2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
23 #include "transaction.h"
24 #include "print-tree.h"
27 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
28 *root
, struct btrfs_path
*path
, int level
);
29 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_key
*ins_key
,
31 struct btrfs_path
*path
, int data_size
, int extend
);
32 static int push_node_left(struct btrfs_trans_handle
*trans
,
33 struct btrfs_root
*root
, struct extent_buffer
*dst
,
34 struct extent_buffer
*src
, int empty
);
35 static int balance_node_right(struct btrfs_trans_handle
*trans
,
36 struct btrfs_root
*root
,
37 struct extent_buffer
*dst_buf
,
38 struct extent_buffer
*src_buf
);
39 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
40 struct btrfs_path
*path
, int level
, int slot
);
42 struct btrfs_path
*btrfs_alloc_path(void)
44 struct btrfs_path
*path
;
45 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
50 * set all locked nodes in the path to blocking locks. This should
51 * be done before scheduling
53 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
56 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
57 if (!p
->nodes
[i
] || !p
->locks
[i
])
59 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
60 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
61 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
62 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
63 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
68 * reset all the locked nodes in the patch to spinning locks.
70 * held is used to keep lockdep happy, when lockdep is enabled
71 * we set held to a blocking lock before we go around and
72 * retake all the spinlocks in the path. You can safely use NULL
75 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
76 struct extent_buffer
*held
, int held_rw
)
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 /* lockdep really cares that we take all of these spinlocks
82 * in the right order. If any of the locks in the path are not
83 * currently blocking, it is going to complain. So, make really
84 * really sure by forcing the path to blocking before we clear
88 btrfs_set_lock_blocking_rw(held
, held_rw
);
89 if (held_rw
== BTRFS_WRITE_LOCK
)
90 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
91 else if (held_rw
== BTRFS_READ_LOCK
)
92 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
94 btrfs_set_path_blocking(p
);
97 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
98 if (p
->nodes
[i
] && p
->locks
[i
]) {
99 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
100 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
101 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
102 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
103 p
->locks
[i
] = BTRFS_READ_LOCK
;
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 btrfs_clear_lock_blocking_rw(held
, held_rw
);
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path
*p
)
118 btrfs_release_path(p
);
119 kmem_cache_free(btrfs_path_cachep
, p
);
123 * path release drops references on the extent buffers in the path
124 * and it drops any locks held by this path
126 * It is safe to call this on paths that no locks or extent buffers held.
128 noinline
void btrfs_release_path(struct btrfs_path
*p
)
132 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
137 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
140 free_extent_buffer(p
->nodes
[i
]);
146 * safely gets a reference on the root node of a tree. A lock
147 * is not taken, so a concurrent writer may put a different node
148 * at the root of the tree. See btrfs_lock_root_node for the
151 * The extent buffer returned by this has a reference taken, so
152 * it won't disappear. It may stop being the root of the tree
153 * at any time because there are no locks held.
155 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
157 struct extent_buffer
*eb
;
160 eb
= rcu_dereference(root
->node
);
161 extent_buffer_get(eb
);
166 /* loop around taking references on and locking the root node of the
167 * tree until you end up with a lock on the root. A locked buffer
168 * is returned, with a reference held.
170 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
172 struct extent_buffer
*eb
;
175 eb
= btrfs_root_node(root
);
177 if (eb
== root
->node
)
179 btrfs_tree_unlock(eb
);
180 free_extent_buffer(eb
);
185 /* loop around taking references on and locking the root node of the
186 * tree until you end up with a lock on the root. A locked buffer
187 * is returned, with a reference held.
189 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
191 struct extent_buffer
*eb
;
194 eb
= btrfs_root_node(root
);
195 btrfs_tree_read_lock(eb
);
196 if (eb
== root
->node
)
198 btrfs_tree_read_unlock(eb
);
199 free_extent_buffer(eb
);
204 /* cowonly root (everything not a reference counted cow subvolume), just get
205 * put onto a simple dirty list. transaction.c walks this to make sure they
206 * get properly updated on disk.
208 static void add_root_to_dirty_list(struct btrfs_root
*root
)
210 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
211 list_add(&root
->dirty_list
,
212 &root
->fs_info
->dirty_cowonly_roots
);
217 * used by snapshot creation to make a copy of a root for a tree with
218 * a given objectid. The buffer with the new root node is returned in
219 * cow_ret, and this func returns zero on success or a negative error code.
221 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
222 struct btrfs_root
*root
,
223 struct extent_buffer
*buf
,
224 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
226 struct extent_buffer
*cow
;
229 struct btrfs_disk_key disk_key
;
231 WARN_ON(root
->ref_cows
&& trans
->transid
!=
232 root
->fs_info
->running_transaction
->transid
);
233 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
235 level
= btrfs_header_level(buf
);
237 btrfs_item_key(buf
, &disk_key
, 0);
239 btrfs_node_key(buf
, &disk_key
, 0);
241 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, 0,
242 new_root_objectid
, &disk_key
, level
,
247 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
248 btrfs_set_header_bytenr(cow
, cow
->start
);
249 btrfs_set_header_generation(cow
, trans
->transid
);
250 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
251 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
252 BTRFS_HEADER_FLAG_RELOC
);
253 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
254 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
256 btrfs_set_header_owner(cow
, new_root_objectid
);
258 write_extent_buffer(cow
, root
->fs_info
->fsid
,
259 (unsigned long)btrfs_header_fsid(cow
),
262 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
263 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
264 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
266 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
271 btrfs_mark_buffer_dirty(cow
);
277 * check if the tree block can be shared by multiple trees
279 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
280 struct extent_buffer
*buf
)
283 * Tree blocks not in refernece counted trees and tree roots
284 * are never shared. If a block was allocated after the last
285 * snapshot and the block was not allocated by tree relocation,
286 * we know the block is not shared.
288 if (root
->ref_cows
&&
289 buf
!= root
->node
&& buf
!= root
->commit_root
&&
290 (btrfs_header_generation(buf
) <=
291 btrfs_root_last_snapshot(&root
->root_item
) ||
292 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
295 if (root
->ref_cows
&&
296 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
302 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
303 struct btrfs_root
*root
,
304 struct extent_buffer
*buf
,
305 struct extent_buffer
*cow
,
315 * Backrefs update rules:
317 * Always use full backrefs for extent pointers in tree block
318 * allocated by tree relocation.
320 * If a shared tree block is no longer referenced by its owner
321 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
322 * use full backrefs for extent pointers in tree block.
324 * If a tree block is been relocating
325 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
326 * use full backrefs for extent pointers in tree block.
327 * The reason for this is some operations (such as drop tree)
328 * are only allowed for blocks use full backrefs.
331 if (btrfs_block_can_be_shared(root
, buf
)) {
332 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
333 buf
->len
, &refs
, &flags
);
338 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
339 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
340 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
345 owner
= btrfs_header_owner(buf
);
346 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
347 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
350 if ((owner
== root
->root_key
.objectid
||
351 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
352 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
353 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
356 if (root
->root_key
.objectid
==
357 BTRFS_TREE_RELOC_OBJECTID
) {
358 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
360 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
363 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
366 if (root
->root_key
.objectid
==
367 BTRFS_TREE_RELOC_OBJECTID
)
368 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
370 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
373 if (new_flags
!= 0) {
374 ret
= btrfs_set_disk_extent_flags(trans
, root
,
381 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
382 if (root
->root_key
.objectid
==
383 BTRFS_TREE_RELOC_OBJECTID
)
384 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
386 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
388 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
391 clean_tree_block(trans
, root
, buf
);
398 * does the dirty work in cow of a single block. The parent block (if
399 * supplied) is updated to point to the new cow copy. The new buffer is marked
400 * dirty and returned locked. If you modify the block it needs to be marked
403 * search_start -- an allocation hint for the new block
405 * empty_size -- a hint that you plan on doing more cow. This is the size in
406 * bytes the allocator should try to find free next to the block it returns.
407 * This is just a hint and may be ignored by the allocator.
409 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
410 struct btrfs_root
*root
,
411 struct extent_buffer
*buf
,
412 struct extent_buffer
*parent
, int parent_slot
,
413 struct extent_buffer
**cow_ret
,
414 u64 search_start
, u64 empty_size
)
416 struct btrfs_disk_key disk_key
;
417 struct extent_buffer
*cow
;
426 btrfs_assert_tree_locked(buf
);
428 WARN_ON(root
->ref_cows
&& trans
->transid
!=
429 root
->fs_info
->running_transaction
->transid
);
430 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
432 level
= btrfs_header_level(buf
);
435 btrfs_item_key(buf
, &disk_key
, 0);
437 btrfs_node_key(buf
, &disk_key
, 0);
439 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
441 parent_start
= parent
->start
;
447 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, parent_start
,
448 root
->root_key
.objectid
, &disk_key
,
449 level
, search_start
, empty_size
);
453 /* cow is set to blocking by btrfs_init_new_buffer */
455 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
456 btrfs_set_header_bytenr(cow
, cow
->start
);
457 btrfs_set_header_generation(cow
, trans
->transid
);
458 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
459 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
460 BTRFS_HEADER_FLAG_RELOC
);
461 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
462 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
464 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
466 write_extent_buffer(cow
, root
->fs_info
->fsid
,
467 (unsigned long)btrfs_header_fsid(cow
),
470 update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
473 btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
475 if (buf
== root
->node
) {
476 WARN_ON(parent
&& parent
!= buf
);
477 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
478 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
479 parent_start
= buf
->start
;
483 extent_buffer_get(cow
);
484 rcu_assign_pointer(root
->node
, cow
);
486 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
488 free_extent_buffer(buf
);
489 add_root_to_dirty_list(root
);
491 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
492 parent_start
= parent
->start
;
496 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
497 btrfs_set_node_blockptr(parent
, parent_slot
,
499 btrfs_set_node_ptr_generation(parent
, parent_slot
,
501 btrfs_mark_buffer_dirty(parent
);
502 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
506 btrfs_tree_unlock(buf
);
507 free_extent_buffer(buf
);
508 btrfs_mark_buffer_dirty(cow
);
513 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
514 struct btrfs_root
*root
,
515 struct extent_buffer
*buf
)
517 if (btrfs_header_generation(buf
) == trans
->transid
&&
518 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
519 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
520 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
526 * cows a single block, see __btrfs_cow_block for the real work.
527 * This version of it has extra checks so that a block isn't cow'd more than
528 * once per transaction, as long as it hasn't been written yet
530 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
531 struct btrfs_root
*root
, struct extent_buffer
*buf
,
532 struct extent_buffer
*parent
, int parent_slot
,
533 struct extent_buffer
**cow_ret
)
538 if (trans
->transaction
!= root
->fs_info
->running_transaction
) {
539 printk(KERN_CRIT
"trans %llu running %llu\n",
540 (unsigned long long)trans
->transid
,
542 root
->fs_info
->running_transaction
->transid
);
545 if (trans
->transid
!= root
->fs_info
->generation
) {
546 printk(KERN_CRIT
"trans %llu running %llu\n",
547 (unsigned long long)trans
->transid
,
548 (unsigned long long)root
->fs_info
->generation
);
552 if (!should_cow_block(trans
, root
, buf
)) {
557 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
560 btrfs_set_lock_blocking(parent
);
561 btrfs_set_lock_blocking(buf
);
563 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
564 parent_slot
, cow_ret
, search_start
, 0);
566 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
572 * helper function for defrag to decide if two blocks pointed to by a
573 * node are actually close by
575 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
577 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
579 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
585 * compare two keys in a memcmp fashion
587 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
591 btrfs_disk_key_to_cpu(&k1
, disk
);
593 return btrfs_comp_cpu_keys(&k1
, k2
);
597 * same as comp_keys only with two btrfs_key's
599 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
601 if (k1
->objectid
> k2
->objectid
)
603 if (k1
->objectid
< k2
->objectid
)
605 if (k1
->type
> k2
->type
)
607 if (k1
->type
< k2
->type
)
609 if (k1
->offset
> k2
->offset
)
611 if (k1
->offset
< k2
->offset
)
617 * this is used by the defrag code to go through all the
618 * leaves pointed to by a node and reallocate them so that
619 * disk order is close to key order
621 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
622 struct btrfs_root
*root
, struct extent_buffer
*parent
,
623 int start_slot
, int cache_only
, u64
*last_ret
,
624 struct btrfs_key
*progress
)
626 struct extent_buffer
*cur
;
629 u64 search_start
= *last_ret
;
639 int progress_passed
= 0;
640 struct btrfs_disk_key disk_key
;
642 parent_level
= btrfs_header_level(parent
);
643 if (cache_only
&& parent_level
!= 1)
646 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
648 if (trans
->transid
!= root
->fs_info
->generation
)
651 parent_nritems
= btrfs_header_nritems(parent
);
652 blocksize
= btrfs_level_size(root
, parent_level
- 1);
653 end_slot
= parent_nritems
;
655 if (parent_nritems
== 1)
658 btrfs_set_lock_blocking(parent
);
660 for (i
= start_slot
; i
< end_slot
; i
++) {
663 btrfs_node_key(parent
, &disk_key
, i
);
664 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
668 blocknr
= btrfs_node_blockptr(parent
, i
);
669 gen
= btrfs_node_ptr_generation(parent
, i
);
671 last_block
= blocknr
;
674 other
= btrfs_node_blockptr(parent
, i
- 1);
675 close
= close_blocks(blocknr
, other
, blocksize
);
677 if (!close
&& i
< end_slot
- 2) {
678 other
= btrfs_node_blockptr(parent
, i
+ 1);
679 close
= close_blocks(blocknr
, other
, blocksize
);
682 last_block
= blocknr
;
686 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
688 uptodate
= btrfs_buffer_uptodate(cur
, gen
);
691 if (!cur
|| !uptodate
) {
693 free_extent_buffer(cur
);
697 cur
= read_tree_block(root
, blocknr
,
701 } else if (!uptodate
) {
702 btrfs_read_buffer(cur
, gen
);
705 if (search_start
== 0)
706 search_start
= last_block
;
708 btrfs_tree_lock(cur
);
709 btrfs_set_lock_blocking(cur
);
710 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
713 (end_slot
- i
) * blocksize
));
715 btrfs_tree_unlock(cur
);
716 free_extent_buffer(cur
);
719 search_start
= cur
->start
;
720 last_block
= cur
->start
;
721 *last_ret
= search_start
;
722 btrfs_tree_unlock(cur
);
723 free_extent_buffer(cur
);
729 * The leaf data grows from end-to-front in the node.
730 * this returns the address of the start of the last item,
731 * which is the stop of the leaf data stack
733 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
734 struct extent_buffer
*leaf
)
736 u32 nr
= btrfs_header_nritems(leaf
);
738 return BTRFS_LEAF_DATA_SIZE(root
);
739 return btrfs_item_offset_nr(leaf
, nr
- 1);
744 * search for key in the extent_buffer. The items start at offset p,
745 * and they are item_size apart. There are 'max' items in p.
747 * the slot in the array is returned via slot, and it points to
748 * the place where you would insert key if it is not found in
751 * slot may point to max if the key is bigger than all of the keys
753 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
755 int item_size
, struct btrfs_key
*key
,
762 struct btrfs_disk_key
*tmp
= NULL
;
763 struct btrfs_disk_key unaligned
;
764 unsigned long offset
;
766 unsigned long map_start
= 0;
767 unsigned long map_len
= 0;
771 mid
= (low
+ high
) / 2;
772 offset
= p
+ mid
* item_size
;
774 if (!kaddr
|| offset
< map_start
||
775 (offset
+ sizeof(struct btrfs_disk_key
)) >
776 map_start
+ map_len
) {
778 err
= map_private_extent_buffer(eb
, offset
,
779 sizeof(struct btrfs_disk_key
),
780 &kaddr
, &map_start
, &map_len
);
783 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
786 read_extent_buffer(eb
, &unaligned
,
787 offset
, sizeof(unaligned
));
792 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
795 ret
= comp_keys(tmp
, key
);
811 * simple bin_search frontend that does the right thing for
814 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
815 int level
, int *slot
)
818 return generic_bin_search(eb
,
819 offsetof(struct btrfs_leaf
, items
),
820 sizeof(struct btrfs_item
),
821 key
, btrfs_header_nritems(eb
),
824 return generic_bin_search(eb
,
825 offsetof(struct btrfs_node
, ptrs
),
826 sizeof(struct btrfs_key_ptr
),
827 key
, btrfs_header_nritems(eb
),
833 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
834 int level
, int *slot
)
836 return bin_search(eb
, key
, level
, slot
);
839 static void root_add_used(struct btrfs_root
*root
, u32 size
)
841 spin_lock(&root
->accounting_lock
);
842 btrfs_set_root_used(&root
->root_item
,
843 btrfs_root_used(&root
->root_item
) + size
);
844 spin_unlock(&root
->accounting_lock
);
847 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
849 spin_lock(&root
->accounting_lock
);
850 btrfs_set_root_used(&root
->root_item
,
851 btrfs_root_used(&root
->root_item
) - size
);
852 spin_unlock(&root
->accounting_lock
);
855 /* given a node and slot number, this reads the blocks it points to. The
856 * extent buffer is returned with a reference taken (but unlocked).
857 * NULL is returned on error.
859 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
860 struct extent_buffer
*parent
, int slot
)
862 int level
= btrfs_header_level(parent
);
865 if (slot
>= btrfs_header_nritems(parent
))
870 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
871 btrfs_level_size(root
, level
- 1),
872 btrfs_node_ptr_generation(parent
, slot
));
876 * node level balancing, used to make sure nodes are in proper order for
877 * item deletion. We balance from the top down, so we have to make sure
878 * that a deletion won't leave an node completely empty later on.
880 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
881 struct btrfs_root
*root
,
882 struct btrfs_path
*path
, int level
)
884 struct extent_buffer
*right
= NULL
;
885 struct extent_buffer
*mid
;
886 struct extent_buffer
*left
= NULL
;
887 struct extent_buffer
*parent
= NULL
;
891 int orig_slot
= path
->slots
[level
];
897 mid
= path
->nodes
[level
];
899 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
900 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
901 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
903 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
905 if (level
< BTRFS_MAX_LEVEL
- 1)
906 parent
= path
->nodes
[level
+ 1];
907 pslot
= path
->slots
[level
+ 1];
910 * deal with the case where there is only one pointer in the root
911 * by promoting the node below to a root
914 struct extent_buffer
*child
;
916 if (btrfs_header_nritems(mid
) != 1)
919 /* promote the child to a root */
920 child
= read_node_slot(root
, mid
, 0);
922 btrfs_tree_lock(child
);
923 btrfs_set_lock_blocking(child
);
924 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
926 btrfs_tree_unlock(child
);
927 free_extent_buffer(child
);
931 rcu_assign_pointer(root
->node
, child
);
933 add_root_to_dirty_list(root
);
934 btrfs_tree_unlock(child
);
936 path
->locks
[level
] = 0;
937 path
->nodes
[level
] = NULL
;
938 clean_tree_block(trans
, root
, mid
);
939 btrfs_tree_unlock(mid
);
940 /* once for the path */
941 free_extent_buffer(mid
);
943 root_sub_used(root
, mid
->len
);
944 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
945 /* once for the root ptr */
946 free_extent_buffer(mid
);
949 if (btrfs_header_nritems(mid
) >
950 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
953 btrfs_header_nritems(mid
);
955 left
= read_node_slot(root
, parent
, pslot
- 1);
957 btrfs_tree_lock(left
);
958 btrfs_set_lock_blocking(left
);
959 wret
= btrfs_cow_block(trans
, root
, left
,
960 parent
, pslot
- 1, &left
);
966 right
= read_node_slot(root
, parent
, pslot
+ 1);
968 btrfs_tree_lock(right
);
969 btrfs_set_lock_blocking(right
);
970 wret
= btrfs_cow_block(trans
, root
, right
,
971 parent
, pslot
+ 1, &right
);
978 /* first, try to make some room in the middle buffer */
980 orig_slot
+= btrfs_header_nritems(left
);
981 wret
= push_node_left(trans
, root
, left
, mid
, 1);
984 btrfs_header_nritems(mid
);
988 * then try to empty the right most buffer into the middle
991 wret
= push_node_left(trans
, root
, mid
, right
, 1);
992 if (wret
< 0 && wret
!= -ENOSPC
)
994 if (btrfs_header_nritems(right
) == 0) {
995 clean_tree_block(trans
, root
, right
);
996 btrfs_tree_unlock(right
);
997 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
+
1001 root_sub_used(root
, right
->len
);
1002 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1003 free_extent_buffer(right
);
1006 struct btrfs_disk_key right_key
;
1007 btrfs_node_key(right
, &right_key
, 0);
1008 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1009 btrfs_mark_buffer_dirty(parent
);
1012 if (btrfs_header_nritems(mid
) == 1) {
1014 * we're not allowed to leave a node with one item in the
1015 * tree during a delete. A deletion from lower in the tree
1016 * could try to delete the only pointer in this node.
1017 * So, pull some keys from the left.
1018 * There has to be a left pointer at this point because
1019 * otherwise we would have pulled some pointers from the
1023 wret
= balance_node_right(trans
, root
, mid
, left
);
1029 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1035 if (btrfs_header_nritems(mid
) == 0) {
1036 clean_tree_block(trans
, root
, mid
);
1037 btrfs_tree_unlock(mid
);
1038 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1041 root_sub_used(root
, mid
->len
);
1042 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1043 free_extent_buffer(mid
);
1046 /* update the parent key to reflect our changes */
1047 struct btrfs_disk_key mid_key
;
1048 btrfs_node_key(mid
, &mid_key
, 0);
1049 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1050 btrfs_mark_buffer_dirty(parent
);
1053 /* update the path */
1055 if (btrfs_header_nritems(left
) > orig_slot
) {
1056 extent_buffer_get(left
);
1057 /* left was locked after cow */
1058 path
->nodes
[level
] = left
;
1059 path
->slots
[level
+ 1] -= 1;
1060 path
->slots
[level
] = orig_slot
;
1062 btrfs_tree_unlock(mid
);
1063 free_extent_buffer(mid
);
1066 orig_slot
-= btrfs_header_nritems(left
);
1067 path
->slots
[level
] = orig_slot
;
1070 /* double check we haven't messed things up */
1072 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1076 btrfs_tree_unlock(right
);
1077 free_extent_buffer(right
);
1080 if (path
->nodes
[level
] != left
)
1081 btrfs_tree_unlock(left
);
1082 free_extent_buffer(left
);
1087 /* Node balancing for insertion. Here we only split or push nodes around
1088 * when they are completely full. This is also done top down, so we
1089 * have to be pessimistic.
1091 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1092 struct btrfs_root
*root
,
1093 struct btrfs_path
*path
, int level
)
1095 struct extent_buffer
*right
= NULL
;
1096 struct extent_buffer
*mid
;
1097 struct extent_buffer
*left
= NULL
;
1098 struct extent_buffer
*parent
= NULL
;
1102 int orig_slot
= path
->slots
[level
];
1107 mid
= path
->nodes
[level
];
1108 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1110 if (level
< BTRFS_MAX_LEVEL
- 1)
1111 parent
= path
->nodes
[level
+ 1];
1112 pslot
= path
->slots
[level
+ 1];
1117 left
= read_node_slot(root
, parent
, pslot
- 1);
1119 /* first, try to make some room in the middle buffer */
1123 btrfs_tree_lock(left
);
1124 btrfs_set_lock_blocking(left
);
1126 left_nr
= btrfs_header_nritems(left
);
1127 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1130 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1135 wret
= push_node_left(trans
, root
,
1142 struct btrfs_disk_key disk_key
;
1143 orig_slot
+= left_nr
;
1144 btrfs_node_key(mid
, &disk_key
, 0);
1145 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1146 btrfs_mark_buffer_dirty(parent
);
1147 if (btrfs_header_nritems(left
) > orig_slot
) {
1148 path
->nodes
[level
] = left
;
1149 path
->slots
[level
+ 1] -= 1;
1150 path
->slots
[level
] = orig_slot
;
1151 btrfs_tree_unlock(mid
);
1152 free_extent_buffer(mid
);
1155 btrfs_header_nritems(left
);
1156 path
->slots
[level
] = orig_slot
;
1157 btrfs_tree_unlock(left
);
1158 free_extent_buffer(left
);
1162 btrfs_tree_unlock(left
);
1163 free_extent_buffer(left
);
1165 right
= read_node_slot(root
, parent
, pslot
+ 1);
1168 * then try to empty the right most buffer into the middle
1173 btrfs_tree_lock(right
);
1174 btrfs_set_lock_blocking(right
);
1176 right_nr
= btrfs_header_nritems(right
);
1177 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1180 ret
= btrfs_cow_block(trans
, root
, right
,
1186 wret
= balance_node_right(trans
, root
,
1193 struct btrfs_disk_key disk_key
;
1195 btrfs_node_key(right
, &disk_key
, 0);
1196 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
1197 btrfs_mark_buffer_dirty(parent
);
1199 if (btrfs_header_nritems(mid
) <= orig_slot
) {
1200 path
->nodes
[level
] = right
;
1201 path
->slots
[level
+ 1] += 1;
1202 path
->slots
[level
] = orig_slot
-
1203 btrfs_header_nritems(mid
);
1204 btrfs_tree_unlock(mid
);
1205 free_extent_buffer(mid
);
1207 btrfs_tree_unlock(right
);
1208 free_extent_buffer(right
);
1212 btrfs_tree_unlock(right
);
1213 free_extent_buffer(right
);
1219 * readahead one full node of leaves, finding things that are close
1220 * to the block in 'slot', and triggering ra on them.
1222 static void reada_for_search(struct btrfs_root
*root
,
1223 struct btrfs_path
*path
,
1224 int level
, int slot
, u64 objectid
)
1226 struct extent_buffer
*node
;
1227 struct btrfs_disk_key disk_key
;
1233 int direction
= path
->reada
;
1234 struct extent_buffer
*eb
;
1242 if (!path
->nodes
[level
])
1245 node
= path
->nodes
[level
];
1247 search
= btrfs_node_blockptr(node
, slot
);
1248 blocksize
= btrfs_level_size(root
, level
- 1);
1249 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
1251 free_extent_buffer(eb
);
1257 nritems
= btrfs_header_nritems(node
);
1261 if (direction
< 0) {
1265 } else if (direction
> 0) {
1270 if (path
->reada
< 0 && objectid
) {
1271 btrfs_node_key(node
, &disk_key
, nr
);
1272 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
1275 search
= btrfs_node_blockptr(node
, nr
);
1276 if ((search
<= target
&& target
- search
<= 65536) ||
1277 (search
> target
&& search
- target
<= 65536)) {
1278 gen
= btrfs_node_ptr_generation(node
, nr
);
1279 readahead_tree_block(root
, search
, blocksize
, gen
);
1283 if ((nread
> 65536 || nscan
> 32))
1289 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1292 static noinline
int reada_for_balance(struct btrfs_root
*root
,
1293 struct btrfs_path
*path
, int level
)
1297 struct extent_buffer
*parent
;
1298 struct extent_buffer
*eb
;
1305 parent
= path
->nodes
[level
+ 1];
1309 nritems
= btrfs_header_nritems(parent
);
1310 slot
= path
->slots
[level
+ 1];
1311 blocksize
= btrfs_level_size(root
, level
);
1314 block1
= btrfs_node_blockptr(parent
, slot
- 1);
1315 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
1316 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
1317 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1319 free_extent_buffer(eb
);
1321 if (slot
+ 1 < nritems
) {
1322 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
1323 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
1324 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
1325 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1327 free_extent_buffer(eb
);
1329 if (block1
|| block2
) {
1332 /* release the whole path */
1333 btrfs_release_path(path
);
1335 /* read the blocks */
1337 readahead_tree_block(root
, block1
, blocksize
, 0);
1339 readahead_tree_block(root
, block2
, blocksize
, 0);
1342 eb
= read_tree_block(root
, block1
, blocksize
, 0);
1343 free_extent_buffer(eb
);
1346 eb
= read_tree_block(root
, block2
, blocksize
, 0);
1347 free_extent_buffer(eb
);
1355 * when we walk down the tree, it is usually safe to unlock the higher layers
1356 * in the tree. The exceptions are when our path goes through slot 0, because
1357 * operations on the tree might require changing key pointers higher up in the
1360 * callers might also have set path->keep_locks, which tells this code to keep
1361 * the lock if the path points to the last slot in the block. This is part of
1362 * walking through the tree, and selecting the next slot in the higher block.
1364 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1365 * if lowest_unlock is 1, level 0 won't be unlocked
1367 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
1371 int skip_level
= level
;
1373 struct extent_buffer
*t
;
1375 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1376 if (!path
->nodes
[i
])
1378 if (!path
->locks
[i
])
1380 if (!no_skips
&& path
->slots
[i
] == 0) {
1384 if (!no_skips
&& path
->keep_locks
) {
1387 nritems
= btrfs_header_nritems(t
);
1388 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
1393 if (skip_level
< i
&& i
>= lowest_unlock
)
1397 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
1398 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
1405 * This releases any locks held in the path starting at level and
1406 * going all the way up to the root.
1408 * btrfs_search_slot will keep the lock held on higher nodes in a few
1409 * corner cases, such as COW of the block at slot zero in the node. This
1410 * ignores those rules, and it should only be called when there are no
1411 * more updates to be done higher up in the tree.
1413 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
1417 if (path
->keep_locks
)
1420 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1421 if (!path
->nodes
[i
])
1423 if (!path
->locks
[i
])
1425 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
1431 * helper function for btrfs_search_slot. The goal is to find a block
1432 * in cache without setting the path to blocking. If we find the block
1433 * we return zero and the path is unchanged.
1435 * If we can't find the block, we set the path blocking and do some
1436 * reada. -EAGAIN is returned and the search must be repeated.
1439 read_block_for_search(struct btrfs_trans_handle
*trans
,
1440 struct btrfs_root
*root
, struct btrfs_path
*p
,
1441 struct extent_buffer
**eb_ret
, int level
, int slot
,
1442 struct btrfs_key
*key
)
1447 struct extent_buffer
*b
= *eb_ret
;
1448 struct extent_buffer
*tmp
;
1451 blocknr
= btrfs_node_blockptr(b
, slot
);
1452 gen
= btrfs_node_ptr_generation(b
, slot
);
1453 blocksize
= btrfs_level_size(root
, level
- 1);
1455 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1457 if (btrfs_buffer_uptodate(tmp
, 0)) {
1458 if (btrfs_buffer_uptodate(tmp
, gen
)) {
1460 * we found an up to date block without
1467 /* the pages were up to date, but we failed
1468 * the generation number check. Do a full
1469 * read for the generation number that is correct.
1470 * We must do this without dropping locks so
1471 * we can trust our generation number
1473 free_extent_buffer(tmp
);
1474 btrfs_set_path_blocking(p
);
1476 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
1477 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
1481 free_extent_buffer(tmp
);
1482 btrfs_release_path(p
);
1488 * reduce lock contention at high levels
1489 * of the btree by dropping locks before
1490 * we read. Don't release the lock on the current
1491 * level because we need to walk this node to figure
1492 * out which blocks to read.
1494 btrfs_unlock_up_safe(p
, level
+ 1);
1495 btrfs_set_path_blocking(p
);
1497 free_extent_buffer(tmp
);
1499 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
1501 btrfs_release_path(p
);
1504 tmp
= read_tree_block(root
, blocknr
, blocksize
, 0);
1507 * If the read above didn't mark this buffer up to date,
1508 * it will never end up being up to date. Set ret to EIO now
1509 * and give up so that our caller doesn't loop forever
1512 if (!btrfs_buffer_uptodate(tmp
, 0))
1514 free_extent_buffer(tmp
);
1520 * helper function for btrfs_search_slot. This does all of the checks
1521 * for node-level blocks and does any balancing required based on
1524 * If no extra work was required, zero is returned. If we had to
1525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1529 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
1530 struct btrfs_root
*root
, struct btrfs_path
*p
,
1531 struct extent_buffer
*b
, int level
, int ins_len
,
1532 int *write_lock_level
)
1535 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
1536 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
1539 if (*write_lock_level
< level
+ 1) {
1540 *write_lock_level
= level
+ 1;
1541 btrfs_release_path(p
);
1545 sret
= reada_for_balance(root
, p
, level
);
1549 btrfs_set_path_blocking(p
);
1550 sret
= split_node(trans
, root
, p
, level
);
1551 btrfs_clear_path_blocking(p
, NULL
, 0);
1558 b
= p
->nodes
[level
];
1559 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
1560 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
1563 if (*write_lock_level
< level
+ 1) {
1564 *write_lock_level
= level
+ 1;
1565 btrfs_release_path(p
);
1569 sret
= reada_for_balance(root
, p
, level
);
1573 btrfs_set_path_blocking(p
);
1574 sret
= balance_level(trans
, root
, p
, level
);
1575 btrfs_clear_path_blocking(p
, NULL
, 0);
1581 b
= p
->nodes
[level
];
1583 btrfs_release_path(p
);
1586 BUG_ON(btrfs_header_nritems(b
) == 1);
1597 * look for key in the tree. path is filled in with nodes along the way
1598 * if key is found, we return zero and you can find the item in the leaf
1599 * level of the path (level 0)
1601 * If the key isn't found, the path points to the slot where it should
1602 * be inserted, and 1 is returned. If there are other errors during the
1603 * search a negative error number is returned.
1605 * if ins_len > 0, nodes and leaves will be split as we walk down the
1606 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1609 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
1610 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
1613 struct extent_buffer
*b
;
1618 int lowest_unlock
= 1;
1620 /* everything at write_lock_level or lower must be write locked */
1621 int write_lock_level
= 0;
1622 u8 lowest_level
= 0;
1624 lowest_level
= p
->lowest_level
;
1625 WARN_ON(lowest_level
&& ins_len
> 0);
1626 WARN_ON(p
->nodes
[0] != NULL
);
1631 /* when we are removing items, we might have to go up to level
1632 * two as we update tree pointers Make sure we keep write
1633 * for those levels as well
1635 write_lock_level
= 2;
1636 } else if (ins_len
> 0) {
1638 * for inserting items, make sure we have a write lock on
1639 * level 1 so we can update keys
1641 write_lock_level
= 1;
1645 write_lock_level
= -1;
1647 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
1648 write_lock_level
= BTRFS_MAX_LEVEL
;
1652 * we try very hard to do read locks on the root
1654 root_lock
= BTRFS_READ_LOCK
;
1656 if (p
->search_commit_root
) {
1658 * the commit roots are read only
1659 * so we always do read locks
1661 b
= root
->commit_root
;
1662 extent_buffer_get(b
);
1663 level
= btrfs_header_level(b
);
1664 if (!p
->skip_locking
)
1665 btrfs_tree_read_lock(b
);
1667 if (p
->skip_locking
) {
1668 b
= btrfs_root_node(root
);
1669 level
= btrfs_header_level(b
);
1671 /* we don't know the level of the root node
1672 * until we actually have it read locked
1674 b
= btrfs_read_lock_root_node(root
);
1675 level
= btrfs_header_level(b
);
1676 if (level
<= write_lock_level
) {
1677 /* whoops, must trade for write lock */
1678 btrfs_tree_read_unlock(b
);
1679 free_extent_buffer(b
);
1680 b
= btrfs_lock_root_node(root
);
1681 root_lock
= BTRFS_WRITE_LOCK
;
1683 /* the level might have changed, check again */
1684 level
= btrfs_header_level(b
);
1688 p
->nodes
[level
] = b
;
1689 if (!p
->skip_locking
)
1690 p
->locks
[level
] = root_lock
;
1693 level
= btrfs_header_level(b
);
1696 * setup the path here so we can release it under lock
1697 * contention with the cow code
1701 * if we don't really need to cow this block
1702 * then we don't want to set the path blocking,
1703 * so we test it here
1705 if (!should_cow_block(trans
, root
, b
))
1708 btrfs_set_path_blocking(p
);
1711 * must have write locks on this node and the
1714 if (level
+ 1 > write_lock_level
) {
1715 write_lock_level
= level
+ 1;
1716 btrfs_release_path(p
);
1720 err
= btrfs_cow_block(trans
, root
, b
,
1721 p
->nodes
[level
+ 1],
1722 p
->slots
[level
+ 1], &b
);
1729 BUG_ON(!cow
&& ins_len
);
1731 p
->nodes
[level
] = b
;
1732 btrfs_clear_path_blocking(p
, NULL
, 0);
1735 * we have a lock on b and as long as we aren't changing
1736 * the tree, there is no way to for the items in b to change.
1737 * It is safe to drop the lock on our parent before we
1738 * go through the expensive btree search on b.
1740 * If cow is true, then we might be changing slot zero,
1741 * which may require changing the parent. So, we can't
1742 * drop the lock until after we know which slot we're
1746 btrfs_unlock_up_safe(p
, level
+ 1);
1748 ret
= bin_search(b
, key
, level
, &slot
);
1752 if (ret
&& slot
> 0) {
1756 p
->slots
[level
] = slot
;
1757 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
1758 ins_len
, &write_lock_level
);
1765 b
= p
->nodes
[level
];
1766 slot
= p
->slots
[level
];
1769 * slot 0 is special, if we change the key
1770 * we have to update the parent pointer
1771 * which means we must have a write lock
1774 if (slot
== 0 && cow
&&
1775 write_lock_level
< level
+ 1) {
1776 write_lock_level
= level
+ 1;
1777 btrfs_release_path(p
);
1781 unlock_up(p
, level
, lowest_unlock
);
1783 if (level
== lowest_level
) {
1789 err
= read_block_for_search(trans
, root
, p
,
1790 &b
, level
, slot
, key
);
1798 if (!p
->skip_locking
) {
1799 level
= btrfs_header_level(b
);
1800 if (level
<= write_lock_level
) {
1801 err
= btrfs_try_tree_write_lock(b
);
1803 btrfs_set_path_blocking(p
);
1805 btrfs_clear_path_blocking(p
, b
,
1808 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
1810 err
= btrfs_try_tree_read_lock(b
);
1812 btrfs_set_path_blocking(p
);
1813 btrfs_tree_read_lock(b
);
1814 btrfs_clear_path_blocking(p
, b
,
1817 p
->locks
[level
] = BTRFS_READ_LOCK
;
1819 p
->nodes
[level
] = b
;
1822 p
->slots
[level
] = slot
;
1824 btrfs_leaf_free_space(root
, b
) < ins_len
) {
1825 if (write_lock_level
< 1) {
1826 write_lock_level
= 1;
1827 btrfs_release_path(p
);
1831 btrfs_set_path_blocking(p
);
1832 err
= split_leaf(trans
, root
, key
,
1833 p
, ins_len
, ret
== 0);
1834 btrfs_clear_path_blocking(p
, NULL
, 0);
1842 if (!p
->search_for_split
)
1843 unlock_up(p
, level
, lowest_unlock
);
1850 * we don't really know what they plan on doing with the path
1851 * from here on, so for now just mark it as blocking
1853 if (!p
->leave_spinning
)
1854 btrfs_set_path_blocking(p
);
1856 btrfs_release_path(p
);
1861 * adjust the pointers going up the tree, starting at level
1862 * making sure the right key of each node is points to 'key'.
1863 * This is used after shifting pointers to the left, so it stops
1864 * fixing up pointers when a given leaf/node is not in slot 0 of the
1867 * If this fails to write a tree block, it returns -1, but continues
1868 * fixing up the blocks in ram so the tree is consistent.
1870 static int fixup_low_keys(struct btrfs_trans_handle
*trans
,
1871 struct btrfs_root
*root
, struct btrfs_path
*path
,
1872 struct btrfs_disk_key
*key
, int level
)
1876 struct extent_buffer
*t
;
1878 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1879 int tslot
= path
->slots
[i
];
1880 if (!path
->nodes
[i
])
1883 btrfs_set_node_key(t
, key
, tslot
);
1884 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
1894 * This function isn't completely safe. It's the caller's responsibility
1895 * that the new key won't break the order
1897 int btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
1898 struct btrfs_root
*root
, struct btrfs_path
*path
,
1899 struct btrfs_key
*new_key
)
1901 struct btrfs_disk_key disk_key
;
1902 struct extent_buffer
*eb
;
1905 eb
= path
->nodes
[0];
1906 slot
= path
->slots
[0];
1908 btrfs_item_key(eb
, &disk_key
, slot
- 1);
1909 if (comp_keys(&disk_key
, new_key
) >= 0)
1912 if (slot
< btrfs_header_nritems(eb
) - 1) {
1913 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
1914 if (comp_keys(&disk_key
, new_key
) <= 0)
1918 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1919 btrfs_set_item_key(eb
, &disk_key
, slot
);
1920 btrfs_mark_buffer_dirty(eb
);
1922 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
1927 * try to push data from one node into the next node left in the
1930 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931 * error, and > 0 if there was no room in the left hand block.
1933 static int push_node_left(struct btrfs_trans_handle
*trans
,
1934 struct btrfs_root
*root
, struct extent_buffer
*dst
,
1935 struct extent_buffer
*src
, int empty
)
1942 src_nritems
= btrfs_header_nritems(src
);
1943 dst_nritems
= btrfs_header_nritems(dst
);
1944 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
1945 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1946 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1948 if (!empty
&& src_nritems
<= 8)
1951 if (push_items
<= 0)
1955 push_items
= min(src_nritems
, push_items
);
1956 if (push_items
< src_nritems
) {
1957 /* leave at least 8 pointers in the node if
1958 * we aren't going to empty it
1960 if (src_nritems
- push_items
< 8) {
1961 if (push_items
<= 8)
1967 push_items
= min(src_nritems
- 8, push_items
);
1969 copy_extent_buffer(dst
, src
,
1970 btrfs_node_key_ptr_offset(dst_nritems
),
1971 btrfs_node_key_ptr_offset(0),
1972 push_items
* sizeof(struct btrfs_key_ptr
));
1974 if (push_items
< src_nritems
) {
1975 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
1976 btrfs_node_key_ptr_offset(push_items
),
1977 (src_nritems
- push_items
) *
1978 sizeof(struct btrfs_key_ptr
));
1980 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
1981 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
1982 btrfs_mark_buffer_dirty(src
);
1983 btrfs_mark_buffer_dirty(dst
);
1989 * try to push data from one node into the next node right in the
1992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993 * error, and > 0 if there was no room in the right hand block.
1995 * this will only push up to 1/2 the contents of the left node over
1997 static int balance_node_right(struct btrfs_trans_handle
*trans
,
1998 struct btrfs_root
*root
,
1999 struct extent_buffer
*dst
,
2000 struct extent_buffer
*src
)
2008 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2009 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2011 src_nritems
= btrfs_header_nritems(src
);
2012 dst_nritems
= btrfs_header_nritems(dst
);
2013 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2014 if (push_items
<= 0)
2017 if (src_nritems
< 4)
2020 max_push
= src_nritems
/ 2 + 1;
2021 /* don't try to empty the node */
2022 if (max_push
>= src_nritems
)
2025 if (max_push
< push_items
)
2026 push_items
= max_push
;
2028 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
2029 btrfs_node_key_ptr_offset(0),
2031 sizeof(struct btrfs_key_ptr
));
2033 copy_extent_buffer(dst
, src
,
2034 btrfs_node_key_ptr_offset(0),
2035 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
2036 push_items
* sizeof(struct btrfs_key_ptr
));
2038 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2039 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2041 btrfs_mark_buffer_dirty(src
);
2042 btrfs_mark_buffer_dirty(dst
);
2048 * helper function to insert a new root level in the tree.
2049 * A new node is allocated, and a single item is inserted to
2050 * point to the existing root
2052 * returns zero on success or < 0 on failure.
2054 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
2055 struct btrfs_root
*root
,
2056 struct btrfs_path
*path
, int level
)
2059 struct extent_buffer
*lower
;
2060 struct extent_buffer
*c
;
2061 struct extent_buffer
*old
;
2062 struct btrfs_disk_key lower_key
;
2064 BUG_ON(path
->nodes
[level
]);
2065 BUG_ON(path
->nodes
[level
-1] != root
->node
);
2067 lower
= path
->nodes
[level
-1];
2069 btrfs_item_key(lower
, &lower_key
, 0);
2071 btrfs_node_key(lower
, &lower_key
, 0);
2073 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2074 root
->root_key
.objectid
, &lower_key
,
2075 level
, root
->node
->start
, 0);
2079 root_add_used(root
, root
->nodesize
);
2081 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
2082 btrfs_set_header_nritems(c
, 1);
2083 btrfs_set_header_level(c
, level
);
2084 btrfs_set_header_bytenr(c
, c
->start
);
2085 btrfs_set_header_generation(c
, trans
->transid
);
2086 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
2087 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
2089 write_extent_buffer(c
, root
->fs_info
->fsid
,
2090 (unsigned long)btrfs_header_fsid(c
),
2093 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
2094 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
2097 btrfs_set_node_key(c
, &lower_key
, 0);
2098 btrfs_set_node_blockptr(c
, 0, lower
->start
);
2099 lower_gen
= btrfs_header_generation(lower
);
2100 WARN_ON(lower_gen
!= trans
->transid
);
2102 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
2104 btrfs_mark_buffer_dirty(c
);
2107 rcu_assign_pointer(root
->node
, c
);
2109 /* the super has an extra ref to root->node */
2110 free_extent_buffer(old
);
2112 add_root_to_dirty_list(root
);
2113 extent_buffer_get(c
);
2114 path
->nodes
[level
] = c
;
2115 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
2116 path
->slots
[level
] = 0;
2121 * worker function to insert a single pointer in a node.
2122 * the node should have enough room for the pointer already
2124 * slot and level indicate where you want the key to go, and
2125 * blocknr is the block the key points to.
2127 * returns zero on success and < 0 on any error
2129 static int insert_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
2130 *root
, struct btrfs_path
*path
, struct btrfs_disk_key
2131 *key
, u64 bytenr
, int slot
, int level
)
2133 struct extent_buffer
*lower
;
2136 BUG_ON(!path
->nodes
[level
]);
2137 btrfs_assert_tree_locked(path
->nodes
[level
]);
2138 lower
= path
->nodes
[level
];
2139 nritems
= btrfs_header_nritems(lower
);
2140 BUG_ON(slot
> nritems
);
2141 if (nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
))
2143 if (slot
!= nritems
) {
2144 memmove_extent_buffer(lower
,
2145 btrfs_node_key_ptr_offset(slot
+ 1),
2146 btrfs_node_key_ptr_offset(slot
),
2147 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
2149 btrfs_set_node_key(lower
, key
, slot
);
2150 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
2151 WARN_ON(trans
->transid
== 0);
2152 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
2153 btrfs_set_header_nritems(lower
, nritems
+ 1);
2154 btrfs_mark_buffer_dirty(lower
);
2159 * split the node at the specified level in path in two.
2160 * The path is corrected to point to the appropriate node after the split
2162 * Before splitting this tries to make some room in the node by pushing
2163 * left and right, if either one works, it returns right away.
2165 * returns 0 on success and < 0 on failure
2167 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
2168 struct btrfs_root
*root
,
2169 struct btrfs_path
*path
, int level
)
2171 struct extent_buffer
*c
;
2172 struct extent_buffer
*split
;
2173 struct btrfs_disk_key disk_key
;
2179 c
= path
->nodes
[level
];
2180 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
2181 if (c
== root
->node
) {
2182 /* trying to split the root, lets make a new one */
2183 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
2187 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
2188 c
= path
->nodes
[level
];
2189 if (!ret
&& btrfs_header_nritems(c
) <
2190 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
2196 c_nritems
= btrfs_header_nritems(c
);
2197 mid
= (c_nritems
+ 1) / 2;
2198 btrfs_node_key(c
, &disk_key
, mid
);
2200 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2201 root
->root_key
.objectid
,
2202 &disk_key
, level
, c
->start
, 0);
2204 return PTR_ERR(split
);
2206 root_add_used(root
, root
->nodesize
);
2208 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
2209 btrfs_set_header_level(split
, btrfs_header_level(c
));
2210 btrfs_set_header_bytenr(split
, split
->start
);
2211 btrfs_set_header_generation(split
, trans
->transid
);
2212 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
2213 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
2214 write_extent_buffer(split
, root
->fs_info
->fsid
,
2215 (unsigned long)btrfs_header_fsid(split
),
2217 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
2218 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
2222 copy_extent_buffer(split
, c
,
2223 btrfs_node_key_ptr_offset(0),
2224 btrfs_node_key_ptr_offset(mid
),
2225 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
2226 btrfs_set_header_nritems(split
, c_nritems
- mid
);
2227 btrfs_set_header_nritems(c
, mid
);
2230 btrfs_mark_buffer_dirty(c
);
2231 btrfs_mark_buffer_dirty(split
);
2233 wret
= insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
2234 path
->slots
[level
+ 1] + 1,
2239 if (path
->slots
[level
] >= mid
) {
2240 path
->slots
[level
] -= mid
;
2241 btrfs_tree_unlock(c
);
2242 free_extent_buffer(c
);
2243 path
->nodes
[level
] = split
;
2244 path
->slots
[level
+ 1] += 1;
2246 btrfs_tree_unlock(split
);
2247 free_extent_buffer(split
);
2253 * how many bytes are required to store the items in a leaf. start
2254 * and nr indicate which items in the leaf to check. This totals up the
2255 * space used both by the item structs and the item data
2257 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
2260 int nritems
= btrfs_header_nritems(l
);
2261 int end
= min(nritems
, start
+ nr
) - 1;
2265 data_len
= btrfs_item_end_nr(l
, start
);
2266 data_len
= data_len
- btrfs_item_offset_nr(l
, end
);
2267 data_len
+= sizeof(struct btrfs_item
) * nr
;
2268 WARN_ON(data_len
< 0);
2273 * The space between the end of the leaf items and
2274 * the start of the leaf data. IOW, how much room
2275 * the leaf has left for both items and data
2277 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
2278 struct extent_buffer
*leaf
)
2280 int nritems
= btrfs_header_nritems(leaf
);
2282 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
2284 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
2285 "used %d nritems %d\n",
2286 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
2287 leaf_space_used(leaf
, 0, nritems
), nritems
);
2293 * min slot controls the lowest index we're willing to push to the
2294 * right. We'll push up to and including min_slot, but no lower
2296 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
2297 struct btrfs_root
*root
,
2298 struct btrfs_path
*path
,
2299 int data_size
, int empty
,
2300 struct extent_buffer
*right
,
2301 int free_space
, u32 left_nritems
,
2304 struct extent_buffer
*left
= path
->nodes
[0];
2305 struct extent_buffer
*upper
= path
->nodes
[1];
2306 struct btrfs_disk_key disk_key
;
2311 struct btrfs_item
*item
;
2320 nr
= max_t(u32
, 1, min_slot
);
2322 if (path
->slots
[0] >= left_nritems
)
2323 push_space
+= data_size
;
2325 slot
= path
->slots
[1];
2326 i
= left_nritems
- 1;
2328 item
= btrfs_item_nr(left
, i
);
2330 if (!empty
&& push_items
> 0) {
2331 if (path
->slots
[0] > i
)
2333 if (path
->slots
[0] == i
) {
2334 int space
= btrfs_leaf_free_space(root
, left
);
2335 if (space
+ push_space
* 2 > free_space
)
2340 if (path
->slots
[0] == i
)
2341 push_space
+= data_size
;
2343 this_item_size
= btrfs_item_size(left
, item
);
2344 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2348 push_space
+= this_item_size
+ sizeof(*item
);
2354 if (push_items
== 0)
2357 if (!empty
&& push_items
== left_nritems
)
2360 /* push left to right */
2361 right_nritems
= btrfs_header_nritems(right
);
2363 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
2364 push_space
-= leaf_data_end(root
, left
);
2366 /* make room in the right data area */
2367 data_end
= leaf_data_end(root
, right
);
2368 memmove_extent_buffer(right
,
2369 btrfs_leaf_data(right
) + data_end
- push_space
,
2370 btrfs_leaf_data(right
) + data_end
,
2371 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
2373 /* copy from the left data area */
2374 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
2375 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2376 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
2379 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
2380 btrfs_item_nr_offset(0),
2381 right_nritems
* sizeof(struct btrfs_item
));
2383 /* copy the items from left to right */
2384 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
2385 btrfs_item_nr_offset(left_nritems
- push_items
),
2386 push_items
* sizeof(struct btrfs_item
));
2388 /* update the item pointers */
2389 right_nritems
+= push_items
;
2390 btrfs_set_header_nritems(right
, right_nritems
);
2391 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2392 for (i
= 0; i
< right_nritems
; i
++) {
2393 item
= btrfs_item_nr(right
, i
);
2394 push_space
-= btrfs_item_size(right
, item
);
2395 btrfs_set_item_offset(right
, item
, push_space
);
2398 left_nritems
-= push_items
;
2399 btrfs_set_header_nritems(left
, left_nritems
);
2402 btrfs_mark_buffer_dirty(left
);
2404 clean_tree_block(trans
, root
, left
);
2406 btrfs_mark_buffer_dirty(right
);
2408 btrfs_item_key(right
, &disk_key
, 0);
2409 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
2410 btrfs_mark_buffer_dirty(upper
);
2412 /* then fixup the leaf pointer in the path */
2413 if (path
->slots
[0] >= left_nritems
) {
2414 path
->slots
[0] -= left_nritems
;
2415 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
2416 clean_tree_block(trans
, root
, path
->nodes
[0]);
2417 btrfs_tree_unlock(path
->nodes
[0]);
2418 free_extent_buffer(path
->nodes
[0]);
2419 path
->nodes
[0] = right
;
2420 path
->slots
[1] += 1;
2422 btrfs_tree_unlock(right
);
2423 free_extent_buffer(right
);
2428 btrfs_tree_unlock(right
);
2429 free_extent_buffer(right
);
2434 * push some data in the path leaf to the right, trying to free up at
2435 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2437 * returns 1 if the push failed because the other node didn't have enough
2438 * room, 0 if everything worked out and < 0 if there were major errors.
2440 * this will push starting from min_slot to the end of the leaf. It won't
2441 * push any slot lower than min_slot
2443 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
2444 *root
, struct btrfs_path
*path
,
2445 int min_data_size
, int data_size
,
2446 int empty
, u32 min_slot
)
2448 struct extent_buffer
*left
= path
->nodes
[0];
2449 struct extent_buffer
*right
;
2450 struct extent_buffer
*upper
;
2456 if (!path
->nodes
[1])
2459 slot
= path
->slots
[1];
2460 upper
= path
->nodes
[1];
2461 if (slot
>= btrfs_header_nritems(upper
) - 1)
2464 btrfs_assert_tree_locked(path
->nodes
[1]);
2466 right
= read_node_slot(root
, upper
, slot
+ 1);
2470 btrfs_tree_lock(right
);
2471 btrfs_set_lock_blocking(right
);
2473 free_space
= btrfs_leaf_free_space(root
, right
);
2474 if (free_space
< data_size
)
2477 /* cow and double check */
2478 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
2483 free_space
= btrfs_leaf_free_space(root
, right
);
2484 if (free_space
< data_size
)
2487 left_nritems
= btrfs_header_nritems(left
);
2488 if (left_nritems
== 0)
2491 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
2492 right
, free_space
, left_nritems
, min_slot
);
2494 btrfs_tree_unlock(right
);
2495 free_extent_buffer(right
);
2500 * push some data in the path leaf to the left, trying to free up at
2501 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2503 * max_slot can put a limit on how far into the leaf we'll push items. The
2504 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2507 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
2508 struct btrfs_root
*root
,
2509 struct btrfs_path
*path
, int data_size
,
2510 int empty
, struct extent_buffer
*left
,
2511 int free_space
, u32 right_nritems
,
2514 struct btrfs_disk_key disk_key
;
2515 struct extent_buffer
*right
= path
->nodes
[0];
2519 struct btrfs_item
*item
;
2520 u32 old_left_nritems
;
2525 u32 old_left_item_size
;
2528 nr
= min(right_nritems
, max_slot
);
2530 nr
= min(right_nritems
- 1, max_slot
);
2532 for (i
= 0; i
< nr
; i
++) {
2533 item
= btrfs_item_nr(right
, i
);
2535 if (!empty
&& push_items
> 0) {
2536 if (path
->slots
[0] < i
)
2538 if (path
->slots
[0] == i
) {
2539 int space
= btrfs_leaf_free_space(root
, right
);
2540 if (space
+ push_space
* 2 > free_space
)
2545 if (path
->slots
[0] == i
)
2546 push_space
+= data_size
;
2548 this_item_size
= btrfs_item_size(right
, item
);
2549 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2553 push_space
+= this_item_size
+ sizeof(*item
);
2556 if (push_items
== 0) {
2560 if (!empty
&& push_items
== btrfs_header_nritems(right
))
2563 /* push data from right to left */
2564 copy_extent_buffer(left
, right
,
2565 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
2566 btrfs_item_nr_offset(0),
2567 push_items
* sizeof(struct btrfs_item
));
2569 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
2570 btrfs_item_offset_nr(right
, push_items
- 1);
2572 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
2573 leaf_data_end(root
, left
) - push_space
,
2574 btrfs_leaf_data(right
) +
2575 btrfs_item_offset_nr(right
, push_items
- 1),
2577 old_left_nritems
= btrfs_header_nritems(left
);
2578 BUG_ON(old_left_nritems
<= 0);
2580 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
2581 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
2584 item
= btrfs_item_nr(left
, i
);
2586 ioff
= btrfs_item_offset(left
, item
);
2587 btrfs_set_item_offset(left
, item
,
2588 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
));
2590 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
2592 /* fixup right node */
2593 if (push_items
> right_nritems
) {
2594 printk(KERN_CRIT
"push items %d nr %u\n", push_items
,
2599 if (push_items
< right_nritems
) {
2600 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
2601 leaf_data_end(root
, right
);
2602 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
2603 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2604 btrfs_leaf_data(right
) +
2605 leaf_data_end(root
, right
), push_space
);
2607 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
2608 btrfs_item_nr_offset(push_items
),
2609 (btrfs_header_nritems(right
) - push_items
) *
2610 sizeof(struct btrfs_item
));
2612 right_nritems
-= push_items
;
2613 btrfs_set_header_nritems(right
, right_nritems
);
2614 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2615 for (i
= 0; i
< right_nritems
; i
++) {
2616 item
= btrfs_item_nr(right
, i
);
2618 push_space
= push_space
- btrfs_item_size(right
, item
);
2619 btrfs_set_item_offset(right
, item
, push_space
);
2622 btrfs_mark_buffer_dirty(left
);
2624 btrfs_mark_buffer_dirty(right
);
2626 clean_tree_block(trans
, root
, right
);
2628 btrfs_item_key(right
, &disk_key
, 0);
2629 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2633 /* then fixup the leaf pointer in the path */
2634 if (path
->slots
[0] < push_items
) {
2635 path
->slots
[0] += old_left_nritems
;
2636 btrfs_tree_unlock(path
->nodes
[0]);
2637 free_extent_buffer(path
->nodes
[0]);
2638 path
->nodes
[0] = left
;
2639 path
->slots
[1] -= 1;
2641 btrfs_tree_unlock(left
);
2642 free_extent_buffer(left
);
2643 path
->slots
[0] -= push_items
;
2645 BUG_ON(path
->slots
[0] < 0);
2648 btrfs_tree_unlock(left
);
2649 free_extent_buffer(left
);
2654 * push some data in the path leaf to the left, trying to free up at
2655 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2657 * max_slot can put a limit on how far into the leaf we'll push items. The
2658 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
2661 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
2662 *root
, struct btrfs_path
*path
, int min_data_size
,
2663 int data_size
, int empty
, u32 max_slot
)
2665 struct extent_buffer
*right
= path
->nodes
[0];
2666 struct extent_buffer
*left
;
2672 slot
= path
->slots
[1];
2675 if (!path
->nodes
[1])
2678 right_nritems
= btrfs_header_nritems(right
);
2679 if (right_nritems
== 0)
2682 btrfs_assert_tree_locked(path
->nodes
[1]);
2684 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
2688 btrfs_tree_lock(left
);
2689 btrfs_set_lock_blocking(left
);
2691 free_space
= btrfs_leaf_free_space(root
, left
);
2692 if (free_space
< data_size
) {
2697 /* cow and double check */
2698 ret
= btrfs_cow_block(trans
, root
, left
,
2699 path
->nodes
[1], slot
- 1, &left
);
2701 /* we hit -ENOSPC, but it isn't fatal here */
2706 free_space
= btrfs_leaf_free_space(root
, left
);
2707 if (free_space
< data_size
) {
2712 return __push_leaf_left(trans
, root
, path
, min_data_size
,
2713 empty
, left
, free_space
, right_nritems
,
2716 btrfs_tree_unlock(left
);
2717 free_extent_buffer(left
);
2722 * split the path's leaf in two, making sure there is at least data_size
2723 * available for the resulting leaf level of the path.
2725 * returns 0 if all went well and < 0 on failure.
2727 static noinline
int copy_for_split(struct btrfs_trans_handle
*trans
,
2728 struct btrfs_root
*root
,
2729 struct btrfs_path
*path
,
2730 struct extent_buffer
*l
,
2731 struct extent_buffer
*right
,
2732 int slot
, int mid
, int nritems
)
2739 struct btrfs_disk_key disk_key
;
2741 nritems
= nritems
- mid
;
2742 btrfs_set_header_nritems(right
, nritems
);
2743 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
2745 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
2746 btrfs_item_nr_offset(mid
),
2747 nritems
* sizeof(struct btrfs_item
));
2749 copy_extent_buffer(right
, l
,
2750 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
2751 data_copy_size
, btrfs_leaf_data(l
) +
2752 leaf_data_end(root
, l
), data_copy_size
);
2754 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
2755 btrfs_item_end_nr(l
, mid
);
2757 for (i
= 0; i
< nritems
; i
++) {
2758 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
2761 ioff
= btrfs_item_offset(right
, item
);
2762 btrfs_set_item_offset(right
, item
, ioff
+ rt_data_off
);
2765 btrfs_set_header_nritems(l
, mid
);
2767 btrfs_item_key(right
, &disk_key
, 0);
2768 wret
= insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
2769 path
->slots
[1] + 1, 1);
2773 btrfs_mark_buffer_dirty(right
);
2774 btrfs_mark_buffer_dirty(l
);
2775 BUG_ON(path
->slots
[0] != slot
);
2778 btrfs_tree_unlock(path
->nodes
[0]);
2779 free_extent_buffer(path
->nodes
[0]);
2780 path
->nodes
[0] = right
;
2781 path
->slots
[0] -= mid
;
2782 path
->slots
[1] += 1;
2784 btrfs_tree_unlock(right
);
2785 free_extent_buffer(right
);
2788 BUG_ON(path
->slots
[0] < 0);
2794 * double splits happen when we need to insert a big item in the middle
2795 * of a leaf. A double split can leave us with 3 mostly empty leaves:
2796 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2799 * We avoid this by trying to push the items on either side of our target
2800 * into the adjacent leaves. If all goes well we can avoid the double split
2803 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
2804 struct btrfs_root
*root
,
2805 struct btrfs_path
*path
,
2813 slot
= path
->slots
[0];
2816 * try to push all the items after our slot into the
2819 ret
= push_leaf_right(trans
, root
, path
, 1, data_size
, 0, slot
);
2826 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2828 * our goal is to get our slot at the start or end of a leaf. If
2829 * we've done so we're done
2831 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
2834 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
2837 /* try to push all the items before our slot into the next leaf */
2838 slot
= path
->slots
[0];
2839 ret
= push_leaf_left(trans
, root
, path
, 1, data_size
, 0, slot
);
2852 * split the path's leaf in two, making sure there is at least data_size
2853 * available for the resulting leaf level of the path.
2855 * returns 0 if all went well and < 0 on failure.
2857 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
2858 struct btrfs_root
*root
,
2859 struct btrfs_key
*ins_key
,
2860 struct btrfs_path
*path
, int data_size
,
2863 struct btrfs_disk_key disk_key
;
2864 struct extent_buffer
*l
;
2868 struct extent_buffer
*right
;
2872 int num_doubles
= 0;
2873 int tried_avoid_double
= 0;
2876 slot
= path
->slots
[0];
2877 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
2878 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
2881 /* first try to make some room by pushing left and right */
2883 wret
= push_leaf_right(trans
, root
, path
, data_size
,
2888 wret
= push_leaf_left(trans
, root
, path
, data_size
,
2889 data_size
, 0, (u32
)-1);
2895 /* did the pushes work? */
2896 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
2900 if (!path
->nodes
[1]) {
2901 ret
= insert_new_root(trans
, root
, path
, 1);
2908 slot
= path
->slots
[0];
2909 nritems
= btrfs_header_nritems(l
);
2910 mid
= (nritems
+ 1) / 2;
2914 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
2915 BTRFS_LEAF_DATA_SIZE(root
)) {
2916 if (slot
>= nritems
) {
2920 if (mid
!= nritems
&&
2921 leaf_space_used(l
, mid
, nritems
- mid
) +
2922 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2923 if (data_size
&& !tried_avoid_double
)
2924 goto push_for_double
;
2930 if (leaf_space_used(l
, 0, mid
) + data_size
>
2931 BTRFS_LEAF_DATA_SIZE(root
)) {
2932 if (!extend
&& data_size
&& slot
== 0) {
2934 } else if ((extend
|| !data_size
) && slot
== 0) {
2938 if (mid
!= nritems
&&
2939 leaf_space_used(l
, mid
, nritems
- mid
) +
2940 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2941 if (data_size
&& !tried_avoid_double
)
2942 goto push_for_double
;
2950 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
2952 btrfs_item_key(l
, &disk_key
, mid
);
2954 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
2955 root
->root_key
.objectid
,
2956 &disk_key
, 0, l
->start
, 0);
2958 return PTR_ERR(right
);
2960 root_add_used(root
, root
->leafsize
);
2962 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
2963 btrfs_set_header_bytenr(right
, right
->start
);
2964 btrfs_set_header_generation(right
, trans
->transid
);
2965 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
2966 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
2967 btrfs_set_header_level(right
, 0);
2968 write_extent_buffer(right
, root
->fs_info
->fsid
,
2969 (unsigned long)btrfs_header_fsid(right
),
2972 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
2973 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
2978 btrfs_set_header_nritems(right
, 0);
2979 wret
= insert_ptr(trans
, root
, path
,
2980 &disk_key
, right
->start
,
2981 path
->slots
[1] + 1, 1);
2985 btrfs_tree_unlock(path
->nodes
[0]);
2986 free_extent_buffer(path
->nodes
[0]);
2987 path
->nodes
[0] = right
;
2989 path
->slots
[1] += 1;
2991 btrfs_set_header_nritems(right
, 0);
2992 wret
= insert_ptr(trans
, root
, path
,
2998 btrfs_tree_unlock(path
->nodes
[0]);
2999 free_extent_buffer(path
->nodes
[0]);
3000 path
->nodes
[0] = right
;
3002 if (path
->slots
[1] == 0) {
3003 wret
= fixup_low_keys(trans
, root
,
3004 path
, &disk_key
, 1);
3009 btrfs_mark_buffer_dirty(right
);
3013 ret
= copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
3017 BUG_ON(num_doubles
!= 0);
3025 push_for_double_split(trans
, root
, path
, data_size
);
3026 tried_avoid_double
= 1;
3027 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
3032 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
3033 struct btrfs_root
*root
,
3034 struct btrfs_path
*path
, int ins_len
)
3036 struct btrfs_key key
;
3037 struct extent_buffer
*leaf
;
3038 struct btrfs_file_extent_item
*fi
;
3043 leaf
= path
->nodes
[0];
3044 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3046 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
3047 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
3049 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
3052 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3053 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3054 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3055 struct btrfs_file_extent_item
);
3056 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
3058 btrfs_release_path(path
);
3060 path
->keep_locks
= 1;
3061 path
->search_for_split
= 1;
3062 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
3063 path
->search_for_split
= 0;
3068 leaf
= path
->nodes
[0];
3069 /* if our item isn't there or got smaller, return now */
3070 if (ret
> 0 || item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
3073 /* the leaf has changed, it now has room. return now */
3074 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
3077 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3078 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3079 struct btrfs_file_extent_item
);
3080 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
3084 btrfs_set_path_blocking(path
);
3085 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
3089 path
->keep_locks
= 0;
3090 btrfs_unlock_up_safe(path
, 1);
3093 path
->keep_locks
= 0;
3097 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
3098 struct btrfs_root
*root
,
3099 struct btrfs_path
*path
,
3100 struct btrfs_key
*new_key
,
3101 unsigned long split_offset
)
3103 struct extent_buffer
*leaf
;
3104 struct btrfs_item
*item
;
3105 struct btrfs_item
*new_item
;
3111 struct btrfs_disk_key disk_key
;
3113 leaf
= path
->nodes
[0];
3114 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
3116 btrfs_set_path_blocking(path
);
3118 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
3119 orig_offset
= btrfs_item_offset(leaf
, item
);
3120 item_size
= btrfs_item_size(leaf
, item
);
3122 buf
= kmalloc(item_size
, GFP_NOFS
);
3126 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
3127 path
->slots
[0]), item_size
);
3129 slot
= path
->slots
[0] + 1;
3130 nritems
= btrfs_header_nritems(leaf
);
3131 if (slot
!= nritems
) {
3132 /* shift the items */
3133 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
3134 btrfs_item_nr_offset(slot
),
3135 (nritems
- slot
) * sizeof(struct btrfs_item
));
3138 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3139 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3141 new_item
= btrfs_item_nr(leaf
, slot
);
3143 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
3144 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
3146 btrfs_set_item_offset(leaf
, item
,
3147 orig_offset
+ item_size
- split_offset
);
3148 btrfs_set_item_size(leaf
, item
, split_offset
);
3150 btrfs_set_header_nritems(leaf
, nritems
+ 1);
3152 /* write the data for the start of the original item */
3153 write_extent_buffer(leaf
, buf
,
3154 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3157 /* write the data for the new item */
3158 write_extent_buffer(leaf
, buf
+ split_offset
,
3159 btrfs_item_ptr_offset(leaf
, slot
),
3160 item_size
- split_offset
);
3161 btrfs_mark_buffer_dirty(leaf
);
3163 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
3169 * This function splits a single item into two items,
3170 * giving 'new_key' to the new item and splitting the
3171 * old one at split_offset (from the start of the item).
3173 * The path may be released by this operation. After
3174 * the split, the path is pointing to the old item. The
3175 * new item is going to be in the same node as the old one.
3177 * Note, the item being split must be smaller enough to live alone on
3178 * a tree block with room for one extra struct btrfs_item
3180 * This allows us to split the item in place, keeping a lock on the
3181 * leaf the entire time.
3183 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
3184 struct btrfs_root
*root
,
3185 struct btrfs_path
*path
,
3186 struct btrfs_key
*new_key
,
3187 unsigned long split_offset
)
3190 ret
= setup_leaf_for_split(trans
, root
, path
,
3191 sizeof(struct btrfs_item
));
3195 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
3200 * This function duplicate a item, giving 'new_key' to the new item.
3201 * It guarantees both items live in the same tree leaf and the new item
3202 * is contiguous with the original item.
3204 * This allows us to split file extent in place, keeping a lock on the
3205 * leaf the entire time.
3207 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
3208 struct btrfs_root
*root
,
3209 struct btrfs_path
*path
,
3210 struct btrfs_key
*new_key
)
3212 struct extent_buffer
*leaf
;
3216 leaf
= path
->nodes
[0];
3217 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3218 ret
= setup_leaf_for_split(trans
, root
, path
,
3219 item_size
+ sizeof(struct btrfs_item
));
3224 ret
= setup_items_for_insert(trans
, root
, path
, new_key
, &item_size
,
3225 item_size
, item_size
+
3226 sizeof(struct btrfs_item
), 1);
3229 leaf
= path
->nodes
[0];
3230 memcpy_extent_buffer(leaf
,
3231 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3232 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
3238 * make the item pointed to by the path smaller. new_size indicates
3239 * how small to make it, and from_end tells us if we just chop bytes
3240 * off the end of the item or if we shift the item to chop bytes off
3243 int btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
3244 struct btrfs_root
*root
,
3245 struct btrfs_path
*path
,
3246 u32 new_size
, int from_end
)
3249 struct extent_buffer
*leaf
;
3250 struct btrfs_item
*item
;
3252 unsigned int data_end
;
3253 unsigned int old_data_start
;
3254 unsigned int old_size
;
3255 unsigned int size_diff
;
3258 leaf
= path
->nodes
[0];
3259 slot
= path
->slots
[0];
3261 old_size
= btrfs_item_size_nr(leaf
, slot
);
3262 if (old_size
== new_size
)
3265 nritems
= btrfs_header_nritems(leaf
);
3266 data_end
= leaf_data_end(root
, leaf
);
3268 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
3270 size_diff
= old_size
- new_size
;
3273 BUG_ON(slot
>= nritems
);
3276 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3278 /* first correct the data pointers */
3279 for (i
= slot
; i
< nritems
; i
++) {
3281 item
= btrfs_item_nr(leaf
, i
);
3283 ioff
= btrfs_item_offset(leaf
, item
);
3284 btrfs_set_item_offset(leaf
, item
, ioff
+ size_diff
);
3287 /* shift the data */
3289 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3290 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3291 data_end
, old_data_start
+ new_size
- data_end
);
3293 struct btrfs_disk_key disk_key
;
3296 btrfs_item_key(leaf
, &disk_key
, slot
);
3298 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
3300 struct btrfs_file_extent_item
*fi
;
3302 fi
= btrfs_item_ptr(leaf
, slot
,
3303 struct btrfs_file_extent_item
);
3304 fi
= (struct btrfs_file_extent_item
*)(
3305 (unsigned long)fi
- size_diff
);
3307 if (btrfs_file_extent_type(leaf
, fi
) ==
3308 BTRFS_FILE_EXTENT_INLINE
) {
3309 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
3310 memmove_extent_buffer(leaf
, ptr
,
3312 offsetof(struct btrfs_file_extent_item
,
3317 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3318 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3319 data_end
, old_data_start
- data_end
);
3321 offset
= btrfs_disk_key_offset(&disk_key
);
3322 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
3323 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3325 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3328 item
= btrfs_item_nr(leaf
, slot
);
3329 btrfs_set_item_size(leaf
, item
, new_size
);
3330 btrfs_mark_buffer_dirty(leaf
);
3332 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3333 btrfs_print_leaf(root
, leaf
);
3340 * make the item pointed to by the path bigger, data_size is the new size.
3342 int btrfs_extend_item(struct btrfs_trans_handle
*trans
,
3343 struct btrfs_root
*root
, struct btrfs_path
*path
,
3347 struct extent_buffer
*leaf
;
3348 struct btrfs_item
*item
;
3350 unsigned int data_end
;
3351 unsigned int old_data
;
3352 unsigned int old_size
;
3355 leaf
= path
->nodes
[0];
3357 nritems
= btrfs_header_nritems(leaf
);
3358 data_end
= leaf_data_end(root
, leaf
);
3360 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
3361 btrfs_print_leaf(root
, leaf
);
3364 slot
= path
->slots
[0];
3365 old_data
= btrfs_item_end_nr(leaf
, slot
);
3368 if (slot
>= nritems
) {
3369 btrfs_print_leaf(root
, leaf
);
3370 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
3376 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3378 /* first correct the data pointers */
3379 for (i
= slot
; i
< nritems
; i
++) {
3381 item
= btrfs_item_nr(leaf
, i
);
3383 ioff
= btrfs_item_offset(leaf
, item
);
3384 btrfs_set_item_offset(leaf
, item
, ioff
- data_size
);
3387 /* shift the data */
3388 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3389 data_end
- data_size
, btrfs_leaf_data(leaf
) +
3390 data_end
, old_data
- data_end
);
3392 data_end
= old_data
;
3393 old_size
= btrfs_item_size_nr(leaf
, slot
);
3394 item
= btrfs_item_nr(leaf
, slot
);
3395 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
3396 btrfs_mark_buffer_dirty(leaf
);
3398 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3399 btrfs_print_leaf(root
, leaf
);
3406 * Given a key and some data, insert items into the tree.
3407 * This does all the path init required, making room in the tree if needed.
3408 * Returns the number of keys that were inserted.
3410 int btrfs_insert_some_items(struct btrfs_trans_handle
*trans
,
3411 struct btrfs_root
*root
,
3412 struct btrfs_path
*path
,
3413 struct btrfs_key
*cpu_key
, u32
*data_size
,
3416 struct extent_buffer
*leaf
;
3417 struct btrfs_item
*item
;
3424 unsigned int data_end
;
3425 struct btrfs_disk_key disk_key
;
3426 struct btrfs_key found_key
;
3428 for (i
= 0; i
< nr
; i
++) {
3429 if (total_size
+ data_size
[i
] + sizeof(struct btrfs_item
) >
3430 BTRFS_LEAF_DATA_SIZE(root
)) {
3434 total_data
+= data_size
[i
];
3435 total_size
+= data_size
[i
] + sizeof(struct btrfs_item
);
3439 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3445 leaf
= path
->nodes
[0];
3447 nritems
= btrfs_header_nritems(leaf
);
3448 data_end
= leaf_data_end(root
, leaf
);
3450 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3451 for (i
= nr
; i
>= 0; i
--) {
3452 total_data
-= data_size
[i
];
3453 total_size
-= data_size
[i
] + sizeof(struct btrfs_item
);
3454 if (total_size
< btrfs_leaf_free_space(root
, leaf
))
3460 slot
= path
->slots
[0];
3463 if (slot
!= nritems
) {
3464 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3466 item
= btrfs_item_nr(leaf
, slot
);
3467 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3469 /* figure out how many keys we can insert in here */
3470 total_data
= data_size
[0];
3471 for (i
= 1; i
< nr
; i
++) {
3472 if (btrfs_comp_cpu_keys(&found_key
, cpu_key
+ i
) <= 0)
3474 total_data
+= data_size
[i
];
3478 if (old_data
< data_end
) {
3479 btrfs_print_leaf(root
, leaf
);
3480 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3481 slot
, old_data
, data_end
);
3485 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3487 /* first correct the data pointers */
3488 for (i
= slot
; i
< nritems
; i
++) {
3491 item
= btrfs_item_nr(leaf
, i
);
3492 ioff
= btrfs_item_offset(leaf
, item
);
3493 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3495 /* shift the items */
3496 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3497 btrfs_item_nr_offset(slot
),
3498 (nritems
- slot
) * sizeof(struct btrfs_item
));
3500 /* shift the data */
3501 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3502 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3503 data_end
, old_data
- data_end
);
3504 data_end
= old_data
;
3507 * this sucks but it has to be done, if we are inserting at
3508 * the end of the leaf only insert 1 of the items, since we
3509 * have no way of knowing whats on the next leaf and we'd have
3510 * to drop our current locks to figure it out
3515 /* setup the item for the new data */
3516 for (i
= 0; i
< nr
; i
++) {
3517 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3518 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3519 item
= btrfs_item_nr(leaf
, slot
+ i
);
3520 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3521 data_end
-= data_size
[i
];
3522 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3524 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3525 btrfs_mark_buffer_dirty(leaf
);
3529 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3530 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3533 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3534 btrfs_print_leaf(root
, leaf
);
3544 * this is a helper for btrfs_insert_empty_items, the main goal here is
3545 * to save stack depth by doing the bulk of the work in a function
3546 * that doesn't call btrfs_search_slot
3548 int setup_items_for_insert(struct btrfs_trans_handle
*trans
,
3549 struct btrfs_root
*root
, struct btrfs_path
*path
,
3550 struct btrfs_key
*cpu_key
, u32
*data_size
,
3551 u32 total_data
, u32 total_size
, int nr
)
3553 struct btrfs_item
*item
;
3556 unsigned int data_end
;
3557 struct btrfs_disk_key disk_key
;
3559 struct extent_buffer
*leaf
;
3562 leaf
= path
->nodes
[0];
3563 slot
= path
->slots
[0];
3565 nritems
= btrfs_header_nritems(leaf
);
3566 data_end
= leaf_data_end(root
, leaf
);
3568 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3569 btrfs_print_leaf(root
, leaf
);
3570 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
3571 total_size
, btrfs_leaf_free_space(root
, leaf
));
3575 if (slot
!= nritems
) {
3576 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3578 if (old_data
< data_end
) {
3579 btrfs_print_leaf(root
, leaf
);
3580 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3581 slot
, old_data
, data_end
);
3585 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3587 /* first correct the data pointers */
3588 for (i
= slot
; i
< nritems
; i
++) {
3591 item
= btrfs_item_nr(leaf
, i
);
3592 ioff
= btrfs_item_offset(leaf
, item
);
3593 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3595 /* shift the items */
3596 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3597 btrfs_item_nr_offset(slot
),
3598 (nritems
- slot
) * sizeof(struct btrfs_item
));
3600 /* shift the data */
3601 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3602 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3603 data_end
, old_data
- data_end
);
3604 data_end
= old_data
;
3607 /* setup the item for the new data */
3608 for (i
= 0; i
< nr
; i
++) {
3609 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3610 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3611 item
= btrfs_item_nr(leaf
, slot
+ i
);
3612 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3613 data_end
-= data_size
[i
];
3614 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3617 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3621 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3622 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3624 btrfs_unlock_up_safe(path
, 1);
3625 btrfs_mark_buffer_dirty(leaf
);
3627 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3628 btrfs_print_leaf(root
, leaf
);
3635 * Given a key and some data, insert items into the tree.
3636 * This does all the path init required, making room in the tree if needed.
3638 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
3639 struct btrfs_root
*root
,
3640 struct btrfs_path
*path
,
3641 struct btrfs_key
*cpu_key
, u32
*data_size
,
3650 for (i
= 0; i
< nr
; i
++)
3651 total_data
+= data_size
[i
];
3653 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
3654 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3660 slot
= path
->slots
[0];
3663 ret
= setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
3664 total_data
, total_size
, nr
);
3671 * Given a key and some data, insert an item into the tree.
3672 * This does all the path init required, making room in the tree if needed.
3674 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
3675 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
3679 struct btrfs_path
*path
;
3680 struct extent_buffer
*leaf
;
3683 path
= btrfs_alloc_path();
3686 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
3688 leaf
= path
->nodes
[0];
3689 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3690 write_extent_buffer(leaf
, data
, ptr
, data_size
);
3691 btrfs_mark_buffer_dirty(leaf
);
3693 btrfs_free_path(path
);
3698 * delete the pointer from a given node.
3700 * the tree should have been previously balanced so the deletion does not
3703 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3704 struct btrfs_path
*path
, int level
, int slot
)
3706 struct extent_buffer
*parent
= path
->nodes
[level
];
3711 nritems
= btrfs_header_nritems(parent
);
3712 if (slot
!= nritems
- 1) {
3713 memmove_extent_buffer(parent
,
3714 btrfs_node_key_ptr_offset(slot
),
3715 btrfs_node_key_ptr_offset(slot
+ 1),
3716 sizeof(struct btrfs_key_ptr
) *
3717 (nritems
- slot
- 1));
3720 btrfs_set_header_nritems(parent
, nritems
);
3721 if (nritems
== 0 && parent
== root
->node
) {
3722 BUG_ON(btrfs_header_level(root
->node
) != 1);
3723 /* just turn the root into a leaf and break */
3724 btrfs_set_header_level(root
->node
, 0);
3725 } else if (slot
== 0) {
3726 struct btrfs_disk_key disk_key
;
3728 btrfs_node_key(parent
, &disk_key
, 0);
3729 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
3733 btrfs_mark_buffer_dirty(parent
);
3738 * a helper function to delete the leaf pointed to by path->slots[1] and
3741 * This deletes the pointer in path->nodes[1] and frees the leaf
3742 * block extent. zero is returned if it all worked out, < 0 otherwise.
3744 * The path must have already been setup for deleting the leaf, including
3745 * all the proper balancing. path->nodes[1] must be locked.
3747 static noinline
int btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
3748 struct btrfs_root
*root
,
3749 struct btrfs_path
*path
,
3750 struct extent_buffer
*leaf
)
3754 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
3755 ret
= del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
3760 * btrfs_free_extent is expensive, we want to make sure we
3761 * aren't holding any locks when we call it
3763 btrfs_unlock_up_safe(path
, 0);
3765 root_sub_used(root
, leaf
->len
);
3767 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
3771 * delete the item at the leaf level in path. If that empties
3772 * the leaf, remove it from the tree
3774 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3775 struct btrfs_path
*path
, int slot
, int nr
)
3777 struct extent_buffer
*leaf
;
3778 struct btrfs_item
*item
;
3786 leaf
= path
->nodes
[0];
3787 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
3789 for (i
= 0; i
< nr
; i
++)
3790 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
3792 nritems
= btrfs_header_nritems(leaf
);
3794 if (slot
+ nr
!= nritems
) {
3795 int data_end
= leaf_data_end(root
, leaf
);
3797 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3799 btrfs_leaf_data(leaf
) + data_end
,
3800 last_off
- data_end
);
3802 for (i
= slot
+ nr
; i
< nritems
; i
++) {
3805 item
= btrfs_item_nr(leaf
, i
);
3806 ioff
= btrfs_item_offset(leaf
, item
);
3807 btrfs_set_item_offset(leaf
, item
, ioff
+ dsize
);
3810 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
3811 btrfs_item_nr_offset(slot
+ nr
),
3812 sizeof(struct btrfs_item
) *
3813 (nritems
- slot
- nr
));
3815 btrfs_set_header_nritems(leaf
, nritems
- nr
);
3818 /* delete the leaf if we've emptied it */
3820 if (leaf
== root
->node
) {
3821 btrfs_set_header_level(leaf
, 0);
3823 btrfs_set_path_blocking(path
);
3824 clean_tree_block(trans
, root
, leaf
);
3825 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
3829 int used
= leaf_space_used(leaf
, 0, nritems
);
3831 struct btrfs_disk_key disk_key
;
3833 btrfs_item_key(leaf
, &disk_key
, 0);
3834 wret
= fixup_low_keys(trans
, root
, path
,
3840 /* delete the leaf if it is mostly empty */
3841 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
3842 /* push_leaf_left fixes the path.
3843 * make sure the path still points to our leaf
3844 * for possible call to del_ptr below
3846 slot
= path
->slots
[1];
3847 extent_buffer_get(leaf
);
3849 btrfs_set_path_blocking(path
);
3850 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
3852 if (wret
< 0 && wret
!= -ENOSPC
)
3855 if (path
->nodes
[0] == leaf
&&
3856 btrfs_header_nritems(leaf
)) {
3857 wret
= push_leaf_right(trans
, root
, path
, 1,
3859 if (wret
< 0 && wret
!= -ENOSPC
)
3863 if (btrfs_header_nritems(leaf
) == 0) {
3864 path
->slots
[1] = slot
;
3865 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
3867 free_extent_buffer(leaf
);
3869 /* if we're still in the path, make sure
3870 * we're dirty. Otherwise, one of the
3871 * push_leaf functions must have already
3872 * dirtied this buffer
3874 if (path
->nodes
[0] == leaf
)
3875 btrfs_mark_buffer_dirty(leaf
);
3876 free_extent_buffer(leaf
);
3879 btrfs_mark_buffer_dirty(leaf
);
3886 * search the tree again to find a leaf with lesser keys
3887 * returns 0 if it found something or 1 if there are no lesser leaves.
3888 * returns < 0 on io errors.
3890 * This may release the path, and so you may lose any locks held at the
3893 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
3895 struct btrfs_key key
;
3896 struct btrfs_disk_key found_key
;
3899 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
3903 else if (key
.type
> 0)
3905 else if (key
.objectid
> 0)
3910 btrfs_release_path(path
);
3911 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3914 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
3915 ret
= comp_keys(&found_key
, &key
);
3922 * A helper function to walk down the tree starting at min_key, and looking
3923 * for nodes or leaves that are either in cache or have a minimum
3924 * transaction id. This is used by the btree defrag code, and tree logging
3926 * This does not cow, but it does stuff the starting key it finds back
3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928 * key and get a writable path.
3930 * This does lock as it descends, and path->keep_locks should be set
3931 * to 1 by the caller.
3933 * This honors path->lowest_level to prevent descent past a given level
3936 * min_trans indicates the oldest transaction that you are interested
3937 * in walking through. Any nodes or leaves older than min_trans are
3938 * skipped over (without reading them).
3940 * returns zero if something useful was found, < 0 on error and 1 if there
3941 * was nothing in the tree that matched the search criteria.
3943 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
3944 struct btrfs_key
*max_key
,
3945 struct btrfs_path
*path
, int cache_only
,
3948 struct extent_buffer
*cur
;
3949 struct btrfs_key found_key
;
3956 WARN_ON(!path
->keep_locks
);
3958 cur
= btrfs_read_lock_root_node(root
);
3959 level
= btrfs_header_level(cur
);
3960 WARN_ON(path
->nodes
[level
]);
3961 path
->nodes
[level
] = cur
;
3962 path
->locks
[level
] = BTRFS_READ_LOCK
;
3964 if (btrfs_header_generation(cur
) < min_trans
) {
3969 nritems
= btrfs_header_nritems(cur
);
3970 level
= btrfs_header_level(cur
);
3971 sret
= bin_search(cur
, min_key
, level
, &slot
);
3973 /* at the lowest level, we're done, setup the path and exit */
3974 if (level
== path
->lowest_level
) {
3975 if (slot
>= nritems
)
3978 path
->slots
[level
] = slot
;
3979 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
3982 if (sret
&& slot
> 0)
3985 * check this node pointer against the cache_only and
3986 * min_trans parameters. If it isn't in cache or is too
3987 * old, skip to the next one.
3989 while (slot
< nritems
) {
3992 struct extent_buffer
*tmp
;
3993 struct btrfs_disk_key disk_key
;
3995 blockptr
= btrfs_node_blockptr(cur
, slot
);
3996 gen
= btrfs_node_ptr_generation(cur
, slot
);
3997 if (gen
< min_trans
) {
4005 btrfs_node_key(cur
, &disk_key
, slot
);
4006 if (comp_keys(&disk_key
, max_key
) >= 0) {
4012 tmp
= btrfs_find_tree_block(root
, blockptr
,
4013 btrfs_level_size(root
, level
- 1));
4015 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
4016 free_extent_buffer(tmp
);
4020 free_extent_buffer(tmp
);
4025 * we didn't find a candidate key in this node, walk forward
4026 * and find another one
4028 if (slot
>= nritems
) {
4029 path
->slots
[level
] = slot
;
4030 btrfs_set_path_blocking(path
);
4031 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4032 cache_only
, min_trans
);
4034 btrfs_release_path(path
);
4040 /* save our key for returning back */
4041 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4042 path
->slots
[level
] = slot
;
4043 if (level
== path
->lowest_level
) {
4045 unlock_up(path
, level
, 1);
4048 btrfs_set_path_blocking(path
);
4049 cur
= read_node_slot(root
, cur
, slot
);
4052 btrfs_tree_read_lock(cur
);
4054 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
4055 path
->nodes
[level
- 1] = cur
;
4056 unlock_up(path
, level
, 1);
4057 btrfs_clear_path_blocking(path
, NULL
, 0);
4061 memcpy(min_key
, &found_key
, sizeof(found_key
));
4062 btrfs_set_path_blocking(path
);
4067 * this is similar to btrfs_next_leaf, but does not try to preserve
4068 * and fixup the path. It looks for and returns the next key in the
4069 * tree based on the current path and the cache_only and min_trans
4072 * 0 is returned if another key is found, < 0 if there are any errors
4073 * and 1 is returned if there are no higher keys in the tree
4075 * path->keep_locks should be set to 1 on the search made before
4076 * calling this function.
4078 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
4079 struct btrfs_key
*key
, int level
,
4080 int cache_only
, u64 min_trans
)
4083 struct extent_buffer
*c
;
4085 WARN_ON(!path
->keep_locks
);
4086 while (level
< BTRFS_MAX_LEVEL
) {
4087 if (!path
->nodes
[level
])
4090 slot
= path
->slots
[level
] + 1;
4091 c
= path
->nodes
[level
];
4093 if (slot
>= btrfs_header_nritems(c
)) {
4096 struct btrfs_key cur_key
;
4097 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
4098 !path
->nodes
[level
+ 1])
4101 if (path
->locks
[level
+ 1]) {
4106 slot
= btrfs_header_nritems(c
) - 1;
4108 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
4110 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
4112 orig_lowest
= path
->lowest_level
;
4113 btrfs_release_path(path
);
4114 path
->lowest_level
= level
;
4115 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
4117 path
->lowest_level
= orig_lowest
;
4121 c
= path
->nodes
[level
];
4122 slot
= path
->slots
[level
];
4129 btrfs_item_key_to_cpu(c
, key
, slot
);
4131 u64 blockptr
= btrfs_node_blockptr(c
, slot
);
4132 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
4135 struct extent_buffer
*cur
;
4136 cur
= btrfs_find_tree_block(root
, blockptr
,
4137 btrfs_level_size(root
, level
- 1));
4138 if (!cur
|| !btrfs_buffer_uptodate(cur
, gen
)) {
4141 free_extent_buffer(cur
);
4144 free_extent_buffer(cur
);
4146 if (gen
< min_trans
) {
4150 btrfs_node_key_to_cpu(c
, key
, slot
);
4158 * search the tree again to find a leaf with greater keys
4159 * returns 0 if it found something or 1 if there are no greater leaves.
4160 * returns < 0 on io errors.
4162 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4166 struct extent_buffer
*c
;
4167 struct extent_buffer
*next
;
4168 struct btrfs_key key
;
4171 int old_spinning
= path
->leave_spinning
;
4172 int next_rw_lock
= 0;
4174 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4178 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
4183 btrfs_release_path(path
);
4185 path
->keep_locks
= 1;
4186 path
->leave_spinning
= 1;
4188 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4189 path
->keep_locks
= 0;
4194 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4196 * by releasing the path above we dropped all our locks. A balance
4197 * could have added more items next to the key that used to be
4198 * at the very end of the block. So, check again here and
4199 * advance the path if there are now more items available.
4201 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
4208 while (level
< BTRFS_MAX_LEVEL
) {
4209 if (!path
->nodes
[level
]) {
4214 slot
= path
->slots
[level
] + 1;
4215 c
= path
->nodes
[level
];
4216 if (slot
>= btrfs_header_nritems(c
)) {
4218 if (level
== BTRFS_MAX_LEVEL
) {
4226 btrfs_tree_unlock_rw(next
, next_rw_lock
);
4227 free_extent_buffer(next
);
4231 next_rw_lock
= path
->locks
[level
];
4232 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4238 btrfs_release_path(path
);
4242 if (!path
->skip_locking
) {
4243 ret
= btrfs_try_tree_read_lock(next
);
4245 btrfs_set_path_blocking(path
);
4246 btrfs_tree_read_lock(next
);
4247 btrfs_clear_path_blocking(path
, next
,
4250 next_rw_lock
= BTRFS_READ_LOCK
;
4254 path
->slots
[level
] = slot
;
4257 c
= path
->nodes
[level
];
4258 if (path
->locks
[level
])
4259 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
4261 free_extent_buffer(c
);
4262 path
->nodes
[level
] = next
;
4263 path
->slots
[level
] = 0;
4264 if (!path
->skip_locking
)
4265 path
->locks
[level
] = next_rw_lock
;
4269 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4275 btrfs_release_path(path
);
4279 if (!path
->skip_locking
) {
4280 ret
= btrfs_try_tree_read_lock(next
);
4282 btrfs_set_path_blocking(path
);
4283 btrfs_tree_read_lock(next
);
4284 btrfs_clear_path_blocking(path
, next
,
4287 next_rw_lock
= BTRFS_READ_LOCK
;
4292 unlock_up(path
, 0, 1);
4293 path
->leave_spinning
= old_spinning
;
4295 btrfs_set_path_blocking(path
);
4301 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4302 * searching until it gets past min_objectid or finds an item of 'type'
4304 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4306 int btrfs_previous_item(struct btrfs_root
*root
,
4307 struct btrfs_path
*path
, u64 min_objectid
,
4310 struct btrfs_key found_key
;
4311 struct extent_buffer
*leaf
;
4316 if (path
->slots
[0] == 0) {
4317 btrfs_set_path_blocking(path
);
4318 ret
= btrfs_prev_leaf(root
, path
);
4324 leaf
= path
->nodes
[0];
4325 nritems
= btrfs_header_nritems(leaf
);
4328 if (path
->slots
[0] == nritems
)
4331 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4332 if (found_key
.objectid
< min_objectid
)
4334 if (found_key
.type
== type
)
4336 if (found_key
.objectid
== min_objectid
&&
4337 found_key
.type
< type
)