = "QW req", [0x1] = "BW req",
360 [0x2] = "W resp", [0x3] = "-reserved-",
361 [0x4] = "QR req", [0x5] = "BR req",
362 [0x6] = "QR resp", [0x7] = "BR resp",
363 [0x8] = "cycle start", [0x9] = "Lk req",
364 [0xa] = "async stream packet", [0xb] = "Lk resp",
365 [0xc] = "-reserved-", [0xd] = "-reserved-",
366 [0xe] = "link internal", [0xf] = "-reserved-",
368 static const char *phys
[] = {
369 [0x0] = "phy config packet", [0x1] = "link-on packet",
370 [0x2] = "self-id packet", [0x3] = "-reserved-",
373 static void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
)
375 int tcode
= header
[0] >> 4 & 0xf;
378 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
381 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
384 if (evt
== OHCI1394_evt_bus_reset
) {
385 fw_notify("A%c evt_bus_reset, generation %d\n",
386 dir
, (header
[2] >> 16) & 0xff);
390 if (header
[0] == ~header
[1]) {
391 fw_notify("A%c %s, %s, %08x\n",
392 dir
, evts
[evt
], phys
[header
[0] >> 30 & 0x3], header
[0]);
397 case 0x0: case 0x6: case 0x8:
398 snprintf(specific
, sizeof(specific
), " = %08x",
399 be32_to_cpu((__force __be32
)header
[3]));
401 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
402 snprintf(specific
, sizeof(specific
), " %x,%x",
403 header
[3] >> 16, header
[3] & 0xffff);
411 fw_notify("A%c %s, %s\n", dir
, evts
[evt
], tcodes
[tcode
]);
413 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
414 fw_notify("A%c spd %x tl %02x, "
417 dir
, speed
, header
[0] >> 10 & 0x3f,
418 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
419 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
422 fw_notify("A%c spd %x tl %02x, "
425 dir
, speed
, header
[0] >> 10 & 0x3f,
426 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
427 tcodes
[tcode
], specific
);
433 #define log_irqs(evt)
434 #define log_selfids(node_id, generation, self_id_count, sid)
435 #define log_ar_at_event(dir, speed, header, evt)
437 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
439 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
441 writel(data
, ohci
->registers
+ offset
);
444 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
446 return readl(ohci
->registers
+ offset
);
449 static inline void flush_writes(const struct fw_ohci
*ohci
)
451 /* Do a dummy read to flush writes. */
452 reg_read(ohci
, OHCI1394_Version
);
455 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
456 int clear_bits
, int set_bits
)
458 struct fw_ohci
*ohci
= fw_ohci(card
);
461 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
464 val
= reg_read(ohci
, OHCI1394_PhyControl
);
465 if ((val
& OHCI1394_PhyControl_ReadDone
) == 0) {
466 fw_error("failed to set phy reg bits.\n");
470 old
= OHCI1394_PhyControl_ReadData(val
);
471 old
= (old
& ~clear_bits
) | set_bits
;
472 reg_write(ohci
, OHCI1394_PhyControl
,
473 OHCI1394_PhyControl_Write(addr
, old
));
478 static int ar_context_add_page(struct ar_context
*ctx
)
480 struct device
*dev
= ctx
->ohci
->card
.device
;
481 struct ar_buffer
*ab
;
482 dma_addr_t
uninitialized_var(ab_bus
);
485 ab
= dma_alloc_coherent(dev
, PAGE_SIZE
, &ab_bus
, GFP_ATOMIC
);
490 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
491 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
493 DESCRIPTOR_BRANCH_ALWAYS
);
494 offset
= offsetof(struct ar_buffer
, data
);
495 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
496 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
497 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
498 ab
->descriptor
.branch_address
= 0;
500 ctx
->last_buffer
->descriptor
.branch_address
= cpu_to_le32(ab_bus
| 1);
501 ctx
->last_buffer
->next
= ab
;
502 ctx
->last_buffer
= ab
;
504 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
505 flush_writes(ctx
->ohci
);
510 static void ar_context_release(struct ar_context
*ctx
)
512 struct ar_buffer
*ab
, *ab_next
;
516 for (ab
= ctx
->current_buffer
; ab
; ab
= ab_next
) {
518 offset
= offsetof(struct ar_buffer
, data
);
519 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
520 dma_free_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
525 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
526 #define cond_le32_to_cpu(v) \
527 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
529 #define cond_le32_to_cpu(v) le32_to_cpu(v)
532 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
534 struct fw_ohci
*ohci
= ctx
->ohci
;
536 u32 status
, length
, tcode
;
539 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
540 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
541 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
543 tcode
= (p
.header
[0] >> 4) & 0x0f;
545 case TCODE_WRITE_QUADLET_REQUEST
:
546 case TCODE_READ_QUADLET_RESPONSE
:
547 p
.header
[3] = (__force __u32
) buffer
[3];
548 p
.header_length
= 16;
549 p
.payload_length
= 0;
552 case TCODE_READ_BLOCK_REQUEST
:
553 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
554 p
.header_length
= 16;
555 p
.payload_length
= 0;
558 case TCODE_WRITE_BLOCK_REQUEST
:
559 case TCODE_READ_BLOCK_RESPONSE
:
560 case TCODE_LOCK_REQUEST
:
561 case TCODE_LOCK_RESPONSE
:
562 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
563 p
.header_length
= 16;
564 p
.payload_length
= p
.header
[3] >> 16;
567 case TCODE_WRITE_RESPONSE
:
568 case TCODE_READ_QUADLET_REQUEST
:
569 case OHCI_TCODE_PHY_PACKET
:
570 p
.header_length
= 12;
571 p
.payload_length
= 0;
575 /* FIXME: Stop context, discard everything, and restart? */
577 p
.payload_length
= 0;
580 p
.payload
= (void *) buffer
+ p
.header_length
;
582 /* FIXME: What to do about evt_* errors? */
583 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
584 status
= cond_le32_to_cpu(buffer
[length
]);
585 evt
= (status
>> 16) & 0x1f;
588 p
.speed
= (status
>> 21) & 0x7;
589 p
.timestamp
= status
& 0xffff;
590 p
.generation
= ohci
->request_generation
;
592 log_ar_at_event('R', p
.speed
, p
.header
, evt
);
595 * The OHCI bus reset handler synthesizes a phy packet with
596 * the new generation number when a bus reset happens (see
597 * section 8.4.2.3). This helps us determine when a request
598 * was received and make sure we send the response in the same
599 * generation. We only need this for requests; for responses
600 * we use the unique tlabel for finding the matching
603 * Alas some chips sometimes emit bus reset packets with a
604 * wrong generation. We set the correct generation for these
605 * at a slightly incorrect time (in bus_reset_tasklet).
607 if (evt
== OHCI1394_evt_bus_reset
) {
608 if (!ohci
->bus_reset_packet_quirk
)
609 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
610 } else if (ctx
== &ohci
->ar_request_ctx
) {
611 fw_core_handle_request(&ohci
->card
, &p
);
613 fw_core_handle_response(&ohci
->card
, &p
);
616 return buffer
+ length
+ 1;
619 static void ar_context_tasklet(unsigned long data
)
621 struct ar_context
*ctx
= (struct ar_context
*)data
;
622 struct fw_ohci
*ohci
= ctx
->ohci
;
623 struct ar_buffer
*ab
;
624 struct descriptor
*d
;
627 ab
= ctx
->current_buffer
;
630 if (d
->res_count
== 0) {
631 size_t size
, size2
, rest
, pktsize
, size3
, offset
;
632 dma_addr_t start_bus
;
636 * This descriptor is finished and we may have a
637 * packet split across this and the next buffer. We
638 * reuse the page for reassembling the split packet.
641 offset
= offsetof(struct ar_buffer
, data
);
643 start_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
648 size
= start
+ PAGE_SIZE
- ctx
->pointer
;
649 /* valid buffer data in the next page */
650 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
651 /* what actually fits in this page */
652 size2
= min(rest
, (size_t)PAGE_SIZE
- offset
- size
);
653 memmove(buffer
, ctx
->pointer
, size
);
654 memcpy(buffer
+ size
, ab
->data
, size2
);
657 void *next
= handle_ar_packet(ctx
, buffer
);
658 pktsize
= next
- buffer
;
659 if (pktsize
>= size
) {
661 * We have handled all the data that was
662 * originally in this page, so we can now
663 * continue in the next page.
668 /* move the next packet to the start of the buffer */
669 memmove(buffer
, next
, size
+ size2
- pktsize
);
671 /* fill up this page again */
672 size3
= min(rest
- size2
,
673 (size_t)PAGE_SIZE
- offset
- size
- size2
);
674 memcpy(buffer
+ size
+ size2
,
675 (void *) ab
->data
+ size2
, size3
);
680 /* handle the packets that are fully in the next page */
681 buffer
= (void *) ab
->data
+
682 (buffer
- (start
+ offset
+ size
));
683 end
= (void *) ab
->data
+ rest
;
686 buffer
= handle_ar_packet(ctx
, buffer
);
688 ctx
->current_buffer
= ab
;
691 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
693 ar_context_add_page(ctx
);
695 ctx
->pointer
= start
+ PAGE_SIZE
;
698 buffer
= ctx
->pointer
;
700 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(d
->res_count
);
703 buffer
= handle_ar_packet(ctx
, buffer
);
707 static int ar_context_init(struct ar_context
*ctx
,
708 struct fw_ohci
*ohci
, u32 regs
)
714 ctx
->last_buffer
= &ab
;
715 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
717 ar_context_add_page(ctx
);
718 ar_context_add_page(ctx
);
719 ctx
->current_buffer
= ab
.next
;
720 ctx
->pointer
= ctx
->current_buffer
->data
;
725 static void ar_context_run(struct ar_context
*ctx
)
727 struct ar_buffer
*ab
= ctx
->current_buffer
;
731 offset
= offsetof(struct ar_buffer
, data
);
732 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
734 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab_bus
| 1);
735 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
736 flush_writes(ctx
->ohci
);
739 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
743 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
744 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
746 /* figure out which descriptor the branch address goes in */
747 if (z
== 2 && (b
== 3 || key
== 2))
753 static void context_tasklet(unsigned long data
)
755 struct context
*ctx
= (struct context
*) data
;
756 struct descriptor
*d
, *last
;
759 struct descriptor_buffer
*desc
;
761 desc
= list_entry(ctx
->buffer_list
.next
,
762 struct descriptor_buffer
, list
);
764 while (last
->branch_address
!= 0) {
765 struct descriptor_buffer
*old_desc
= desc
;
766 address
= le32_to_cpu(last
->branch_address
);
770 /* If the branch address points to a buffer outside of the
771 * current buffer, advance to the next buffer. */
772 if (address
< desc
->buffer_bus
||
773 address
>= desc
->buffer_bus
+ desc
->used
)
774 desc
= list_entry(desc
->list
.next
,
775 struct descriptor_buffer
, list
);
776 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
777 last
= find_branch_descriptor(d
, z
);
779 if (!ctx
->callback(ctx
, d
, last
))
782 if (old_desc
!= desc
) {
783 /* If we've advanced to the next buffer, move the
784 * previous buffer to the free list. */
787 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
788 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
789 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
796 * Allocate a new buffer and add it to the list of free buffers for this
797 * context. Must be called with ohci->lock held.
799 static int context_add_buffer(struct context
*ctx
)
801 struct descriptor_buffer
*desc
;
802 dma_addr_t
uninitialized_var(bus_addr
);
806 * 16MB of descriptors should be far more than enough for any DMA
807 * program. This will catch run-away userspace or DoS attacks.
809 if (ctx
->total_allocation
>= 16*1024*1024)
812 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
813 &bus_addr
, GFP_ATOMIC
);
817 offset
= (void *)&desc
->buffer
- (void *)desc
;
818 desc
->buffer_size
= PAGE_SIZE
- offset
;
819 desc
->buffer_bus
= bus_addr
+ offset
;
822 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
823 ctx
->total_allocation
+= PAGE_SIZE
;
828 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
829 u32 regs
, descriptor_callback_t callback
)
833 ctx
->total_allocation
= 0;
835 INIT_LIST_HEAD(&ctx
->buffer_list
);
836 if (context_add_buffer(ctx
) < 0)
839 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
840 struct descriptor_buffer
, list
);
842 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
843 ctx
->callback
= callback
;
846 * We put a dummy descriptor in the buffer that has a NULL
847 * branch address and looks like it's been sent. That way we
848 * have a descriptor to append DMA programs to.
850 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
851 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
852 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
853 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
854 ctx
->last
= ctx
->buffer_tail
->buffer
;
855 ctx
->prev
= ctx
->buffer_tail
->buffer
;
860 static void context_release(struct context
*ctx
)
862 struct fw_card
*card
= &ctx
->ohci
->card
;
863 struct descriptor_buffer
*desc
, *tmp
;
865 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
866 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
868 ((void *)&desc
->buffer
- (void *)desc
));
871 /* Must be called with ohci->lock held */
872 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
873 int z
, dma_addr_t
*d_bus
)
875 struct descriptor
*d
= NULL
;
876 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
878 if (z
* sizeof(*d
) > desc
->buffer_size
)
881 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
882 /* No room for the descriptor in this buffer, so advance to the
885 if (desc
->list
.next
== &ctx
->buffer_list
) {
886 /* If there is no free buffer next in the list,
888 if (context_add_buffer(ctx
) < 0)
891 desc
= list_entry(desc
->list
.next
,
892 struct descriptor_buffer
, list
);
893 ctx
->buffer_tail
= desc
;
896 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
897 memset(d
, 0, z
* sizeof(*d
));
898 *d_bus
= desc
->buffer_bus
+ desc
->used
;
903 static void context_run(struct context
*ctx
, u32 extra
)
905 struct fw_ohci
*ohci
= ctx
->ohci
;
907 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
908 le32_to_cpu(ctx
->last
->branch_address
));
909 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
910 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
914 static void context_append(struct context
*ctx
,
915 struct descriptor
*d
, int z
, int extra
)
918 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
920 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
922 desc
->used
+= (z
+ extra
) * sizeof(*d
);
923 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
924 ctx
->prev
= find_branch_descriptor(d
, z
);
926 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
927 flush_writes(ctx
->ohci
);
930 static void context_stop(struct context
*ctx
)
935 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
936 flush_writes(ctx
->ohci
);
938 for (i
= 0; i
< 10; i
++) {
939 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
940 if ((reg
& CONTEXT_ACTIVE
) == 0)
945 fw_error("Error: DMA context still active (0x%08x)\n", reg
);
949 struct fw_packet
*packet
;
953 * This function apppends a packet to the DMA queue for transmission.
954 * Must always be called with the ochi->lock held to ensure proper
955 * generation handling and locking around packet queue manipulation.
957 static int at_context_queue_packet(struct context
*ctx
,
958 struct fw_packet
*packet
)
960 struct fw_ohci
*ohci
= ctx
->ohci
;
961 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
962 struct driver_data
*driver_data
;
963 struct descriptor
*d
, *last
;
968 d
= context_get_descriptors(ctx
, 4, &d_bus
);
970 packet
->ack
= RCODE_SEND_ERROR
;
974 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
975 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
978 * The DMA format for asyncronous link packets is different
979 * from the IEEE1394 layout, so shift the fields around
980 * accordingly. If header_length is 8, it's a PHY packet, to
981 * which we need to prepend an extra quadlet.
984 header
= (__le32
*) &d
[1];
985 switch (packet
->header_length
) {
988 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
989 (packet
->speed
<< 16));
990 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
991 (packet
->header
[0] & 0xffff0000));
992 header
[2] = cpu_to_le32(packet
->header
[2]);
994 tcode
= (packet
->header
[0] >> 4) & 0x0f;
995 if (TCODE_IS_BLOCK_PACKET(tcode
))
996 header
[3] = cpu_to_le32(packet
->header
[3]);
998 header
[3] = (__force __le32
) packet
->header
[3];
1000 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1004 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1005 (packet
->speed
<< 16));
1006 header
[1] = cpu_to_le32(packet
->header
[0]);
1007 header
[2] = cpu_to_le32(packet
->header
[1]);
1008 d
[0].req_count
= cpu_to_le16(12);
1012 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1013 (packet
->speed
<< 16));
1014 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1015 d
[0].req_count
= cpu_to_le16(8);
1020 packet
->ack
= RCODE_SEND_ERROR
;
1024 driver_data
= (struct driver_data
*) &d
[3];
1025 driver_data
->packet
= packet
;
1026 packet
->driver_data
= driver_data
;
1028 if (packet
->payload_length
> 0) {
1030 dma_map_single(ohci
->card
.device
, packet
->payload
,
1031 packet
->payload_length
, DMA_TO_DEVICE
);
1032 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1033 packet
->ack
= RCODE_SEND_ERROR
;
1036 packet
->payload_bus
= payload_bus
;
1038 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1039 d
[2].data_address
= cpu_to_le32(payload_bus
);
1047 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1048 DESCRIPTOR_IRQ_ALWAYS
|
1049 DESCRIPTOR_BRANCH_ALWAYS
);
1052 * If the controller and packet generations don't match, we need to
1053 * bail out and try again. If IntEvent.busReset is set, the AT context
1054 * is halted, so appending to the context and trying to run it is
1055 * futile. Most controllers do the right thing and just flush the AT
1056 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1057 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1058 * up stalling out. So we just bail out in software and try again
1059 * later, and everyone is happy.
1060 * FIXME: Document how the locking works.
1062 if (ohci
->generation
!= packet
->generation
||
1063 reg_read(ohci
, OHCI1394_IntEventSet
) & OHCI1394_busReset
) {
1064 if (packet
->payload_length
> 0)
1065 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1066 packet
->payload_length
, DMA_TO_DEVICE
);
1067 packet
->ack
= RCODE_GENERATION
;
1071 context_append(ctx
, d
, z
, 4 - z
);
1073 /* If the context isn't already running, start it up. */
1074 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
1075 if ((reg
& CONTEXT_RUN
) == 0)
1076 context_run(ctx
, 0);
1081 static int handle_at_packet(struct context
*context
,
1082 struct descriptor
*d
,
1083 struct descriptor
*last
)
1085 struct driver_data
*driver_data
;
1086 struct fw_packet
*packet
;
1087 struct fw_ohci
*ohci
= context
->ohci
;
1090 if (last
->transfer_status
== 0)
1091 /* This descriptor isn't done yet, stop iteration. */
1094 driver_data
= (struct driver_data
*) &d
[3];
1095 packet
= driver_data
->packet
;
1097 /* This packet was cancelled, just continue. */
1100 if (packet
->payload_bus
)
1101 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1102 packet
->payload_length
, DMA_TO_DEVICE
);
1104 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1105 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1107 log_ar_at_event('T', packet
->speed
, packet
->header
, evt
);
1110 case OHCI1394_evt_timeout
:
1111 /* Async response transmit timed out. */
1112 packet
->ack
= RCODE_CANCELLED
;
1115 case OHCI1394_evt_flushed
:
1117 * The packet was flushed should give same error as
1118 * when we try to use a stale generation count.
1120 packet
->ack
= RCODE_GENERATION
;
1123 case OHCI1394_evt_missing_ack
:
1125 * Using a valid (current) generation count, but the
1126 * node is not on the bus or not sending acks.
1128 packet
->ack
= RCODE_NO_ACK
;
1131 case ACK_COMPLETE
+ 0x10:
1132 case ACK_PENDING
+ 0x10:
1133 case ACK_BUSY_X
+ 0x10:
1134 case ACK_BUSY_A
+ 0x10:
1135 case ACK_BUSY_B
+ 0x10:
1136 case ACK_DATA_ERROR
+ 0x10:
1137 case ACK_TYPE_ERROR
+ 0x10:
1138 packet
->ack
= evt
- 0x10;
1142 packet
->ack
= RCODE_SEND_ERROR
;
1146 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1151 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1152 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1153 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1154 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1155 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1157 static void handle_local_rom(struct fw_ohci
*ohci
,
1158 struct fw_packet
*packet
, u32 csr
)
1160 struct fw_packet response
;
1161 int tcode
, length
, i
;
1163 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1164 if (TCODE_IS_BLOCK_PACKET(tcode
))
1165 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1169 i
= csr
- CSR_CONFIG_ROM
;
1170 if (i
+ length
> CONFIG_ROM_SIZE
) {
1171 fw_fill_response(&response
, packet
->header
,
1172 RCODE_ADDRESS_ERROR
, NULL
, 0);
1173 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1174 fw_fill_response(&response
, packet
->header
,
1175 RCODE_TYPE_ERROR
, NULL
, 0);
1177 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1178 (void *) ohci
->config_rom
+ i
, length
);
1181 fw_core_handle_response(&ohci
->card
, &response
);
1184 static void handle_local_lock(struct fw_ohci
*ohci
,
1185 struct fw_packet
*packet
, u32 csr
)
1187 struct fw_packet response
;
1188 int tcode
, length
, ext_tcode
, sel
;
1189 __be32
*payload
, lock_old
;
1190 u32 lock_arg
, lock_data
;
1192 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1193 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1194 payload
= packet
->payload
;
1195 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1197 if (tcode
== TCODE_LOCK_REQUEST
&&
1198 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1199 lock_arg
= be32_to_cpu(payload
[0]);
1200 lock_data
= be32_to_cpu(payload
[1]);
1201 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1205 fw_fill_response(&response
, packet
->header
,
1206 RCODE_TYPE_ERROR
, NULL
, 0);
1210 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1211 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1212 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1213 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1215 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000)
1216 lock_old
= cpu_to_be32(reg_read(ohci
, OHCI1394_CSRData
));
1218 fw_notify("swap not done yet\n");
1220 fw_fill_response(&response
, packet
->header
,
1221 RCODE_COMPLETE
, &lock_old
, sizeof(lock_old
));
1223 fw_core_handle_response(&ohci
->card
, &response
);
1226 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1231 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1232 packet
->ack
= ACK_PENDING
;
1233 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1237 ((unsigned long long)
1238 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1240 csr
= offset
- CSR_REGISTER_BASE
;
1242 /* Handle config rom reads. */
1243 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1244 handle_local_rom(ctx
->ohci
, packet
, csr
);
1246 case CSR_BUS_MANAGER_ID
:
1247 case CSR_BANDWIDTH_AVAILABLE
:
1248 case CSR_CHANNELS_AVAILABLE_HI
:
1249 case CSR_CHANNELS_AVAILABLE_LO
:
1250 handle_local_lock(ctx
->ohci
, packet
, csr
);
1253 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1254 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1256 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1260 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1261 packet
->ack
= ACK_COMPLETE
;
1262 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1266 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1268 unsigned long flags
;
1271 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1273 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1274 ctx
->ohci
->generation
== packet
->generation
) {
1275 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1276 handle_local_request(ctx
, packet
);
1280 ret
= at_context_queue_packet(ctx
, packet
);
1281 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1284 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1288 static void bus_reset_tasklet(unsigned long data
)
1290 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1291 int self_id_count
, i
, j
, reg
;
1292 int generation
, new_generation
;
1293 unsigned long flags
;
1294 void *free_rom
= NULL
;
1295 dma_addr_t free_rom_bus
= 0;
1297 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1298 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1299 fw_notify("node ID not valid, new bus reset in progress\n");
1302 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1303 fw_notify("malconfigured bus\n");
1306 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1307 OHCI1394_NodeID_nodeNumber
);
1309 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1310 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1311 fw_notify("inconsistent self IDs\n");
1315 * The count in the SelfIDCount register is the number of
1316 * bytes in the self ID receive buffer. Since we also receive
1317 * the inverted quadlets and a header quadlet, we shift one
1318 * bit extra to get the actual number of self IDs.
1320 self_id_count
= (reg
>> 3) & 0xff;
1321 if (self_id_count
== 0 || self_id_count
> 252) {
1322 fw_notify("inconsistent self IDs\n");
1325 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1328 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1329 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1330 fw_notify("inconsistent self IDs\n");
1333 ohci
->self_id_buffer
[j
] =
1334 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1339 * Check the consistency of the self IDs we just read. The
1340 * problem we face is that a new bus reset can start while we
1341 * read out the self IDs from the DMA buffer. If this happens,
1342 * the DMA buffer will be overwritten with new self IDs and we
1343 * will read out inconsistent data. The OHCI specification
1344 * (section 11.2) recommends a technique similar to
1345 * linux/seqlock.h, where we remember the generation of the
1346 * self IDs in the buffer before reading them out and compare
1347 * it to the current generation after reading them out. If
1348 * the two generations match we know we have a consistent set
1352 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1353 if (new_generation
!= generation
) {
1354 fw_notify("recursive bus reset detected, "
1355 "discarding self ids\n");
1359 /* FIXME: Document how the locking works. */
1360 spin_lock_irqsave(&ohci
->lock
, flags
);
1362 ohci
->generation
= generation
;
1363 context_stop(&ohci
->at_request_ctx
);
1364 context_stop(&ohci
->at_response_ctx
);
1365 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1367 if (ohci
->bus_reset_packet_quirk
)
1368 ohci
->request_generation
= generation
;
1371 * This next bit is unrelated to the AT context stuff but we
1372 * have to do it under the spinlock also. If a new config rom
1373 * was set up before this reset, the old one is now no longer
1374 * in use and we can free it. Update the config rom pointers
1375 * to point to the current config rom and clear the
1376 * next_config_rom pointer so a new udpate can take place.
1379 if (ohci
->next_config_rom
!= NULL
) {
1380 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1381 free_rom
= ohci
->config_rom
;
1382 free_rom_bus
= ohci
->config_rom_bus
;
1384 ohci
->config_rom
= ohci
->next_config_rom
;
1385 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1386 ohci
->next_config_rom
= NULL
;
1389 * Restore config_rom image and manually update
1390 * config_rom registers. Writing the header quadlet
1391 * will indicate that the config rom is ready, so we
1394 reg_write(ohci
, OHCI1394_BusOptions
,
1395 be32_to_cpu(ohci
->config_rom
[2]));
1396 ohci
->config_rom
[0] = cpu_to_be32(ohci
->next_header
);
1397 reg_write(ohci
, OHCI1394_ConfigROMhdr
, ohci
->next_header
);
1400 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1401 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1402 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1405 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1408 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1409 free_rom
, free_rom_bus
);
1411 log_selfids(ohci
->node_id
, generation
,
1412 self_id_count
, ohci
->self_id_buffer
);
1414 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1415 self_id_count
, ohci
->self_id_buffer
);
1418 static irqreturn_t
irq_handler(int irq
, void *data
)
1420 struct fw_ohci
*ohci
= data
;
1421 u32 event
, iso_event
, cycle_time
;
1424 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1426 if (!event
|| !~event
)
1429 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1430 reg_write(ohci
, OHCI1394_IntEventClear
, event
& ~OHCI1394_busReset
);
1433 if (event
& OHCI1394_selfIDComplete
)
1434 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1436 if (event
& OHCI1394_RQPkt
)
1437 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1439 if (event
& OHCI1394_RSPkt
)
1440 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1442 if (event
& OHCI1394_reqTxComplete
)
1443 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1445 if (event
& OHCI1394_respTxComplete
)
1446 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1448 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1449 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1452 i
= ffs(iso_event
) - 1;
1453 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1454 iso_event
&= ~(1 << i
);
1457 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1458 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1461 i
= ffs(iso_event
) - 1;
1462 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1463 iso_event
&= ~(1 << i
);
1466 if (unlikely(event
& OHCI1394_regAccessFail
))
1467 fw_error("Register access failure - "
1468 "please notify linux1394-devel@lists.sf.net\n");
1470 if (unlikely(event
& OHCI1394_postedWriteErr
))
1471 fw_error("PCI posted write error\n");
1473 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1474 if (printk_ratelimit())
1475 fw_notify("isochronous cycle too long\n");
1476 reg_write(ohci
, OHCI1394_LinkControlSet
,
1477 OHCI1394_LinkControl_cycleMaster
);
1480 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
1482 * We need to clear this event bit in order to make
1483 * cycleMatch isochronous I/O work. In theory we should
1484 * stop active cycleMatch iso contexts now and restart
1485 * them at least two cycles later. (FIXME?)
1487 if (printk_ratelimit())
1488 fw_notify("isochronous cycle inconsistent\n");
1491 if (event
& OHCI1394_cycle64Seconds
) {
1492 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1493 if ((cycle_time
& 0x80000000) == 0)
1494 atomic_inc(&ohci
->bus_seconds
);
1500 static int software_reset(struct fw_ohci
*ohci
)
1504 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1506 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1507 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1508 OHCI1394_HCControl_softReset
) == 0)
1516 static int ohci_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1518 struct fw_ohci
*ohci
= fw_ohci(card
);
1519 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1523 if (software_reset(ohci
)) {
1524 fw_error("Failed to reset ohci card.\n");
1529 * Now enable LPS, which we need in order to start accessing
1530 * most of the registers. In fact, on some cards (ALI M5251),
1531 * accessing registers in the SClk domain without LPS enabled
1532 * will lock up the machine. Wait 50msec to make sure we have
1533 * full link enabled. However, with some cards (well, at least
1534 * a JMicron PCIe card), we have to try again sometimes.
1536 reg_write(ohci
, OHCI1394_HCControlSet
,
1537 OHCI1394_HCControl_LPS
|
1538 OHCI1394_HCControl_postedWriteEnable
);
1541 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
1543 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
1544 OHCI1394_HCControl_LPS
;
1548 fw_error("Failed to set Link Power Status\n");
1552 reg_write(ohci
, OHCI1394_HCControlClear
,
1553 OHCI1394_HCControl_noByteSwapData
);
1555 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1556 reg_write(ohci
, OHCI1394_LinkControlClear
,
1557 OHCI1394_LinkControl_rcvPhyPkt
);
1558 reg_write(ohci
, OHCI1394_LinkControlSet
,
1559 OHCI1394_LinkControl_rcvSelfID
|
1560 OHCI1394_LinkControl_cycleTimerEnable
|
1561 OHCI1394_LinkControl_cycleMaster
);
1563 reg_write(ohci
, OHCI1394_ATRetries
,
1564 OHCI1394_MAX_AT_REQ_RETRIES
|
1565 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1566 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8));
1568 ar_context_run(&ohci
->ar_request_ctx
);
1569 ar_context_run(&ohci
->ar_response_ctx
);
1571 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1572 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1573 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1574 reg_write(ohci
, OHCI1394_IntMaskSet
,
1575 OHCI1394_selfIDComplete
|
1576 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1577 OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1578 OHCI1394_isochRx
| OHCI1394_isochTx
|
1579 OHCI1394_postedWriteErr
| OHCI1394_cycleTooLong
|
1580 OHCI1394_cycleInconsistent
|
1581 OHCI1394_cycle64Seconds
| OHCI1394_regAccessFail
|
1582 OHCI1394_masterIntEnable
);
1583 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
1584 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_busReset
);
1586 /* Activate link_on bit and contender bit in our self ID packets.*/
1587 if (ohci_update_phy_reg(card
, 4, 0,
1588 PHY_LINK_ACTIVE
| PHY_CONTENDER
) < 0)
1592 * When the link is not yet enabled, the atomic config rom
1593 * update mechanism described below in ohci_set_config_rom()
1594 * is not active. We have to update ConfigRomHeader and
1595 * BusOptions manually, and the write to ConfigROMmap takes
1596 * effect immediately. We tie this to the enabling of the
1597 * link, so we have a valid config rom before enabling - the
1598 * OHCI requires that ConfigROMhdr and BusOptions have valid
1599 * values before enabling.
1601 * However, when the ConfigROMmap is written, some controllers
1602 * always read back quadlets 0 and 2 from the config rom to
1603 * the ConfigRomHeader and BusOptions registers on bus reset.
1604 * They shouldn't do that in this initial case where the link
1605 * isn't enabled. This means we have to use the same
1606 * workaround here, setting the bus header to 0 and then write
1607 * the right values in the bus reset tasklet.
1611 ohci
->next_config_rom
=
1612 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1613 &ohci
->next_config_rom_bus
,
1615 if (ohci
->next_config_rom
== NULL
)
1618 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1619 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
, length
* 4);
1622 * In the suspend case, config_rom is NULL, which
1623 * means that we just reuse the old config rom.
1625 ohci
->next_config_rom
= ohci
->config_rom
;
1626 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
1629 ohci
->next_header
= be32_to_cpu(ohci
->next_config_rom
[0]);
1630 ohci
->next_config_rom
[0] = 0;
1631 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1632 reg_write(ohci
, OHCI1394_BusOptions
,
1633 be32_to_cpu(ohci
->next_config_rom
[2]));
1634 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1636 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1638 if (request_irq(dev
->irq
, irq_handler
,
1639 IRQF_SHARED
, ohci_driver_name
, ohci
)) {
1640 fw_error("Failed to allocate shared interrupt %d.\n",
1642 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1643 ohci
->config_rom
, ohci
->config_rom_bus
);
1647 reg_write(ohci
, OHCI1394_HCControlSet
,
1648 OHCI1394_HCControl_linkEnable
|
1649 OHCI1394_HCControl_BIBimageValid
);
1653 * We are ready to go, initiate bus reset to finish the
1657 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1662 static int ohci_set_config_rom(struct fw_card
*card
,
1663 u32
*config_rom
, size_t length
)
1665 struct fw_ohci
*ohci
;
1666 unsigned long flags
;
1668 __be32
*next_config_rom
;
1669 dma_addr_t
uninitialized_var(next_config_rom_bus
);
1671 ohci
= fw_ohci(card
);
1674 * When the OHCI controller is enabled, the config rom update
1675 * mechanism is a bit tricky, but easy enough to use. See
1676 * section 5.5.6 in the OHCI specification.
1678 * The OHCI controller caches the new config rom address in a
1679 * shadow register (ConfigROMmapNext) and needs a bus reset
1680 * for the changes to take place. When the bus reset is
1681 * detected, the controller loads the new values for the
1682 * ConfigRomHeader and BusOptions registers from the specified
1683 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1684 * shadow register. All automatically and atomically.
1686 * Now, there's a twist to this story. The automatic load of
1687 * ConfigRomHeader and BusOptions doesn't honor the
1688 * noByteSwapData bit, so with a be32 config rom, the
1689 * controller will load be32 values in to these registers
1690 * during the atomic update, even on litte endian
1691 * architectures. The workaround we use is to put a 0 in the
1692 * header quadlet; 0 is endian agnostic and means that the
1693 * config rom isn't ready yet. In the bus reset tasklet we
1694 * then set up the real values for the two registers.
1696 * We use ohci->lock to avoid racing with the code that sets
1697 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1701 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1702 &next_config_rom_bus
, GFP_KERNEL
);
1703 if (next_config_rom
== NULL
)
1706 spin_lock_irqsave(&ohci
->lock
, flags
);
1708 if (ohci
->next_config_rom
== NULL
) {
1709 ohci
->next_config_rom
= next_config_rom
;
1710 ohci
->next_config_rom_bus
= next_config_rom_bus
;
1712 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1713 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
,
1716 ohci
->next_header
= config_rom
[0];
1717 ohci
->next_config_rom
[0] = 0;
1719 reg_write(ohci
, OHCI1394_ConfigROMmap
,
1720 ohci
->next_config_rom_bus
);
1724 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1727 * Now initiate a bus reset to have the changes take
1728 * effect. We clean up the old config rom memory and DMA
1729 * mappings in the bus reset tasklet, since the OHCI
1730 * controller could need to access it before the bus reset
1734 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1736 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1737 next_config_rom
, next_config_rom_bus
);
1742 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
1744 struct fw_ohci
*ohci
= fw_ohci(card
);
1746 at_context_transmit(&ohci
->at_request_ctx
, packet
);
1749 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
1751 struct fw_ohci
*ohci
= fw_ohci(card
);
1753 at_context_transmit(&ohci
->at_response_ctx
, packet
);
1756 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
1758 struct fw_ohci
*ohci
= fw_ohci(card
);
1759 struct context
*ctx
= &ohci
->at_request_ctx
;
1760 struct driver_data
*driver_data
= packet
->driver_data
;
1763 tasklet_disable(&ctx
->tasklet
);
1765 if (packet
->ack
!= 0)
1768 if (packet
->payload_bus
)
1769 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1770 packet
->payload_length
, DMA_TO_DEVICE
);
1772 log_ar_at_event('T', packet
->speed
, packet
->header
, 0x20);
1773 driver_data
->packet
= NULL
;
1774 packet
->ack
= RCODE_CANCELLED
;
1775 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1778 tasklet_enable(&ctx
->tasklet
);
1783 static int ohci_enable_phys_dma(struct fw_card
*card
,
1784 int node_id
, int generation
)
1786 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1789 struct fw_ohci
*ohci
= fw_ohci(card
);
1790 unsigned long flags
;
1794 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1795 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1798 spin_lock_irqsave(&ohci
->lock
, flags
);
1800 if (ohci
->generation
!= generation
) {
1806 * Note, if the node ID contains a non-local bus ID, physical DMA is
1807 * enabled for _all_ nodes on remote buses.
1810 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
1812 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
1814 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
1818 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1821 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1824 static u64
ohci_get_bus_time(struct fw_card
*card
)
1826 struct fw_ohci
*ohci
= fw_ohci(card
);
1830 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1831 bus_time
= ((u64
)atomic_read(&ohci
->bus_seconds
) << 32) | cycle_time
;
1836 static void copy_iso_headers(struct iso_context
*ctx
, void *p
)
1838 int i
= ctx
->header_length
;
1840 if (i
+ ctx
->base
.header_size
> PAGE_SIZE
)
1844 * The iso header is byteswapped to little endian by
1845 * the controller, but the remaining header quadlets
1846 * are big endian. We want to present all the headers
1847 * as big endian, so we have to swap the first quadlet.
1849 if (ctx
->base
.header_size
> 0)
1850 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1851 if (ctx
->base
.header_size
> 4)
1852 *(u32
*) (ctx
->header
+ i
+ 4) = __swab32(*(u32
*) p
);
1853 if (ctx
->base
.header_size
> 8)
1854 memcpy(ctx
->header
+ i
+ 8, p
+ 8, ctx
->base
.header_size
- 8);
1855 ctx
->header_length
+= ctx
->base
.header_size
;
1858 static int handle_ir_dualbuffer_packet(struct context
*context
,
1859 struct descriptor
*d
,
1860 struct descriptor
*last
)
1862 struct iso_context
*ctx
=
1863 container_of(context
, struct iso_context
, context
);
1864 struct db_descriptor
*db
= (struct db_descriptor
*) d
;
1866 size_t header_length
;
1869 if (db
->first_res_count
!= 0 && db
->second_res_count
!= 0) {
1870 if (ctx
->excess_bytes
<= le16_to_cpu(db
->second_req_count
)) {
1871 /* This descriptor isn't done yet, stop iteration. */
1874 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
);
1877 header_length
= le16_to_cpu(db
->first_req_count
) -
1878 le16_to_cpu(db
->first_res_count
);
1881 end
= p
+ header_length
;
1883 copy_iso_headers(ctx
, p
);
1884 ctx
->excess_bytes
+=
1885 (le32_to_cpu(*(__le32
*)(p
+ 4)) >> 16) & 0xffff;
1886 p
+= max(ctx
->base
.header_size
, (size_t)8);
1889 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
) -
1890 le16_to_cpu(db
->second_res_count
);
1892 if (le16_to_cpu(db
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1893 ir_header
= (__le32
*) (db
+ 1);
1894 ctx
->base
.callback(&ctx
->base
,
1895 le32_to_cpu(ir_header
[0]) & 0xffff,
1896 ctx
->header_length
, ctx
->header
,
1897 ctx
->base
.callback_data
);
1898 ctx
->header_length
= 0;
1904 static int handle_ir_packet_per_buffer(struct context
*context
,
1905 struct descriptor
*d
,
1906 struct descriptor
*last
)
1908 struct iso_context
*ctx
=
1909 container_of(context
, struct iso_context
, context
);
1910 struct descriptor
*pd
;
1914 for (pd
= d
; pd
<= last
; pd
++) {
1915 if (pd
->transfer_status
)
1919 /* Descriptor(s) not done yet, stop iteration */
1923 copy_iso_headers(ctx
, p
);
1925 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1926 ir_header
= (__le32
*) p
;
1927 ctx
->base
.callback(&ctx
->base
,
1928 le32_to_cpu(ir_header
[0]) & 0xffff,
1929 ctx
->header_length
, ctx
->header
,
1930 ctx
->base
.callback_data
);
1931 ctx
->header_length
= 0;
1937 static int handle_it_packet(struct context
*context
,
1938 struct descriptor
*d
,
1939 struct descriptor
*last
)
1941 struct iso_context
*ctx
=
1942 container_of(context
, struct iso_context
, context
);
1944 struct descriptor
*pd
;
1946 for (pd
= d
; pd
<= last
; pd
++)
1947 if (pd
->transfer_status
)
1950 /* Descriptor(s) not done yet, stop iteration */
1953 i
= ctx
->header_length
;
1954 if (i
+ 4 < PAGE_SIZE
) {
1955 /* Present this value as big-endian to match the receive code */
1956 *(__be32
*)(ctx
->header
+ i
) = cpu_to_be32(
1957 ((u32
)le16_to_cpu(pd
->transfer_status
) << 16) |
1958 le16_to_cpu(pd
->res_count
));
1959 ctx
->header_length
+= 4;
1961 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1962 ctx
->base
.callback(&ctx
->base
, le16_to_cpu(last
->res_count
),
1963 ctx
->header_length
, ctx
->header
,
1964 ctx
->base
.callback_data
);
1965 ctx
->header_length
= 0;
1970 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
1971 int type
, int channel
, size_t header_size
)
1973 struct fw_ohci
*ohci
= fw_ohci(card
);
1974 struct iso_context
*ctx
, *list
;
1975 descriptor_callback_t callback
;
1976 u64
*channels
, dont_care
= ~0ULL;
1978 unsigned long flags
;
1979 int index
, ret
= -ENOMEM
;
1981 if (type
== FW_ISO_CONTEXT_TRANSMIT
) {
1982 channels
= &dont_care
;
1983 mask
= &ohci
->it_context_mask
;
1984 list
= ohci
->it_context_list
;
1985 callback
= handle_it_packet
;
1987 channels
= &ohci
->ir_context_channels
;
1988 mask
= &ohci
->ir_context_mask
;
1989 list
= ohci
->ir_context_list
;
1990 if (ohci
->use_dualbuffer
)
1991 callback
= handle_ir_dualbuffer_packet
;
1993 callback
= handle_ir_packet_per_buffer
;
1996 spin_lock_irqsave(&ohci
->lock
, flags
);
1997 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
1999 *channels
&= ~(1ULL << channel
);
2000 *mask
&= ~(1 << index
);
2002 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2005 return ERR_PTR(-EBUSY
);
2007 if (type
== FW_ISO_CONTEXT_TRANSMIT
)
2008 regs
= OHCI1394_IsoXmitContextBase(index
);
2010 regs
= OHCI1394_IsoRcvContextBase(index
);
2013 memset(ctx
, 0, sizeof(*ctx
));
2014 ctx
->header_length
= 0;
2015 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2016 if (ctx
->header
== NULL
)
2019 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
2021 goto out_with_header
;
2026 free_page((unsigned long)ctx
->header
);
2028 spin_lock_irqsave(&ohci
->lock
, flags
);
2029 *mask
|= 1 << index
;
2030 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2032 return ERR_PTR(ret
);
2035 static int ohci_start_iso(struct fw_iso_context
*base
,
2036 s32 cycle
, u32 sync
, u32 tags
)
2038 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2039 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
2043 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
2044 index
= ctx
- ohci
->it_context_list
;
2047 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
2048 (cycle
& 0x7fff) << 16;
2050 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
2051 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
2052 context_run(&ctx
->context
, match
);
2054 index
= ctx
- ohci
->ir_context_list
;
2055 control
= IR_CONTEXT_ISOCH_HEADER
;
2056 if (ohci
->use_dualbuffer
)
2057 control
|= IR_CONTEXT_DUAL_BUFFER_MODE
;
2058 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
2060 match
|= (cycle
& 0x07fff) << 12;
2061 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
2064 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
2065 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
2066 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
2067 context_run(&ctx
->context
, control
);
2073 static int ohci_stop_iso(struct fw_iso_context
*base
)
2075 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2076 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2079 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
2080 index
= ctx
- ohci
->it_context_list
;
2081 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
2083 index
= ctx
- ohci
->ir_context_list
;
2084 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
2087 context_stop(&ctx
->context
);
2092 static void ohci_free_iso_context(struct fw_iso_context
*base
)
2094 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2095 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2096 unsigned long flags
;
2099 ohci_stop_iso(base
);
2100 context_release(&ctx
->context
);
2101 free_page((unsigned long)ctx
->header
);
2103 spin_lock_irqsave(&ohci
->lock
, flags
);
2105 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
2106 index
= ctx
- ohci
->it_context_list
;
2107 ohci
->it_context_mask
|= 1 << index
;
2109 index
= ctx
- ohci
->ir_context_list
;
2110 ohci
->ir_context_mask
|= 1 << index
;
2111 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
2114 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2117 static int ohci_queue_iso_transmit(struct fw_iso_context
*base
,
2118 struct fw_iso_packet
*packet
,
2119 struct fw_iso_buffer
*buffer
,
2120 unsigned long payload
)
2122 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2123 struct descriptor
*d
, *last
, *pd
;
2124 struct fw_iso_packet
*p
;
2126 dma_addr_t d_bus
, page_bus
;
2127 u32 z
, header_z
, payload_z
, irq
;
2128 u32 payload_index
, payload_end_index
, next_page_index
;
2129 int page
, end_page
, i
, length
, offset
;
2132 * FIXME: Cycle lost behavior should be configurable: lose
2133 * packet, retransmit or terminate..
2137 payload_index
= payload
;
2143 if (p
->header_length
> 0)
2146 /* Determine the first page the payload isn't contained in. */
2147 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
2148 if (p
->payload_length
> 0)
2149 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
2155 /* Get header size in number of descriptors. */
2156 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
2158 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
2163 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
2164 d
[0].req_count
= cpu_to_le16(8);
2166 header
= (__le32
*) &d
[1];
2167 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
2168 IT_HEADER_TAG(p
->tag
) |
2169 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
2170 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
2171 IT_HEADER_SPEED(ctx
->base
.speed
));
2173 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
2174 p
->payload_length
));
2177 if (p
->header_length
> 0) {
2178 d
[2].req_count
= cpu_to_le16(p
->header_length
);
2179 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
2180 memcpy(&d
[z
], p
->header
, p
->header_length
);
2183 pd
= d
+ z
- payload_z
;
2184 payload_end_index
= payload_index
+ p
->payload_length
;
2185 for (i
= 0; i
< payload_z
; i
++) {
2186 page
= payload_index
>> PAGE_SHIFT
;
2187 offset
= payload_index
& ~PAGE_MASK
;
2188 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
2190 min(next_page_index
, payload_end_index
) - payload_index
;
2191 pd
[i
].req_count
= cpu_to_le16(length
);
2193 page_bus
= page_private(buffer
->pages
[page
]);
2194 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
2196 payload_index
+= length
;
2200 irq
= DESCRIPTOR_IRQ_ALWAYS
;
2202 irq
= DESCRIPTOR_NO_IRQ
;
2204 last
= z
== 2 ? d
: d
+ z
- 1;
2205 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
2207 DESCRIPTOR_BRANCH_ALWAYS
|
2210 context_append(&ctx
->context
, d
, z
, header_z
);
2215 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context
*base
,
2216 struct fw_iso_packet
*packet
,
2217 struct fw_iso_buffer
*buffer
,
2218 unsigned long payload
)
2220 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2221 struct db_descriptor
*db
= NULL
;
2222 struct descriptor
*d
;
2223 struct fw_iso_packet
*p
;
2224 dma_addr_t d_bus
, page_bus
;
2225 u32 z
, header_z
, length
, rest
;
2226 int page
, offset
, packet_count
, header_size
;
2229 * FIXME: Cycle lost behavior should be configurable: lose
2230 * packet, retransmit or terminate..
2237 * The OHCI controller puts the isochronous header and trailer in the
2238 * buffer, so we need at least 8 bytes.
2240 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
2241 header_size
= packet_count
* max(ctx
->base
.header_size
, (size_t)8);
2243 /* Get header size in number of descriptors. */
2244 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2245 page
= payload
>> PAGE_SHIFT
;
2246 offset
= payload
& ~PAGE_MASK
;
2247 rest
= p
->payload_length
;
2249 * The controllers I've tested have not worked correctly when
2250 * second_req_count is zero. Rather than do something we know won't
2251 * work, return an error
2256 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2258 d
= context_get_descriptors(&ctx
->context
,
2259 z
+ header_z
, &d_bus
);
2263 db
= (struct db_descriptor
*) d
;
2264 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2265 DESCRIPTOR_BRANCH_ALWAYS
);
2267 cpu_to_le16(max(ctx
->base
.header_size
, (size_t)8));
2268 if (p
->skip
&& rest
== p
->payload_length
) {
2269 db
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2270 db
->first_req_count
= db
->first_size
;
2272 db
->first_req_count
= cpu_to_le16(header_size
);
2274 db
->first_res_count
= db
->first_req_count
;
2275 db
->first_buffer
= cpu_to_le32(d_bus
+ sizeof(*db
));
2277 if (p
->skip
&& rest
== p
->payload_length
)
2279 else if (offset
+ rest
< PAGE_SIZE
)
2282 length
= PAGE_SIZE
- offset
;
2284 db
->second_req_count
= cpu_to_le16(length
);
2285 db
->second_res_count
= db
->second_req_count
;
2286 page_bus
= page_private(buffer
->pages
[page
]);
2287 db
->second_buffer
= cpu_to_le32(page_bus
+ offset
);
2289 if (p
->interrupt
&& length
== rest
)
2290 db
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2292 context_append(&ctx
->context
, d
, z
, header_z
);
2293 offset
= (offset
+ length
) & ~PAGE_MASK
;
2302 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context
*base
,
2303 struct fw_iso_packet
*packet
,
2304 struct fw_iso_buffer
*buffer
,
2305 unsigned long payload
)
2307 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2308 struct descriptor
*d
, *pd
;
2309 struct fw_iso_packet
*p
= packet
;
2310 dma_addr_t d_bus
, page_bus
;
2311 u32 z
, header_z
, rest
;
2313 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
2316 * The OHCI controller puts the isochronous header and trailer in the
2317 * buffer, so we need at least 8 bytes.
2319 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
2320 header_size
= max(ctx
->base
.header_size
, (size_t)8);
2322 /* Get header size in number of descriptors. */
2323 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2324 page
= payload
>> PAGE_SHIFT
;
2325 offset
= payload
& ~PAGE_MASK
;
2326 payload_per_buffer
= p
->payload_length
/ packet_count
;
2328 for (i
= 0; i
< packet_count
; i
++) {
2329 /* d points to the header descriptor */
2330 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
2331 d
= context_get_descriptors(&ctx
->context
,
2332 z
+ header_z
, &d_bus
);
2336 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2337 DESCRIPTOR_INPUT_MORE
);
2338 if (p
->skip
&& i
== 0)
2339 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2340 d
->req_count
= cpu_to_le16(header_size
);
2341 d
->res_count
= d
->req_count
;
2342 d
->transfer_status
= 0;
2343 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
2345 rest
= payload_per_buffer
;
2347 for (j
= 1; j
< z
; j
++) {
2349 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2350 DESCRIPTOR_INPUT_MORE
);
2352 if (offset
+ rest
< PAGE_SIZE
)
2355 length
= PAGE_SIZE
- offset
;
2356 pd
->req_count
= cpu_to_le16(length
);
2357 pd
->res_count
= pd
->req_count
;
2358 pd
->transfer_status
= 0;
2360 page_bus
= page_private(buffer
->pages
[page
]);
2361 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
2363 offset
= (offset
+ length
) & ~PAGE_MASK
;
2368 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2369 DESCRIPTOR_INPUT_LAST
|
2370 DESCRIPTOR_BRANCH_ALWAYS
);
2371 if (p
->interrupt
&& i
== packet_count
- 1)
2372 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2374 context_append(&ctx
->context
, d
, z
, header_z
);
2380 static int ohci_queue_iso(struct fw_iso_context
*base
,
2381 struct fw_iso_packet
*packet
,
2382 struct fw_iso_buffer
*buffer
,
2383 unsigned long payload
)
2385 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2386 unsigned long flags
;
2389 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
2390 if (base
->type
== FW_ISO_CONTEXT_TRANSMIT
)
2391 ret
= ohci_queue_iso_transmit(base
, packet
, buffer
, payload
);
2392 else if (ctx
->context
.ohci
->use_dualbuffer
)
2393 ret
= ohci_queue_iso_receive_dualbuffer(base
, packet
,
2396 ret
= ohci_queue_iso_receive_packet_per_buffer(base
, packet
,
2398 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
2403 static const struct fw_card_driver ohci_driver
= {
2404 .enable
= ohci_enable
,
2405 .update_phy_reg
= ohci_update_phy_reg
,
2406 .set_config_rom
= ohci_set_config_rom
,
2407 .send_request
= ohci_send_request
,
2408 .send_response
= ohci_send_response
,
2409 .cancel_packet
= ohci_cancel_packet
,
2410 .enable_phys_dma
= ohci_enable_phys_dma
,
2411 .get_bus_time
= ohci_get_bus_time
,
2413 .allocate_iso_context
= ohci_allocate_iso_context
,
2414 .free_iso_context
= ohci_free_iso_context
,
2415 .queue_iso
= ohci_queue_iso
,
2416 .start_iso
= ohci_start_iso
,
2417 .stop_iso
= ohci_stop_iso
,
2420 #ifdef CONFIG_PPC_PMAC
2421 static void ohci_pmac_on(struct pci_dev
*dev
)
2423 if (machine_is(powermac
)) {
2424 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2427 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
2428 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
2433 static void ohci_pmac_off(struct pci_dev
*dev
)
2435 if (machine_is(powermac
)) {
2436 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2439 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
2440 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
2445 #define ohci_pmac_on(dev)
2446 #define ohci_pmac_off(dev)
2447 #endif /* CONFIG_PPC_PMAC */
2449 #define PCI_VENDOR_ID_AGERE PCI_VENDOR_ID_ATT
2450 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
2451 #define PCI_DEVICE_ID_TI_TSB43AB23 0x8024
2453 static int __devinit
pci_probe(struct pci_dev
*dev
,
2454 const struct pci_device_id
*ent
)
2456 struct fw_ohci
*ohci
;
2457 u32 bus_options
, max_receive
, link_speed
, version
;
2462 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
2468 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
2472 err
= pci_enable_device(dev
);
2474 fw_error("Failed to enable OHCI hardware\n");
2478 pci_set_master(dev
);
2479 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
2480 pci_set_drvdata(dev
, ohci
);
2482 spin_lock_init(&ohci
->lock
);
2484 tasklet_init(&ohci
->bus_reset_tasklet
,
2485 bus_reset_tasklet
, (unsigned long)ohci
);
2487 err
= pci_request_region(dev
, 0, ohci_driver_name
);
2489 fw_error("MMIO resource unavailable\n");
2493 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
2494 if (ohci
->registers
== NULL
) {
2495 fw_error("Failed to remap registers\n");
2500 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2501 ohci
->use_dualbuffer
= version
>= OHCI_VERSION_1_1
;
2503 /* dual-buffer mode is broken if more than one IR context is active */
2504 if (dev
->vendor
== PCI_VENDOR_ID_AGERE
&&
2505 dev
->device
== PCI_DEVICE_ID_AGERE_FW643
)
2506 ohci
->use_dualbuffer
= false;
2508 /* dual-buffer mode is broken */
2509 if (dev
->vendor
== PCI_VENDOR_ID_RICOH
&&
2510 dev
->device
== PCI_DEVICE_ID_RICOH_R5C832
)
2511 ohci
->use_dualbuffer
= false;
2513 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2514 #if !defined(CONFIG_X86_32)
2515 /* dual-buffer mode is broken with descriptor addresses above 2G */
2516 if (dev
->vendor
== PCI_VENDOR_ID_TI
&&
2517 (dev
->device
== PCI_DEVICE_ID_TI_TSB43AB22
||
2518 dev
->device
== PCI_DEVICE_ID_TI_TSB43AB23
))
2519 ohci
->use_dualbuffer
= false;
2522 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2523 ohci
->old_uninorth
= dev
->vendor
== PCI_VENDOR_ID_APPLE
&&
2524 dev
->device
== PCI_DEVICE_ID_APPLE_UNI_N_FW
;
2526 ohci
->bus_reset_packet_quirk
= dev
->vendor
== PCI_VENDOR_ID_TI
;
2528 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
2529 OHCI1394_AsReqRcvContextControlSet
);
2531 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
2532 OHCI1394_AsRspRcvContextControlSet
);
2534 context_init(&ohci
->at_request_ctx
, ohci
,
2535 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
2537 context_init(&ohci
->at_response_ctx
, ohci
,
2538 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
2540 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
2541 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
2542 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
2543 size
= sizeof(struct iso_context
) * hweight32(ohci
->it_context_mask
);
2544 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
2546 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
2547 ohci
->ir_context_channels
= ~0ULL;
2548 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
2549 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
2550 size
= sizeof(struct iso_context
) * hweight32(ohci
->ir_context_mask
);
2551 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
2553 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
2558 /* self-id dma buffer allocation */
2559 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
2563 if (ohci
->self_id_cpu
== NULL
) {
2568 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
2569 max_receive
= (bus_options
>> 12) & 0xf;
2570 link_speed
= bus_options
& 0x7;
2571 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
2572 reg_read(ohci
, OHCI1394_GUIDLo
);
2574 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
2578 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2579 dev_name(&dev
->dev
), version
>> 16, version
& 0xff);
2584 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2585 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2587 kfree(ohci
->ir_context_list
);
2588 kfree(ohci
->it_context_list
);
2589 context_release(&ohci
->at_response_ctx
);
2590 context_release(&ohci
->at_request_ctx
);
2591 ar_context_release(&ohci
->ar_response_ctx
);
2592 ar_context_release(&ohci
->ar_request_ctx
);
2593 pci_iounmap(dev
, ohci
->registers
);
2595 pci_release_region(dev
, 0);
2597 pci_disable_device(dev
);
2603 fw_error("Out of memory\n");
2608 static void pci_remove(struct pci_dev
*dev
)
2610 struct fw_ohci
*ohci
;
2612 ohci
= pci_get_drvdata(dev
);
2613 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2615 fw_core_remove_card(&ohci
->card
);
2618 * FIXME: Fail all pending packets here, now that the upper
2619 * layers can't queue any more.
2622 software_reset(ohci
);
2623 free_irq(dev
->irq
, ohci
);
2625 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
2626 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2627 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
2628 if (ohci
->config_rom
)
2629 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2630 ohci
->config_rom
, ohci
->config_rom_bus
);
2631 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2632 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2633 ar_context_release(&ohci
->ar_request_ctx
);
2634 ar_context_release(&ohci
->ar_response_ctx
);
2635 context_release(&ohci
->at_request_ctx
);
2636 context_release(&ohci
->at_response_ctx
);
2637 kfree(ohci
->it_context_list
);
2638 kfree(ohci
->ir_context_list
);
2639 pci_iounmap(dev
, ohci
->registers
);
2640 pci_release_region(dev
, 0);
2641 pci_disable_device(dev
);
2645 fw_notify("Removed fw-ohci device.\n");
2649 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
2651 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
2654 software_reset(ohci
);
2655 free_irq(dev
->irq
, ohci
);
2656 err
= pci_save_state(dev
);
2658 fw_error("pci_save_state failed\n");
2661 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
2663 fw_error("pci_set_power_state failed with %d\n", err
);
2669 static int pci_resume(struct pci_dev
*dev
)
2671 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
2675 pci_set_power_state(dev
, PCI_D0
);
2676 pci_restore_state(dev
);
2677 err
= pci_enable_device(dev
);
2679 fw_error("pci_enable_device failed\n");
2683 return ohci_enable(&ohci
->card
, NULL
, 0);
2687 static struct pci_device_id pci_table
[] = {
2688 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
2692 MODULE_DEVICE_TABLE(pci
, pci_table
);
2694 static struct pci_driver fw_ohci_pci_driver
= {
2695 .name
= ohci_driver_name
,
2696 .id_table
= pci_table
,
2698 .remove
= pci_remove
,
2700 .resume
= pci_resume
,
2701 .suspend
= pci_suspend
,
2705 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2706 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2707 MODULE_LICENSE("GPL");
2709 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2710 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2711 MODULE_ALIAS("ohci1394");
2714 static int __init
fw_ohci_init(void)
2716 return pci_register_driver(&fw_ohci_pci_driver
);
2719 static void __exit
fw_ohci_cleanup(void)
2721 pci_unregister_driver(&fw_ohci_pci_driver
);
2724 module_init(fw_ohci_init
);
2725 module_exit(fw_ohci_cleanup
);