KVM: MMU: Introduce kvm_read_nested_guest_page()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / x86.c
blob46843ed36dc1b03f974833d3769aecee4b1a3452
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affilates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58 #include <asm/pvclock.h>
59 #include <asm/div64.h>
61 #define MAX_IO_MSRS 256
62 #define CR0_RESERVED_BITS \
63 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
64 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
65 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
66 #define CR4_RESERVED_BITS \
67 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
68 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
69 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
70 | X86_CR4_OSXSAVE \
71 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75 #define KVM_MAX_MCE_BANKS 32
76 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
78 /* EFER defaults:
79 * - enable syscall per default because its emulated by KVM
80 * - enable LME and LMA per default on 64 bit KVM
82 #ifdef CONFIG_X86_64
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
84 #else
85 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
86 #endif
88 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
89 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
92 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
93 struct kvm_cpuid_entry2 __user *entries);
95 struct kvm_x86_ops *kvm_x86_ops;
96 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 int ignore_msrs = 0;
99 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 #define KVM_NR_SHARED_MSRS 16
103 struct kvm_shared_msrs_global {
104 int nr;
105 u32 msrs[KVM_NR_SHARED_MSRS];
108 struct kvm_shared_msrs {
109 struct user_return_notifier urn;
110 bool registered;
111 struct kvm_shared_msr_values {
112 u64 host;
113 u64 curr;
114 } values[KVM_NR_SHARED_MSRS];
117 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
118 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120 struct kvm_stats_debugfs_item debugfs_entries[] = {
121 { "pf_fixed", VCPU_STAT(pf_fixed) },
122 { "pf_guest", VCPU_STAT(pf_guest) },
123 { "tlb_flush", VCPU_STAT(tlb_flush) },
124 { "invlpg", VCPU_STAT(invlpg) },
125 { "exits", VCPU_STAT(exits) },
126 { "io_exits", VCPU_STAT(io_exits) },
127 { "mmio_exits", VCPU_STAT(mmio_exits) },
128 { "signal_exits", VCPU_STAT(signal_exits) },
129 { "irq_window", VCPU_STAT(irq_window_exits) },
130 { "nmi_window", VCPU_STAT(nmi_window_exits) },
131 { "halt_exits", VCPU_STAT(halt_exits) },
132 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
133 { "hypercalls", VCPU_STAT(hypercalls) },
134 { "request_irq", VCPU_STAT(request_irq_exits) },
135 { "irq_exits", VCPU_STAT(irq_exits) },
136 { "host_state_reload", VCPU_STAT(host_state_reload) },
137 { "efer_reload", VCPU_STAT(efer_reload) },
138 { "fpu_reload", VCPU_STAT(fpu_reload) },
139 { "insn_emulation", VCPU_STAT(insn_emulation) },
140 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
141 { "irq_injections", VCPU_STAT(irq_injections) },
142 { "nmi_injections", VCPU_STAT(nmi_injections) },
143 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
144 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
145 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
146 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
147 { "mmu_flooded", VM_STAT(mmu_flooded) },
148 { "mmu_recycled", VM_STAT(mmu_recycled) },
149 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
150 { "mmu_unsync", VM_STAT(mmu_unsync) },
151 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
152 { "largepages", VM_STAT(lpages) },
153 { NULL }
156 u64 __read_mostly host_xcr0;
158 static inline u32 bit(int bitno)
160 return 1 << (bitno & 31);
163 static void kvm_on_user_return(struct user_return_notifier *urn)
165 unsigned slot;
166 struct kvm_shared_msrs *locals
167 = container_of(urn, struct kvm_shared_msrs, urn);
168 struct kvm_shared_msr_values *values;
170 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
171 values = &locals->values[slot];
172 if (values->host != values->curr) {
173 wrmsrl(shared_msrs_global.msrs[slot], values->host);
174 values->curr = values->host;
177 locals->registered = false;
178 user_return_notifier_unregister(urn);
181 static void shared_msr_update(unsigned slot, u32 msr)
183 struct kvm_shared_msrs *smsr;
184 u64 value;
186 smsr = &__get_cpu_var(shared_msrs);
187 /* only read, and nobody should modify it at this time,
188 * so don't need lock */
189 if (slot >= shared_msrs_global.nr) {
190 printk(KERN_ERR "kvm: invalid MSR slot!");
191 return;
193 rdmsrl_safe(msr, &value);
194 smsr->values[slot].host = value;
195 smsr->values[slot].curr = value;
198 void kvm_define_shared_msr(unsigned slot, u32 msr)
200 if (slot >= shared_msrs_global.nr)
201 shared_msrs_global.nr = slot + 1;
202 shared_msrs_global.msrs[slot] = msr;
203 /* we need ensured the shared_msr_global have been updated */
204 smp_wmb();
206 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
208 static void kvm_shared_msr_cpu_online(void)
210 unsigned i;
212 for (i = 0; i < shared_msrs_global.nr; ++i)
213 shared_msr_update(i, shared_msrs_global.msrs[i]);
216 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
218 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220 if (((value ^ smsr->values[slot].curr) & mask) == 0)
221 return;
222 smsr->values[slot].curr = value;
223 wrmsrl(shared_msrs_global.msrs[slot], value);
224 if (!smsr->registered) {
225 smsr->urn.on_user_return = kvm_on_user_return;
226 user_return_notifier_register(&smsr->urn);
227 smsr->registered = true;
230 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
232 static void drop_user_return_notifiers(void *ignore)
234 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
236 if (smsr->registered)
237 kvm_on_user_return(&smsr->urn);
240 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242 if (irqchip_in_kernel(vcpu->kvm))
243 return vcpu->arch.apic_base;
244 else
245 return vcpu->arch.apic_base;
247 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251 /* TODO: reserve bits check */
252 if (irqchip_in_kernel(vcpu->kvm))
253 kvm_lapic_set_base(vcpu, data);
254 else
255 vcpu->arch.apic_base = data;
257 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259 #define EXCPT_BENIGN 0
260 #define EXCPT_CONTRIBUTORY 1
261 #define EXCPT_PF 2
263 static int exception_class(int vector)
265 switch (vector) {
266 case PF_VECTOR:
267 return EXCPT_PF;
268 case DE_VECTOR:
269 case TS_VECTOR:
270 case NP_VECTOR:
271 case SS_VECTOR:
272 case GP_VECTOR:
273 return EXCPT_CONTRIBUTORY;
274 default:
275 break;
277 return EXCPT_BENIGN;
280 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
281 unsigned nr, bool has_error, u32 error_code,
282 bool reinject)
284 u32 prev_nr;
285 int class1, class2;
287 if (!vcpu->arch.exception.pending) {
288 queue:
289 vcpu->arch.exception.pending = true;
290 vcpu->arch.exception.has_error_code = has_error;
291 vcpu->arch.exception.nr = nr;
292 vcpu->arch.exception.error_code = error_code;
293 vcpu->arch.exception.reinject = reinject;
294 return;
297 /* to check exception */
298 prev_nr = vcpu->arch.exception.nr;
299 if (prev_nr == DF_VECTOR) {
300 /* triple fault -> shutdown */
301 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
302 return;
304 class1 = exception_class(prev_nr);
305 class2 = exception_class(nr);
306 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
307 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
308 /* generate double fault per SDM Table 5-5 */
309 vcpu->arch.exception.pending = true;
310 vcpu->arch.exception.has_error_code = true;
311 vcpu->arch.exception.nr = DF_VECTOR;
312 vcpu->arch.exception.error_code = 0;
313 } else
314 /* replace previous exception with a new one in a hope
315 that instruction re-execution will regenerate lost
316 exception */
317 goto queue;
320 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
322 kvm_multiple_exception(vcpu, nr, false, 0, false);
324 EXPORT_SYMBOL_GPL(kvm_queue_exception);
326 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
328 kvm_multiple_exception(vcpu, nr, false, 0, true);
330 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
332 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
334 unsigned error_code = vcpu->arch.fault.error_code;
336 ++vcpu->stat.pf_guest;
337 vcpu->arch.cr2 = vcpu->arch.fault.address;
338 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
341 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
343 vcpu->arch.nmi_pending = 1;
345 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
347 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
349 kvm_multiple_exception(vcpu, nr, true, error_code, false);
351 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
353 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
355 kvm_multiple_exception(vcpu, nr, true, error_code, true);
357 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
360 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
361 * a #GP and return false.
363 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
365 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
366 return true;
367 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
368 return false;
370 EXPORT_SYMBOL_GPL(kvm_require_cpl);
373 * This function will be used to read from the physical memory of the currently
374 * running guest. The difference to kvm_read_guest_page is that this function
375 * can read from guest physical or from the guest's guest physical memory.
377 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
378 gfn_t ngfn, void *data, int offset, int len,
379 u32 access)
381 gfn_t real_gfn;
382 gpa_t ngpa;
384 ngpa = gfn_to_gpa(ngfn);
385 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
386 if (real_gfn == UNMAPPED_GVA)
387 return -EFAULT;
389 real_gfn = gpa_to_gfn(real_gfn);
391 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
393 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
395 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
396 void *data, int offset, int len, u32 access)
398 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
399 data, offset, len, access);
403 * Load the pae pdptrs. Return true is they are all valid.
405 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
407 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
408 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
409 int i;
410 int ret;
411 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
413 ret = kvm_read_nested_guest_page(vcpu, pdpt_gfn, pdpte,
414 offset * sizeof(u64), sizeof(pdpte),
415 PFERR_USER_MASK|PFERR_WRITE_MASK);
416 if (ret < 0) {
417 ret = 0;
418 goto out;
420 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
421 if (is_present_gpte(pdpte[i]) &&
422 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
423 ret = 0;
424 goto out;
427 ret = 1;
429 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
430 __set_bit(VCPU_EXREG_PDPTR,
431 (unsigned long *)&vcpu->arch.regs_avail);
432 __set_bit(VCPU_EXREG_PDPTR,
433 (unsigned long *)&vcpu->arch.regs_dirty);
434 out:
436 return ret;
438 EXPORT_SYMBOL_GPL(load_pdptrs);
440 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
442 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
443 bool changed = true;
444 int offset;
445 gfn_t gfn;
446 int r;
448 if (is_long_mode(vcpu) || !is_pae(vcpu))
449 return false;
451 if (!test_bit(VCPU_EXREG_PDPTR,
452 (unsigned long *)&vcpu->arch.regs_avail))
453 return true;
455 gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
456 offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
457 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
458 PFERR_USER_MASK | PFERR_WRITE_MASK);
459 if (r < 0)
460 goto out;
461 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
462 out:
464 return changed;
467 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
469 unsigned long old_cr0 = kvm_read_cr0(vcpu);
470 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
471 X86_CR0_CD | X86_CR0_NW;
473 cr0 |= X86_CR0_ET;
475 #ifdef CONFIG_X86_64
476 if (cr0 & 0xffffffff00000000UL)
477 return 1;
478 #endif
480 cr0 &= ~CR0_RESERVED_BITS;
482 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
483 return 1;
485 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
486 return 1;
488 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
489 #ifdef CONFIG_X86_64
490 if ((vcpu->arch.efer & EFER_LME)) {
491 int cs_db, cs_l;
493 if (!is_pae(vcpu))
494 return 1;
495 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
496 if (cs_l)
497 return 1;
498 } else
499 #endif
500 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
501 return 1;
504 kvm_x86_ops->set_cr0(vcpu, cr0);
506 if ((cr0 ^ old_cr0) & update_bits)
507 kvm_mmu_reset_context(vcpu);
508 return 0;
510 EXPORT_SYMBOL_GPL(kvm_set_cr0);
512 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
514 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
516 EXPORT_SYMBOL_GPL(kvm_lmsw);
518 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
520 u64 xcr0;
522 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
523 if (index != XCR_XFEATURE_ENABLED_MASK)
524 return 1;
525 xcr0 = xcr;
526 if (kvm_x86_ops->get_cpl(vcpu) != 0)
527 return 1;
528 if (!(xcr0 & XSTATE_FP))
529 return 1;
530 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
531 return 1;
532 if (xcr0 & ~host_xcr0)
533 return 1;
534 vcpu->arch.xcr0 = xcr0;
535 vcpu->guest_xcr0_loaded = 0;
536 return 0;
539 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
541 if (__kvm_set_xcr(vcpu, index, xcr)) {
542 kvm_inject_gp(vcpu, 0);
543 return 1;
545 return 0;
547 EXPORT_SYMBOL_GPL(kvm_set_xcr);
549 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
551 struct kvm_cpuid_entry2 *best;
553 best = kvm_find_cpuid_entry(vcpu, 1, 0);
554 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
557 static void update_cpuid(struct kvm_vcpu *vcpu)
559 struct kvm_cpuid_entry2 *best;
561 best = kvm_find_cpuid_entry(vcpu, 1, 0);
562 if (!best)
563 return;
565 /* Update OSXSAVE bit */
566 if (cpu_has_xsave && best->function == 0x1) {
567 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
568 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
569 best->ecx |= bit(X86_FEATURE_OSXSAVE);
573 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
575 unsigned long old_cr4 = kvm_read_cr4(vcpu);
576 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
578 if (cr4 & CR4_RESERVED_BITS)
579 return 1;
581 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
582 return 1;
584 if (is_long_mode(vcpu)) {
585 if (!(cr4 & X86_CR4_PAE))
586 return 1;
587 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
588 && ((cr4 ^ old_cr4) & pdptr_bits)
589 && !load_pdptrs(vcpu, vcpu->arch.cr3))
590 return 1;
592 if (cr4 & X86_CR4_VMXE)
593 return 1;
595 kvm_x86_ops->set_cr4(vcpu, cr4);
597 if ((cr4 ^ old_cr4) & pdptr_bits)
598 kvm_mmu_reset_context(vcpu);
600 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
601 update_cpuid(vcpu);
603 return 0;
605 EXPORT_SYMBOL_GPL(kvm_set_cr4);
607 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
609 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
610 kvm_mmu_sync_roots(vcpu);
611 kvm_mmu_flush_tlb(vcpu);
612 return 0;
615 if (is_long_mode(vcpu)) {
616 if (cr3 & CR3_L_MODE_RESERVED_BITS)
617 return 1;
618 } else {
619 if (is_pae(vcpu)) {
620 if (cr3 & CR3_PAE_RESERVED_BITS)
621 return 1;
622 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
623 return 1;
626 * We don't check reserved bits in nonpae mode, because
627 * this isn't enforced, and VMware depends on this.
632 * Does the new cr3 value map to physical memory? (Note, we
633 * catch an invalid cr3 even in real-mode, because it would
634 * cause trouble later on when we turn on paging anyway.)
636 * A real CPU would silently accept an invalid cr3 and would
637 * attempt to use it - with largely undefined (and often hard
638 * to debug) behavior on the guest side.
640 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
641 return 1;
642 vcpu->arch.cr3 = cr3;
643 vcpu->arch.mmu.new_cr3(vcpu);
644 return 0;
646 EXPORT_SYMBOL_GPL(kvm_set_cr3);
648 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
650 if (cr8 & CR8_RESERVED_BITS)
651 return 1;
652 if (irqchip_in_kernel(vcpu->kvm))
653 kvm_lapic_set_tpr(vcpu, cr8);
654 else
655 vcpu->arch.cr8 = cr8;
656 return 0;
659 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
661 if (__kvm_set_cr8(vcpu, cr8))
662 kvm_inject_gp(vcpu, 0);
664 EXPORT_SYMBOL_GPL(kvm_set_cr8);
666 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
668 if (irqchip_in_kernel(vcpu->kvm))
669 return kvm_lapic_get_cr8(vcpu);
670 else
671 return vcpu->arch.cr8;
673 EXPORT_SYMBOL_GPL(kvm_get_cr8);
675 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
677 switch (dr) {
678 case 0 ... 3:
679 vcpu->arch.db[dr] = val;
680 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
681 vcpu->arch.eff_db[dr] = val;
682 break;
683 case 4:
684 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
685 return 1; /* #UD */
686 /* fall through */
687 case 6:
688 if (val & 0xffffffff00000000ULL)
689 return -1; /* #GP */
690 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
691 break;
692 case 5:
693 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
694 return 1; /* #UD */
695 /* fall through */
696 default: /* 7 */
697 if (val & 0xffffffff00000000ULL)
698 return -1; /* #GP */
699 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
700 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
701 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
702 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
704 break;
707 return 0;
710 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
712 int res;
714 res = __kvm_set_dr(vcpu, dr, val);
715 if (res > 0)
716 kvm_queue_exception(vcpu, UD_VECTOR);
717 else if (res < 0)
718 kvm_inject_gp(vcpu, 0);
720 return res;
722 EXPORT_SYMBOL_GPL(kvm_set_dr);
724 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
726 switch (dr) {
727 case 0 ... 3:
728 *val = vcpu->arch.db[dr];
729 break;
730 case 4:
731 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
732 return 1;
733 /* fall through */
734 case 6:
735 *val = vcpu->arch.dr6;
736 break;
737 case 5:
738 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
739 return 1;
740 /* fall through */
741 default: /* 7 */
742 *val = vcpu->arch.dr7;
743 break;
746 return 0;
749 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
751 if (_kvm_get_dr(vcpu, dr, val)) {
752 kvm_queue_exception(vcpu, UD_VECTOR);
753 return 1;
755 return 0;
757 EXPORT_SYMBOL_GPL(kvm_get_dr);
760 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
761 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
763 * This list is modified at module load time to reflect the
764 * capabilities of the host cpu. This capabilities test skips MSRs that are
765 * kvm-specific. Those are put in the beginning of the list.
768 #define KVM_SAVE_MSRS_BEGIN 7
769 static u32 msrs_to_save[] = {
770 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
771 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
772 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
773 HV_X64_MSR_APIC_ASSIST_PAGE,
774 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
775 MSR_STAR,
776 #ifdef CONFIG_X86_64
777 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
778 #endif
779 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
782 static unsigned num_msrs_to_save;
784 static u32 emulated_msrs[] = {
785 MSR_IA32_MISC_ENABLE,
786 MSR_IA32_MCG_STATUS,
787 MSR_IA32_MCG_CTL,
790 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
792 u64 old_efer = vcpu->arch.efer;
794 if (efer & efer_reserved_bits)
795 return 1;
797 if (is_paging(vcpu)
798 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
799 return 1;
801 if (efer & EFER_FFXSR) {
802 struct kvm_cpuid_entry2 *feat;
804 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
805 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
806 return 1;
809 if (efer & EFER_SVME) {
810 struct kvm_cpuid_entry2 *feat;
812 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
813 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
814 return 1;
817 efer &= ~EFER_LMA;
818 efer |= vcpu->arch.efer & EFER_LMA;
820 kvm_x86_ops->set_efer(vcpu, efer);
822 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
823 kvm_mmu_reset_context(vcpu);
825 /* Update reserved bits */
826 if ((efer ^ old_efer) & EFER_NX)
827 kvm_mmu_reset_context(vcpu);
829 return 0;
832 void kvm_enable_efer_bits(u64 mask)
834 efer_reserved_bits &= ~mask;
836 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
840 * Writes msr value into into the appropriate "register".
841 * Returns 0 on success, non-0 otherwise.
842 * Assumes vcpu_load() was already called.
844 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
846 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
850 * Adapt set_msr() to msr_io()'s calling convention
852 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
854 return kvm_set_msr(vcpu, index, *data);
857 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
859 int version;
860 int r;
861 struct pvclock_wall_clock wc;
862 struct timespec boot;
864 if (!wall_clock)
865 return;
867 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
868 if (r)
869 return;
871 if (version & 1)
872 ++version; /* first time write, random junk */
874 ++version;
876 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
879 * The guest calculates current wall clock time by adding
880 * system time (updated by kvm_write_guest_time below) to the
881 * wall clock specified here. guest system time equals host
882 * system time for us, thus we must fill in host boot time here.
884 getboottime(&boot);
886 wc.sec = boot.tv_sec;
887 wc.nsec = boot.tv_nsec;
888 wc.version = version;
890 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
892 version++;
893 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
896 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
898 uint32_t quotient, remainder;
900 /* Don't try to replace with do_div(), this one calculates
901 * "(dividend << 32) / divisor" */
902 __asm__ ( "divl %4"
903 : "=a" (quotient), "=d" (remainder)
904 : "0" (0), "1" (dividend), "r" (divisor) );
905 return quotient;
908 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
910 uint64_t nsecs = 1000000000LL;
911 int32_t shift = 0;
912 uint64_t tps64;
913 uint32_t tps32;
915 tps64 = tsc_khz * 1000LL;
916 while (tps64 > nsecs*2) {
917 tps64 >>= 1;
918 shift--;
921 tps32 = (uint32_t)tps64;
922 while (tps32 <= (uint32_t)nsecs) {
923 tps32 <<= 1;
924 shift++;
927 hv_clock->tsc_shift = shift;
928 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
930 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
931 __func__, tsc_khz, hv_clock->tsc_shift,
932 hv_clock->tsc_to_system_mul);
935 static inline u64 get_kernel_ns(void)
937 struct timespec ts;
939 WARN_ON(preemptible());
940 ktime_get_ts(&ts);
941 monotonic_to_bootbased(&ts);
942 return timespec_to_ns(&ts);
945 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
947 static inline int kvm_tsc_changes_freq(void)
949 int cpu = get_cpu();
950 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
951 cpufreq_quick_get(cpu) != 0;
952 put_cpu();
953 return ret;
956 static inline u64 nsec_to_cycles(u64 nsec)
958 u64 ret;
960 WARN_ON(preemptible());
961 if (kvm_tsc_changes_freq())
962 printk_once(KERN_WARNING
963 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
964 ret = nsec * __get_cpu_var(cpu_tsc_khz);
965 do_div(ret, USEC_PER_SEC);
966 return ret;
969 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
971 struct kvm *kvm = vcpu->kvm;
972 u64 offset, ns, elapsed;
973 unsigned long flags;
974 s64 sdiff;
976 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
977 offset = data - native_read_tsc();
978 ns = get_kernel_ns();
979 elapsed = ns - kvm->arch.last_tsc_nsec;
980 sdiff = data - kvm->arch.last_tsc_write;
981 if (sdiff < 0)
982 sdiff = -sdiff;
985 * Special case: close write to TSC within 5 seconds of
986 * another CPU is interpreted as an attempt to synchronize
987 * The 5 seconds is to accomodate host load / swapping as
988 * well as any reset of TSC during the boot process.
990 * In that case, for a reliable TSC, we can match TSC offsets,
991 * or make a best guest using elapsed value.
993 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
994 elapsed < 5ULL * NSEC_PER_SEC) {
995 if (!check_tsc_unstable()) {
996 offset = kvm->arch.last_tsc_offset;
997 pr_debug("kvm: matched tsc offset for %llu\n", data);
998 } else {
999 u64 delta = nsec_to_cycles(elapsed);
1000 offset += delta;
1001 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1003 ns = kvm->arch.last_tsc_nsec;
1005 kvm->arch.last_tsc_nsec = ns;
1006 kvm->arch.last_tsc_write = data;
1007 kvm->arch.last_tsc_offset = offset;
1008 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1009 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1011 /* Reset of TSC must disable overshoot protection below */
1012 vcpu->arch.hv_clock.tsc_timestamp = 0;
1014 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1016 static int kvm_write_guest_time(struct kvm_vcpu *v)
1018 unsigned long flags;
1019 struct kvm_vcpu_arch *vcpu = &v->arch;
1020 void *shared_kaddr;
1021 unsigned long this_tsc_khz;
1022 s64 kernel_ns, max_kernel_ns;
1023 u64 tsc_timestamp;
1025 if ((!vcpu->time_page))
1026 return 0;
1028 /* Keep irq disabled to prevent changes to the clock */
1029 local_irq_save(flags);
1030 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1031 kernel_ns = get_kernel_ns();
1032 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1033 local_irq_restore(flags);
1035 if (unlikely(this_tsc_khz == 0)) {
1036 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1037 return 1;
1041 * Time as measured by the TSC may go backwards when resetting the base
1042 * tsc_timestamp. The reason for this is that the TSC resolution is
1043 * higher than the resolution of the other clock scales. Thus, many
1044 * possible measurments of the TSC correspond to one measurement of any
1045 * other clock, and so a spread of values is possible. This is not a
1046 * problem for the computation of the nanosecond clock; with TSC rates
1047 * around 1GHZ, there can only be a few cycles which correspond to one
1048 * nanosecond value, and any path through this code will inevitably
1049 * take longer than that. However, with the kernel_ns value itself,
1050 * the precision may be much lower, down to HZ granularity. If the
1051 * first sampling of TSC against kernel_ns ends in the low part of the
1052 * range, and the second in the high end of the range, we can get:
1054 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1056 * As the sampling errors potentially range in the thousands of cycles,
1057 * it is possible such a time value has already been observed by the
1058 * guest. To protect against this, we must compute the system time as
1059 * observed by the guest and ensure the new system time is greater.
1061 max_kernel_ns = 0;
1062 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1063 max_kernel_ns = vcpu->last_guest_tsc -
1064 vcpu->hv_clock.tsc_timestamp;
1065 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1066 vcpu->hv_clock.tsc_to_system_mul,
1067 vcpu->hv_clock.tsc_shift);
1068 max_kernel_ns += vcpu->last_kernel_ns;
1071 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1072 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
1073 vcpu->hw_tsc_khz = this_tsc_khz;
1076 if (max_kernel_ns > kernel_ns)
1077 kernel_ns = max_kernel_ns;
1079 /* With all the info we got, fill in the values */
1080 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1081 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1082 vcpu->last_kernel_ns = kernel_ns;
1083 vcpu->hv_clock.flags = 0;
1086 * The interface expects us to write an even number signaling that the
1087 * update is finished. Since the guest won't see the intermediate
1088 * state, we just increase by 2 at the end.
1090 vcpu->hv_clock.version += 2;
1092 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1094 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1095 sizeof(vcpu->hv_clock));
1097 kunmap_atomic(shared_kaddr, KM_USER0);
1099 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1100 return 0;
1103 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
1105 struct kvm_vcpu_arch *vcpu = &v->arch;
1107 if (!vcpu->time_page)
1108 return 0;
1109 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1110 return 1;
1113 static bool msr_mtrr_valid(unsigned msr)
1115 switch (msr) {
1116 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1117 case MSR_MTRRfix64K_00000:
1118 case MSR_MTRRfix16K_80000:
1119 case MSR_MTRRfix16K_A0000:
1120 case MSR_MTRRfix4K_C0000:
1121 case MSR_MTRRfix4K_C8000:
1122 case MSR_MTRRfix4K_D0000:
1123 case MSR_MTRRfix4K_D8000:
1124 case MSR_MTRRfix4K_E0000:
1125 case MSR_MTRRfix4K_E8000:
1126 case MSR_MTRRfix4K_F0000:
1127 case MSR_MTRRfix4K_F8000:
1128 case MSR_MTRRdefType:
1129 case MSR_IA32_CR_PAT:
1130 return true;
1131 case 0x2f8:
1132 return true;
1134 return false;
1137 static bool valid_pat_type(unsigned t)
1139 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1142 static bool valid_mtrr_type(unsigned t)
1144 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1147 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1149 int i;
1151 if (!msr_mtrr_valid(msr))
1152 return false;
1154 if (msr == MSR_IA32_CR_PAT) {
1155 for (i = 0; i < 8; i++)
1156 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1157 return false;
1158 return true;
1159 } else if (msr == MSR_MTRRdefType) {
1160 if (data & ~0xcff)
1161 return false;
1162 return valid_mtrr_type(data & 0xff);
1163 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1164 for (i = 0; i < 8 ; i++)
1165 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1166 return false;
1167 return true;
1170 /* variable MTRRs */
1171 return valid_mtrr_type(data & 0xff);
1174 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1176 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1178 if (!mtrr_valid(vcpu, msr, data))
1179 return 1;
1181 if (msr == MSR_MTRRdefType) {
1182 vcpu->arch.mtrr_state.def_type = data;
1183 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1184 } else if (msr == MSR_MTRRfix64K_00000)
1185 p[0] = data;
1186 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1187 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1188 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1189 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1190 else if (msr == MSR_IA32_CR_PAT)
1191 vcpu->arch.pat = data;
1192 else { /* Variable MTRRs */
1193 int idx, is_mtrr_mask;
1194 u64 *pt;
1196 idx = (msr - 0x200) / 2;
1197 is_mtrr_mask = msr - 0x200 - 2 * idx;
1198 if (!is_mtrr_mask)
1199 pt =
1200 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1201 else
1202 pt =
1203 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1204 *pt = data;
1207 kvm_mmu_reset_context(vcpu);
1208 return 0;
1211 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1213 u64 mcg_cap = vcpu->arch.mcg_cap;
1214 unsigned bank_num = mcg_cap & 0xff;
1216 switch (msr) {
1217 case MSR_IA32_MCG_STATUS:
1218 vcpu->arch.mcg_status = data;
1219 break;
1220 case MSR_IA32_MCG_CTL:
1221 if (!(mcg_cap & MCG_CTL_P))
1222 return 1;
1223 if (data != 0 && data != ~(u64)0)
1224 return -1;
1225 vcpu->arch.mcg_ctl = data;
1226 break;
1227 default:
1228 if (msr >= MSR_IA32_MC0_CTL &&
1229 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1230 u32 offset = msr - MSR_IA32_MC0_CTL;
1231 /* only 0 or all 1s can be written to IA32_MCi_CTL
1232 * some Linux kernels though clear bit 10 in bank 4 to
1233 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1234 * this to avoid an uncatched #GP in the guest
1236 if ((offset & 0x3) == 0 &&
1237 data != 0 && (data | (1 << 10)) != ~(u64)0)
1238 return -1;
1239 vcpu->arch.mce_banks[offset] = data;
1240 break;
1242 return 1;
1244 return 0;
1247 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1249 struct kvm *kvm = vcpu->kvm;
1250 int lm = is_long_mode(vcpu);
1251 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1252 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1253 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1254 : kvm->arch.xen_hvm_config.blob_size_32;
1255 u32 page_num = data & ~PAGE_MASK;
1256 u64 page_addr = data & PAGE_MASK;
1257 u8 *page;
1258 int r;
1260 r = -E2BIG;
1261 if (page_num >= blob_size)
1262 goto out;
1263 r = -ENOMEM;
1264 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1265 if (!page)
1266 goto out;
1267 r = -EFAULT;
1268 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1269 goto out_free;
1270 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1271 goto out_free;
1272 r = 0;
1273 out_free:
1274 kfree(page);
1275 out:
1276 return r;
1279 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1281 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1284 static bool kvm_hv_msr_partition_wide(u32 msr)
1286 bool r = false;
1287 switch (msr) {
1288 case HV_X64_MSR_GUEST_OS_ID:
1289 case HV_X64_MSR_HYPERCALL:
1290 r = true;
1291 break;
1294 return r;
1297 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1299 struct kvm *kvm = vcpu->kvm;
1301 switch (msr) {
1302 case HV_X64_MSR_GUEST_OS_ID:
1303 kvm->arch.hv_guest_os_id = data;
1304 /* setting guest os id to zero disables hypercall page */
1305 if (!kvm->arch.hv_guest_os_id)
1306 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1307 break;
1308 case HV_X64_MSR_HYPERCALL: {
1309 u64 gfn;
1310 unsigned long addr;
1311 u8 instructions[4];
1313 /* if guest os id is not set hypercall should remain disabled */
1314 if (!kvm->arch.hv_guest_os_id)
1315 break;
1316 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1317 kvm->arch.hv_hypercall = data;
1318 break;
1320 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1321 addr = gfn_to_hva(kvm, gfn);
1322 if (kvm_is_error_hva(addr))
1323 return 1;
1324 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1325 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1326 if (copy_to_user((void __user *)addr, instructions, 4))
1327 return 1;
1328 kvm->arch.hv_hypercall = data;
1329 break;
1331 default:
1332 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1333 "data 0x%llx\n", msr, data);
1334 return 1;
1336 return 0;
1339 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1341 switch (msr) {
1342 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1343 unsigned long addr;
1345 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1346 vcpu->arch.hv_vapic = data;
1347 break;
1349 addr = gfn_to_hva(vcpu->kvm, data >>
1350 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1351 if (kvm_is_error_hva(addr))
1352 return 1;
1353 if (clear_user((void __user *)addr, PAGE_SIZE))
1354 return 1;
1355 vcpu->arch.hv_vapic = data;
1356 break;
1358 case HV_X64_MSR_EOI:
1359 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1360 case HV_X64_MSR_ICR:
1361 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1362 case HV_X64_MSR_TPR:
1363 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1364 default:
1365 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1366 "data 0x%llx\n", msr, data);
1367 return 1;
1370 return 0;
1373 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1375 switch (msr) {
1376 case MSR_EFER:
1377 return set_efer(vcpu, data);
1378 case MSR_K7_HWCR:
1379 data &= ~(u64)0x40; /* ignore flush filter disable */
1380 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1381 if (data != 0) {
1382 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1383 data);
1384 return 1;
1386 break;
1387 case MSR_FAM10H_MMIO_CONF_BASE:
1388 if (data != 0) {
1389 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1390 "0x%llx\n", data);
1391 return 1;
1393 break;
1394 case MSR_AMD64_NB_CFG:
1395 break;
1396 case MSR_IA32_DEBUGCTLMSR:
1397 if (!data) {
1398 /* We support the non-activated case already */
1399 break;
1400 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1401 /* Values other than LBR and BTF are vendor-specific,
1402 thus reserved and should throw a #GP */
1403 return 1;
1405 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1406 __func__, data);
1407 break;
1408 case MSR_IA32_UCODE_REV:
1409 case MSR_IA32_UCODE_WRITE:
1410 case MSR_VM_HSAVE_PA:
1411 case MSR_AMD64_PATCH_LOADER:
1412 break;
1413 case 0x200 ... 0x2ff:
1414 return set_msr_mtrr(vcpu, msr, data);
1415 case MSR_IA32_APICBASE:
1416 kvm_set_apic_base(vcpu, data);
1417 break;
1418 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1419 return kvm_x2apic_msr_write(vcpu, msr, data);
1420 case MSR_IA32_MISC_ENABLE:
1421 vcpu->arch.ia32_misc_enable_msr = data;
1422 break;
1423 case MSR_KVM_WALL_CLOCK_NEW:
1424 case MSR_KVM_WALL_CLOCK:
1425 vcpu->kvm->arch.wall_clock = data;
1426 kvm_write_wall_clock(vcpu->kvm, data);
1427 break;
1428 case MSR_KVM_SYSTEM_TIME_NEW:
1429 case MSR_KVM_SYSTEM_TIME: {
1430 if (vcpu->arch.time_page) {
1431 kvm_release_page_dirty(vcpu->arch.time_page);
1432 vcpu->arch.time_page = NULL;
1435 vcpu->arch.time = data;
1437 /* we verify if the enable bit is set... */
1438 if (!(data & 1))
1439 break;
1441 /* ...but clean it before doing the actual write */
1442 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1444 vcpu->arch.time_page =
1445 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1447 if (is_error_page(vcpu->arch.time_page)) {
1448 kvm_release_page_clean(vcpu->arch.time_page);
1449 vcpu->arch.time_page = NULL;
1452 kvm_request_guest_time_update(vcpu);
1453 break;
1455 case MSR_IA32_MCG_CTL:
1456 case MSR_IA32_MCG_STATUS:
1457 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1458 return set_msr_mce(vcpu, msr, data);
1460 /* Performance counters are not protected by a CPUID bit,
1461 * so we should check all of them in the generic path for the sake of
1462 * cross vendor migration.
1463 * Writing a zero into the event select MSRs disables them,
1464 * which we perfectly emulate ;-). Any other value should be at least
1465 * reported, some guests depend on them.
1467 case MSR_P6_EVNTSEL0:
1468 case MSR_P6_EVNTSEL1:
1469 case MSR_K7_EVNTSEL0:
1470 case MSR_K7_EVNTSEL1:
1471 case MSR_K7_EVNTSEL2:
1472 case MSR_K7_EVNTSEL3:
1473 if (data != 0)
1474 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1475 "0x%x data 0x%llx\n", msr, data);
1476 break;
1477 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1478 * so we ignore writes to make it happy.
1480 case MSR_P6_PERFCTR0:
1481 case MSR_P6_PERFCTR1:
1482 case MSR_K7_PERFCTR0:
1483 case MSR_K7_PERFCTR1:
1484 case MSR_K7_PERFCTR2:
1485 case MSR_K7_PERFCTR3:
1486 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1487 "0x%x data 0x%llx\n", msr, data);
1488 break;
1489 case MSR_K7_CLK_CTL:
1491 * Ignore all writes to this no longer documented MSR.
1492 * Writes are only relevant for old K7 processors,
1493 * all pre-dating SVM, but a recommended workaround from
1494 * AMD for these chips. It is possible to speicify the
1495 * affected processor models on the command line, hence
1496 * the need to ignore the workaround.
1498 break;
1499 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1500 if (kvm_hv_msr_partition_wide(msr)) {
1501 int r;
1502 mutex_lock(&vcpu->kvm->lock);
1503 r = set_msr_hyperv_pw(vcpu, msr, data);
1504 mutex_unlock(&vcpu->kvm->lock);
1505 return r;
1506 } else
1507 return set_msr_hyperv(vcpu, msr, data);
1508 break;
1509 default:
1510 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1511 return xen_hvm_config(vcpu, data);
1512 if (!ignore_msrs) {
1513 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1514 msr, data);
1515 return 1;
1516 } else {
1517 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1518 msr, data);
1519 break;
1522 return 0;
1524 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1528 * Reads an msr value (of 'msr_index') into 'pdata'.
1529 * Returns 0 on success, non-0 otherwise.
1530 * Assumes vcpu_load() was already called.
1532 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1534 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1537 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1539 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1541 if (!msr_mtrr_valid(msr))
1542 return 1;
1544 if (msr == MSR_MTRRdefType)
1545 *pdata = vcpu->arch.mtrr_state.def_type +
1546 (vcpu->arch.mtrr_state.enabled << 10);
1547 else if (msr == MSR_MTRRfix64K_00000)
1548 *pdata = p[0];
1549 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1550 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1551 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1552 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1553 else if (msr == MSR_IA32_CR_PAT)
1554 *pdata = vcpu->arch.pat;
1555 else { /* Variable MTRRs */
1556 int idx, is_mtrr_mask;
1557 u64 *pt;
1559 idx = (msr - 0x200) / 2;
1560 is_mtrr_mask = msr - 0x200 - 2 * idx;
1561 if (!is_mtrr_mask)
1562 pt =
1563 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1564 else
1565 pt =
1566 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1567 *pdata = *pt;
1570 return 0;
1573 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1575 u64 data;
1576 u64 mcg_cap = vcpu->arch.mcg_cap;
1577 unsigned bank_num = mcg_cap & 0xff;
1579 switch (msr) {
1580 case MSR_IA32_P5_MC_ADDR:
1581 case MSR_IA32_P5_MC_TYPE:
1582 data = 0;
1583 break;
1584 case MSR_IA32_MCG_CAP:
1585 data = vcpu->arch.mcg_cap;
1586 break;
1587 case MSR_IA32_MCG_CTL:
1588 if (!(mcg_cap & MCG_CTL_P))
1589 return 1;
1590 data = vcpu->arch.mcg_ctl;
1591 break;
1592 case MSR_IA32_MCG_STATUS:
1593 data = vcpu->arch.mcg_status;
1594 break;
1595 default:
1596 if (msr >= MSR_IA32_MC0_CTL &&
1597 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1598 u32 offset = msr - MSR_IA32_MC0_CTL;
1599 data = vcpu->arch.mce_banks[offset];
1600 break;
1602 return 1;
1604 *pdata = data;
1605 return 0;
1608 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1610 u64 data = 0;
1611 struct kvm *kvm = vcpu->kvm;
1613 switch (msr) {
1614 case HV_X64_MSR_GUEST_OS_ID:
1615 data = kvm->arch.hv_guest_os_id;
1616 break;
1617 case HV_X64_MSR_HYPERCALL:
1618 data = kvm->arch.hv_hypercall;
1619 break;
1620 default:
1621 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1622 return 1;
1625 *pdata = data;
1626 return 0;
1629 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1631 u64 data = 0;
1633 switch (msr) {
1634 case HV_X64_MSR_VP_INDEX: {
1635 int r;
1636 struct kvm_vcpu *v;
1637 kvm_for_each_vcpu(r, v, vcpu->kvm)
1638 if (v == vcpu)
1639 data = r;
1640 break;
1642 case HV_X64_MSR_EOI:
1643 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1644 case HV_X64_MSR_ICR:
1645 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1646 case HV_X64_MSR_TPR:
1647 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1648 default:
1649 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1650 return 1;
1652 *pdata = data;
1653 return 0;
1656 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1658 u64 data;
1660 switch (msr) {
1661 case MSR_IA32_PLATFORM_ID:
1662 case MSR_IA32_UCODE_REV:
1663 case MSR_IA32_EBL_CR_POWERON:
1664 case MSR_IA32_DEBUGCTLMSR:
1665 case MSR_IA32_LASTBRANCHFROMIP:
1666 case MSR_IA32_LASTBRANCHTOIP:
1667 case MSR_IA32_LASTINTFROMIP:
1668 case MSR_IA32_LASTINTTOIP:
1669 case MSR_K8_SYSCFG:
1670 case MSR_K7_HWCR:
1671 case MSR_VM_HSAVE_PA:
1672 case MSR_P6_PERFCTR0:
1673 case MSR_P6_PERFCTR1:
1674 case MSR_P6_EVNTSEL0:
1675 case MSR_P6_EVNTSEL1:
1676 case MSR_K7_EVNTSEL0:
1677 case MSR_K7_PERFCTR0:
1678 case MSR_K8_INT_PENDING_MSG:
1679 case MSR_AMD64_NB_CFG:
1680 case MSR_FAM10H_MMIO_CONF_BASE:
1681 data = 0;
1682 break;
1683 case MSR_MTRRcap:
1684 data = 0x500 | KVM_NR_VAR_MTRR;
1685 break;
1686 case 0x200 ... 0x2ff:
1687 return get_msr_mtrr(vcpu, msr, pdata);
1688 case 0xcd: /* fsb frequency */
1689 data = 3;
1690 break;
1692 * MSR_EBC_FREQUENCY_ID
1693 * Conservative value valid for even the basic CPU models.
1694 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1695 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1696 * and 266MHz for model 3, or 4. Set Core Clock
1697 * Frequency to System Bus Frequency Ratio to 1 (bits
1698 * 31:24) even though these are only valid for CPU
1699 * models > 2, however guests may end up dividing or
1700 * multiplying by zero otherwise.
1702 case MSR_EBC_FREQUENCY_ID:
1703 data = 1 << 24;
1704 break;
1705 case MSR_IA32_APICBASE:
1706 data = kvm_get_apic_base(vcpu);
1707 break;
1708 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1709 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1710 break;
1711 case MSR_IA32_MISC_ENABLE:
1712 data = vcpu->arch.ia32_misc_enable_msr;
1713 break;
1714 case MSR_IA32_PERF_STATUS:
1715 /* TSC increment by tick */
1716 data = 1000ULL;
1717 /* CPU multiplier */
1718 data |= (((uint64_t)4ULL) << 40);
1719 break;
1720 case MSR_EFER:
1721 data = vcpu->arch.efer;
1722 break;
1723 case MSR_KVM_WALL_CLOCK:
1724 case MSR_KVM_WALL_CLOCK_NEW:
1725 data = vcpu->kvm->arch.wall_clock;
1726 break;
1727 case MSR_KVM_SYSTEM_TIME:
1728 case MSR_KVM_SYSTEM_TIME_NEW:
1729 data = vcpu->arch.time;
1730 break;
1731 case MSR_IA32_P5_MC_ADDR:
1732 case MSR_IA32_P5_MC_TYPE:
1733 case MSR_IA32_MCG_CAP:
1734 case MSR_IA32_MCG_CTL:
1735 case MSR_IA32_MCG_STATUS:
1736 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1737 return get_msr_mce(vcpu, msr, pdata);
1738 case MSR_K7_CLK_CTL:
1740 * Provide expected ramp-up count for K7. All other
1741 * are set to zero, indicating minimum divisors for
1742 * every field.
1744 * This prevents guest kernels on AMD host with CPU
1745 * type 6, model 8 and higher from exploding due to
1746 * the rdmsr failing.
1748 data = 0x20000000;
1749 break;
1750 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1751 if (kvm_hv_msr_partition_wide(msr)) {
1752 int r;
1753 mutex_lock(&vcpu->kvm->lock);
1754 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1755 mutex_unlock(&vcpu->kvm->lock);
1756 return r;
1757 } else
1758 return get_msr_hyperv(vcpu, msr, pdata);
1759 break;
1760 default:
1761 if (!ignore_msrs) {
1762 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1763 return 1;
1764 } else {
1765 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1766 data = 0;
1768 break;
1770 *pdata = data;
1771 return 0;
1773 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1776 * Read or write a bunch of msrs. All parameters are kernel addresses.
1778 * @return number of msrs set successfully.
1780 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1781 struct kvm_msr_entry *entries,
1782 int (*do_msr)(struct kvm_vcpu *vcpu,
1783 unsigned index, u64 *data))
1785 int i, idx;
1787 idx = srcu_read_lock(&vcpu->kvm->srcu);
1788 for (i = 0; i < msrs->nmsrs; ++i)
1789 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1790 break;
1791 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1793 return i;
1797 * Read or write a bunch of msrs. Parameters are user addresses.
1799 * @return number of msrs set successfully.
1801 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1802 int (*do_msr)(struct kvm_vcpu *vcpu,
1803 unsigned index, u64 *data),
1804 int writeback)
1806 struct kvm_msrs msrs;
1807 struct kvm_msr_entry *entries;
1808 int r, n;
1809 unsigned size;
1811 r = -EFAULT;
1812 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1813 goto out;
1815 r = -E2BIG;
1816 if (msrs.nmsrs >= MAX_IO_MSRS)
1817 goto out;
1819 r = -ENOMEM;
1820 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1821 entries = kmalloc(size, GFP_KERNEL);
1822 if (!entries)
1823 goto out;
1825 r = -EFAULT;
1826 if (copy_from_user(entries, user_msrs->entries, size))
1827 goto out_free;
1829 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1830 if (r < 0)
1831 goto out_free;
1833 r = -EFAULT;
1834 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1835 goto out_free;
1837 r = n;
1839 out_free:
1840 kfree(entries);
1841 out:
1842 return r;
1845 int kvm_dev_ioctl_check_extension(long ext)
1847 int r;
1849 switch (ext) {
1850 case KVM_CAP_IRQCHIP:
1851 case KVM_CAP_HLT:
1852 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1853 case KVM_CAP_SET_TSS_ADDR:
1854 case KVM_CAP_EXT_CPUID:
1855 case KVM_CAP_CLOCKSOURCE:
1856 case KVM_CAP_PIT:
1857 case KVM_CAP_NOP_IO_DELAY:
1858 case KVM_CAP_MP_STATE:
1859 case KVM_CAP_SYNC_MMU:
1860 case KVM_CAP_REINJECT_CONTROL:
1861 case KVM_CAP_IRQ_INJECT_STATUS:
1862 case KVM_CAP_ASSIGN_DEV_IRQ:
1863 case KVM_CAP_IRQFD:
1864 case KVM_CAP_IOEVENTFD:
1865 case KVM_CAP_PIT2:
1866 case KVM_CAP_PIT_STATE2:
1867 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1868 case KVM_CAP_XEN_HVM:
1869 case KVM_CAP_ADJUST_CLOCK:
1870 case KVM_CAP_VCPU_EVENTS:
1871 case KVM_CAP_HYPERV:
1872 case KVM_CAP_HYPERV_VAPIC:
1873 case KVM_CAP_HYPERV_SPIN:
1874 case KVM_CAP_PCI_SEGMENT:
1875 case KVM_CAP_DEBUGREGS:
1876 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1877 case KVM_CAP_XSAVE:
1878 r = 1;
1879 break;
1880 case KVM_CAP_COALESCED_MMIO:
1881 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1882 break;
1883 case KVM_CAP_VAPIC:
1884 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1885 break;
1886 case KVM_CAP_NR_VCPUS:
1887 r = KVM_MAX_VCPUS;
1888 break;
1889 case KVM_CAP_NR_MEMSLOTS:
1890 r = KVM_MEMORY_SLOTS;
1891 break;
1892 case KVM_CAP_PV_MMU: /* obsolete */
1893 r = 0;
1894 break;
1895 case KVM_CAP_IOMMU:
1896 r = iommu_found();
1897 break;
1898 case KVM_CAP_MCE:
1899 r = KVM_MAX_MCE_BANKS;
1900 break;
1901 case KVM_CAP_XCRS:
1902 r = cpu_has_xsave;
1903 break;
1904 default:
1905 r = 0;
1906 break;
1908 return r;
1912 long kvm_arch_dev_ioctl(struct file *filp,
1913 unsigned int ioctl, unsigned long arg)
1915 void __user *argp = (void __user *)arg;
1916 long r;
1918 switch (ioctl) {
1919 case KVM_GET_MSR_INDEX_LIST: {
1920 struct kvm_msr_list __user *user_msr_list = argp;
1921 struct kvm_msr_list msr_list;
1922 unsigned n;
1924 r = -EFAULT;
1925 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1926 goto out;
1927 n = msr_list.nmsrs;
1928 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1929 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1930 goto out;
1931 r = -E2BIG;
1932 if (n < msr_list.nmsrs)
1933 goto out;
1934 r = -EFAULT;
1935 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1936 num_msrs_to_save * sizeof(u32)))
1937 goto out;
1938 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1939 &emulated_msrs,
1940 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1941 goto out;
1942 r = 0;
1943 break;
1945 case KVM_GET_SUPPORTED_CPUID: {
1946 struct kvm_cpuid2 __user *cpuid_arg = argp;
1947 struct kvm_cpuid2 cpuid;
1949 r = -EFAULT;
1950 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1951 goto out;
1952 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1953 cpuid_arg->entries);
1954 if (r)
1955 goto out;
1957 r = -EFAULT;
1958 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1959 goto out;
1960 r = 0;
1961 break;
1963 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1964 u64 mce_cap;
1966 mce_cap = KVM_MCE_CAP_SUPPORTED;
1967 r = -EFAULT;
1968 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1969 goto out;
1970 r = 0;
1971 break;
1973 default:
1974 r = -EINVAL;
1976 out:
1977 return r;
1980 static void wbinvd_ipi(void *garbage)
1982 wbinvd();
1985 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1987 return vcpu->kvm->arch.iommu_domain &&
1988 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1991 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1993 /* Address WBINVD may be executed by guest */
1994 if (need_emulate_wbinvd(vcpu)) {
1995 if (kvm_x86_ops->has_wbinvd_exit())
1996 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1997 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1998 smp_call_function_single(vcpu->cpu,
1999 wbinvd_ipi, NULL, 1);
2002 kvm_x86_ops->vcpu_load(vcpu, cpu);
2003 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2004 /* Make sure TSC doesn't go backwards */
2005 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2006 native_read_tsc() - vcpu->arch.last_host_tsc;
2007 if (tsc_delta < 0)
2008 mark_tsc_unstable("KVM discovered backwards TSC");
2009 if (check_tsc_unstable())
2010 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2011 kvm_migrate_timers(vcpu);
2012 vcpu->cpu = cpu;
2016 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2018 kvm_x86_ops->vcpu_put(vcpu);
2019 kvm_put_guest_fpu(vcpu);
2020 vcpu->arch.last_host_tsc = native_read_tsc();
2023 static int is_efer_nx(void)
2025 unsigned long long efer = 0;
2027 rdmsrl_safe(MSR_EFER, &efer);
2028 return efer & EFER_NX;
2031 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2033 int i;
2034 struct kvm_cpuid_entry2 *e, *entry;
2036 entry = NULL;
2037 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2038 e = &vcpu->arch.cpuid_entries[i];
2039 if (e->function == 0x80000001) {
2040 entry = e;
2041 break;
2044 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2045 entry->edx &= ~(1 << 20);
2046 printk(KERN_INFO "kvm: guest NX capability removed\n");
2050 /* when an old userspace process fills a new kernel module */
2051 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2052 struct kvm_cpuid *cpuid,
2053 struct kvm_cpuid_entry __user *entries)
2055 int r, i;
2056 struct kvm_cpuid_entry *cpuid_entries;
2058 r = -E2BIG;
2059 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2060 goto out;
2061 r = -ENOMEM;
2062 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2063 if (!cpuid_entries)
2064 goto out;
2065 r = -EFAULT;
2066 if (copy_from_user(cpuid_entries, entries,
2067 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2068 goto out_free;
2069 for (i = 0; i < cpuid->nent; i++) {
2070 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2071 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2072 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2073 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2074 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2075 vcpu->arch.cpuid_entries[i].index = 0;
2076 vcpu->arch.cpuid_entries[i].flags = 0;
2077 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2078 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2079 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2081 vcpu->arch.cpuid_nent = cpuid->nent;
2082 cpuid_fix_nx_cap(vcpu);
2083 r = 0;
2084 kvm_apic_set_version(vcpu);
2085 kvm_x86_ops->cpuid_update(vcpu);
2086 update_cpuid(vcpu);
2088 out_free:
2089 vfree(cpuid_entries);
2090 out:
2091 return r;
2094 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2095 struct kvm_cpuid2 *cpuid,
2096 struct kvm_cpuid_entry2 __user *entries)
2098 int r;
2100 r = -E2BIG;
2101 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2102 goto out;
2103 r = -EFAULT;
2104 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2105 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2106 goto out;
2107 vcpu->arch.cpuid_nent = cpuid->nent;
2108 kvm_apic_set_version(vcpu);
2109 kvm_x86_ops->cpuid_update(vcpu);
2110 update_cpuid(vcpu);
2111 return 0;
2113 out:
2114 return r;
2117 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2118 struct kvm_cpuid2 *cpuid,
2119 struct kvm_cpuid_entry2 __user *entries)
2121 int r;
2123 r = -E2BIG;
2124 if (cpuid->nent < vcpu->arch.cpuid_nent)
2125 goto out;
2126 r = -EFAULT;
2127 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2128 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2129 goto out;
2130 return 0;
2132 out:
2133 cpuid->nent = vcpu->arch.cpuid_nent;
2134 return r;
2137 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2138 u32 index)
2140 entry->function = function;
2141 entry->index = index;
2142 cpuid_count(entry->function, entry->index,
2143 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2144 entry->flags = 0;
2147 #define F(x) bit(X86_FEATURE_##x)
2149 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2150 u32 index, int *nent, int maxnent)
2152 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2153 #ifdef CONFIG_X86_64
2154 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2155 ? F(GBPAGES) : 0;
2156 unsigned f_lm = F(LM);
2157 #else
2158 unsigned f_gbpages = 0;
2159 unsigned f_lm = 0;
2160 #endif
2161 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2163 /* cpuid 1.edx */
2164 const u32 kvm_supported_word0_x86_features =
2165 F(FPU) | F(VME) | F(DE) | F(PSE) |
2166 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2167 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2168 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2169 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2170 0 /* Reserved, DS, ACPI */ | F(MMX) |
2171 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2172 0 /* HTT, TM, Reserved, PBE */;
2173 /* cpuid 0x80000001.edx */
2174 const u32 kvm_supported_word1_x86_features =
2175 F(FPU) | F(VME) | F(DE) | F(PSE) |
2176 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2177 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2178 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2179 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2180 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2181 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2182 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2183 /* cpuid 1.ecx */
2184 const u32 kvm_supported_word4_x86_features =
2185 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2186 0 /* DS-CPL, VMX, SMX, EST */ |
2187 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2188 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2189 0 /* Reserved, DCA */ | F(XMM4_1) |
2190 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2191 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
2192 /* cpuid 0x80000001.ecx */
2193 const u32 kvm_supported_word6_x86_features =
2194 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
2195 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2196 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2197 0 /* SKINIT */ | 0 /* WDT */;
2199 /* all calls to cpuid_count() should be made on the same cpu */
2200 get_cpu();
2201 do_cpuid_1_ent(entry, function, index);
2202 ++*nent;
2204 switch (function) {
2205 case 0:
2206 entry->eax = min(entry->eax, (u32)0xd);
2207 break;
2208 case 1:
2209 entry->edx &= kvm_supported_word0_x86_features;
2210 entry->ecx &= kvm_supported_word4_x86_features;
2211 /* we support x2apic emulation even if host does not support
2212 * it since we emulate x2apic in software */
2213 entry->ecx |= F(X2APIC);
2214 break;
2215 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2216 * may return different values. This forces us to get_cpu() before
2217 * issuing the first command, and also to emulate this annoying behavior
2218 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2219 case 2: {
2220 int t, times = entry->eax & 0xff;
2222 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2223 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2224 for (t = 1; t < times && *nent < maxnent; ++t) {
2225 do_cpuid_1_ent(&entry[t], function, 0);
2226 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2227 ++*nent;
2229 break;
2231 /* function 4 and 0xb have additional index. */
2232 case 4: {
2233 int i, cache_type;
2235 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2236 /* read more entries until cache_type is zero */
2237 for (i = 1; *nent < maxnent; ++i) {
2238 cache_type = entry[i - 1].eax & 0x1f;
2239 if (!cache_type)
2240 break;
2241 do_cpuid_1_ent(&entry[i], function, i);
2242 entry[i].flags |=
2243 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2244 ++*nent;
2246 break;
2248 case 0xb: {
2249 int i, level_type;
2251 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2252 /* read more entries until level_type is zero */
2253 for (i = 1; *nent < maxnent; ++i) {
2254 level_type = entry[i - 1].ecx & 0xff00;
2255 if (!level_type)
2256 break;
2257 do_cpuid_1_ent(&entry[i], function, i);
2258 entry[i].flags |=
2259 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2260 ++*nent;
2262 break;
2264 case 0xd: {
2265 int i;
2267 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2268 for (i = 1; *nent < maxnent; ++i) {
2269 if (entry[i - 1].eax == 0 && i != 2)
2270 break;
2271 do_cpuid_1_ent(&entry[i], function, i);
2272 entry[i].flags |=
2273 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2274 ++*nent;
2276 break;
2278 case KVM_CPUID_SIGNATURE: {
2279 char signature[12] = "KVMKVMKVM\0\0";
2280 u32 *sigptr = (u32 *)signature;
2281 entry->eax = 0;
2282 entry->ebx = sigptr[0];
2283 entry->ecx = sigptr[1];
2284 entry->edx = sigptr[2];
2285 break;
2287 case KVM_CPUID_FEATURES:
2288 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2289 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2290 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2291 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2292 entry->ebx = 0;
2293 entry->ecx = 0;
2294 entry->edx = 0;
2295 break;
2296 case 0x80000000:
2297 entry->eax = min(entry->eax, 0x8000001a);
2298 break;
2299 case 0x80000001:
2300 entry->edx &= kvm_supported_word1_x86_features;
2301 entry->ecx &= kvm_supported_word6_x86_features;
2302 break;
2305 kvm_x86_ops->set_supported_cpuid(function, entry);
2307 put_cpu();
2310 #undef F
2312 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2313 struct kvm_cpuid_entry2 __user *entries)
2315 struct kvm_cpuid_entry2 *cpuid_entries;
2316 int limit, nent = 0, r = -E2BIG;
2317 u32 func;
2319 if (cpuid->nent < 1)
2320 goto out;
2321 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2322 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2323 r = -ENOMEM;
2324 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2325 if (!cpuid_entries)
2326 goto out;
2328 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2329 limit = cpuid_entries[0].eax;
2330 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2331 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2332 &nent, cpuid->nent);
2333 r = -E2BIG;
2334 if (nent >= cpuid->nent)
2335 goto out_free;
2337 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2338 limit = cpuid_entries[nent - 1].eax;
2339 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2340 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2341 &nent, cpuid->nent);
2345 r = -E2BIG;
2346 if (nent >= cpuid->nent)
2347 goto out_free;
2349 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2350 cpuid->nent);
2352 r = -E2BIG;
2353 if (nent >= cpuid->nent)
2354 goto out_free;
2356 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2357 cpuid->nent);
2359 r = -E2BIG;
2360 if (nent >= cpuid->nent)
2361 goto out_free;
2363 r = -EFAULT;
2364 if (copy_to_user(entries, cpuid_entries,
2365 nent * sizeof(struct kvm_cpuid_entry2)))
2366 goto out_free;
2367 cpuid->nent = nent;
2368 r = 0;
2370 out_free:
2371 vfree(cpuid_entries);
2372 out:
2373 return r;
2376 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2377 struct kvm_lapic_state *s)
2379 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2381 return 0;
2384 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2385 struct kvm_lapic_state *s)
2387 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2388 kvm_apic_post_state_restore(vcpu);
2389 update_cr8_intercept(vcpu);
2391 return 0;
2394 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2395 struct kvm_interrupt *irq)
2397 if (irq->irq < 0 || irq->irq >= 256)
2398 return -EINVAL;
2399 if (irqchip_in_kernel(vcpu->kvm))
2400 return -ENXIO;
2402 kvm_queue_interrupt(vcpu, irq->irq, false);
2404 return 0;
2407 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2409 kvm_inject_nmi(vcpu);
2411 return 0;
2414 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2415 struct kvm_tpr_access_ctl *tac)
2417 if (tac->flags)
2418 return -EINVAL;
2419 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2420 return 0;
2423 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2424 u64 mcg_cap)
2426 int r;
2427 unsigned bank_num = mcg_cap & 0xff, bank;
2429 r = -EINVAL;
2430 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2431 goto out;
2432 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2433 goto out;
2434 r = 0;
2435 vcpu->arch.mcg_cap = mcg_cap;
2436 /* Init IA32_MCG_CTL to all 1s */
2437 if (mcg_cap & MCG_CTL_P)
2438 vcpu->arch.mcg_ctl = ~(u64)0;
2439 /* Init IA32_MCi_CTL to all 1s */
2440 for (bank = 0; bank < bank_num; bank++)
2441 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2442 out:
2443 return r;
2446 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2447 struct kvm_x86_mce *mce)
2449 u64 mcg_cap = vcpu->arch.mcg_cap;
2450 unsigned bank_num = mcg_cap & 0xff;
2451 u64 *banks = vcpu->arch.mce_banks;
2453 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2454 return -EINVAL;
2456 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2457 * reporting is disabled
2459 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2460 vcpu->arch.mcg_ctl != ~(u64)0)
2461 return 0;
2462 banks += 4 * mce->bank;
2464 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2465 * reporting is disabled for the bank
2467 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2468 return 0;
2469 if (mce->status & MCI_STATUS_UC) {
2470 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2471 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2472 printk(KERN_DEBUG "kvm: set_mce: "
2473 "injects mce exception while "
2474 "previous one is in progress!\n");
2475 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2476 return 0;
2478 if (banks[1] & MCI_STATUS_VAL)
2479 mce->status |= MCI_STATUS_OVER;
2480 banks[2] = mce->addr;
2481 banks[3] = mce->misc;
2482 vcpu->arch.mcg_status = mce->mcg_status;
2483 banks[1] = mce->status;
2484 kvm_queue_exception(vcpu, MC_VECTOR);
2485 } else if (!(banks[1] & MCI_STATUS_VAL)
2486 || !(banks[1] & MCI_STATUS_UC)) {
2487 if (banks[1] & MCI_STATUS_VAL)
2488 mce->status |= MCI_STATUS_OVER;
2489 banks[2] = mce->addr;
2490 banks[3] = mce->misc;
2491 banks[1] = mce->status;
2492 } else
2493 banks[1] |= MCI_STATUS_OVER;
2494 return 0;
2497 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2498 struct kvm_vcpu_events *events)
2500 events->exception.injected =
2501 vcpu->arch.exception.pending &&
2502 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2503 events->exception.nr = vcpu->arch.exception.nr;
2504 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2505 events->exception.error_code = vcpu->arch.exception.error_code;
2507 events->interrupt.injected =
2508 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2509 events->interrupt.nr = vcpu->arch.interrupt.nr;
2510 events->interrupt.soft = 0;
2511 events->interrupt.shadow =
2512 kvm_x86_ops->get_interrupt_shadow(vcpu,
2513 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2515 events->nmi.injected = vcpu->arch.nmi_injected;
2516 events->nmi.pending = vcpu->arch.nmi_pending;
2517 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2519 events->sipi_vector = vcpu->arch.sipi_vector;
2521 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2522 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2523 | KVM_VCPUEVENT_VALID_SHADOW);
2526 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2527 struct kvm_vcpu_events *events)
2529 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2530 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2531 | KVM_VCPUEVENT_VALID_SHADOW))
2532 return -EINVAL;
2534 vcpu->arch.exception.pending = events->exception.injected;
2535 vcpu->arch.exception.nr = events->exception.nr;
2536 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2537 vcpu->arch.exception.error_code = events->exception.error_code;
2539 vcpu->arch.interrupt.pending = events->interrupt.injected;
2540 vcpu->arch.interrupt.nr = events->interrupt.nr;
2541 vcpu->arch.interrupt.soft = events->interrupt.soft;
2542 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2543 kvm_pic_clear_isr_ack(vcpu->kvm);
2544 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2545 kvm_x86_ops->set_interrupt_shadow(vcpu,
2546 events->interrupt.shadow);
2548 vcpu->arch.nmi_injected = events->nmi.injected;
2549 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2550 vcpu->arch.nmi_pending = events->nmi.pending;
2551 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2553 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2554 vcpu->arch.sipi_vector = events->sipi_vector;
2556 return 0;
2559 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2560 struct kvm_debugregs *dbgregs)
2562 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2563 dbgregs->dr6 = vcpu->arch.dr6;
2564 dbgregs->dr7 = vcpu->arch.dr7;
2565 dbgregs->flags = 0;
2568 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2569 struct kvm_debugregs *dbgregs)
2571 if (dbgregs->flags)
2572 return -EINVAL;
2574 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2575 vcpu->arch.dr6 = dbgregs->dr6;
2576 vcpu->arch.dr7 = dbgregs->dr7;
2578 return 0;
2581 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2582 struct kvm_xsave *guest_xsave)
2584 if (cpu_has_xsave)
2585 memcpy(guest_xsave->region,
2586 &vcpu->arch.guest_fpu.state->xsave,
2587 xstate_size);
2588 else {
2589 memcpy(guest_xsave->region,
2590 &vcpu->arch.guest_fpu.state->fxsave,
2591 sizeof(struct i387_fxsave_struct));
2592 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2593 XSTATE_FPSSE;
2597 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2598 struct kvm_xsave *guest_xsave)
2600 u64 xstate_bv =
2601 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2603 if (cpu_has_xsave)
2604 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2605 guest_xsave->region, xstate_size);
2606 else {
2607 if (xstate_bv & ~XSTATE_FPSSE)
2608 return -EINVAL;
2609 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2610 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2612 return 0;
2615 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2616 struct kvm_xcrs *guest_xcrs)
2618 if (!cpu_has_xsave) {
2619 guest_xcrs->nr_xcrs = 0;
2620 return;
2623 guest_xcrs->nr_xcrs = 1;
2624 guest_xcrs->flags = 0;
2625 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2626 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2629 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2630 struct kvm_xcrs *guest_xcrs)
2632 int i, r = 0;
2634 if (!cpu_has_xsave)
2635 return -EINVAL;
2637 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2638 return -EINVAL;
2640 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2641 /* Only support XCR0 currently */
2642 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2643 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2644 guest_xcrs->xcrs[0].value);
2645 break;
2647 if (r)
2648 r = -EINVAL;
2649 return r;
2652 long kvm_arch_vcpu_ioctl(struct file *filp,
2653 unsigned int ioctl, unsigned long arg)
2655 struct kvm_vcpu *vcpu = filp->private_data;
2656 void __user *argp = (void __user *)arg;
2657 int r;
2658 union {
2659 struct kvm_lapic_state *lapic;
2660 struct kvm_xsave *xsave;
2661 struct kvm_xcrs *xcrs;
2662 void *buffer;
2663 } u;
2665 u.buffer = NULL;
2666 switch (ioctl) {
2667 case KVM_GET_LAPIC: {
2668 r = -EINVAL;
2669 if (!vcpu->arch.apic)
2670 goto out;
2671 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2673 r = -ENOMEM;
2674 if (!u.lapic)
2675 goto out;
2676 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2677 if (r)
2678 goto out;
2679 r = -EFAULT;
2680 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2681 goto out;
2682 r = 0;
2683 break;
2685 case KVM_SET_LAPIC: {
2686 r = -EINVAL;
2687 if (!vcpu->arch.apic)
2688 goto out;
2689 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2690 r = -ENOMEM;
2691 if (!u.lapic)
2692 goto out;
2693 r = -EFAULT;
2694 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2695 goto out;
2696 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2697 if (r)
2698 goto out;
2699 r = 0;
2700 break;
2702 case KVM_INTERRUPT: {
2703 struct kvm_interrupt irq;
2705 r = -EFAULT;
2706 if (copy_from_user(&irq, argp, sizeof irq))
2707 goto out;
2708 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2709 if (r)
2710 goto out;
2711 r = 0;
2712 break;
2714 case KVM_NMI: {
2715 r = kvm_vcpu_ioctl_nmi(vcpu);
2716 if (r)
2717 goto out;
2718 r = 0;
2719 break;
2721 case KVM_SET_CPUID: {
2722 struct kvm_cpuid __user *cpuid_arg = argp;
2723 struct kvm_cpuid cpuid;
2725 r = -EFAULT;
2726 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2727 goto out;
2728 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2729 if (r)
2730 goto out;
2731 break;
2733 case KVM_SET_CPUID2: {
2734 struct kvm_cpuid2 __user *cpuid_arg = argp;
2735 struct kvm_cpuid2 cpuid;
2737 r = -EFAULT;
2738 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739 goto out;
2740 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2741 cpuid_arg->entries);
2742 if (r)
2743 goto out;
2744 break;
2746 case KVM_GET_CPUID2: {
2747 struct kvm_cpuid2 __user *cpuid_arg = argp;
2748 struct kvm_cpuid2 cpuid;
2750 r = -EFAULT;
2751 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2752 goto out;
2753 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2754 cpuid_arg->entries);
2755 if (r)
2756 goto out;
2757 r = -EFAULT;
2758 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2759 goto out;
2760 r = 0;
2761 break;
2763 case KVM_GET_MSRS:
2764 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2765 break;
2766 case KVM_SET_MSRS:
2767 r = msr_io(vcpu, argp, do_set_msr, 0);
2768 break;
2769 case KVM_TPR_ACCESS_REPORTING: {
2770 struct kvm_tpr_access_ctl tac;
2772 r = -EFAULT;
2773 if (copy_from_user(&tac, argp, sizeof tac))
2774 goto out;
2775 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2776 if (r)
2777 goto out;
2778 r = -EFAULT;
2779 if (copy_to_user(argp, &tac, sizeof tac))
2780 goto out;
2781 r = 0;
2782 break;
2784 case KVM_SET_VAPIC_ADDR: {
2785 struct kvm_vapic_addr va;
2787 r = -EINVAL;
2788 if (!irqchip_in_kernel(vcpu->kvm))
2789 goto out;
2790 r = -EFAULT;
2791 if (copy_from_user(&va, argp, sizeof va))
2792 goto out;
2793 r = 0;
2794 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2795 break;
2797 case KVM_X86_SETUP_MCE: {
2798 u64 mcg_cap;
2800 r = -EFAULT;
2801 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2802 goto out;
2803 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2804 break;
2806 case KVM_X86_SET_MCE: {
2807 struct kvm_x86_mce mce;
2809 r = -EFAULT;
2810 if (copy_from_user(&mce, argp, sizeof mce))
2811 goto out;
2812 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2813 break;
2815 case KVM_GET_VCPU_EVENTS: {
2816 struct kvm_vcpu_events events;
2818 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2820 r = -EFAULT;
2821 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2822 break;
2823 r = 0;
2824 break;
2826 case KVM_SET_VCPU_EVENTS: {
2827 struct kvm_vcpu_events events;
2829 r = -EFAULT;
2830 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2831 break;
2833 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2834 break;
2836 case KVM_GET_DEBUGREGS: {
2837 struct kvm_debugregs dbgregs;
2839 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2841 r = -EFAULT;
2842 if (copy_to_user(argp, &dbgregs,
2843 sizeof(struct kvm_debugregs)))
2844 break;
2845 r = 0;
2846 break;
2848 case KVM_SET_DEBUGREGS: {
2849 struct kvm_debugregs dbgregs;
2851 r = -EFAULT;
2852 if (copy_from_user(&dbgregs, argp,
2853 sizeof(struct kvm_debugregs)))
2854 break;
2856 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2857 break;
2859 case KVM_GET_XSAVE: {
2860 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2861 r = -ENOMEM;
2862 if (!u.xsave)
2863 break;
2865 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2867 r = -EFAULT;
2868 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2869 break;
2870 r = 0;
2871 break;
2873 case KVM_SET_XSAVE: {
2874 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2875 r = -ENOMEM;
2876 if (!u.xsave)
2877 break;
2879 r = -EFAULT;
2880 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2881 break;
2883 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2884 break;
2886 case KVM_GET_XCRS: {
2887 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2888 r = -ENOMEM;
2889 if (!u.xcrs)
2890 break;
2892 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2894 r = -EFAULT;
2895 if (copy_to_user(argp, u.xcrs,
2896 sizeof(struct kvm_xcrs)))
2897 break;
2898 r = 0;
2899 break;
2901 case KVM_SET_XCRS: {
2902 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2903 r = -ENOMEM;
2904 if (!u.xcrs)
2905 break;
2907 r = -EFAULT;
2908 if (copy_from_user(u.xcrs, argp,
2909 sizeof(struct kvm_xcrs)))
2910 break;
2912 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2913 break;
2915 default:
2916 r = -EINVAL;
2918 out:
2919 kfree(u.buffer);
2920 return r;
2923 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2925 int ret;
2927 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2928 return -1;
2929 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2930 return ret;
2933 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2934 u64 ident_addr)
2936 kvm->arch.ept_identity_map_addr = ident_addr;
2937 return 0;
2940 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2941 u32 kvm_nr_mmu_pages)
2943 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2944 return -EINVAL;
2946 mutex_lock(&kvm->slots_lock);
2947 spin_lock(&kvm->mmu_lock);
2949 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2950 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2952 spin_unlock(&kvm->mmu_lock);
2953 mutex_unlock(&kvm->slots_lock);
2954 return 0;
2957 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2959 return kvm->arch.n_max_mmu_pages;
2962 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2964 int r;
2966 r = 0;
2967 switch (chip->chip_id) {
2968 case KVM_IRQCHIP_PIC_MASTER:
2969 memcpy(&chip->chip.pic,
2970 &pic_irqchip(kvm)->pics[0],
2971 sizeof(struct kvm_pic_state));
2972 break;
2973 case KVM_IRQCHIP_PIC_SLAVE:
2974 memcpy(&chip->chip.pic,
2975 &pic_irqchip(kvm)->pics[1],
2976 sizeof(struct kvm_pic_state));
2977 break;
2978 case KVM_IRQCHIP_IOAPIC:
2979 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2980 break;
2981 default:
2982 r = -EINVAL;
2983 break;
2985 return r;
2988 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2990 int r;
2992 r = 0;
2993 switch (chip->chip_id) {
2994 case KVM_IRQCHIP_PIC_MASTER:
2995 raw_spin_lock(&pic_irqchip(kvm)->lock);
2996 memcpy(&pic_irqchip(kvm)->pics[0],
2997 &chip->chip.pic,
2998 sizeof(struct kvm_pic_state));
2999 raw_spin_unlock(&pic_irqchip(kvm)->lock);
3000 break;
3001 case KVM_IRQCHIP_PIC_SLAVE:
3002 raw_spin_lock(&pic_irqchip(kvm)->lock);
3003 memcpy(&pic_irqchip(kvm)->pics[1],
3004 &chip->chip.pic,
3005 sizeof(struct kvm_pic_state));
3006 raw_spin_unlock(&pic_irqchip(kvm)->lock);
3007 break;
3008 case KVM_IRQCHIP_IOAPIC:
3009 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3010 break;
3011 default:
3012 r = -EINVAL;
3013 break;
3015 kvm_pic_update_irq(pic_irqchip(kvm));
3016 return r;
3019 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3021 int r = 0;
3023 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3024 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3025 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3026 return r;
3029 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3031 int r = 0;
3033 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3034 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3035 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3036 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3037 return r;
3040 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3042 int r = 0;
3044 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3045 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3046 sizeof(ps->channels));
3047 ps->flags = kvm->arch.vpit->pit_state.flags;
3048 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3049 return r;
3052 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3054 int r = 0, start = 0;
3055 u32 prev_legacy, cur_legacy;
3056 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3057 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3058 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3059 if (!prev_legacy && cur_legacy)
3060 start = 1;
3061 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3062 sizeof(kvm->arch.vpit->pit_state.channels));
3063 kvm->arch.vpit->pit_state.flags = ps->flags;
3064 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3065 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3066 return r;
3069 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3070 struct kvm_reinject_control *control)
3072 if (!kvm->arch.vpit)
3073 return -ENXIO;
3074 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3075 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3076 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3077 return 0;
3081 * Get (and clear) the dirty memory log for a memory slot.
3083 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3084 struct kvm_dirty_log *log)
3086 int r, i;
3087 struct kvm_memory_slot *memslot;
3088 unsigned long n;
3089 unsigned long is_dirty = 0;
3091 mutex_lock(&kvm->slots_lock);
3093 r = -EINVAL;
3094 if (log->slot >= KVM_MEMORY_SLOTS)
3095 goto out;
3097 memslot = &kvm->memslots->memslots[log->slot];
3098 r = -ENOENT;
3099 if (!memslot->dirty_bitmap)
3100 goto out;
3102 n = kvm_dirty_bitmap_bytes(memslot);
3104 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3105 is_dirty = memslot->dirty_bitmap[i];
3107 /* If nothing is dirty, don't bother messing with page tables. */
3108 if (is_dirty) {
3109 struct kvm_memslots *slots, *old_slots;
3110 unsigned long *dirty_bitmap;
3112 spin_lock(&kvm->mmu_lock);
3113 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3114 spin_unlock(&kvm->mmu_lock);
3116 r = -ENOMEM;
3117 dirty_bitmap = vmalloc(n);
3118 if (!dirty_bitmap)
3119 goto out;
3120 memset(dirty_bitmap, 0, n);
3122 r = -ENOMEM;
3123 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3124 if (!slots) {
3125 vfree(dirty_bitmap);
3126 goto out;
3128 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3129 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3131 old_slots = kvm->memslots;
3132 rcu_assign_pointer(kvm->memslots, slots);
3133 synchronize_srcu_expedited(&kvm->srcu);
3134 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3135 kfree(old_slots);
3137 r = -EFAULT;
3138 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3139 vfree(dirty_bitmap);
3140 goto out;
3142 vfree(dirty_bitmap);
3143 } else {
3144 r = -EFAULT;
3145 if (clear_user(log->dirty_bitmap, n))
3146 goto out;
3149 r = 0;
3150 out:
3151 mutex_unlock(&kvm->slots_lock);
3152 return r;
3155 long kvm_arch_vm_ioctl(struct file *filp,
3156 unsigned int ioctl, unsigned long arg)
3158 struct kvm *kvm = filp->private_data;
3159 void __user *argp = (void __user *)arg;
3160 int r = -ENOTTY;
3162 * This union makes it completely explicit to gcc-3.x
3163 * that these two variables' stack usage should be
3164 * combined, not added together.
3166 union {
3167 struct kvm_pit_state ps;
3168 struct kvm_pit_state2 ps2;
3169 struct kvm_pit_config pit_config;
3170 } u;
3172 switch (ioctl) {
3173 case KVM_SET_TSS_ADDR:
3174 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3175 if (r < 0)
3176 goto out;
3177 break;
3178 case KVM_SET_IDENTITY_MAP_ADDR: {
3179 u64 ident_addr;
3181 r = -EFAULT;
3182 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3183 goto out;
3184 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3185 if (r < 0)
3186 goto out;
3187 break;
3189 case KVM_SET_NR_MMU_PAGES:
3190 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3191 if (r)
3192 goto out;
3193 break;
3194 case KVM_GET_NR_MMU_PAGES:
3195 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3196 break;
3197 case KVM_CREATE_IRQCHIP: {
3198 struct kvm_pic *vpic;
3200 mutex_lock(&kvm->lock);
3201 r = -EEXIST;
3202 if (kvm->arch.vpic)
3203 goto create_irqchip_unlock;
3204 r = -ENOMEM;
3205 vpic = kvm_create_pic(kvm);
3206 if (vpic) {
3207 r = kvm_ioapic_init(kvm);
3208 if (r) {
3209 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3210 &vpic->dev);
3211 kfree(vpic);
3212 goto create_irqchip_unlock;
3214 } else
3215 goto create_irqchip_unlock;
3216 smp_wmb();
3217 kvm->arch.vpic = vpic;
3218 smp_wmb();
3219 r = kvm_setup_default_irq_routing(kvm);
3220 if (r) {
3221 mutex_lock(&kvm->irq_lock);
3222 kvm_ioapic_destroy(kvm);
3223 kvm_destroy_pic(kvm);
3224 mutex_unlock(&kvm->irq_lock);
3226 create_irqchip_unlock:
3227 mutex_unlock(&kvm->lock);
3228 break;
3230 case KVM_CREATE_PIT:
3231 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3232 goto create_pit;
3233 case KVM_CREATE_PIT2:
3234 r = -EFAULT;
3235 if (copy_from_user(&u.pit_config, argp,
3236 sizeof(struct kvm_pit_config)))
3237 goto out;
3238 create_pit:
3239 mutex_lock(&kvm->slots_lock);
3240 r = -EEXIST;
3241 if (kvm->arch.vpit)
3242 goto create_pit_unlock;
3243 r = -ENOMEM;
3244 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3245 if (kvm->arch.vpit)
3246 r = 0;
3247 create_pit_unlock:
3248 mutex_unlock(&kvm->slots_lock);
3249 break;
3250 case KVM_IRQ_LINE_STATUS:
3251 case KVM_IRQ_LINE: {
3252 struct kvm_irq_level irq_event;
3254 r = -EFAULT;
3255 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3256 goto out;
3257 r = -ENXIO;
3258 if (irqchip_in_kernel(kvm)) {
3259 __s32 status;
3260 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3261 irq_event.irq, irq_event.level);
3262 if (ioctl == KVM_IRQ_LINE_STATUS) {
3263 r = -EFAULT;
3264 irq_event.status = status;
3265 if (copy_to_user(argp, &irq_event,
3266 sizeof irq_event))
3267 goto out;
3269 r = 0;
3271 break;
3273 case KVM_GET_IRQCHIP: {
3274 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3275 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3277 r = -ENOMEM;
3278 if (!chip)
3279 goto out;
3280 r = -EFAULT;
3281 if (copy_from_user(chip, argp, sizeof *chip))
3282 goto get_irqchip_out;
3283 r = -ENXIO;
3284 if (!irqchip_in_kernel(kvm))
3285 goto get_irqchip_out;
3286 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3287 if (r)
3288 goto get_irqchip_out;
3289 r = -EFAULT;
3290 if (copy_to_user(argp, chip, sizeof *chip))
3291 goto get_irqchip_out;
3292 r = 0;
3293 get_irqchip_out:
3294 kfree(chip);
3295 if (r)
3296 goto out;
3297 break;
3299 case KVM_SET_IRQCHIP: {
3300 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3301 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3303 r = -ENOMEM;
3304 if (!chip)
3305 goto out;
3306 r = -EFAULT;
3307 if (copy_from_user(chip, argp, sizeof *chip))
3308 goto set_irqchip_out;
3309 r = -ENXIO;
3310 if (!irqchip_in_kernel(kvm))
3311 goto set_irqchip_out;
3312 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3313 if (r)
3314 goto set_irqchip_out;
3315 r = 0;
3316 set_irqchip_out:
3317 kfree(chip);
3318 if (r)
3319 goto out;
3320 break;
3322 case KVM_GET_PIT: {
3323 r = -EFAULT;
3324 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3325 goto out;
3326 r = -ENXIO;
3327 if (!kvm->arch.vpit)
3328 goto out;
3329 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3330 if (r)
3331 goto out;
3332 r = -EFAULT;
3333 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3334 goto out;
3335 r = 0;
3336 break;
3338 case KVM_SET_PIT: {
3339 r = -EFAULT;
3340 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3341 goto out;
3342 r = -ENXIO;
3343 if (!kvm->arch.vpit)
3344 goto out;
3345 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3346 if (r)
3347 goto out;
3348 r = 0;
3349 break;
3351 case KVM_GET_PIT2: {
3352 r = -ENXIO;
3353 if (!kvm->arch.vpit)
3354 goto out;
3355 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3356 if (r)
3357 goto out;
3358 r = -EFAULT;
3359 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3360 goto out;
3361 r = 0;
3362 break;
3364 case KVM_SET_PIT2: {
3365 r = -EFAULT;
3366 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3367 goto out;
3368 r = -ENXIO;
3369 if (!kvm->arch.vpit)
3370 goto out;
3371 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3372 if (r)
3373 goto out;
3374 r = 0;
3375 break;
3377 case KVM_REINJECT_CONTROL: {
3378 struct kvm_reinject_control control;
3379 r = -EFAULT;
3380 if (copy_from_user(&control, argp, sizeof(control)))
3381 goto out;
3382 r = kvm_vm_ioctl_reinject(kvm, &control);
3383 if (r)
3384 goto out;
3385 r = 0;
3386 break;
3388 case KVM_XEN_HVM_CONFIG: {
3389 r = -EFAULT;
3390 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3391 sizeof(struct kvm_xen_hvm_config)))
3392 goto out;
3393 r = -EINVAL;
3394 if (kvm->arch.xen_hvm_config.flags)
3395 goto out;
3396 r = 0;
3397 break;
3399 case KVM_SET_CLOCK: {
3400 struct kvm_clock_data user_ns;
3401 u64 now_ns;
3402 s64 delta;
3404 r = -EFAULT;
3405 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3406 goto out;
3408 r = -EINVAL;
3409 if (user_ns.flags)
3410 goto out;
3412 r = 0;
3413 now_ns = get_kernel_ns();
3414 delta = user_ns.clock - now_ns;
3415 kvm->arch.kvmclock_offset = delta;
3416 break;
3418 case KVM_GET_CLOCK: {
3419 struct kvm_clock_data user_ns;
3420 u64 now_ns;
3422 now_ns = get_kernel_ns();
3423 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3424 user_ns.flags = 0;
3426 r = -EFAULT;
3427 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3428 goto out;
3429 r = 0;
3430 break;
3433 default:
3436 out:
3437 return r;
3440 static void kvm_init_msr_list(void)
3442 u32 dummy[2];
3443 unsigned i, j;
3445 /* skip the first msrs in the list. KVM-specific */
3446 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3447 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3448 continue;
3449 if (j < i)
3450 msrs_to_save[j] = msrs_to_save[i];
3451 j++;
3453 num_msrs_to_save = j;
3456 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3457 const void *v)
3459 if (vcpu->arch.apic &&
3460 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3461 return 0;
3463 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3466 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3468 if (vcpu->arch.apic &&
3469 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3470 return 0;
3472 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3475 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3476 struct kvm_segment *var, int seg)
3478 kvm_x86_ops->set_segment(vcpu, var, seg);
3481 void kvm_get_segment(struct kvm_vcpu *vcpu,
3482 struct kvm_segment *var, int seg)
3484 kvm_x86_ops->get_segment(vcpu, var, seg);
3487 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3489 return gpa;
3492 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3494 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3495 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3498 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3500 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3501 access |= PFERR_FETCH_MASK;
3502 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3505 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3507 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3508 access |= PFERR_WRITE_MASK;
3509 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3512 /* uses this to access any guest's mapped memory without checking CPL */
3513 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3515 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3518 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3519 struct kvm_vcpu *vcpu, u32 access,
3520 u32 *error)
3522 void *data = val;
3523 int r = X86EMUL_CONTINUE;
3525 while (bytes) {
3526 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3527 error);
3528 unsigned offset = addr & (PAGE_SIZE-1);
3529 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3530 int ret;
3532 if (gpa == UNMAPPED_GVA) {
3533 r = X86EMUL_PROPAGATE_FAULT;
3534 goto out;
3536 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3537 if (ret < 0) {
3538 r = X86EMUL_IO_NEEDED;
3539 goto out;
3542 bytes -= toread;
3543 data += toread;
3544 addr += toread;
3546 out:
3547 return r;
3550 /* used for instruction fetching */
3551 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3552 struct kvm_vcpu *vcpu, u32 *error)
3554 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3555 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3556 access | PFERR_FETCH_MASK, error);
3559 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3560 struct kvm_vcpu *vcpu, u32 *error)
3562 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3563 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3564 error);
3567 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3568 struct kvm_vcpu *vcpu, u32 *error)
3570 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3573 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3574 unsigned int bytes,
3575 struct kvm_vcpu *vcpu,
3576 u32 *error)
3578 void *data = val;
3579 int r = X86EMUL_CONTINUE;
3581 while (bytes) {
3582 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3583 PFERR_WRITE_MASK,
3584 error);
3585 unsigned offset = addr & (PAGE_SIZE-1);
3586 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3587 int ret;
3589 if (gpa == UNMAPPED_GVA) {
3590 r = X86EMUL_PROPAGATE_FAULT;
3591 goto out;
3593 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3594 if (ret < 0) {
3595 r = X86EMUL_IO_NEEDED;
3596 goto out;
3599 bytes -= towrite;
3600 data += towrite;
3601 addr += towrite;
3603 out:
3604 return r;
3607 static int emulator_read_emulated(unsigned long addr,
3608 void *val,
3609 unsigned int bytes,
3610 unsigned int *error_code,
3611 struct kvm_vcpu *vcpu)
3613 gpa_t gpa;
3615 if (vcpu->mmio_read_completed) {
3616 memcpy(val, vcpu->mmio_data, bytes);
3617 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3618 vcpu->mmio_phys_addr, *(u64 *)val);
3619 vcpu->mmio_read_completed = 0;
3620 return X86EMUL_CONTINUE;
3623 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3625 if (gpa == UNMAPPED_GVA)
3626 return X86EMUL_PROPAGATE_FAULT;
3628 /* For APIC access vmexit */
3629 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3630 goto mmio;
3632 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3633 == X86EMUL_CONTINUE)
3634 return X86EMUL_CONTINUE;
3636 mmio:
3638 * Is this MMIO handled locally?
3640 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3641 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3642 return X86EMUL_CONTINUE;
3645 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3647 vcpu->mmio_needed = 1;
3648 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3649 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3650 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3651 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3653 return X86EMUL_IO_NEEDED;
3656 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3657 const void *val, int bytes)
3659 int ret;
3661 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3662 if (ret < 0)
3663 return 0;
3664 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3665 return 1;
3668 static int emulator_write_emulated_onepage(unsigned long addr,
3669 const void *val,
3670 unsigned int bytes,
3671 unsigned int *error_code,
3672 struct kvm_vcpu *vcpu)
3674 gpa_t gpa;
3676 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3678 if (gpa == UNMAPPED_GVA)
3679 return X86EMUL_PROPAGATE_FAULT;
3681 /* For APIC access vmexit */
3682 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3683 goto mmio;
3685 if (emulator_write_phys(vcpu, gpa, val, bytes))
3686 return X86EMUL_CONTINUE;
3688 mmio:
3689 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3691 * Is this MMIO handled locally?
3693 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3694 return X86EMUL_CONTINUE;
3696 vcpu->mmio_needed = 1;
3697 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3698 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3699 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3700 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3701 memcpy(vcpu->run->mmio.data, val, bytes);
3703 return X86EMUL_CONTINUE;
3706 int emulator_write_emulated(unsigned long addr,
3707 const void *val,
3708 unsigned int bytes,
3709 unsigned int *error_code,
3710 struct kvm_vcpu *vcpu)
3712 /* Crossing a page boundary? */
3713 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3714 int rc, now;
3716 now = -addr & ~PAGE_MASK;
3717 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3718 vcpu);
3719 if (rc != X86EMUL_CONTINUE)
3720 return rc;
3721 addr += now;
3722 val += now;
3723 bytes -= now;
3725 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3726 vcpu);
3729 #define CMPXCHG_TYPE(t, ptr, old, new) \
3730 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3732 #ifdef CONFIG_X86_64
3733 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3734 #else
3735 # define CMPXCHG64(ptr, old, new) \
3736 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3737 #endif
3739 static int emulator_cmpxchg_emulated(unsigned long addr,
3740 const void *old,
3741 const void *new,
3742 unsigned int bytes,
3743 unsigned int *error_code,
3744 struct kvm_vcpu *vcpu)
3746 gpa_t gpa;
3747 struct page *page;
3748 char *kaddr;
3749 bool exchanged;
3751 /* guests cmpxchg8b have to be emulated atomically */
3752 if (bytes > 8 || (bytes & (bytes - 1)))
3753 goto emul_write;
3755 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3757 if (gpa == UNMAPPED_GVA ||
3758 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3759 goto emul_write;
3761 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3762 goto emul_write;
3764 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3765 if (is_error_page(page)) {
3766 kvm_release_page_clean(page);
3767 goto emul_write;
3770 kaddr = kmap_atomic(page, KM_USER0);
3771 kaddr += offset_in_page(gpa);
3772 switch (bytes) {
3773 case 1:
3774 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3775 break;
3776 case 2:
3777 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3778 break;
3779 case 4:
3780 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3781 break;
3782 case 8:
3783 exchanged = CMPXCHG64(kaddr, old, new);
3784 break;
3785 default:
3786 BUG();
3788 kunmap_atomic(kaddr, KM_USER0);
3789 kvm_release_page_dirty(page);
3791 if (!exchanged)
3792 return X86EMUL_CMPXCHG_FAILED;
3794 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3796 return X86EMUL_CONTINUE;
3798 emul_write:
3799 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3801 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3804 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3806 /* TODO: String I/O for in kernel device */
3807 int r;
3809 if (vcpu->arch.pio.in)
3810 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3811 vcpu->arch.pio.size, pd);
3812 else
3813 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3814 vcpu->arch.pio.port, vcpu->arch.pio.size,
3815 pd);
3816 return r;
3820 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3821 unsigned int count, struct kvm_vcpu *vcpu)
3823 if (vcpu->arch.pio.count)
3824 goto data_avail;
3826 trace_kvm_pio(0, port, size, 1);
3828 vcpu->arch.pio.port = port;
3829 vcpu->arch.pio.in = 1;
3830 vcpu->arch.pio.count = count;
3831 vcpu->arch.pio.size = size;
3833 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3834 data_avail:
3835 memcpy(val, vcpu->arch.pio_data, size * count);
3836 vcpu->arch.pio.count = 0;
3837 return 1;
3840 vcpu->run->exit_reason = KVM_EXIT_IO;
3841 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3842 vcpu->run->io.size = size;
3843 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3844 vcpu->run->io.count = count;
3845 vcpu->run->io.port = port;
3847 return 0;
3850 static int emulator_pio_out_emulated(int size, unsigned short port,
3851 const void *val, unsigned int count,
3852 struct kvm_vcpu *vcpu)
3854 trace_kvm_pio(1, port, size, 1);
3856 vcpu->arch.pio.port = port;
3857 vcpu->arch.pio.in = 0;
3858 vcpu->arch.pio.count = count;
3859 vcpu->arch.pio.size = size;
3861 memcpy(vcpu->arch.pio_data, val, size * count);
3863 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3864 vcpu->arch.pio.count = 0;
3865 return 1;
3868 vcpu->run->exit_reason = KVM_EXIT_IO;
3869 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3870 vcpu->run->io.size = size;
3871 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3872 vcpu->run->io.count = count;
3873 vcpu->run->io.port = port;
3875 return 0;
3878 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3880 return kvm_x86_ops->get_segment_base(vcpu, seg);
3883 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3885 kvm_mmu_invlpg(vcpu, address);
3886 return X86EMUL_CONTINUE;
3889 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3891 if (!need_emulate_wbinvd(vcpu))
3892 return X86EMUL_CONTINUE;
3894 if (kvm_x86_ops->has_wbinvd_exit()) {
3895 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3896 wbinvd_ipi, NULL, 1);
3897 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3899 wbinvd();
3900 return X86EMUL_CONTINUE;
3902 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3904 int emulate_clts(struct kvm_vcpu *vcpu)
3906 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3907 kvm_x86_ops->fpu_activate(vcpu);
3908 return X86EMUL_CONTINUE;
3911 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3913 return _kvm_get_dr(vcpu, dr, dest);
3916 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3919 return __kvm_set_dr(vcpu, dr, value);
3922 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3924 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3927 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3929 unsigned long value;
3931 switch (cr) {
3932 case 0:
3933 value = kvm_read_cr0(vcpu);
3934 break;
3935 case 2:
3936 value = vcpu->arch.cr2;
3937 break;
3938 case 3:
3939 value = vcpu->arch.cr3;
3940 break;
3941 case 4:
3942 value = kvm_read_cr4(vcpu);
3943 break;
3944 case 8:
3945 value = kvm_get_cr8(vcpu);
3946 break;
3947 default:
3948 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3949 return 0;
3952 return value;
3955 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3957 int res = 0;
3959 switch (cr) {
3960 case 0:
3961 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3962 break;
3963 case 2:
3964 vcpu->arch.cr2 = val;
3965 break;
3966 case 3:
3967 res = kvm_set_cr3(vcpu, val);
3968 break;
3969 case 4:
3970 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3971 break;
3972 case 8:
3973 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3974 break;
3975 default:
3976 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3977 res = -1;
3980 return res;
3983 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3985 return kvm_x86_ops->get_cpl(vcpu);
3988 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3990 kvm_x86_ops->get_gdt(vcpu, dt);
3993 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3995 kvm_x86_ops->get_idt(vcpu, dt);
3998 static unsigned long emulator_get_cached_segment_base(int seg,
3999 struct kvm_vcpu *vcpu)
4001 return get_segment_base(vcpu, seg);
4004 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4005 struct kvm_vcpu *vcpu)
4007 struct kvm_segment var;
4009 kvm_get_segment(vcpu, &var, seg);
4011 if (var.unusable)
4012 return false;
4014 if (var.g)
4015 var.limit >>= 12;
4016 set_desc_limit(desc, var.limit);
4017 set_desc_base(desc, (unsigned long)var.base);
4018 desc->type = var.type;
4019 desc->s = var.s;
4020 desc->dpl = var.dpl;
4021 desc->p = var.present;
4022 desc->avl = var.avl;
4023 desc->l = var.l;
4024 desc->d = var.db;
4025 desc->g = var.g;
4027 return true;
4030 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4031 struct kvm_vcpu *vcpu)
4033 struct kvm_segment var;
4035 /* needed to preserve selector */
4036 kvm_get_segment(vcpu, &var, seg);
4038 var.base = get_desc_base(desc);
4039 var.limit = get_desc_limit(desc);
4040 if (desc->g)
4041 var.limit = (var.limit << 12) | 0xfff;
4042 var.type = desc->type;
4043 var.present = desc->p;
4044 var.dpl = desc->dpl;
4045 var.db = desc->d;
4046 var.s = desc->s;
4047 var.l = desc->l;
4048 var.g = desc->g;
4049 var.avl = desc->avl;
4050 var.present = desc->p;
4051 var.unusable = !var.present;
4052 var.padding = 0;
4054 kvm_set_segment(vcpu, &var, seg);
4055 return;
4058 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4060 struct kvm_segment kvm_seg;
4062 kvm_get_segment(vcpu, &kvm_seg, seg);
4063 return kvm_seg.selector;
4066 static void emulator_set_segment_selector(u16 sel, int seg,
4067 struct kvm_vcpu *vcpu)
4069 struct kvm_segment kvm_seg;
4071 kvm_get_segment(vcpu, &kvm_seg, seg);
4072 kvm_seg.selector = sel;
4073 kvm_set_segment(vcpu, &kvm_seg, seg);
4076 static struct x86_emulate_ops emulate_ops = {
4077 .read_std = kvm_read_guest_virt_system,
4078 .write_std = kvm_write_guest_virt_system,
4079 .fetch = kvm_fetch_guest_virt,
4080 .read_emulated = emulator_read_emulated,
4081 .write_emulated = emulator_write_emulated,
4082 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4083 .pio_in_emulated = emulator_pio_in_emulated,
4084 .pio_out_emulated = emulator_pio_out_emulated,
4085 .get_cached_descriptor = emulator_get_cached_descriptor,
4086 .set_cached_descriptor = emulator_set_cached_descriptor,
4087 .get_segment_selector = emulator_get_segment_selector,
4088 .set_segment_selector = emulator_set_segment_selector,
4089 .get_cached_segment_base = emulator_get_cached_segment_base,
4090 .get_gdt = emulator_get_gdt,
4091 .get_idt = emulator_get_idt,
4092 .get_cr = emulator_get_cr,
4093 .set_cr = emulator_set_cr,
4094 .cpl = emulator_get_cpl,
4095 .get_dr = emulator_get_dr,
4096 .set_dr = emulator_set_dr,
4097 .set_msr = kvm_set_msr,
4098 .get_msr = kvm_get_msr,
4101 static void cache_all_regs(struct kvm_vcpu *vcpu)
4103 kvm_register_read(vcpu, VCPU_REGS_RAX);
4104 kvm_register_read(vcpu, VCPU_REGS_RSP);
4105 kvm_register_read(vcpu, VCPU_REGS_RIP);
4106 vcpu->arch.regs_dirty = ~0;
4109 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4111 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4113 * an sti; sti; sequence only disable interrupts for the first
4114 * instruction. So, if the last instruction, be it emulated or
4115 * not, left the system with the INT_STI flag enabled, it
4116 * means that the last instruction is an sti. We should not
4117 * leave the flag on in this case. The same goes for mov ss
4119 if (!(int_shadow & mask))
4120 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4123 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4125 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4126 if (ctxt->exception == PF_VECTOR)
4127 kvm_inject_page_fault(vcpu);
4128 else if (ctxt->error_code_valid)
4129 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4130 else
4131 kvm_queue_exception(vcpu, ctxt->exception);
4134 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4136 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4137 int cs_db, cs_l;
4139 cache_all_regs(vcpu);
4141 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4143 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4144 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4145 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4146 vcpu->arch.emulate_ctxt.mode =
4147 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4148 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4149 ? X86EMUL_MODE_VM86 : cs_l
4150 ? X86EMUL_MODE_PROT64 : cs_db
4151 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4152 memset(c, 0, sizeof(struct decode_cache));
4153 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4156 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4158 ++vcpu->stat.insn_emulation_fail;
4159 trace_kvm_emulate_insn_failed(vcpu);
4160 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4161 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4162 vcpu->run->internal.ndata = 0;
4163 kvm_queue_exception(vcpu, UD_VECTOR);
4164 return EMULATE_FAIL;
4167 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4169 gpa_t gpa;
4171 if (tdp_enabled)
4172 return false;
4175 * if emulation was due to access to shadowed page table
4176 * and it failed try to unshadow page and re-entetr the
4177 * guest to let CPU execute the instruction.
4179 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4180 return true;
4182 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4184 if (gpa == UNMAPPED_GVA)
4185 return true; /* let cpu generate fault */
4187 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4188 return true;
4190 return false;
4193 int emulate_instruction(struct kvm_vcpu *vcpu,
4194 unsigned long cr2,
4195 u16 error_code,
4196 int emulation_type)
4198 int r;
4199 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4201 kvm_clear_exception_queue(vcpu);
4202 vcpu->arch.mmio_fault_cr2 = cr2;
4204 * TODO: fix emulate.c to use guest_read/write_register
4205 * instead of direct ->regs accesses, can save hundred cycles
4206 * on Intel for instructions that don't read/change RSP, for
4207 * for example.
4209 cache_all_regs(vcpu);
4211 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4212 init_emulate_ctxt(vcpu);
4213 vcpu->arch.emulate_ctxt.interruptibility = 0;
4214 vcpu->arch.emulate_ctxt.exception = -1;
4215 vcpu->arch.emulate_ctxt.perm_ok = false;
4217 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4218 trace_kvm_emulate_insn_start(vcpu);
4220 /* Only allow emulation of specific instructions on #UD
4221 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4222 if (emulation_type & EMULTYPE_TRAP_UD) {
4223 if (!c->twobyte)
4224 return EMULATE_FAIL;
4225 switch (c->b) {
4226 case 0x01: /* VMMCALL */
4227 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4228 return EMULATE_FAIL;
4229 break;
4230 case 0x34: /* sysenter */
4231 case 0x35: /* sysexit */
4232 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4233 return EMULATE_FAIL;
4234 break;
4235 case 0x05: /* syscall */
4236 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4237 return EMULATE_FAIL;
4238 break;
4239 default:
4240 return EMULATE_FAIL;
4243 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4244 return EMULATE_FAIL;
4247 ++vcpu->stat.insn_emulation;
4248 if (r) {
4249 if (reexecute_instruction(vcpu, cr2))
4250 return EMULATE_DONE;
4251 if (emulation_type & EMULTYPE_SKIP)
4252 return EMULATE_FAIL;
4253 return handle_emulation_failure(vcpu);
4257 if (emulation_type & EMULTYPE_SKIP) {
4258 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4259 return EMULATE_DONE;
4262 /* this is needed for vmware backdor interface to work since it
4263 changes registers values during IO operation */
4264 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4266 restart:
4267 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4269 if (r == EMULATION_FAILED) {
4270 if (reexecute_instruction(vcpu, cr2))
4271 return EMULATE_DONE;
4273 return handle_emulation_failure(vcpu);
4276 if (vcpu->arch.emulate_ctxt.exception >= 0) {
4277 inject_emulated_exception(vcpu);
4278 r = EMULATE_DONE;
4279 } else if (vcpu->arch.pio.count) {
4280 if (!vcpu->arch.pio.in)
4281 vcpu->arch.pio.count = 0;
4282 r = EMULATE_DO_MMIO;
4283 } else if (vcpu->mmio_needed) {
4284 if (vcpu->mmio_is_write)
4285 vcpu->mmio_needed = 0;
4286 r = EMULATE_DO_MMIO;
4287 } else if (r == EMULATION_RESTART)
4288 goto restart;
4289 else
4290 r = EMULATE_DONE;
4292 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4293 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4294 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4295 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4297 return r;
4299 EXPORT_SYMBOL_GPL(emulate_instruction);
4301 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4303 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4304 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4305 /* do not return to emulator after return from userspace */
4306 vcpu->arch.pio.count = 0;
4307 return ret;
4309 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4311 static void tsc_bad(void *info)
4313 __get_cpu_var(cpu_tsc_khz) = 0;
4316 static void tsc_khz_changed(void *data)
4318 struct cpufreq_freqs *freq = data;
4319 unsigned long khz = 0;
4321 if (data)
4322 khz = freq->new;
4323 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4324 khz = cpufreq_quick_get(raw_smp_processor_id());
4325 if (!khz)
4326 khz = tsc_khz;
4327 __get_cpu_var(cpu_tsc_khz) = khz;
4330 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4331 void *data)
4333 struct cpufreq_freqs *freq = data;
4334 struct kvm *kvm;
4335 struct kvm_vcpu *vcpu;
4336 int i, send_ipi = 0;
4339 * We allow guests to temporarily run on slowing clocks,
4340 * provided we notify them after, or to run on accelerating
4341 * clocks, provided we notify them before. Thus time never
4342 * goes backwards.
4344 * However, we have a problem. We can't atomically update
4345 * the frequency of a given CPU from this function; it is
4346 * merely a notifier, which can be called from any CPU.
4347 * Changing the TSC frequency at arbitrary points in time
4348 * requires a recomputation of local variables related to
4349 * the TSC for each VCPU. We must flag these local variables
4350 * to be updated and be sure the update takes place with the
4351 * new frequency before any guests proceed.
4353 * Unfortunately, the combination of hotplug CPU and frequency
4354 * change creates an intractable locking scenario; the order
4355 * of when these callouts happen is undefined with respect to
4356 * CPU hotplug, and they can race with each other. As such,
4357 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4358 * undefined; you can actually have a CPU frequency change take
4359 * place in between the computation of X and the setting of the
4360 * variable. To protect against this problem, all updates of
4361 * the per_cpu tsc_khz variable are done in an interrupt
4362 * protected IPI, and all callers wishing to update the value
4363 * must wait for a synchronous IPI to complete (which is trivial
4364 * if the caller is on the CPU already). This establishes the
4365 * necessary total order on variable updates.
4367 * Note that because a guest time update may take place
4368 * anytime after the setting of the VCPU's request bit, the
4369 * correct TSC value must be set before the request. However,
4370 * to ensure the update actually makes it to any guest which
4371 * starts running in hardware virtualization between the set
4372 * and the acquisition of the spinlock, we must also ping the
4373 * CPU after setting the request bit.
4377 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4378 return 0;
4379 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4380 return 0;
4382 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4384 spin_lock(&kvm_lock);
4385 list_for_each_entry(kvm, &vm_list, vm_list) {
4386 kvm_for_each_vcpu(i, vcpu, kvm) {
4387 if (vcpu->cpu != freq->cpu)
4388 continue;
4389 if (!kvm_request_guest_time_update(vcpu))
4390 continue;
4391 if (vcpu->cpu != smp_processor_id())
4392 send_ipi = 1;
4395 spin_unlock(&kvm_lock);
4397 if (freq->old < freq->new && send_ipi) {
4399 * We upscale the frequency. Must make the guest
4400 * doesn't see old kvmclock values while running with
4401 * the new frequency, otherwise we risk the guest sees
4402 * time go backwards.
4404 * In case we update the frequency for another cpu
4405 * (which might be in guest context) send an interrupt
4406 * to kick the cpu out of guest context. Next time
4407 * guest context is entered kvmclock will be updated,
4408 * so the guest will not see stale values.
4410 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4412 return 0;
4415 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4416 .notifier_call = kvmclock_cpufreq_notifier
4419 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4420 unsigned long action, void *hcpu)
4422 unsigned int cpu = (unsigned long)hcpu;
4424 switch (action) {
4425 case CPU_ONLINE:
4426 case CPU_DOWN_FAILED:
4427 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4428 break;
4429 case CPU_DOWN_PREPARE:
4430 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4431 break;
4433 return NOTIFY_OK;
4436 static struct notifier_block kvmclock_cpu_notifier_block = {
4437 .notifier_call = kvmclock_cpu_notifier,
4438 .priority = -INT_MAX
4441 static void kvm_timer_init(void)
4443 int cpu;
4445 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4446 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4447 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4448 CPUFREQ_TRANSITION_NOTIFIER);
4450 for_each_online_cpu(cpu)
4451 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4454 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4456 static int kvm_is_in_guest(void)
4458 return percpu_read(current_vcpu) != NULL;
4461 static int kvm_is_user_mode(void)
4463 int user_mode = 3;
4465 if (percpu_read(current_vcpu))
4466 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4468 return user_mode != 0;
4471 static unsigned long kvm_get_guest_ip(void)
4473 unsigned long ip = 0;
4475 if (percpu_read(current_vcpu))
4476 ip = kvm_rip_read(percpu_read(current_vcpu));
4478 return ip;
4481 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4482 .is_in_guest = kvm_is_in_guest,
4483 .is_user_mode = kvm_is_user_mode,
4484 .get_guest_ip = kvm_get_guest_ip,
4487 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4489 percpu_write(current_vcpu, vcpu);
4491 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4493 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4495 percpu_write(current_vcpu, NULL);
4497 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4499 int kvm_arch_init(void *opaque)
4501 int r;
4502 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4504 if (kvm_x86_ops) {
4505 printk(KERN_ERR "kvm: already loaded the other module\n");
4506 r = -EEXIST;
4507 goto out;
4510 if (!ops->cpu_has_kvm_support()) {
4511 printk(KERN_ERR "kvm: no hardware support\n");
4512 r = -EOPNOTSUPP;
4513 goto out;
4515 if (ops->disabled_by_bios()) {
4516 printk(KERN_ERR "kvm: disabled by bios\n");
4517 r = -EOPNOTSUPP;
4518 goto out;
4521 r = kvm_mmu_module_init();
4522 if (r)
4523 goto out;
4525 kvm_init_msr_list();
4527 kvm_x86_ops = ops;
4528 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4529 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4530 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4531 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4533 kvm_timer_init();
4535 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4537 if (cpu_has_xsave)
4538 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4540 return 0;
4542 out:
4543 return r;
4546 void kvm_arch_exit(void)
4548 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4550 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4551 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4552 CPUFREQ_TRANSITION_NOTIFIER);
4553 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4554 kvm_x86_ops = NULL;
4555 kvm_mmu_module_exit();
4558 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4560 ++vcpu->stat.halt_exits;
4561 if (irqchip_in_kernel(vcpu->kvm)) {
4562 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4563 return 1;
4564 } else {
4565 vcpu->run->exit_reason = KVM_EXIT_HLT;
4566 return 0;
4569 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4571 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4572 unsigned long a1)
4574 if (is_long_mode(vcpu))
4575 return a0;
4576 else
4577 return a0 | ((gpa_t)a1 << 32);
4580 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4582 u64 param, ingpa, outgpa, ret;
4583 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4584 bool fast, longmode;
4585 int cs_db, cs_l;
4588 * hypercall generates UD from non zero cpl and real mode
4589 * per HYPER-V spec
4591 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4592 kvm_queue_exception(vcpu, UD_VECTOR);
4593 return 0;
4596 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4597 longmode = is_long_mode(vcpu) && cs_l == 1;
4599 if (!longmode) {
4600 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4601 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4602 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4603 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4604 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4605 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4607 #ifdef CONFIG_X86_64
4608 else {
4609 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4610 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4611 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4613 #endif
4615 code = param & 0xffff;
4616 fast = (param >> 16) & 0x1;
4617 rep_cnt = (param >> 32) & 0xfff;
4618 rep_idx = (param >> 48) & 0xfff;
4620 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4622 switch (code) {
4623 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4624 kvm_vcpu_on_spin(vcpu);
4625 break;
4626 default:
4627 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4628 break;
4631 ret = res | (((u64)rep_done & 0xfff) << 32);
4632 if (longmode) {
4633 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4634 } else {
4635 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4636 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4639 return 1;
4642 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4644 unsigned long nr, a0, a1, a2, a3, ret;
4645 int r = 1;
4647 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4648 return kvm_hv_hypercall(vcpu);
4650 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4651 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4652 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4653 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4654 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4656 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4658 if (!is_long_mode(vcpu)) {
4659 nr &= 0xFFFFFFFF;
4660 a0 &= 0xFFFFFFFF;
4661 a1 &= 0xFFFFFFFF;
4662 a2 &= 0xFFFFFFFF;
4663 a3 &= 0xFFFFFFFF;
4666 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4667 ret = -KVM_EPERM;
4668 goto out;
4671 switch (nr) {
4672 case KVM_HC_VAPIC_POLL_IRQ:
4673 ret = 0;
4674 break;
4675 case KVM_HC_MMU_OP:
4676 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4677 break;
4678 default:
4679 ret = -KVM_ENOSYS;
4680 break;
4682 out:
4683 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4684 ++vcpu->stat.hypercalls;
4685 return r;
4687 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4689 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4691 char instruction[3];
4692 unsigned long rip = kvm_rip_read(vcpu);
4695 * Blow out the MMU to ensure that no other VCPU has an active mapping
4696 * to ensure that the updated hypercall appears atomically across all
4697 * VCPUs.
4699 kvm_mmu_zap_all(vcpu->kvm);
4701 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4703 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4706 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4708 struct desc_ptr dt = { limit, base };
4710 kvm_x86_ops->set_gdt(vcpu, &dt);
4713 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4715 struct desc_ptr dt = { limit, base };
4717 kvm_x86_ops->set_idt(vcpu, &dt);
4720 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4722 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4723 int j, nent = vcpu->arch.cpuid_nent;
4725 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4726 /* when no next entry is found, the current entry[i] is reselected */
4727 for (j = i + 1; ; j = (j + 1) % nent) {
4728 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4729 if (ej->function == e->function) {
4730 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4731 return j;
4734 return 0; /* silence gcc, even though control never reaches here */
4737 /* find an entry with matching function, matching index (if needed), and that
4738 * should be read next (if it's stateful) */
4739 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4740 u32 function, u32 index)
4742 if (e->function != function)
4743 return 0;
4744 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4745 return 0;
4746 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4747 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4748 return 0;
4749 return 1;
4752 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4753 u32 function, u32 index)
4755 int i;
4756 struct kvm_cpuid_entry2 *best = NULL;
4758 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4759 struct kvm_cpuid_entry2 *e;
4761 e = &vcpu->arch.cpuid_entries[i];
4762 if (is_matching_cpuid_entry(e, function, index)) {
4763 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4764 move_to_next_stateful_cpuid_entry(vcpu, i);
4765 best = e;
4766 break;
4769 * Both basic or both extended?
4771 if (((e->function ^ function) & 0x80000000) == 0)
4772 if (!best || e->function > best->function)
4773 best = e;
4775 return best;
4777 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4779 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4781 struct kvm_cpuid_entry2 *best;
4783 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4784 if (!best || best->eax < 0x80000008)
4785 goto not_found;
4786 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4787 if (best)
4788 return best->eax & 0xff;
4789 not_found:
4790 return 36;
4793 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4795 u32 function, index;
4796 struct kvm_cpuid_entry2 *best;
4798 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4799 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4800 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4801 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4802 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4803 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4804 best = kvm_find_cpuid_entry(vcpu, function, index);
4805 if (best) {
4806 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4807 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4808 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4809 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4811 kvm_x86_ops->skip_emulated_instruction(vcpu);
4812 trace_kvm_cpuid(function,
4813 kvm_register_read(vcpu, VCPU_REGS_RAX),
4814 kvm_register_read(vcpu, VCPU_REGS_RBX),
4815 kvm_register_read(vcpu, VCPU_REGS_RCX),
4816 kvm_register_read(vcpu, VCPU_REGS_RDX));
4818 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4821 * Check if userspace requested an interrupt window, and that the
4822 * interrupt window is open.
4824 * No need to exit to userspace if we already have an interrupt queued.
4826 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4828 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4829 vcpu->run->request_interrupt_window &&
4830 kvm_arch_interrupt_allowed(vcpu));
4833 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4835 struct kvm_run *kvm_run = vcpu->run;
4837 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4838 kvm_run->cr8 = kvm_get_cr8(vcpu);
4839 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4840 if (irqchip_in_kernel(vcpu->kvm))
4841 kvm_run->ready_for_interrupt_injection = 1;
4842 else
4843 kvm_run->ready_for_interrupt_injection =
4844 kvm_arch_interrupt_allowed(vcpu) &&
4845 !kvm_cpu_has_interrupt(vcpu) &&
4846 !kvm_event_needs_reinjection(vcpu);
4849 static void vapic_enter(struct kvm_vcpu *vcpu)
4851 struct kvm_lapic *apic = vcpu->arch.apic;
4852 struct page *page;
4854 if (!apic || !apic->vapic_addr)
4855 return;
4857 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4859 vcpu->arch.apic->vapic_page = page;
4862 static void vapic_exit(struct kvm_vcpu *vcpu)
4864 struct kvm_lapic *apic = vcpu->arch.apic;
4865 int idx;
4867 if (!apic || !apic->vapic_addr)
4868 return;
4870 idx = srcu_read_lock(&vcpu->kvm->srcu);
4871 kvm_release_page_dirty(apic->vapic_page);
4872 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4873 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4876 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4878 int max_irr, tpr;
4880 if (!kvm_x86_ops->update_cr8_intercept)
4881 return;
4883 if (!vcpu->arch.apic)
4884 return;
4886 if (!vcpu->arch.apic->vapic_addr)
4887 max_irr = kvm_lapic_find_highest_irr(vcpu);
4888 else
4889 max_irr = -1;
4891 if (max_irr != -1)
4892 max_irr >>= 4;
4894 tpr = kvm_lapic_get_cr8(vcpu);
4896 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4899 static void inject_pending_event(struct kvm_vcpu *vcpu)
4901 /* try to reinject previous events if any */
4902 if (vcpu->arch.exception.pending) {
4903 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4904 vcpu->arch.exception.has_error_code,
4905 vcpu->arch.exception.error_code);
4906 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4907 vcpu->arch.exception.has_error_code,
4908 vcpu->arch.exception.error_code,
4909 vcpu->arch.exception.reinject);
4910 return;
4913 if (vcpu->arch.nmi_injected) {
4914 kvm_x86_ops->set_nmi(vcpu);
4915 return;
4918 if (vcpu->arch.interrupt.pending) {
4919 kvm_x86_ops->set_irq(vcpu);
4920 return;
4923 /* try to inject new event if pending */
4924 if (vcpu->arch.nmi_pending) {
4925 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4926 vcpu->arch.nmi_pending = false;
4927 vcpu->arch.nmi_injected = true;
4928 kvm_x86_ops->set_nmi(vcpu);
4930 } else if (kvm_cpu_has_interrupt(vcpu)) {
4931 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4932 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4933 false);
4934 kvm_x86_ops->set_irq(vcpu);
4939 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4941 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4942 !vcpu->guest_xcr0_loaded) {
4943 /* kvm_set_xcr() also depends on this */
4944 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4945 vcpu->guest_xcr0_loaded = 1;
4949 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4951 if (vcpu->guest_xcr0_loaded) {
4952 if (vcpu->arch.xcr0 != host_xcr0)
4953 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4954 vcpu->guest_xcr0_loaded = 0;
4958 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4960 int r;
4961 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4962 vcpu->run->request_interrupt_window;
4964 if (vcpu->requests) {
4965 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4966 kvm_mmu_unload(vcpu);
4967 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4968 __kvm_migrate_timers(vcpu);
4969 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
4970 r = kvm_write_guest_time(vcpu);
4971 if (unlikely(r))
4972 goto out;
4974 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4975 kvm_mmu_sync_roots(vcpu);
4976 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4977 kvm_x86_ops->tlb_flush(vcpu);
4978 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4979 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4980 r = 0;
4981 goto out;
4983 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4984 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4985 r = 0;
4986 goto out;
4988 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4989 vcpu->fpu_active = 0;
4990 kvm_x86_ops->fpu_deactivate(vcpu);
4994 r = kvm_mmu_reload(vcpu);
4995 if (unlikely(r))
4996 goto out;
4998 preempt_disable();
5000 kvm_x86_ops->prepare_guest_switch(vcpu);
5001 if (vcpu->fpu_active)
5002 kvm_load_guest_fpu(vcpu);
5003 kvm_load_guest_xcr0(vcpu);
5005 atomic_set(&vcpu->guest_mode, 1);
5006 smp_wmb();
5008 local_irq_disable();
5010 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5011 || need_resched() || signal_pending(current)) {
5012 atomic_set(&vcpu->guest_mode, 0);
5013 smp_wmb();
5014 local_irq_enable();
5015 preempt_enable();
5016 r = 1;
5017 goto out;
5020 inject_pending_event(vcpu);
5022 /* enable NMI/IRQ window open exits if needed */
5023 if (vcpu->arch.nmi_pending)
5024 kvm_x86_ops->enable_nmi_window(vcpu);
5025 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5026 kvm_x86_ops->enable_irq_window(vcpu);
5028 if (kvm_lapic_enabled(vcpu)) {
5029 update_cr8_intercept(vcpu);
5030 kvm_lapic_sync_to_vapic(vcpu);
5033 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5035 kvm_guest_enter();
5037 if (unlikely(vcpu->arch.switch_db_regs)) {
5038 set_debugreg(0, 7);
5039 set_debugreg(vcpu->arch.eff_db[0], 0);
5040 set_debugreg(vcpu->arch.eff_db[1], 1);
5041 set_debugreg(vcpu->arch.eff_db[2], 2);
5042 set_debugreg(vcpu->arch.eff_db[3], 3);
5045 trace_kvm_entry(vcpu->vcpu_id);
5046 kvm_x86_ops->run(vcpu);
5049 * If the guest has used debug registers, at least dr7
5050 * will be disabled while returning to the host.
5051 * If we don't have active breakpoints in the host, we don't
5052 * care about the messed up debug address registers. But if
5053 * we have some of them active, restore the old state.
5055 if (hw_breakpoint_active())
5056 hw_breakpoint_restore();
5058 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5060 atomic_set(&vcpu->guest_mode, 0);
5061 smp_wmb();
5062 local_irq_enable();
5064 ++vcpu->stat.exits;
5067 * We must have an instruction between local_irq_enable() and
5068 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5069 * the interrupt shadow. The stat.exits increment will do nicely.
5070 * But we need to prevent reordering, hence this barrier():
5072 barrier();
5074 kvm_guest_exit();
5076 preempt_enable();
5078 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5081 * Profile KVM exit RIPs:
5083 if (unlikely(prof_on == KVM_PROFILING)) {
5084 unsigned long rip = kvm_rip_read(vcpu);
5085 profile_hit(KVM_PROFILING, (void *)rip);
5089 kvm_lapic_sync_from_vapic(vcpu);
5091 r = kvm_x86_ops->handle_exit(vcpu);
5092 out:
5093 return r;
5097 static int __vcpu_run(struct kvm_vcpu *vcpu)
5099 int r;
5100 struct kvm *kvm = vcpu->kvm;
5102 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5103 pr_debug("vcpu %d received sipi with vector # %x\n",
5104 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5105 kvm_lapic_reset(vcpu);
5106 r = kvm_arch_vcpu_reset(vcpu);
5107 if (r)
5108 return r;
5109 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5112 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5113 vapic_enter(vcpu);
5115 r = 1;
5116 while (r > 0) {
5117 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5118 r = vcpu_enter_guest(vcpu);
5119 else {
5120 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5121 kvm_vcpu_block(vcpu);
5122 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5123 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5125 switch(vcpu->arch.mp_state) {
5126 case KVM_MP_STATE_HALTED:
5127 vcpu->arch.mp_state =
5128 KVM_MP_STATE_RUNNABLE;
5129 case KVM_MP_STATE_RUNNABLE:
5130 break;
5131 case KVM_MP_STATE_SIPI_RECEIVED:
5132 default:
5133 r = -EINTR;
5134 break;
5139 if (r <= 0)
5140 break;
5142 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5143 if (kvm_cpu_has_pending_timer(vcpu))
5144 kvm_inject_pending_timer_irqs(vcpu);
5146 if (dm_request_for_irq_injection(vcpu)) {
5147 r = -EINTR;
5148 vcpu->run->exit_reason = KVM_EXIT_INTR;
5149 ++vcpu->stat.request_irq_exits;
5151 if (signal_pending(current)) {
5152 r = -EINTR;
5153 vcpu->run->exit_reason = KVM_EXIT_INTR;
5154 ++vcpu->stat.signal_exits;
5156 if (need_resched()) {
5157 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5158 kvm_resched(vcpu);
5159 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5163 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5165 vapic_exit(vcpu);
5167 return r;
5170 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5172 int r;
5173 sigset_t sigsaved;
5175 if (vcpu->sigset_active)
5176 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5178 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5179 kvm_vcpu_block(vcpu);
5180 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5181 r = -EAGAIN;
5182 goto out;
5185 /* re-sync apic's tpr */
5186 if (!irqchip_in_kernel(vcpu->kvm))
5187 kvm_set_cr8(vcpu, kvm_run->cr8);
5189 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5190 if (vcpu->mmio_needed) {
5191 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5192 vcpu->mmio_read_completed = 1;
5193 vcpu->mmio_needed = 0;
5195 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5196 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5197 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5198 if (r != EMULATE_DONE) {
5199 r = 0;
5200 goto out;
5203 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5204 kvm_register_write(vcpu, VCPU_REGS_RAX,
5205 kvm_run->hypercall.ret);
5207 r = __vcpu_run(vcpu);
5209 out:
5210 post_kvm_run_save(vcpu);
5211 if (vcpu->sigset_active)
5212 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5214 return r;
5217 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5219 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5220 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5221 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5222 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5223 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5224 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5225 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5226 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5227 #ifdef CONFIG_X86_64
5228 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5229 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5230 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5231 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5232 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5233 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5234 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5235 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5236 #endif
5238 regs->rip = kvm_rip_read(vcpu);
5239 regs->rflags = kvm_get_rflags(vcpu);
5241 return 0;
5244 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5246 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5247 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5248 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5249 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5250 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5251 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5252 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5253 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5254 #ifdef CONFIG_X86_64
5255 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5256 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5257 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5258 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5259 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5260 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5261 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5262 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5263 #endif
5265 kvm_rip_write(vcpu, regs->rip);
5266 kvm_set_rflags(vcpu, regs->rflags);
5268 vcpu->arch.exception.pending = false;
5270 return 0;
5273 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5275 struct kvm_segment cs;
5277 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5278 *db = cs.db;
5279 *l = cs.l;
5281 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5283 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5284 struct kvm_sregs *sregs)
5286 struct desc_ptr dt;
5288 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5289 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5290 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5291 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5292 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5293 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5295 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5296 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5298 kvm_x86_ops->get_idt(vcpu, &dt);
5299 sregs->idt.limit = dt.size;
5300 sregs->idt.base = dt.address;
5301 kvm_x86_ops->get_gdt(vcpu, &dt);
5302 sregs->gdt.limit = dt.size;
5303 sregs->gdt.base = dt.address;
5305 sregs->cr0 = kvm_read_cr0(vcpu);
5306 sregs->cr2 = vcpu->arch.cr2;
5307 sregs->cr3 = vcpu->arch.cr3;
5308 sregs->cr4 = kvm_read_cr4(vcpu);
5309 sregs->cr8 = kvm_get_cr8(vcpu);
5310 sregs->efer = vcpu->arch.efer;
5311 sregs->apic_base = kvm_get_apic_base(vcpu);
5313 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5315 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5316 set_bit(vcpu->arch.interrupt.nr,
5317 (unsigned long *)sregs->interrupt_bitmap);
5319 return 0;
5322 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5323 struct kvm_mp_state *mp_state)
5325 mp_state->mp_state = vcpu->arch.mp_state;
5326 return 0;
5329 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5330 struct kvm_mp_state *mp_state)
5332 vcpu->arch.mp_state = mp_state->mp_state;
5333 return 0;
5336 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5337 bool has_error_code, u32 error_code)
5339 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5340 int ret;
5342 init_emulate_ctxt(vcpu);
5344 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5345 tss_selector, reason, has_error_code,
5346 error_code);
5348 if (ret)
5349 return EMULATE_FAIL;
5351 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5352 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5353 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5354 return EMULATE_DONE;
5356 EXPORT_SYMBOL_GPL(kvm_task_switch);
5358 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5359 struct kvm_sregs *sregs)
5361 int mmu_reset_needed = 0;
5362 int pending_vec, max_bits;
5363 struct desc_ptr dt;
5365 dt.size = sregs->idt.limit;
5366 dt.address = sregs->idt.base;
5367 kvm_x86_ops->set_idt(vcpu, &dt);
5368 dt.size = sregs->gdt.limit;
5369 dt.address = sregs->gdt.base;
5370 kvm_x86_ops->set_gdt(vcpu, &dt);
5372 vcpu->arch.cr2 = sregs->cr2;
5373 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5374 vcpu->arch.cr3 = sregs->cr3;
5376 kvm_set_cr8(vcpu, sregs->cr8);
5378 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5379 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5380 kvm_set_apic_base(vcpu, sregs->apic_base);
5382 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5383 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5384 vcpu->arch.cr0 = sregs->cr0;
5386 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5387 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5388 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5389 load_pdptrs(vcpu, vcpu->arch.cr3);
5390 mmu_reset_needed = 1;
5393 if (mmu_reset_needed)
5394 kvm_mmu_reset_context(vcpu);
5396 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5397 pending_vec = find_first_bit(
5398 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5399 if (pending_vec < max_bits) {
5400 kvm_queue_interrupt(vcpu, pending_vec, false);
5401 pr_debug("Set back pending irq %d\n", pending_vec);
5402 if (irqchip_in_kernel(vcpu->kvm))
5403 kvm_pic_clear_isr_ack(vcpu->kvm);
5406 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5407 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5408 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5409 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5410 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5411 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5413 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5414 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5416 update_cr8_intercept(vcpu);
5418 /* Older userspace won't unhalt the vcpu on reset. */
5419 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5420 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5421 !is_protmode(vcpu))
5422 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5424 return 0;
5427 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5428 struct kvm_guest_debug *dbg)
5430 unsigned long rflags;
5431 int i, r;
5433 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5434 r = -EBUSY;
5435 if (vcpu->arch.exception.pending)
5436 goto out;
5437 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5438 kvm_queue_exception(vcpu, DB_VECTOR);
5439 else
5440 kvm_queue_exception(vcpu, BP_VECTOR);
5444 * Read rflags as long as potentially injected trace flags are still
5445 * filtered out.
5447 rflags = kvm_get_rflags(vcpu);
5449 vcpu->guest_debug = dbg->control;
5450 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5451 vcpu->guest_debug = 0;
5453 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5454 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5455 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5456 vcpu->arch.switch_db_regs =
5457 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5458 } else {
5459 for (i = 0; i < KVM_NR_DB_REGS; i++)
5460 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5461 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5464 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5465 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5466 get_segment_base(vcpu, VCPU_SREG_CS);
5469 * Trigger an rflags update that will inject or remove the trace
5470 * flags.
5472 kvm_set_rflags(vcpu, rflags);
5474 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5476 r = 0;
5478 out:
5480 return r;
5484 * Translate a guest virtual address to a guest physical address.
5486 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5487 struct kvm_translation *tr)
5489 unsigned long vaddr = tr->linear_address;
5490 gpa_t gpa;
5491 int idx;
5493 idx = srcu_read_lock(&vcpu->kvm->srcu);
5494 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5495 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5496 tr->physical_address = gpa;
5497 tr->valid = gpa != UNMAPPED_GVA;
5498 tr->writeable = 1;
5499 tr->usermode = 0;
5501 return 0;
5504 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5506 struct i387_fxsave_struct *fxsave =
5507 &vcpu->arch.guest_fpu.state->fxsave;
5509 memcpy(fpu->fpr, fxsave->st_space, 128);
5510 fpu->fcw = fxsave->cwd;
5511 fpu->fsw = fxsave->swd;
5512 fpu->ftwx = fxsave->twd;
5513 fpu->last_opcode = fxsave->fop;
5514 fpu->last_ip = fxsave->rip;
5515 fpu->last_dp = fxsave->rdp;
5516 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5518 return 0;
5521 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5523 struct i387_fxsave_struct *fxsave =
5524 &vcpu->arch.guest_fpu.state->fxsave;
5526 memcpy(fxsave->st_space, fpu->fpr, 128);
5527 fxsave->cwd = fpu->fcw;
5528 fxsave->swd = fpu->fsw;
5529 fxsave->twd = fpu->ftwx;
5530 fxsave->fop = fpu->last_opcode;
5531 fxsave->rip = fpu->last_ip;
5532 fxsave->rdp = fpu->last_dp;
5533 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5535 return 0;
5538 int fx_init(struct kvm_vcpu *vcpu)
5540 int err;
5542 err = fpu_alloc(&vcpu->arch.guest_fpu);
5543 if (err)
5544 return err;
5546 fpu_finit(&vcpu->arch.guest_fpu);
5549 * Ensure guest xcr0 is valid for loading
5551 vcpu->arch.xcr0 = XSTATE_FP;
5553 vcpu->arch.cr0 |= X86_CR0_ET;
5555 return 0;
5557 EXPORT_SYMBOL_GPL(fx_init);
5559 static void fx_free(struct kvm_vcpu *vcpu)
5561 fpu_free(&vcpu->arch.guest_fpu);
5564 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5566 if (vcpu->guest_fpu_loaded)
5567 return;
5570 * Restore all possible states in the guest,
5571 * and assume host would use all available bits.
5572 * Guest xcr0 would be loaded later.
5574 kvm_put_guest_xcr0(vcpu);
5575 vcpu->guest_fpu_loaded = 1;
5576 unlazy_fpu(current);
5577 fpu_restore_checking(&vcpu->arch.guest_fpu);
5578 trace_kvm_fpu(1);
5581 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5583 kvm_put_guest_xcr0(vcpu);
5585 if (!vcpu->guest_fpu_loaded)
5586 return;
5588 vcpu->guest_fpu_loaded = 0;
5589 fpu_save_init(&vcpu->arch.guest_fpu);
5590 ++vcpu->stat.fpu_reload;
5591 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5592 trace_kvm_fpu(0);
5595 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5597 if (vcpu->arch.time_page) {
5598 kvm_release_page_dirty(vcpu->arch.time_page);
5599 vcpu->arch.time_page = NULL;
5602 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5603 fx_free(vcpu);
5604 kvm_x86_ops->vcpu_free(vcpu);
5607 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5608 unsigned int id)
5610 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5611 printk_once(KERN_WARNING
5612 "kvm: SMP vm created on host with unstable TSC; "
5613 "guest TSC will not be reliable\n");
5614 return kvm_x86_ops->vcpu_create(kvm, id);
5617 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5619 int r;
5621 vcpu->arch.mtrr_state.have_fixed = 1;
5622 vcpu_load(vcpu);
5623 r = kvm_arch_vcpu_reset(vcpu);
5624 if (r == 0)
5625 r = kvm_mmu_setup(vcpu);
5626 vcpu_put(vcpu);
5627 if (r < 0)
5628 goto free_vcpu;
5630 return 0;
5631 free_vcpu:
5632 kvm_x86_ops->vcpu_free(vcpu);
5633 return r;
5636 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5638 vcpu_load(vcpu);
5639 kvm_mmu_unload(vcpu);
5640 vcpu_put(vcpu);
5642 fx_free(vcpu);
5643 kvm_x86_ops->vcpu_free(vcpu);
5646 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5648 vcpu->arch.nmi_pending = false;
5649 vcpu->arch.nmi_injected = false;
5651 vcpu->arch.switch_db_regs = 0;
5652 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5653 vcpu->arch.dr6 = DR6_FIXED_1;
5654 vcpu->arch.dr7 = DR7_FIXED_1;
5656 return kvm_x86_ops->vcpu_reset(vcpu);
5659 int kvm_arch_hardware_enable(void *garbage)
5661 struct kvm *kvm;
5662 struct kvm_vcpu *vcpu;
5663 int i;
5665 kvm_shared_msr_cpu_online();
5666 list_for_each_entry(kvm, &vm_list, vm_list)
5667 kvm_for_each_vcpu(i, vcpu, kvm)
5668 if (vcpu->cpu == smp_processor_id())
5669 kvm_request_guest_time_update(vcpu);
5670 return kvm_x86_ops->hardware_enable(garbage);
5673 void kvm_arch_hardware_disable(void *garbage)
5675 kvm_x86_ops->hardware_disable(garbage);
5676 drop_user_return_notifiers(garbage);
5679 int kvm_arch_hardware_setup(void)
5681 return kvm_x86_ops->hardware_setup();
5684 void kvm_arch_hardware_unsetup(void)
5686 kvm_x86_ops->hardware_unsetup();
5689 void kvm_arch_check_processor_compat(void *rtn)
5691 kvm_x86_ops->check_processor_compatibility(rtn);
5694 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5696 struct page *page;
5697 struct kvm *kvm;
5698 int r;
5700 BUG_ON(vcpu->kvm == NULL);
5701 kvm = vcpu->kvm;
5703 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5704 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5705 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5706 vcpu->arch.mmu.translate_gpa = translate_gpa;
5707 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5708 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5709 else
5710 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5712 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5713 if (!page) {
5714 r = -ENOMEM;
5715 goto fail;
5717 vcpu->arch.pio_data = page_address(page);
5719 r = kvm_mmu_create(vcpu);
5720 if (r < 0)
5721 goto fail_free_pio_data;
5723 if (irqchip_in_kernel(kvm)) {
5724 r = kvm_create_lapic(vcpu);
5725 if (r < 0)
5726 goto fail_mmu_destroy;
5729 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5730 GFP_KERNEL);
5731 if (!vcpu->arch.mce_banks) {
5732 r = -ENOMEM;
5733 goto fail_free_lapic;
5735 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5737 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5738 goto fail_free_mce_banks;
5740 return 0;
5741 fail_free_mce_banks:
5742 kfree(vcpu->arch.mce_banks);
5743 fail_free_lapic:
5744 kvm_free_lapic(vcpu);
5745 fail_mmu_destroy:
5746 kvm_mmu_destroy(vcpu);
5747 fail_free_pio_data:
5748 free_page((unsigned long)vcpu->arch.pio_data);
5749 fail:
5750 return r;
5753 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5755 int idx;
5757 kfree(vcpu->arch.mce_banks);
5758 kvm_free_lapic(vcpu);
5759 idx = srcu_read_lock(&vcpu->kvm->srcu);
5760 kvm_mmu_destroy(vcpu);
5761 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5762 free_page((unsigned long)vcpu->arch.pio_data);
5765 struct kvm *kvm_arch_create_vm(void)
5767 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5769 if (!kvm)
5770 return ERR_PTR(-ENOMEM);
5772 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5773 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5775 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5776 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5778 spin_lock_init(&kvm->arch.tsc_write_lock);
5780 return kvm;
5783 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5785 vcpu_load(vcpu);
5786 kvm_mmu_unload(vcpu);
5787 vcpu_put(vcpu);
5790 static void kvm_free_vcpus(struct kvm *kvm)
5792 unsigned int i;
5793 struct kvm_vcpu *vcpu;
5796 * Unpin any mmu pages first.
5798 kvm_for_each_vcpu(i, vcpu, kvm)
5799 kvm_unload_vcpu_mmu(vcpu);
5800 kvm_for_each_vcpu(i, vcpu, kvm)
5801 kvm_arch_vcpu_free(vcpu);
5803 mutex_lock(&kvm->lock);
5804 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5805 kvm->vcpus[i] = NULL;
5807 atomic_set(&kvm->online_vcpus, 0);
5808 mutex_unlock(&kvm->lock);
5811 void kvm_arch_sync_events(struct kvm *kvm)
5813 kvm_free_all_assigned_devices(kvm);
5814 kvm_free_pit(kvm);
5817 void kvm_arch_destroy_vm(struct kvm *kvm)
5819 kvm_iommu_unmap_guest(kvm);
5820 kfree(kvm->arch.vpic);
5821 kfree(kvm->arch.vioapic);
5822 kvm_free_vcpus(kvm);
5823 kvm_free_physmem(kvm);
5824 if (kvm->arch.apic_access_page)
5825 put_page(kvm->arch.apic_access_page);
5826 if (kvm->arch.ept_identity_pagetable)
5827 put_page(kvm->arch.ept_identity_pagetable);
5828 cleanup_srcu_struct(&kvm->srcu);
5829 kfree(kvm);
5832 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5833 struct kvm_memory_slot *memslot,
5834 struct kvm_memory_slot old,
5835 struct kvm_userspace_memory_region *mem,
5836 int user_alloc)
5838 int npages = memslot->npages;
5839 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5841 /* Prevent internal slot pages from being moved by fork()/COW. */
5842 if (memslot->id >= KVM_MEMORY_SLOTS)
5843 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5845 /*To keep backward compatibility with older userspace,
5846 *x86 needs to hanlde !user_alloc case.
5848 if (!user_alloc) {
5849 if (npages && !old.rmap) {
5850 unsigned long userspace_addr;
5852 down_write(&current->mm->mmap_sem);
5853 userspace_addr = do_mmap(NULL, 0,
5854 npages * PAGE_SIZE,
5855 PROT_READ | PROT_WRITE,
5856 map_flags,
5858 up_write(&current->mm->mmap_sem);
5860 if (IS_ERR((void *)userspace_addr))
5861 return PTR_ERR((void *)userspace_addr);
5863 memslot->userspace_addr = userspace_addr;
5868 return 0;
5871 void kvm_arch_commit_memory_region(struct kvm *kvm,
5872 struct kvm_userspace_memory_region *mem,
5873 struct kvm_memory_slot old,
5874 int user_alloc)
5877 int npages = mem->memory_size >> PAGE_SHIFT;
5879 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5880 int ret;
5882 down_write(&current->mm->mmap_sem);
5883 ret = do_munmap(current->mm, old.userspace_addr,
5884 old.npages * PAGE_SIZE);
5885 up_write(&current->mm->mmap_sem);
5886 if (ret < 0)
5887 printk(KERN_WARNING
5888 "kvm_vm_ioctl_set_memory_region: "
5889 "failed to munmap memory\n");
5892 spin_lock(&kvm->mmu_lock);
5893 if (!kvm->arch.n_requested_mmu_pages) {
5894 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5895 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5898 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5899 spin_unlock(&kvm->mmu_lock);
5902 void kvm_arch_flush_shadow(struct kvm *kvm)
5904 kvm_mmu_zap_all(kvm);
5905 kvm_reload_remote_mmus(kvm);
5908 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5910 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5911 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5912 || vcpu->arch.nmi_pending ||
5913 (kvm_arch_interrupt_allowed(vcpu) &&
5914 kvm_cpu_has_interrupt(vcpu));
5917 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5919 int me;
5920 int cpu = vcpu->cpu;
5922 if (waitqueue_active(&vcpu->wq)) {
5923 wake_up_interruptible(&vcpu->wq);
5924 ++vcpu->stat.halt_wakeup;
5927 me = get_cpu();
5928 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5929 if (atomic_xchg(&vcpu->guest_mode, 0))
5930 smp_send_reschedule(cpu);
5931 put_cpu();
5934 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5936 return kvm_x86_ops->interrupt_allowed(vcpu);
5939 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5941 unsigned long current_rip = kvm_rip_read(vcpu) +
5942 get_segment_base(vcpu, VCPU_SREG_CS);
5944 return current_rip == linear_rip;
5946 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5948 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5950 unsigned long rflags;
5952 rflags = kvm_x86_ops->get_rflags(vcpu);
5953 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5954 rflags &= ~X86_EFLAGS_TF;
5955 return rflags;
5957 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5959 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5961 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5962 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5963 rflags |= X86_EFLAGS_TF;
5964 kvm_x86_ops->set_rflags(vcpu, rflags);
5966 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);