via-velocity : update receive packets statistics.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / via-velocity.c
blobae66696d4ac8dcf6a013d60dcfda43280928dc77
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
17 * This source has not been verified for use in safety critical systems.
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
22 * Original code:
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
37 * Author: Chuang Liang-Shing, AJ Jiang
39 * Date: Jan 24, 2003
41 * MODULE_LICENSE("GPL");
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/bitops.h>
49 #include <linux/init.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/inetdevice.h>
69 #include <linux/reboot.h>
70 #include <linux/ethtool.h>
71 #include <linux/mii.h>
72 #include <linux/in.h>
73 #include <linux/if_arp.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
81 #include "via-velocity.h"
84 static int velocity_nics;
85 static int msglevel = MSG_LEVEL_INFO;
87 /**
88 * mac_get_cam_mask - Read a CAM mask
89 * @regs: register block for this velocity
90 * @mask: buffer to store mask
92 * Fetch the mask bits of the selected CAM and store them into the
93 * provided mask buffer.
95 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
97 int i;
99 /* Select CAM mask */
100 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
102 writeb(0, &regs->CAMADDR);
104 /* read mask */
105 for (i = 0; i < 8; i++)
106 *mask++ = readb(&(regs->MARCAM[i]));
108 /* disable CAMEN */
109 writeb(0, &regs->CAMADDR);
111 /* Select mar */
112 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
117 * mac_set_cam_mask - Set a CAM mask
118 * @regs: register block for this velocity
119 * @mask: CAM mask to load
121 * Store a new mask into a CAM
123 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
125 int i;
126 /* Select CAM mask */
127 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
129 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
131 for (i = 0; i < 8; i++)
132 writeb(*mask++, &(regs->MARCAM[i]));
134 /* disable CAMEN */
135 writeb(0, &regs->CAMADDR);
137 /* Select mar */
138 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
141 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
143 int i;
144 /* Select CAM mask */
145 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
147 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
149 for (i = 0; i < 8; i++)
150 writeb(*mask++, &(regs->MARCAM[i]));
152 /* disable CAMEN */
153 writeb(0, &regs->CAMADDR);
155 /* Select mar */
156 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
160 * mac_set_cam - set CAM data
161 * @regs: register block of this velocity
162 * @idx: Cam index
163 * @addr: 2 or 6 bytes of CAM data
165 * Load an address or vlan tag into a CAM
167 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
169 int i;
171 /* Select CAM mask */
172 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174 idx &= (64 - 1);
176 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
178 for (i = 0; i < 6; i++)
179 writeb(*addr++, &(regs->MARCAM[i]));
181 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
183 udelay(10);
185 writeb(0, &regs->CAMADDR);
187 /* Select mar */
188 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
191 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
192 const u8 *addr)
195 /* Select CAM mask */
196 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
198 idx &= (64 - 1);
200 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
201 writew(*((u16 *) addr), &regs->MARCAM[0]);
203 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
205 udelay(10);
207 writeb(0, &regs->CAMADDR);
209 /* Select mar */
210 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
215 * mac_wol_reset - reset WOL after exiting low power
216 * @regs: register block of this velocity
218 * Called after we drop out of wake on lan mode in order to
219 * reset the Wake on lan features. This function doesn't restore
220 * the rest of the logic from the result of sleep/wakeup
222 static void mac_wol_reset(struct mac_regs __iomem *regs)
225 /* Turn off SWPTAG right after leaving power mode */
226 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
227 /* clear sticky bits */
228 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
230 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
231 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
232 /* disable force PME-enable */
233 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
234 /* disable power-event config bit */
235 writew(0xFFFF, &regs->WOLCRClr);
236 /* clear power status */
237 writew(0xFFFF, &regs->WOLSRClr);
240 static const struct ethtool_ops velocity_ethtool_ops;
243 Define module options
246 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
247 MODULE_LICENSE("GPL");
248 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
250 #define VELOCITY_PARAM(N, D) \
251 static int N[MAX_UNITS] = OPTION_DEFAULT;\
252 module_param_array(N, int, NULL, 0); \
253 MODULE_PARM_DESC(N, D);
255 #define RX_DESC_MIN 64
256 #define RX_DESC_MAX 255
257 #define RX_DESC_DEF 64
258 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
260 #define TX_DESC_MIN 16
261 #define TX_DESC_MAX 256
262 #define TX_DESC_DEF 64
263 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
265 #define RX_THRESH_MIN 0
266 #define RX_THRESH_MAX 3
267 #define RX_THRESH_DEF 0
268 /* rx_thresh[] is used for controlling the receive fifo threshold.
269 0: indicate the rxfifo threshold is 128 bytes.
270 1: indicate the rxfifo threshold is 512 bytes.
271 2: indicate the rxfifo threshold is 1024 bytes.
272 3: indicate the rxfifo threshold is store & forward.
274 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
276 #define DMA_LENGTH_MIN 0
277 #define DMA_LENGTH_MAX 7
278 #define DMA_LENGTH_DEF 6
280 /* DMA_length[] is used for controlling the DMA length
281 0: 8 DWORDs
282 1: 16 DWORDs
283 2: 32 DWORDs
284 3: 64 DWORDs
285 4: 128 DWORDs
286 5: 256 DWORDs
287 6: SF(flush till emply)
288 7: SF(flush till emply)
290 VELOCITY_PARAM(DMA_length, "DMA length");
292 #define IP_ALIG_DEF 0
293 /* IP_byte_align[] is used for IP header DWORD byte aligned
294 0: indicate the IP header won't be DWORD byte aligned.(Default) .
295 1: indicate the IP header will be DWORD byte aligned.
296 In some environment, the IP header should be DWORD byte aligned,
297 or the packet will be droped when we receive it. (eg: IPVS)
299 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
301 #define FLOW_CNTL_DEF 1
302 #define FLOW_CNTL_MIN 1
303 #define FLOW_CNTL_MAX 5
305 /* flow_control[] is used for setting the flow control ability of NIC.
306 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
307 2: enable TX flow control.
308 3: enable RX flow control.
309 4: enable RX/TX flow control.
310 5: disable
312 VELOCITY_PARAM(flow_control, "Enable flow control ability");
314 #define MED_LNK_DEF 0
315 #define MED_LNK_MIN 0
316 #define MED_LNK_MAX 5
317 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
318 0: indicate autonegotiation for both speed and duplex mode
319 1: indicate 100Mbps half duplex mode
320 2: indicate 100Mbps full duplex mode
321 3: indicate 10Mbps half duplex mode
322 4: indicate 10Mbps full duplex mode
323 5: indicate 1000Mbps full duplex mode
325 Note:
326 if EEPROM have been set to the force mode, this option is ignored
327 by driver.
329 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
331 #define VAL_PKT_LEN_DEF 0
332 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
333 0: Receive frame with invalid layer 2 length (Default)
334 1: Drop frame with invalid layer 2 length
336 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
338 #define WOL_OPT_DEF 0
339 #define WOL_OPT_MIN 0
340 #define WOL_OPT_MAX 7
341 /* wol_opts[] is used for controlling wake on lan behavior.
342 0: Wake up if recevied a magic packet. (Default)
343 1: Wake up if link status is on/off.
344 2: Wake up if recevied an arp packet.
345 4: Wake up if recevied any unicast packet.
346 Those value can be sumed up to support more than one option.
348 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
350 static int rx_copybreak = 200;
351 module_param(rx_copybreak, int, 0644);
352 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
355 * Internal board variants. At the moment we have only one
357 static struct velocity_info_tbl chip_info_table[] = {
358 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
363 * Describe the PCI device identifiers that we support in this
364 * device driver. Used for hotplug autoloading.
366 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
367 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
371 MODULE_DEVICE_TABLE(pci, velocity_id_table);
374 * get_chip_name - identifier to name
375 * @id: chip identifier
377 * Given a chip identifier return a suitable description. Returns
378 * a pointer a static string valid while the driver is loaded.
380 static const char __devinit *get_chip_name(enum chip_type chip_id)
382 int i;
383 for (i = 0; chip_info_table[i].name != NULL; i++)
384 if (chip_info_table[i].chip_id == chip_id)
385 break;
386 return chip_info_table[i].name;
390 * velocity_remove1 - device unplug
391 * @pdev: PCI device being removed
393 * Device unload callback. Called on an unplug or on module
394 * unload for each active device that is present. Disconnects
395 * the device from the network layer and frees all the resources
397 static void __devexit velocity_remove1(struct pci_dev *pdev)
399 struct net_device *dev = pci_get_drvdata(pdev);
400 struct velocity_info *vptr = netdev_priv(dev);
402 unregister_netdev(dev);
403 iounmap(vptr->mac_regs);
404 pci_release_regions(pdev);
405 pci_disable_device(pdev);
406 pci_set_drvdata(pdev, NULL);
407 free_netdev(dev);
409 velocity_nics--;
413 * velocity_set_int_opt - parser for integer options
414 * @opt: pointer to option value
415 * @val: value the user requested (or -1 for default)
416 * @min: lowest value allowed
417 * @max: highest value allowed
418 * @def: default value
419 * @name: property name
420 * @dev: device name
422 * Set an integer property in the module options. This function does
423 * all the verification and checking as well as reporting so that
424 * we don't duplicate code for each option.
426 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
428 if (val == -1)
429 *opt = def;
430 else if (val < min || val > max) {
431 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
432 devname, name, min, max);
433 *opt = def;
434 } else {
435 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
436 devname, name, val);
437 *opt = val;
442 * velocity_set_bool_opt - parser for boolean options
443 * @opt: pointer to option value
444 * @val: value the user requested (or -1 for default)
445 * @def: default value (yes/no)
446 * @flag: numeric value to set for true.
447 * @name: property name
448 * @dev: device name
450 * Set a boolean property in the module options. This function does
451 * all the verification and checking as well as reporting so that
452 * we don't duplicate code for each option.
454 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
456 (*opt) &= (~flag);
457 if (val == -1)
458 *opt |= (def ? flag : 0);
459 else if (val < 0 || val > 1) {
460 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
461 devname, name);
462 *opt |= (def ? flag : 0);
463 } else {
464 printk(KERN_INFO "%s: set parameter %s to %s\n",
465 devname, name, val ? "TRUE" : "FALSE");
466 *opt |= (val ? flag : 0);
471 * velocity_get_options - set options on device
472 * @opts: option structure for the device
473 * @index: index of option to use in module options array
474 * @devname: device name
476 * Turn the module and command options into a single structure
477 * for the current device
479 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
482 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
483 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
484 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
485 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
487 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
488 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
489 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
490 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
491 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
492 opts->numrx = (opts->numrx & ~3);
496 * velocity_init_cam_filter - initialise CAM
497 * @vptr: velocity to program
499 * Initialize the content addressable memory used for filters. Load
500 * appropriately according to the presence of VLAN
502 static void velocity_init_cam_filter(struct velocity_info *vptr)
504 struct mac_regs __iomem *regs = vptr->mac_regs;
505 unsigned int vid, i = 0;
507 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
508 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
509 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
511 /* Disable all CAMs */
512 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
513 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
514 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
515 mac_set_cam_mask(regs, vptr->mCAMmask);
517 /* Enable VCAMs */
519 if (test_bit(0, vptr->active_vlans))
520 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
522 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
523 mac_set_vlan_cam(regs, i, (u8 *) &vid);
524 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
525 if (++i >= VCAM_SIZE)
526 break;
528 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
531 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
533 struct velocity_info *vptr = netdev_priv(dev);
535 spin_lock_irq(&vptr->lock);
536 set_bit(vid, vptr->active_vlans);
537 velocity_init_cam_filter(vptr);
538 spin_unlock_irq(&vptr->lock);
541 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
543 struct velocity_info *vptr = netdev_priv(dev);
545 spin_lock_irq(&vptr->lock);
546 clear_bit(vid, vptr->active_vlans);
547 velocity_init_cam_filter(vptr);
548 spin_unlock_irq(&vptr->lock);
551 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
553 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
557 * velocity_rx_reset - handle a receive reset
558 * @vptr: velocity we are resetting
560 * Reset the ownership and status for the receive ring side.
561 * Hand all the receive queue to the NIC.
563 static void velocity_rx_reset(struct velocity_info *vptr)
566 struct mac_regs __iomem *regs = vptr->mac_regs;
567 int i;
569 velocity_init_rx_ring_indexes(vptr);
572 * Init state, all RD entries belong to the NIC
574 for (i = 0; i < vptr->options.numrx; ++i)
575 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
577 writew(vptr->options.numrx, &regs->RBRDU);
578 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
579 writew(0, &regs->RDIdx);
580 writew(vptr->options.numrx - 1, &regs->RDCSize);
584 * velocity_get_opt_media_mode - get media selection
585 * @vptr: velocity adapter
587 * Get the media mode stored in EEPROM or module options and load
588 * mii_status accordingly. The requested link state information
589 * is also returned.
591 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
593 u32 status = 0;
595 switch (vptr->options.spd_dpx) {
596 case SPD_DPX_AUTO:
597 status = VELOCITY_AUTONEG_ENABLE;
598 break;
599 case SPD_DPX_100_FULL:
600 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
601 break;
602 case SPD_DPX_10_FULL:
603 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
604 break;
605 case SPD_DPX_100_HALF:
606 status = VELOCITY_SPEED_100;
607 break;
608 case SPD_DPX_10_HALF:
609 status = VELOCITY_SPEED_10;
610 break;
611 case SPD_DPX_1000_FULL:
612 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
613 break;
615 vptr->mii_status = status;
616 return status;
620 * safe_disable_mii_autopoll - autopoll off
621 * @regs: velocity registers
623 * Turn off the autopoll and wait for it to disable on the chip
625 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
627 u16 ww;
629 /* turn off MAUTO */
630 writeb(0, &regs->MIICR);
631 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
632 udelay(1);
633 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
634 break;
639 * enable_mii_autopoll - turn on autopolling
640 * @regs: velocity registers
642 * Enable the MII link status autopoll feature on the Velocity
643 * hardware. Wait for it to enable.
645 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
647 int ii;
649 writeb(0, &(regs->MIICR));
650 writeb(MIIADR_SWMPL, &regs->MIIADR);
652 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
653 udelay(1);
654 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
655 break;
658 writeb(MIICR_MAUTO, &regs->MIICR);
660 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661 udelay(1);
662 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663 break;
669 * velocity_mii_read - read MII data
670 * @regs: velocity registers
671 * @index: MII register index
672 * @data: buffer for received data
674 * Perform a single read of an MII 16bit register. Returns zero
675 * on success or -ETIMEDOUT if the PHY did not respond.
677 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
679 u16 ww;
682 * Disable MIICR_MAUTO, so that mii addr can be set normally
684 safe_disable_mii_autopoll(regs);
686 writeb(index, &regs->MIIADR);
688 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
690 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
691 if (!(readb(&regs->MIICR) & MIICR_RCMD))
692 break;
695 *data = readw(&regs->MIIDATA);
697 enable_mii_autopoll(regs);
698 if (ww == W_MAX_TIMEOUT)
699 return -ETIMEDOUT;
700 return 0;
705 * mii_check_media_mode - check media state
706 * @regs: velocity registers
708 * Check the current MII status and determine the link status
709 * accordingly
711 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
713 u32 status = 0;
714 u16 ANAR;
716 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
717 status |= VELOCITY_LINK_FAIL;
719 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
720 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
721 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
722 status |= (VELOCITY_SPEED_1000);
723 else {
724 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
725 if (ANAR & ADVERTISE_100FULL)
726 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
727 else if (ANAR & ADVERTISE_100HALF)
728 status |= VELOCITY_SPEED_100;
729 else if (ANAR & ADVERTISE_10FULL)
730 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
731 else
732 status |= (VELOCITY_SPEED_10);
735 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
736 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
737 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
738 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
739 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
740 status |= VELOCITY_AUTONEG_ENABLE;
744 return status;
748 * velocity_mii_write - write MII data
749 * @regs: velocity registers
750 * @index: MII register index
751 * @data: 16bit data for the MII register
753 * Perform a single write to an MII 16bit register. Returns zero
754 * on success or -ETIMEDOUT if the PHY did not respond.
756 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
758 u16 ww;
761 * Disable MIICR_MAUTO, so that mii addr can be set normally
763 safe_disable_mii_autopoll(regs);
765 /* MII reg offset */
766 writeb(mii_addr, &regs->MIIADR);
767 /* set MII data */
768 writew(data, &regs->MIIDATA);
770 /* turn on MIICR_WCMD */
771 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
773 /* W_MAX_TIMEOUT is the timeout period */
774 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
775 udelay(5);
776 if (!(readb(&regs->MIICR) & MIICR_WCMD))
777 break;
779 enable_mii_autopoll(regs);
781 if (ww == W_MAX_TIMEOUT)
782 return -ETIMEDOUT;
783 return 0;
787 * set_mii_flow_control - flow control setup
788 * @vptr: velocity interface
790 * Set up the flow control on this interface according to
791 * the supplied user/eeprom options.
793 static void set_mii_flow_control(struct velocity_info *vptr)
795 /*Enable or Disable PAUSE in ANAR */
796 switch (vptr->options.flow_cntl) {
797 case FLOW_CNTL_TX:
798 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
799 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
800 break;
802 case FLOW_CNTL_RX:
803 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
804 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
805 break;
807 case FLOW_CNTL_TX_RX:
808 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
809 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
810 break;
812 case FLOW_CNTL_DISABLE:
813 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
814 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
815 break;
816 default:
817 break;
822 * mii_set_auto_on - autonegotiate on
823 * @vptr: velocity
825 * Enable autonegotation on this interface
827 static void mii_set_auto_on(struct velocity_info *vptr)
829 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
830 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
831 else
832 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
835 static u32 check_connection_type(struct mac_regs __iomem *regs)
837 u32 status = 0;
838 u8 PHYSR0;
839 u16 ANAR;
840 PHYSR0 = readb(&regs->PHYSR0);
843 if (!(PHYSR0 & PHYSR0_LINKGD))
844 status|=VELOCITY_LINK_FAIL;
847 if (PHYSR0 & PHYSR0_FDPX)
848 status |= VELOCITY_DUPLEX_FULL;
850 if (PHYSR0 & PHYSR0_SPDG)
851 status |= VELOCITY_SPEED_1000;
852 else if (PHYSR0 & PHYSR0_SPD10)
853 status |= VELOCITY_SPEED_10;
854 else
855 status |= VELOCITY_SPEED_100;
857 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
858 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
859 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
860 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
861 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
862 status |= VELOCITY_AUTONEG_ENABLE;
866 return status;
872 * velocity_set_media_mode - set media mode
873 * @mii_status: old MII link state
875 * Check the media link state and configure the flow control
876 * PHY and also velocity hardware setup accordingly. In particular
877 * we need to set up CD polling and frame bursting.
879 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
881 u32 curr_status;
882 struct mac_regs __iomem *regs = vptr->mac_regs;
884 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
885 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
887 /* Set mii link status */
888 set_mii_flow_control(vptr);
891 Check if new status is consistent with current status
892 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
893 (mii_status==curr_status)) {
894 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
895 vptr->mii_status=check_connection_type(vptr->mac_regs);
896 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
897 return 0;
901 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
902 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
905 * If connection type is AUTO
907 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
908 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
909 /* clear force MAC mode bit */
910 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
911 /* set duplex mode of MAC according to duplex mode of MII */
912 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
913 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
914 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
916 /* enable AUTO-NEGO mode */
917 mii_set_auto_on(vptr);
918 } else {
919 u16 CTRL1000;
920 u16 ANAR;
921 u8 CHIPGCR;
924 * 1. if it's 3119, disable frame bursting in halfduplex mode
925 * and enable it in fullduplex mode
926 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
927 * 3. only enable CD heart beat counter in 10HD mode
930 /* set force MAC mode bit */
931 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
933 CHIPGCR = readb(&regs->CHIPGCR);
935 if (mii_status & VELOCITY_SPEED_1000)
936 CHIPGCR |= CHIPGCR_FCGMII;
937 else
938 CHIPGCR &= ~CHIPGCR_FCGMII;
940 if (mii_status & VELOCITY_DUPLEX_FULL) {
941 CHIPGCR |= CHIPGCR_FCFDX;
942 writeb(CHIPGCR, &regs->CHIPGCR);
943 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
944 if (vptr->rev_id < REV_ID_VT3216_A0)
945 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
946 } else {
947 CHIPGCR &= ~CHIPGCR_FCFDX;
948 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
949 writeb(CHIPGCR, &regs->CHIPGCR);
950 if (vptr->rev_id < REV_ID_VT3216_A0)
951 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
954 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
955 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
956 if ((mii_status & VELOCITY_SPEED_1000) &&
957 (mii_status & VELOCITY_DUPLEX_FULL)) {
958 CTRL1000 |= ADVERTISE_1000FULL;
960 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
962 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
963 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
964 else
965 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
967 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
968 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
969 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
970 if (mii_status & VELOCITY_SPEED_100) {
971 if (mii_status & VELOCITY_DUPLEX_FULL)
972 ANAR |= ADVERTISE_100FULL;
973 else
974 ANAR |= ADVERTISE_100HALF;
975 } else if (mii_status & VELOCITY_SPEED_10) {
976 if (mii_status & VELOCITY_DUPLEX_FULL)
977 ANAR |= ADVERTISE_10FULL;
978 else
979 ANAR |= ADVERTISE_10HALF;
981 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
982 /* enable AUTO-NEGO mode */
983 mii_set_auto_on(vptr);
984 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
986 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
987 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
988 return VELOCITY_LINK_CHANGE;
992 * velocity_print_link_status - link status reporting
993 * @vptr: velocity to report on
995 * Turn the link status of the velocity card into a kernel log
996 * description of the new link state, detailing speed and duplex
997 * status
999 static void velocity_print_link_status(struct velocity_info *vptr)
1002 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1003 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1004 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1005 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1007 if (vptr->mii_status & VELOCITY_SPEED_1000)
1008 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1009 else if (vptr->mii_status & VELOCITY_SPEED_100)
1010 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1011 else
1012 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1014 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1015 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1016 else
1017 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1018 } else {
1019 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1020 switch (vptr->options.spd_dpx) {
1021 case SPD_DPX_1000_FULL:
1022 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1023 break;
1024 case SPD_DPX_100_HALF:
1025 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1026 break;
1027 case SPD_DPX_100_FULL:
1028 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1029 break;
1030 case SPD_DPX_10_HALF:
1031 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1032 break;
1033 case SPD_DPX_10_FULL:
1034 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1035 break;
1036 default:
1037 break;
1043 * enable_flow_control_ability - flow control
1044 * @vptr: veloity to configure
1046 * Set up flow control according to the flow control options
1047 * determined by the eeprom/configuration.
1049 static void enable_flow_control_ability(struct velocity_info *vptr)
1052 struct mac_regs __iomem *regs = vptr->mac_regs;
1054 switch (vptr->options.flow_cntl) {
1056 case FLOW_CNTL_DEFAULT:
1057 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1058 writel(CR0_FDXRFCEN, &regs->CR0Set);
1059 else
1060 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1062 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1063 writel(CR0_FDXTFCEN, &regs->CR0Set);
1064 else
1065 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1066 break;
1068 case FLOW_CNTL_TX:
1069 writel(CR0_FDXTFCEN, &regs->CR0Set);
1070 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1071 break;
1073 case FLOW_CNTL_RX:
1074 writel(CR0_FDXRFCEN, &regs->CR0Set);
1075 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1076 break;
1078 case FLOW_CNTL_TX_RX:
1079 writel(CR0_FDXTFCEN, &regs->CR0Set);
1080 writel(CR0_FDXRFCEN, &regs->CR0Set);
1081 break;
1083 case FLOW_CNTL_DISABLE:
1084 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1085 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1086 break;
1088 default:
1089 break;
1095 * velocity_soft_reset - soft reset
1096 * @vptr: velocity to reset
1098 * Kick off a soft reset of the velocity adapter and then poll
1099 * until the reset sequence has completed before returning.
1101 static int velocity_soft_reset(struct velocity_info *vptr)
1103 struct mac_regs __iomem *regs = vptr->mac_regs;
1104 int i = 0;
1106 writel(CR0_SFRST, &regs->CR0Set);
1108 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1109 udelay(5);
1110 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1111 break;
1114 if (i == W_MAX_TIMEOUT) {
1115 writel(CR0_FORSRST, &regs->CR0Set);
1116 /* FIXME: PCI POSTING */
1117 /* delay 2ms */
1118 mdelay(2);
1120 return 0;
1124 * velocity_set_multi - filter list change callback
1125 * @dev: network device
1127 * Called by the network layer when the filter lists need to change
1128 * for a velocity adapter. Reload the CAMs with the new address
1129 * filter ruleset.
1131 static void velocity_set_multi(struct net_device *dev)
1133 struct velocity_info *vptr = netdev_priv(dev);
1134 struct mac_regs __iomem *regs = vptr->mac_regs;
1135 u8 rx_mode;
1136 int i;
1137 struct netdev_hw_addr *ha;
1139 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1140 writel(0xffffffff, &regs->MARCAM[0]);
1141 writel(0xffffffff, &regs->MARCAM[4]);
1142 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1143 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1144 (dev->flags & IFF_ALLMULTI)) {
1145 writel(0xffffffff, &regs->MARCAM[0]);
1146 writel(0xffffffff, &regs->MARCAM[4]);
1147 rx_mode = (RCR_AM | RCR_AB);
1148 } else {
1149 int offset = MCAM_SIZE - vptr->multicast_limit;
1150 mac_get_cam_mask(regs, vptr->mCAMmask);
1152 i = 0;
1153 netdev_for_each_mc_addr(ha, dev) {
1154 mac_set_cam(regs, i + offset, ha->addr);
1155 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1156 i++;
1159 mac_set_cam_mask(regs, vptr->mCAMmask);
1160 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1162 if (dev->mtu > 1500)
1163 rx_mode |= RCR_AL;
1165 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1170 * MII access , media link mode setting functions
1174 * mii_init - set up MII
1175 * @vptr: velocity adapter
1176 * @mii_status: links tatus
1178 * Set up the PHY for the current link state.
1180 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1182 u16 BMCR;
1184 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1185 case PHYID_CICADA_CS8201:
1187 * Reset to hardware default
1189 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1191 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1192 * off it in NWay-forced half mode for NWay-forced v.s.
1193 * legacy-forced issue.
1195 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1196 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1197 else
1198 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1200 * Turn on Link/Activity LED enable bit for CIS8201
1202 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1203 break;
1204 case PHYID_VT3216_32BIT:
1205 case PHYID_VT3216_64BIT:
1207 * Reset to hardware default
1209 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1211 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1212 * off it in NWay-forced half mode for NWay-forced v.s.
1213 * legacy-forced issue
1215 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1216 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1217 else
1218 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1219 break;
1221 case PHYID_MARVELL_1000:
1222 case PHYID_MARVELL_1000S:
1224 * Assert CRS on Transmit
1226 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1228 * Reset to hardware default
1230 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1231 break;
1232 default:
1235 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1236 if (BMCR & BMCR_ISOLATE) {
1237 BMCR &= ~BMCR_ISOLATE;
1238 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1243 * setup_queue_timers - Setup interrupt timers
1245 * Setup interrupt frequency during suppression (timeout if the frame
1246 * count isn't filled).
1248 static void setup_queue_timers(struct velocity_info *vptr)
1250 /* Only for newer revisions */
1251 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1252 u8 txqueue_timer = 0;
1253 u8 rxqueue_timer = 0;
1255 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1256 VELOCITY_SPEED_100)) {
1257 txqueue_timer = vptr->options.txqueue_timer;
1258 rxqueue_timer = vptr->options.rxqueue_timer;
1261 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1262 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1266 * setup_adaptive_interrupts - Setup interrupt suppression
1268 * @vptr velocity adapter
1270 * The velocity is able to suppress interrupt during high interrupt load.
1271 * This function turns on that feature.
1273 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1275 struct mac_regs __iomem *regs = vptr->mac_regs;
1276 u16 tx_intsup = vptr->options.tx_intsup;
1277 u16 rx_intsup = vptr->options.rx_intsup;
1279 /* Setup default interrupt mask (will be changed below) */
1280 vptr->int_mask = INT_MASK_DEF;
1282 /* Set Tx Interrupt Suppression Threshold */
1283 writeb(CAMCR_PS0, &regs->CAMCR);
1284 if (tx_intsup != 0) {
1285 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1286 ISR_PTX2I | ISR_PTX3I);
1287 writew(tx_intsup, &regs->ISRCTL);
1288 } else
1289 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1291 /* Set Rx Interrupt Suppression Threshold */
1292 writeb(CAMCR_PS1, &regs->CAMCR);
1293 if (rx_intsup != 0) {
1294 vptr->int_mask &= ~ISR_PRXI;
1295 writew(rx_intsup, &regs->ISRCTL);
1296 } else
1297 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1299 /* Select page to interrupt hold timer */
1300 writeb(0, &regs->CAMCR);
1304 * velocity_init_registers - initialise MAC registers
1305 * @vptr: velocity to init
1306 * @type: type of initialisation (hot or cold)
1308 * Initialise the MAC on a reset or on first set up on the
1309 * hardware.
1311 static void velocity_init_registers(struct velocity_info *vptr,
1312 enum velocity_init_type type)
1314 struct mac_regs __iomem *regs = vptr->mac_regs;
1315 int i, mii_status;
1317 mac_wol_reset(regs);
1319 switch (type) {
1320 case VELOCITY_INIT_RESET:
1321 case VELOCITY_INIT_WOL:
1323 netif_stop_queue(vptr->dev);
1326 * Reset RX to prevent RX pointer not on the 4X location
1328 velocity_rx_reset(vptr);
1329 mac_rx_queue_run(regs);
1330 mac_rx_queue_wake(regs);
1332 mii_status = velocity_get_opt_media_mode(vptr);
1333 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1334 velocity_print_link_status(vptr);
1335 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1336 netif_wake_queue(vptr->dev);
1339 enable_flow_control_ability(vptr);
1341 mac_clear_isr(regs);
1342 writel(CR0_STOP, &regs->CR0Clr);
1343 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1344 &regs->CR0Set);
1346 break;
1348 case VELOCITY_INIT_COLD:
1349 default:
1351 * Do reset
1353 velocity_soft_reset(vptr);
1354 mdelay(5);
1356 mac_eeprom_reload(regs);
1357 for (i = 0; i < 6; i++)
1358 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1361 * clear Pre_ACPI bit.
1363 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1364 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1365 mac_set_dma_length(regs, vptr->options.DMA_length);
1367 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1369 * Back off algorithm use original IEEE standard
1371 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1374 * Init CAM filter
1376 velocity_init_cam_filter(vptr);
1379 * Set packet filter: Receive directed and broadcast address
1381 velocity_set_multi(vptr->dev);
1384 * Enable MII auto-polling
1386 enable_mii_autopoll(regs);
1388 setup_adaptive_interrupts(vptr);
1390 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1391 writew(vptr->options.numrx - 1, &regs->RDCSize);
1392 mac_rx_queue_run(regs);
1393 mac_rx_queue_wake(regs);
1395 writew(vptr->options.numtx - 1, &regs->TDCSize);
1397 for (i = 0; i < vptr->tx.numq; i++) {
1398 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1399 mac_tx_queue_run(regs, i);
1402 init_flow_control_register(vptr);
1404 writel(CR0_STOP, &regs->CR0Clr);
1405 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1407 mii_status = velocity_get_opt_media_mode(vptr);
1408 netif_stop_queue(vptr->dev);
1410 mii_init(vptr, mii_status);
1412 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1413 velocity_print_link_status(vptr);
1414 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1415 netif_wake_queue(vptr->dev);
1418 enable_flow_control_ability(vptr);
1419 mac_hw_mibs_init(regs);
1420 mac_write_int_mask(vptr->int_mask, regs);
1421 mac_clear_isr(regs);
1426 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1428 struct mac_regs __iomem *regs = vptr->mac_regs;
1429 int avail, dirty, unusable;
1432 * RD number must be equal to 4X per hardware spec
1433 * (programming guide rev 1.20, p.13)
1435 if (vptr->rx.filled < 4)
1436 return;
1438 wmb();
1440 unusable = vptr->rx.filled & 0x0003;
1441 dirty = vptr->rx.dirty - unusable;
1442 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1443 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1444 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1447 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1448 vptr->rx.filled = unusable;
1452 * velocity_init_dma_rings - set up DMA rings
1453 * @vptr: Velocity to set up
1455 * Allocate PCI mapped DMA rings for the receive and transmit layer
1456 * to use.
1458 static int velocity_init_dma_rings(struct velocity_info *vptr)
1460 struct velocity_opt *opt = &vptr->options;
1461 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1462 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1463 struct pci_dev *pdev = vptr->pdev;
1464 dma_addr_t pool_dma;
1465 void *pool;
1466 unsigned int i;
1469 * Allocate all RD/TD rings a single pool.
1471 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1472 * alignment
1474 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1475 rx_ring_size, &pool_dma);
1476 if (!pool) {
1477 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1478 vptr->dev->name);
1479 return -ENOMEM;
1482 vptr->rx.ring = pool;
1483 vptr->rx.pool_dma = pool_dma;
1485 pool += rx_ring_size;
1486 pool_dma += rx_ring_size;
1488 for (i = 0; i < vptr->tx.numq; i++) {
1489 vptr->tx.rings[i] = pool;
1490 vptr->tx.pool_dma[i] = pool_dma;
1491 pool += tx_ring_size;
1492 pool_dma += tx_ring_size;
1495 return 0;
1498 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1500 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1504 * velocity_alloc_rx_buf - allocate aligned receive buffer
1505 * @vptr: velocity
1506 * @idx: ring index
1508 * Allocate a new full sized buffer for the reception of a frame and
1509 * map it into PCI space for the hardware to use. The hardware
1510 * requires *64* byte alignment of the buffer which makes life
1511 * less fun than would be ideal.
1513 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1515 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1516 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1518 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1519 if (rd_info->skb == NULL)
1520 return -ENOMEM;
1523 * Do the gymnastics to get the buffer head for data at
1524 * 64byte alignment.
1526 skb_reserve(rd_info->skb,
1527 64 - ((unsigned long) rd_info->skb->data & 63));
1528 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1529 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1532 * Fill in the descriptor to match
1535 *((u32 *) & (rd->rdesc0)) = 0;
1536 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1537 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1538 rd->pa_high = 0;
1539 return 0;
1543 static int velocity_rx_refill(struct velocity_info *vptr)
1545 int dirty = vptr->rx.dirty, done = 0;
1547 do {
1548 struct rx_desc *rd = vptr->rx.ring + dirty;
1550 /* Fine for an all zero Rx desc at init time as well */
1551 if (rd->rdesc0.len & OWNED_BY_NIC)
1552 break;
1554 if (!vptr->rx.info[dirty].skb) {
1555 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1556 break;
1558 done++;
1559 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1560 } while (dirty != vptr->rx.curr);
1562 if (done) {
1563 vptr->rx.dirty = dirty;
1564 vptr->rx.filled += done;
1567 return done;
1571 * velocity_free_rd_ring - free receive ring
1572 * @vptr: velocity to clean up
1574 * Free the receive buffers for each ring slot and any
1575 * attached socket buffers that need to go away.
1577 static void velocity_free_rd_ring(struct velocity_info *vptr)
1579 int i;
1581 if (vptr->rx.info == NULL)
1582 return;
1584 for (i = 0; i < vptr->options.numrx; i++) {
1585 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1586 struct rx_desc *rd = vptr->rx.ring + i;
1588 memset(rd, 0, sizeof(*rd));
1590 if (!rd_info->skb)
1591 continue;
1592 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1593 PCI_DMA_FROMDEVICE);
1594 rd_info->skb_dma = 0;
1596 dev_kfree_skb(rd_info->skb);
1597 rd_info->skb = NULL;
1600 kfree(vptr->rx.info);
1601 vptr->rx.info = NULL;
1607 * velocity_init_rd_ring - set up receive ring
1608 * @vptr: velocity to configure
1610 * Allocate and set up the receive buffers for each ring slot and
1611 * assign them to the network adapter.
1613 static int velocity_init_rd_ring(struct velocity_info *vptr)
1615 int ret = -ENOMEM;
1617 vptr->rx.info = kcalloc(vptr->options.numrx,
1618 sizeof(struct velocity_rd_info), GFP_KERNEL);
1619 if (!vptr->rx.info)
1620 goto out;
1622 velocity_init_rx_ring_indexes(vptr);
1624 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1625 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1626 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1627 velocity_free_rd_ring(vptr);
1628 goto out;
1631 ret = 0;
1632 out:
1633 return ret;
1637 * velocity_init_td_ring - set up transmit ring
1638 * @vptr: velocity
1640 * Set up the transmit ring and chain the ring pointers together.
1641 * Returns zero on success or a negative posix errno code for
1642 * failure.
1644 static int velocity_init_td_ring(struct velocity_info *vptr)
1646 int j;
1648 /* Init the TD ring entries */
1649 for (j = 0; j < vptr->tx.numq; j++) {
1651 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1652 sizeof(struct velocity_td_info),
1653 GFP_KERNEL);
1654 if (!vptr->tx.infos[j]) {
1655 while (--j >= 0)
1656 kfree(vptr->tx.infos[j]);
1657 return -ENOMEM;
1660 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1662 return 0;
1666 * velocity_free_dma_rings - free PCI ring pointers
1667 * @vptr: Velocity to free from
1669 * Clean up the PCI ring buffers allocated to this velocity.
1671 static void velocity_free_dma_rings(struct velocity_info *vptr)
1673 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1674 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1676 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1680 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1682 int ret;
1684 velocity_set_rxbufsize(vptr, mtu);
1686 ret = velocity_init_dma_rings(vptr);
1687 if (ret < 0)
1688 goto out;
1690 ret = velocity_init_rd_ring(vptr);
1691 if (ret < 0)
1692 goto err_free_dma_rings_0;
1694 ret = velocity_init_td_ring(vptr);
1695 if (ret < 0)
1696 goto err_free_rd_ring_1;
1697 out:
1698 return ret;
1700 err_free_rd_ring_1:
1701 velocity_free_rd_ring(vptr);
1702 err_free_dma_rings_0:
1703 velocity_free_dma_rings(vptr);
1704 goto out;
1708 * velocity_free_tx_buf - free transmit buffer
1709 * @vptr: velocity
1710 * @tdinfo: buffer
1712 * Release an transmit buffer. If the buffer was preallocated then
1713 * recycle it, if not then unmap the buffer.
1715 static void velocity_free_tx_buf(struct velocity_info *vptr,
1716 struct velocity_td_info *tdinfo, struct tx_desc *td)
1718 struct sk_buff *skb = tdinfo->skb;
1721 * Don't unmap the pre-allocated tx_bufs
1723 if (tdinfo->skb_dma) {
1724 int i;
1726 for (i = 0; i < tdinfo->nskb_dma; i++) {
1727 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1729 /* For scatter-gather */
1730 if (skb_shinfo(skb)->nr_frags > 0)
1731 pktlen = max_t(size_t, pktlen,
1732 td->td_buf[i].size & ~TD_QUEUE);
1734 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1735 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1738 dev_kfree_skb_irq(skb);
1739 tdinfo->skb = NULL;
1744 * FIXME: could we merge this with velocity_free_tx_buf ?
1746 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1747 int q, int n)
1749 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1750 int i;
1752 if (td_info == NULL)
1753 return;
1755 if (td_info->skb) {
1756 for (i = 0; i < td_info->nskb_dma; i++) {
1757 if (td_info->skb_dma[i]) {
1758 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1759 td_info->skb->len, PCI_DMA_TODEVICE);
1760 td_info->skb_dma[i] = 0;
1763 dev_kfree_skb(td_info->skb);
1764 td_info->skb = NULL;
1769 * velocity_free_td_ring - free td ring
1770 * @vptr: velocity
1772 * Free up the transmit ring for this particular velocity adapter.
1773 * We free the ring contents but not the ring itself.
1775 static void velocity_free_td_ring(struct velocity_info *vptr)
1777 int i, j;
1779 for (j = 0; j < vptr->tx.numq; j++) {
1780 if (vptr->tx.infos[j] == NULL)
1781 continue;
1782 for (i = 0; i < vptr->options.numtx; i++)
1783 velocity_free_td_ring_entry(vptr, j, i);
1785 kfree(vptr->tx.infos[j]);
1786 vptr->tx.infos[j] = NULL;
1791 static void velocity_free_rings(struct velocity_info *vptr)
1793 velocity_free_td_ring(vptr);
1794 velocity_free_rd_ring(vptr);
1795 velocity_free_dma_rings(vptr);
1799 * velocity_error - handle error from controller
1800 * @vptr: velocity
1801 * @status: card status
1803 * Process an error report from the hardware and attempt to recover
1804 * the card itself. At the moment we cannot recover from some
1805 * theoretically impossible errors but this could be fixed using
1806 * the pci_device_failed logic to bounce the hardware
1809 static void velocity_error(struct velocity_info *vptr, int status)
1812 if (status & ISR_TXSTLI) {
1813 struct mac_regs __iomem *regs = vptr->mac_regs;
1815 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1816 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1817 writew(TRDCSR_RUN, &regs->TDCSRClr);
1818 netif_stop_queue(vptr->dev);
1820 /* FIXME: port over the pci_device_failed code and use it
1821 here */
1824 if (status & ISR_SRCI) {
1825 struct mac_regs __iomem *regs = vptr->mac_regs;
1826 int linked;
1828 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1829 vptr->mii_status = check_connection_type(regs);
1832 * If it is a 3119, disable frame bursting in
1833 * halfduplex mode and enable it in fullduplex
1834 * mode
1836 if (vptr->rev_id < REV_ID_VT3216_A0) {
1837 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1838 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1839 else
1840 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1843 * Only enable CD heart beat counter in 10HD mode
1845 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1846 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1847 else
1848 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1850 setup_queue_timers(vptr);
1853 * Get link status from PHYSR0
1855 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1857 if (linked) {
1858 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1859 netif_carrier_on(vptr->dev);
1860 } else {
1861 vptr->mii_status |= VELOCITY_LINK_FAIL;
1862 netif_carrier_off(vptr->dev);
1865 velocity_print_link_status(vptr);
1866 enable_flow_control_ability(vptr);
1869 * Re-enable auto-polling because SRCI will disable
1870 * auto-polling
1873 enable_mii_autopoll(regs);
1875 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1876 netif_stop_queue(vptr->dev);
1877 else
1878 netif_wake_queue(vptr->dev);
1881 if (status & ISR_MIBFI)
1882 velocity_update_hw_mibs(vptr);
1883 if (status & ISR_LSTEI)
1884 mac_rx_queue_wake(vptr->mac_regs);
1888 * tx_srv - transmit interrupt service
1889 * @vptr; Velocity
1891 * Scan the queues looking for transmitted packets that
1892 * we can complete and clean up. Update any statistics as
1893 * necessary/
1895 static int velocity_tx_srv(struct velocity_info *vptr)
1897 struct tx_desc *td;
1898 int qnum;
1899 int full = 0;
1900 int idx;
1901 int works = 0;
1902 struct velocity_td_info *tdinfo;
1903 struct net_device_stats *stats = &vptr->dev->stats;
1905 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1906 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1907 idx = (idx + 1) % vptr->options.numtx) {
1910 * Get Tx Descriptor
1912 td = &(vptr->tx.rings[qnum][idx]);
1913 tdinfo = &(vptr->tx.infos[qnum][idx]);
1915 if (td->tdesc0.len & OWNED_BY_NIC)
1916 break;
1918 if ((works++ > 15))
1919 break;
1921 if (td->tdesc0.TSR & TSR0_TERR) {
1922 stats->tx_errors++;
1923 stats->tx_dropped++;
1924 if (td->tdesc0.TSR & TSR0_CDH)
1925 stats->tx_heartbeat_errors++;
1926 if (td->tdesc0.TSR & TSR0_CRS)
1927 stats->tx_carrier_errors++;
1928 if (td->tdesc0.TSR & TSR0_ABT)
1929 stats->tx_aborted_errors++;
1930 if (td->tdesc0.TSR & TSR0_OWC)
1931 stats->tx_window_errors++;
1932 } else {
1933 stats->tx_packets++;
1934 stats->tx_bytes += tdinfo->skb->len;
1936 velocity_free_tx_buf(vptr, tdinfo, td);
1937 vptr->tx.used[qnum]--;
1939 vptr->tx.tail[qnum] = idx;
1941 if (AVAIL_TD(vptr, qnum) < 1)
1942 full = 1;
1945 * Look to see if we should kick the transmit network
1946 * layer for more work.
1948 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1949 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1950 netif_wake_queue(vptr->dev);
1952 return works;
1956 * velocity_rx_csum - checksum process
1957 * @rd: receive packet descriptor
1958 * @skb: network layer packet buffer
1960 * Process the status bits for the received packet and determine
1961 * if the checksum was computed and verified by the hardware
1963 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1965 skb_checksum_none_assert(skb);
1967 if (rd->rdesc1.CSM & CSM_IPKT) {
1968 if (rd->rdesc1.CSM & CSM_IPOK) {
1969 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1970 (rd->rdesc1.CSM & CSM_UDPKT)) {
1971 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1972 return;
1974 skb->ip_summed = CHECKSUM_UNNECESSARY;
1980 * velocity_rx_copy - in place Rx copy for small packets
1981 * @rx_skb: network layer packet buffer candidate
1982 * @pkt_size: received data size
1983 * @rd: receive packet descriptor
1984 * @dev: network device
1986 * Replace the current skb that is scheduled for Rx processing by a
1987 * shorter, immediately allocated skb, if the received packet is small
1988 * enough. This function returns a negative value if the received
1989 * packet is too big or if memory is exhausted.
1991 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1992 struct velocity_info *vptr)
1994 int ret = -1;
1995 if (pkt_size < rx_copybreak) {
1996 struct sk_buff *new_skb;
1998 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1999 if (new_skb) {
2000 new_skb->ip_summed = rx_skb[0]->ip_summed;
2001 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2002 *rx_skb = new_skb;
2003 ret = 0;
2007 return ret;
2011 * velocity_iph_realign - IP header alignment
2012 * @vptr: velocity we are handling
2013 * @skb: network layer packet buffer
2014 * @pkt_size: received data size
2016 * Align IP header on a 2 bytes boundary. This behavior can be
2017 * configured by the user.
2019 static inline void velocity_iph_realign(struct velocity_info *vptr,
2020 struct sk_buff *skb, int pkt_size)
2022 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2023 memmove(skb->data + 2, skb->data, pkt_size);
2024 skb_reserve(skb, 2);
2030 * velocity_receive_frame - received packet processor
2031 * @vptr: velocity we are handling
2032 * @idx: ring index
2034 * A packet has arrived. We process the packet and if appropriate
2035 * pass the frame up the network stack
2037 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2039 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2040 struct net_device_stats *stats = &vptr->dev->stats;
2041 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2042 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2043 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2044 struct sk_buff *skb;
2046 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2047 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2048 stats->rx_length_errors++;
2049 return -EINVAL;
2052 if (rd->rdesc0.RSR & RSR_MAR)
2053 stats->multicast++;
2055 skb = rd_info->skb;
2057 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2058 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2061 * Drop frame not meeting IEEE 802.3
2064 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2065 if (rd->rdesc0.RSR & RSR_RL) {
2066 stats->rx_length_errors++;
2067 return -EINVAL;
2071 pci_action = pci_dma_sync_single_for_device;
2073 velocity_rx_csum(rd, skb);
2075 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2076 velocity_iph_realign(vptr, skb, pkt_len);
2077 pci_action = pci_unmap_single;
2078 rd_info->skb = NULL;
2081 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2082 PCI_DMA_FROMDEVICE);
2084 skb_put(skb, pkt_len - 4);
2085 skb->protocol = eth_type_trans(skb, vptr->dev);
2087 if (rd->rdesc0.RSR & RSR_DETAG) {
2088 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2090 __vlan_hwaccel_put_tag(skb, vid);
2092 netif_rx(skb);
2094 stats->rx_bytes += pkt_len;
2095 stats->rx_packets++;
2097 return 0;
2102 * velocity_rx_srv - service RX interrupt
2103 * @vptr: velocity
2105 * Walk the receive ring of the velocity adapter and remove
2106 * any received packets from the receive queue. Hand the ring
2107 * slots back to the adapter for reuse.
2109 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2111 struct net_device_stats *stats = &vptr->dev->stats;
2112 int rd_curr = vptr->rx.curr;
2113 int works = 0;
2115 while (works < budget_left) {
2116 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2118 if (!vptr->rx.info[rd_curr].skb)
2119 break;
2121 if (rd->rdesc0.len & OWNED_BY_NIC)
2122 break;
2124 rmb();
2127 * Don't drop CE or RL error frame although RXOK is off
2129 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2130 if (velocity_receive_frame(vptr, rd_curr) < 0)
2131 stats->rx_dropped++;
2132 } else {
2133 if (rd->rdesc0.RSR & RSR_CRC)
2134 stats->rx_crc_errors++;
2135 if (rd->rdesc0.RSR & RSR_FAE)
2136 stats->rx_frame_errors++;
2138 stats->rx_dropped++;
2141 rd->size |= RX_INTEN;
2143 rd_curr++;
2144 if (rd_curr >= vptr->options.numrx)
2145 rd_curr = 0;
2146 works++;
2149 vptr->rx.curr = rd_curr;
2151 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2152 velocity_give_many_rx_descs(vptr);
2154 VAR_USED(stats);
2155 return works;
2158 static int velocity_poll(struct napi_struct *napi, int budget)
2160 struct velocity_info *vptr = container_of(napi,
2161 struct velocity_info, napi);
2162 unsigned int rx_done;
2163 unsigned long flags;
2165 spin_lock_irqsave(&vptr->lock, flags);
2167 * Do rx and tx twice for performance (taken from the VIA
2168 * out-of-tree driver).
2170 rx_done = velocity_rx_srv(vptr, budget / 2);
2171 velocity_tx_srv(vptr);
2172 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2173 velocity_tx_srv(vptr);
2175 /* If budget not fully consumed, exit the polling mode */
2176 if (rx_done < budget) {
2177 napi_complete(napi);
2178 mac_enable_int(vptr->mac_regs);
2180 spin_unlock_irqrestore(&vptr->lock, flags);
2182 return rx_done;
2186 * velocity_intr - interrupt callback
2187 * @irq: interrupt number
2188 * @dev_instance: interrupting device
2190 * Called whenever an interrupt is generated by the velocity
2191 * adapter IRQ line. We may not be the source of the interrupt
2192 * and need to identify initially if we are, and if not exit as
2193 * efficiently as possible.
2195 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2197 struct net_device *dev = dev_instance;
2198 struct velocity_info *vptr = netdev_priv(dev);
2199 u32 isr_status;
2201 spin_lock(&vptr->lock);
2202 isr_status = mac_read_isr(vptr->mac_regs);
2204 /* Not us ? */
2205 if (isr_status == 0) {
2206 spin_unlock(&vptr->lock);
2207 return IRQ_NONE;
2210 /* Ack the interrupt */
2211 mac_write_isr(vptr->mac_regs, isr_status);
2213 if (likely(napi_schedule_prep(&vptr->napi))) {
2214 mac_disable_int(vptr->mac_regs);
2215 __napi_schedule(&vptr->napi);
2218 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2219 velocity_error(vptr, isr_status);
2221 spin_unlock(&vptr->lock);
2223 return IRQ_HANDLED;
2227 * velocity_open - interface activation callback
2228 * @dev: network layer device to open
2230 * Called when the network layer brings the interface up. Returns
2231 * a negative posix error code on failure, or zero on success.
2233 * All the ring allocation and set up is done on open for this
2234 * adapter to minimise memory usage when inactive
2236 static int velocity_open(struct net_device *dev)
2238 struct velocity_info *vptr = netdev_priv(dev);
2239 int ret;
2241 ret = velocity_init_rings(vptr, dev->mtu);
2242 if (ret < 0)
2243 goto out;
2245 /* Ensure chip is running */
2246 pci_set_power_state(vptr->pdev, PCI_D0);
2248 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2250 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2251 dev->name, dev);
2252 if (ret < 0) {
2253 /* Power down the chip */
2254 pci_set_power_state(vptr->pdev, PCI_D3hot);
2255 velocity_free_rings(vptr);
2256 goto out;
2259 velocity_give_many_rx_descs(vptr);
2261 mac_enable_int(vptr->mac_regs);
2262 netif_start_queue(dev);
2263 napi_enable(&vptr->napi);
2264 vptr->flags |= VELOCITY_FLAGS_OPENED;
2265 out:
2266 return ret;
2270 * velocity_shutdown - shut down the chip
2271 * @vptr: velocity to deactivate
2273 * Shuts down the internal operations of the velocity and
2274 * disables interrupts, autopolling, transmit and receive
2276 static void velocity_shutdown(struct velocity_info *vptr)
2278 struct mac_regs __iomem *regs = vptr->mac_regs;
2279 mac_disable_int(regs);
2280 writel(CR0_STOP, &regs->CR0Set);
2281 writew(0xFFFF, &regs->TDCSRClr);
2282 writeb(0xFF, &regs->RDCSRClr);
2283 safe_disable_mii_autopoll(regs);
2284 mac_clear_isr(regs);
2288 * velocity_change_mtu - MTU change callback
2289 * @dev: network device
2290 * @new_mtu: desired MTU
2292 * Handle requests from the networking layer for MTU change on
2293 * this interface. It gets called on a change by the network layer.
2294 * Return zero for success or negative posix error code.
2296 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2298 struct velocity_info *vptr = netdev_priv(dev);
2299 int ret = 0;
2301 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2302 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2303 vptr->dev->name);
2304 ret = -EINVAL;
2305 goto out_0;
2308 if (!netif_running(dev)) {
2309 dev->mtu = new_mtu;
2310 goto out_0;
2313 if (dev->mtu != new_mtu) {
2314 struct velocity_info *tmp_vptr;
2315 unsigned long flags;
2316 struct rx_info rx;
2317 struct tx_info tx;
2319 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2320 if (!tmp_vptr) {
2321 ret = -ENOMEM;
2322 goto out_0;
2325 tmp_vptr->dev = dev;
2326 tmp_vptr->pdev = vptr->pdev;
2327 tmp_vptr->options = vptr->options;
2328 tmp_vptr->tx.numq = vptr->tx.numq;
2330 ret = velocity_init_rings(tmp_vptr, new_mtu);
2331 if (ret < 0)
2332 goto out_free_tmp_vptr_1;
2334 spin_lock_irqsave(&vptr->lock, flags);
2336 netif_stop_queue(dev);
2337 velocity_shutdown(vptr);
2339 rx = vptr->rx;
2340 tx = vptr->tx;
2342 vptr->rx = tmp_vptr->rx;
2343 vptr->tx = tmp_vptr->tx;
2345 tmp_vptr->rx = rx;
2346 tmp_vptr->tx = tx;
2348 dev->mtu = new_mtu;
2350 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2352 velocity_give_many_rx_descs(vptr);
2354 mac_enable_int(vptr->mac_regs);
2355 netif_start_queue(dev);
2357 spin_unlock_irqrestore(&vptr->lock, flags);
2359 velocity_free_rings(tmp_vptr);
2361 out_free_tmp_vptr_1:
2362 kfree(tmp_vptr);
2364 out_0:
2365 return ret;
2369 * velocity_mii_ioctl - MII ioctl handler
2370 * @dev: network device
2371 * @ifr: the ifreq block for the ioctl
2372 * @cmd: the command
2374 * Process MII requests made via ioctl from the network layer. These
2375 * are used by tools like kudzu to interrogate the link state of the
2376 * hardware
2378 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2380 struct velocity_info *vptr = netdev_priv(dev);
2381 struct mac_regs __iomem *regs = vptr->mac_regs;
2382 unsigned long flags;
2383 struct mii_ioctl_data *miidata = if_mii(ifr);
2384 int err;
2386 switch (cmd) {
2387 case SIOCGMIIPHY:
2388 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2389 break;
2390 case SIOCGMIIREG:
2391 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2392 return -ETIMEDOUT;
2393 break;
2394 case SIOCSMIIREG:
2395 spin_lock_irqsave(&vptr->lock, flags);
2396 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2397 spin_unlock_irqrestore(&vptr->lock, flags);
2398 check_connection_type(vptr->mac_regs);
2399 if (err)
2400 return err;
2401 break;
2402 default:
2403 return -EOPNOTSUPP;
2405 return 0;
2410 * velocity_ioctl - ioctl entry point
2411 * @dev: network device
2412 * @rq: interface request ioctl
2413 * @cmd: command code
2415 * Called when the user issues an ioctl request to the network
2416 * device in question. The velocity interface supports MII.
2418 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2420 struct velocity_info *vptr = netdev_priv(dev);
2421 int ret;
2423 /* If we are asked for information and the device is power
2424 saving then we need to bring the device back up to talk to it */
2426 if (!netif_running(dev))
2427 pci_set_power_state(vptr->pdev, PCI_D0);
2429 switch (cmd) {
2430 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2431 case SIOCGMIIREG: /* Read MII PHY register. */
2432 case SIOCSMIIREG: /* Write to MII PHY register. */
2433 ret = velocity_mii_ioctl(dev, rq, cmd);
2434 break;
2436 default:
2437 ret = -EOPNOTSUPP;
2439 if (!netif_running(dev))
2440 pci_set_power_state(vptr->pdev, PCI_D3hot);
2443 return ret;
2447 * velocity_get_status - statistics callback
2448 * @dev: network device
2450 * Callback from the network layer to allow driver statistics
2451 * to be resynchronized with hardware collected state. In the
2452 * case of the velocity we need to pull the MIB counters from
2453 * the hardware into the counters before letting the network
2454 * layer display them.
2456 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2458 struct velocity_info *vptr = netdev_priv(dev);
2460 /* If the hardware is down, don't touch MII */
2461 if (!netif_running(dev))
2462 return &dev->stats;
2464 spin_lock_irq(&vptr->lock);
2465 velocity_update_hw_mibs(vptr);
2466 spin_unlock_irq(&vptr->lock);
2468 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2469 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2470 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2472 // unsigned long rx_dropped; /* no space in linux buffers */
2473 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2474 /* detailed rx_errors: */
2475 // unsigned long rx_length_errors;
2476 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2477 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2478 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2479 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2480 // unsigned long rx_missed_errors; /* receiver missed packet */
2482 /* detailed tx_errors */
2483 // unsigned long tx_fifo_errors;
2485 return &dev->stats;
2489 * velocity_close - close adapter callback
2490 * @dev: network device
2492 * Callback from the network layer when the velocity is being
2493 * deactivated by the network layer
2495 static int velocity_close(struct net_device *dev)
2497 struct velocity_info *vptr = netdev_priv(dev);
2499 napi_disable(&vptr->napi);
2500 netif_stop_queue(dev);
2501 velocity_shutdown(vptr);
2503 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2504 velocity_get_ip(vptr);
2505 if (dev->irq != 0)
2506 free_irq(dev->irq, dev);
2508 /* Power down the chip */
2509 pci_set_power_state(vptr->pdev, PCI_D3hot);
2511 velocity_free_rings(vptr);
2513 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2514 return 0;
2518 * velocity_xmit - transmit packet callback
2519 * @skb: buffer to transmit
2520 * @dev: network device
2522 * Called by the networ layer to request a packet is queued to
2523 * the velocity. Returns zero on success.
2525 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2526 struct net_device *dev)
2528 struct velocity_info *vptr = netdev_priv(dev);
2529 int qnum = 0;
2530 struct tx_desc *td_ptr;
2531 struct velocity_td_info *tdinfo;
2532 unsigned long flags;
2533 int pktlen;
2534 int index, prev;
2535 int i = 0;
2537 if (skb_padto(skb, ETH_ZLEN))
2538 goto out;
2540 /* The hardware can handle at most 7 memory segments, so merge
2541 * the skb if there are more */
2542 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2543 kfree_skb(skb);
2544 return NETDEV_TX_OK;
2547 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2548 max_t(unsigned int, skb->len, ETH_ZLEN) :
2549 skb_headlen(skb);
2551 spin_lock_irqsave(&vptr->lock, flags);
2553 index = vptr->tx.curr[qnum];
2554 td_ptr = &(vptr->tx.rings[qnum][index]);
2555 tdinfo = &(vptr->tx.infos[qnum][index]);
2557 td_ptr->tdesc1.TCR = TCR0_TIC;
2558 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2561 * Map the linear network buffer into PCI space and
2562 * add it to the transmit ring.
2564 tdinfo->skb = skb;
2565 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2566 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2567 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2568 td_ptr->td_buf[0].pa_high = 0;
2569 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2571 /* Handle fragments */
2572 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2573 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 tdinfo->skb_dma[i + 1] = pci_map_page(vptr->pdev, frag->page,
2576 frag->page_offset, frag->size,
2577 PCI_DMA_TODEVICE);
2579 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2580 td_ptr->td_buf[i + 1].pa_high = 0;
2581 td_ptr->td_buf[i + 1].size = cpu_to_le16(frag->size);
2583 tdinfo->nskb_dma = i + 1;
2585 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2587 if (vlan_tx_tag_present(skb)) {
2588 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2589 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2593 * Handle hardware checksum
2595 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2596 const struct iphdr *ip = ip_hdr(skb);
2597 if (ip->protocol == IPPROTO_TCP)
2598 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2599 else if (ip->protocol == IPPROTO_UDP)
2600 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2601 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2604 prev = index - 1;
2605 if (prev < 0)
2606 prev = vptr->options.numtx - 1;
2607 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2608 vptr->tx.used[qnum]++;
2609 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2611 if (AVAIL_TD(vptr, qnum) < 1)
2612 netif_stop_queue(dev);
2614 td_ptr = &(vptr->tx.rings[qnum][prev]);
2615 td_ptr->td_buf[0].size |= TD_QUEUE;
2616 mac_tx_queue_wake(vptr->mac_regs, qnum);
2618 spin_unlock_irqrestore(&vptr->lock, flags);
2619 out:
2620 return NETDEV_TX_OK;
2624 static const struct net_device_ops velocity_netdev_ops = {
2625 .ndo_open = velocity_open,
2626 .ndo_stop = velocity_close,
2627 .ndo_start_xmit = velocity_xmit,
2628 .ndo_get_stats = velocity_get_stats,
2629 .ndo_validate_addr = eth_validate_addr,
2630 .ndo_set_mac_address = eth_mac_addr,
2631 .ndo_set_multicast_list = velocity_set_multi,
2632 .ndo_change_mtu = velocity_change_mtu,
2633 .ndo_do_ioctl = velocity_ioctl,
2634 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2635 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2639 * velocity_init_info - init private data
2640 * @pdev: PCI device
2641 * @vptr: Velocity info
2642 * @info: Board type
2644 * Set up the initial velocity_info struct for the device that has been
2645 * discovered.
2647 static void __devinit velocity_init_info(struct pci_dev *pdev,
2648 struct velocity_info *vptr,
2649 const struct velocity_info_tbl *info)
2651 memset(vptr, 0, sizeof(struct velocity_info));
2653 vptr->pdev = pdev;
2654 vptr->chip_id = info->chip_id;
2655 vptr->tx.numq = info->txqueue;
2656 vptr->multicast_limit = MCAM_SIZE;
2657 spin_lock_init(&vptr->lock);
2661 * velocity_get_pci_info - retrieve PCI info for device
2662 * @vptr: velocity device
2663 * @pdev: PCI device it matches
2665 * Retrieve the PCI configuration space data that interests us from
2666 * the kernel PCI layer
2668 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2670 vptr->rev_id = pdev->revision;
2672 pci_set_master(pdev);
2674 vptr->ioaddr = pci_resource_start(pdev, 0);
2675 vptr->memaddr = pci_resource_start(pdev, 1);
2677 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2678 dev_err(&pdev->dev,
2679 "region #0 is not an I/O resource, aborting.\n");
2680 return -EINVAL;
2683 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2684 dev_err(&pdev->dev,
2685 "region #1 is an I/O resource, aborting.\n");
2686 return -EINVAL;
2689 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2690 dev_err(&pdev->dev, "region #1 is too small.\n");
2691 return -EINVAL;
2693 vptr->pdev = pdev;
2695 return 0;
2699 * velocity_print_info - per driver data
2700 * @vptr: velocity
2702 * Print per driver data as the kernel driver finds Velocity
2703 * hardware
2705 static void __devinit velocity_print_info(struct velocity_info *vptr)
2707 struct net_device *dev = vptr->dev;
2709 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2710 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2711 dev->name, dev->dev_addr);
2714 static u32 velocity_get_link(struct net_device *dev)
2716 struct velocity_info *vptr = netdev_priv(dev);
2717 struct mac_regs __iomem *regs = vptr->mac_regs;
2718 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2723 * velocity_found1 - set up discovered velocity card
2724 * @pdev: PCI device
2725 * @ent: PCI device table entry that matched
2727 * Configure a discovered adapter from scratch. Return a negative
2728 * errno error code on failure paths.
2730 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2732 static int first = 1;
2733 struct net_device *dev;
2734 int i;
2735 const char *drv_string;
2736 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2737 struct velocity_info *vptr;
2738 struct mac_regs __iomem *regs;
2739 int ret = -ENOMEM;
2741 /* FIXME: this driver, like almost all other ethernet drivers,
2742 * can support more than MAX_UNITS.
2744 if (velocity_nics >= MAX_UNITS) {
2745 dev_notice(&pdev->dev, "already found %d NICs.\n",
2746 velocity_nics);
2747 return -ENODEV;
2750 dev = alloc_etherdev(sizeof(struct velocity_info));
2751 if (!dev) {
2752 dev_err(&pdev->dev, "allocate net device failed.\n");
2753 goto out;
2756 /* Chain it all together */
2758 SET_NETDEV_DEV(dev, &pdev->dev);
2759 vptr = netdev_priv(dev);
2762 if (first) {
2763 printk(KERN_INFO "%s Ver. %s\n",
2764 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2765 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2766 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2767 first = 0;
2770 velocity_init_info(pdev, vptr, info);
2772 vptr->dev = dev;
2774 ret = pci_enable_device(pdev);
2775 if (ret < 0)
2776 goto err_free_dev;
2778 dev->irq = pdev->irq;
2780 ret = velocity_get_pci_info(vptr, pdev);
2781 if (ret < 0) {
2782 /* error message already printed */
2783 goto err_disable;
2786 ret = pci_request_regions(pdev, VELOCITY_NAME);
2787 if (ret < 0) {
2788 dev_err(&pdev->dev, "No PCI resources.\n");
2789 goto err_disable;
2792 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2793 if (regs == NULL) {
2794 ret = -EIO;
2795 goto err_release_res;
2798 vptr->mac_regs = regs;
2800 mac_wol_reset(regs);
2802 dev->base_addr = vptr->ioaddr;
2804 for (i = 0; i < 6; i++)
2805 dev->dev_addr[i] = readb(&regs->PAR[i]);
2808 drv_string = dev_driver_string(&pdev->dev);
2810 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2813 * Mask out the options cannot be set to the chip
2816 vptr->options.flags &= info->flags;
2819 * Enable the chip specified capbilities
2822 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2824 vptr->wol_opts = vptr->options.wol_opts;
2825 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2827 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2829 dev->irq = pdev->irq;
2830 dev->netdev_ops = &velocity_netdev_ops;
2831 dev->ethtool_ops = &velocity_ethtool_ops;
2832 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2834 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HW_VLAN_TX;
2835 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2836 NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2838 ret = register_netdev(dev);
2839 if (ret < 0)
2840 goto err_iounmap;
2842 if (!velocity_get_link(dev)) {
2843 netif_carrier_off(dev);
2844 vptr->mii_status |= VELOCITY_LINK_FAIL;
2847 velocity_print_info(vptr);
2848 pci_set_drvdata(pdev, dev);
2850 /* and leave the chip powered down */
2852 pci_set_power_state(pdev, PCI_D3hot);
2853 velocity_nics++;
2854 out:
2855 return ret;
2857 err_iounmap:
2858 iounmap(regs);
2859 err_release_res:
2860 pci_release_regions(pdev);
2861 err_disable:
2862 pci_disable_device(pdev);
2863 err_free_dev:
2864 free_netdev(dev);
2865 goto out;
2869 #ifdef CONFIG_PM
2871 * wol_calc_crc - WOL CRC
2872 * @pattern: data pattern
2873 * @mask_pattern: mask
2875 * Compute the wake on lan crc hashes for the packet header
2876 * we are interested in.
2878 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2880 u16 crc = 0xFFFF;
2881 u8 mask;
2882 int i, j;
2884 for (i = 0; i < size; i++) {
2885 mask = mask_pattern[i];
2887 /* Skip this loop if the mask equals to zero */
2888 if (mask == 0x00)
2889 continue;
2891 for (j = 0; j < 8; j++) {
2892 if ((mask & 0x01) == 0) {
2893 mask >>= 1;
2894 continue;
2896 mask >>= 1;
2897 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2900 /* Finally, invert the result once to get the correct data */
2901 crc = ~crc;
2902 return bitrev32(crc) >> 16;
2906 * velocity_set_wol - set up for wake on lan
2907 * @vptr: velocity to set WOL status on
2909 * Set a card up for wake on lan either by unicast or by
2910 * ARP packet.
2912 * FIXME: check static buffer is safe here
2914 static int velocity_set_wol(struct velocity_info *vptr)
2916 struct mac_regs __iomem *regs = vptr->mac_regs;
2917 enum speed_opt spd_dpx = vptr->options.spd_dpx;
2918 static u8 buf[256];
2919 int i;
2921 static u32 mask_pattern[2][4] = {
2922 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2923 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2926 writew(0xFFFF, &regs->WOLCRClr);
2927 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2928 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2931 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2932 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2935 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2936 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2938 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2939 struct arp_packet *arp = (struct arp_packet *) buf;
2940 u16 crc;
2941 memset(buf, 0, sizeof(struct arp_packet) + 7);
2943 for (i = 0; i < 4; i++)
2944 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2946 arp->type = htons(ETH_P_ARP);
2947 arp->ar_op = htons(1);
2949 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2951 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2952 (u8 *) & mask_pattern[0][0]);
2954 writew(crc, &regs->PatternCRC[0]);
2955 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2958 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2959 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2961 writew(0x0FFF, &regs->WOLSRClr);
2963 if (spd_dpx == SPD_DPX_1000_FULL)
2964 goto mac_done;
2966 if (spd_dpx != SPD_DPX_AUTO)
2967 goto advertise_done;
2969 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2970 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2971 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2973 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2976 if (vptr->mii_status & VELOCITY_SPEED_1000)
2977 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2979 advertise_done:
2980 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2983 u8 GCR;
2984 GCR = readb(&regs->CHIPGCR);
2985 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2986 writeb(GCR, &regs->CHIPGCR);
2989 mac_done:
2990 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2991 /* Turn on SWPTAG just before entering power mode */
2992 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2993 /* Go to bed ..... */
2994 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2996 return 0;
3000 * velocity_save_context - save registers
3001 * @vptr: velocity
3002 * @context: buffer for stored context
3004 * Retrieve the current configuration from the velocity hardware
3005 * and stash it in the context structure, for use by the context
3006 * restore functions. This allows us to save things we need across
3007 * power down states
3009 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3011 struct mac_regs __iomem *regs = vptr->mac_regs;
3012 u16 i;
3013 u8 __iomem *ptr = (u8 __iomem *)regs;
3015 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3016 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3018 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3019 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3021 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3022 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3026 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3028 struct net_device *dev = pci_get_drvdata(pdev);
3029 struct velocity_info *vptr = netdev_priv(dev);
3030 unsigned long flags;
3032 if (!netif_running(vptr->dev))
3033 return 0;
3035 netif_device_detach(vptr->dev);
3037 spin_lock_irqsave(&vptr->lock, flags);
3038 pci_save_state(pdev);
3039 #ifdef ETHTOOL_GWOL
3040 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3041 velocity_get_ip(vptr);
3042 velocity_save_context(vptr, &vptr->context);
3043 velocity_shutdown(vptr);
3044 velocity_set_wol(vptr);
3045 pci_enable_wake(pdev, PCI_D3hot, 1);
3046 pci_set_power_state(pdev, PCI_D3hot);
3047 } else {
3048 velocity_save_context(vptr, &vptr->context);
3049 velocity_shutdown(vptr);
3050 pci_disable_device(pdev);
3051 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3053 #else
3054 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3055 #endif
3056 spin_unlock_irqrestore(&vptr->lock, flags);
3057 return 0;
3061 * velocity_restore_context - restore registers
3062 * @vptr: velocity
3063 * @context: buffer for stored context
3065 * Reload the register configuration from the velocity context
3066 * created by velocity_save_context.
3068 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3070 struct mac_regs __iomem *regs = vptr->mac_regs;
3071 int i;
3072 u8 __iomem *ptr = (u8 __iomem *)regs;
3074 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3075 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3077 /* Just skip cr0 */
3078 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3079 /* Clear */
3080 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3081 /* Set */
3082 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3085 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3086 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3088 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3089 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3091 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3092 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3095 static int velocity_resume(struct pci_dev *pdev)
3097 struct net_device *dev = pci_get_drvdata(pdev);
3098 struct velocity_info *vptr = netdev_priv(dev);
3099 unsigned long flags;
3100 int i;
3102 if (!netif_running(vptr->dev))
3103 return 0;
3105 pci_set_power_state(pdev, PCI_D0);
3106 pci_enable_wake(pdev, 0, 0);
3107 pci_restore_state(pdev);
3109 mac_wol_reset(vptr->mac_regs);
3111 spin_lock_irqsave(&vptr->lock, flags);
3112 velocity_restore_context(vptr, &vptr->context);
3113 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3114 mac_disable_int(vptr->mac_regs);
3116 velocity_tx_srv(vptr);
3118 for (i = 0; i < vptr->tx.numq; i++) {
3119 if (vptr->tx.used[i])
3120 mac_tx_queue_wake(vptr->mac_regs, i);
3123 mac_enable_int(vptr->mac_regs);
3124 spin_unlock_irqrestore(&vptr->lock, flags);
3125 netif_device_attach(vptr->dev);
3127 return 0;
3129 #endif
3132 * Definition for our device driver. The PCI layer interface
3133 * uses this to handle all our card discover and plugging
3135 static struct pci_driver velocity_driver = {
3136 .name = VELOCITY_NAME,
3137 .id_table = velocity_id_table,
3138 .probe = velocity_found1,
3139 .remove = __devexit_p(velocity_remove1),
3140 #ifdef CONFIG_PM
3141 .suspend = velocity_suspend,
3142 .resume = velocity_resume,
3143 #endif
3148 * velocity_ethtool_up - pre hook for ethtool
3149 * @dev: network device
3151 * Called before an ethtool operation. We need to make sure the
3152 * chip is out of D3 state before we poke at it.
3154 static int velocity_ethtool_up(struct net_device *dev)
3156 struct velocity_info *vptr = netdev_priv(dev);
3157 if (!netif_running(dev))
3158 pci_set_power_state(vptr->pdev, PCI_D0);
3159 return 0;
3163 * velocity_ethtool_down - post hook for ethtool
3164 * @dev: network device
3166 * Called after an ethtool operation. Restore the chip back to D3
3167 * state if it isn't running.
3169 static void velocity_ethtool_down(struct net_device *dev)
3171 struct velocity_info *vptr = netdev_priv(dev);
3172 if (!netif_running(dev))
3173 pci_set_power_state(vptr->pdev, PCI_D3hot);
3176 static int velocity_get_settings(struct net_device *dev,
3177 struct ethtool_cmd *cmd)
3179 struct velocity_info *vptr = netdev_priv(dev);
3180 struct mac_regs __iomem *regs = vptr->mac_regs;
3181 u32 status;
3182 status = check_connection_type(vptr->mac_regs);
3184 cmd->supported = SUPPORTED_TP |
3185 SUPPORTED_Autoneg |
3186 SUPPORTED_10baseT_Half |
3187 SUPPORTED_10baseT_Full |
3188 SUPPORTED_100baseT_Half |
3189 SUPPORTED_100baseT_Full |
3190 SUPPORTED_1000baseT_Half |
3191 SUPPORTED_1000baseT_Full;
3193 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3194 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3195 cmd->advertising |=
3196 ADVERTISED_10baseT_Half |
3197 ADVERTISED_10baseT_Full |
3198 ADVERTISED_100baseT_Half |
3199 ADVERTISED_100baseT_Full |
3200 ADVERTISED_1000baseT_Half |
3201 ADVERTISED_1000baseT_Full;
3202 } else {
3203 switch (vptr->options.spd_dpx) {
3204 case SPD_DPX_1000_FULL:
3205 cmd->advertising |= ADVERTISED_1000baseT_Full;
3206 break;
3207 case SPD_DPX_100_HALF:
3208 cmd->advertising |= ADVERTISED_100baseT_Half;
3209 break;
3210 case SPD_DPX_100_FULL:
3211 cmd->advertising |= ADVERTISED_100baseT_Full;
3212 break;
3213 case SPD_DPX_10_HALF:
3214 cmd->advertising |= ADVERTISED_10baseT_Half;
3215 break;
3216 case SPD_DPX_10_FULL:
3217 cmd->advertising |= ADVERTISED_10baseT_Full;
3218 break;
3219 default:
3220 break;
3224 if (status & VELOCITY_SPEED_1000)
3225 ethtool_cmd_speed_set(cmd, SPEED_1000);
3226 else if (status & VELOCITY_SPEED_100)
3227 ethtool_cmd_speed_set(cmd, SPEED_100);
3228 else
3229 ethtool_cmd_speed_set(cmd, SPEED_10);
3231 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3232 cmd->port = PORT_TP;
3233 cmd->transceiver = XCVR_INTERNAL;
3234 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3236 if (status & VELOCITY_DUPLEX_FULL)
3237 cmd->duplex = DUPLEX_FULL;
3238 else
3239 cmd->duplex = DUPLEX_HALF;
3241 return 0;
3244 static int velocity_set_settings(struct net_device *dev,
3245 struct ethtool_cmd *cmd)
3247 struct velocity_info *vptr = netdev_priv(dev);
3248 u32 speed = ethtool_cmd_speed(cmd);
3249 u32 curr_status;
3250 u32 new_status = 0;
3251 int ret = 0;
3253 curr_status = check_connection_type(vptr->mac_regs);
3254 curr_status &= (~VELOCITY_LINK_FAIL);
3256 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3257 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3258 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3259 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3260 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3262 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3263 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3264 ret = -EINVAL;
3265 } else {
3266 enum speed_opt spd_dpx;
3268 if (new_status & VELOCITY_AUTONEG_ENABLE)
3269 spd_dpx = SPD_DPX_AUTO;
3270 else if ((new_status & VELOCITY_SPEED_1000) &&
3271 (new_status & VELOCITY_DUPLEX_FULL)) {
3272 spd_dpx = SPD_DPX_1000_FULL;
3273 } else if (new_status & VELOCITY_SPEED_100)
3274 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3275 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3276 else if (new_status & VELOCITY_SPEED_10)
3277 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3278 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3279 else
3280 return -EOPNOTSUPP;
3282 vptr->options.spd_dpx = spd_dpx;
3284 velocity_set_media_mode(vptr, new_status);
3287 return ret;
3290 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3292 struct velocity_info *vptr = netdev_priv(dev);
3293 strcpy(info->driver, VELOCITY_NAME);
3294 strcpy(info->version, VELOCITY_VERSION);
3295 strcpy(info->bus_info, pci_name(vptr->pdev));
3298 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3300 struct velocity_info *vptr = netdev_priv(dev);
3301 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3302 wol->wolopts |= WAKE_MAGIC;
3304 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3305 wol.wolopts|=WAKE_PHY;
3307 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3308 wol->wolopts |= WAKE_UCAST;
3309 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3310 wol->wolopts |= WAKE_ARP;
3311 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3314 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3316 struct velocity_info *vptr = netdev_priv(dev);
3318 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3319 return -EFAULT;
3320 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3323 if (wol.wolopts & WAKE_PHY) {
3324 vptr->wol_opts|=VELOCITY_WOL_PHY;
3325 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3329 if (wol->wolopts & WAKE_MAGIC) {
3330 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3331 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3333 if (wol->wolopts & WAKE_UCAST) {
3334 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3335 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3337 if (wol->wolopts & WAKE_ARP) {
3338 vptr->wol_opts |= VELOCITY_WOL_ARP;
3339 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3341 memcpy(vptr->wol_passwd, wol->sopass, 6);
3342 return 0;
3345 static u32 velocity_get_msglevel(struct net_device *dev)
3347 return msglevel;
3350 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3352 msglevel = value;
3355 static int get_pending_timer_val(int val)
3357 int mult_bits = val >> 6;
3358 int mult = 1;
3360 switch (mult_bits)
3362 case 1:
3363 mult = 4; break;
3364 case 2:
3365 mult = 16; break;
3366 case 3:
3367 mult = 64; break;
3368 case 0:
3369 default:
3370 break;
3373 return (val & 0x3f) * mult;
3376 static void set_pending_timer_val(int *val, u32 us)
3378 u8 mult = 0;
3379 u8 shift = 0;
3381 if (us >= 0x3f) {
3382 mult = 1; /* mult with 4 */
3383 shift = 2;
3385 if (us >= 0x3f * 4) {
3386 mult = 2; /* mult with 16 */
3387 shift = 4;
3389 if (us >= 0x3f * 16) {
3390 mult = 3; /* mult with 64 */
3391 shift = 6;
3394 *val = (mult << 6) | ((us >> shift) & 0x3f);
3398 static int velocity_get_coalesce(struct net_device *dev,
3399 struct ethtool_coalesce *ecmd)
3401 struct velocity_info *vptr = netdev_priv(dev);
3403 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3404 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3406 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3407 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3409 return 0;
3412 static int velocity_set_coalesce(struct net_device *dev,
3413 struct ethtool_coalesce *ecmd)
3415 struct velocity_info *vptr = netdev_priv(dev);
3416 int max_us = 0x3f * 64;
3417 unsigned long flags;
3419 /* 6 bits of */
3420 if (ecmd->tx_coalesce_usecs > max_us)
3421 return -EINVAL;
3422 if (ecmd->rx_coalesce_usecs > max_us)
3423 return -EINVAL;
3425 if (ecmd->tx_max_coalesced_frames > 0xff)
3426 return -EINVAL;
3427 if (ecmd->rx_max_coalesced_frames > 0xff)
3428 return -EINVAL;
3430 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3431 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3433 set_pending_timer_val(&vptr->options.rxqueue_timer,
3434 ecmd->rx_coalesce_usecs);
3435 set_pending_timer_val(&vptr->options.txqueue_timer,
3436 ecmd->tx_coalesce_usecs);
3438 /* Setup the interrupt suppression and queue timers */
3439 spin_lock_irqsave(&vptr->lock, flags);
3440 mac_disable_int(vptr->mac_regs);
3441 setup_adaptive_interrupts(vptr);
3442 setup_queue_timers(vptr);
3444 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3445 mac_clear_isr(vptr->mac_regs);
3446 mac_enable_int(vptr->mac_regs);
3447 spin_unlock_irqrestore(&vptr->lock, flags);
3449 return 0;
3452 static const struct ethtool_ops velocity_ethtool_ops = {
3453 .get_settings = velocity_get_settings,
3454 .set_settings = velocity_set_settings,
3455 .get_drvinfo = velocity_get_drvinfo,
3456 .get_wol = velocity_ethtool_get_wol,
3457 .set_wol = velocity_ethtool_set_wol,
3458 .get_msglevel = velocity_get_msglevel,
3459 .set_msglevel = velocity_set_msglevel,
3460 .get_link = velocity_get_link,
3461 .get_coalesce = velocity_get_coalesce,
3462 .set_coalesce = velocity_set_coalesce,
3463 .begin = velocity_ethtool_up,
3464 .complete = velocity_ethtool_down
3467 #ifdef CONFIG_PM
3468 #ifdef CONFIG_INET
3469 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3471 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3472 struct net_device *dev = ifa->ifa_dev->dev;
3474 if (dev_net(dev) == &init_net &&
3475 dev->netdev_ops == &velocity_netdev_ops)
3476 velocity_get_ip(netdev_priv(dev));
3478 return NOTIFY_DONE;
3480 #endif /* CONFIG_INET */
3481 #endif /* CONFIG_PM */
3483 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3484 static struct notifier_block velocity_inetaddr_notifier = {
3485 .notifier_call = velocity_netdev_event,
3488 static void velocity_register_notifier(void)
3490 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3493 static void velocity_unregister_notifier(void)
3495 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3498 #else
3500 #define velocity_register_notifier() do {} while (0)
3501 #define velocity_unregister_notifier() do {} while (0)
3503 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3506 * velocity_init_module - load time function
3508 * Called when the velocity module is loaded. The PCI driver
3509 * is registered with the PCI layer, and in turn will call
3510 * the probe functions for each velocity adapter installed
3511 * in the system.
3513 static int __init velocity_init_module(void)
3515 int ret;
3517 velocity_register_notifier();
3518 ret = pci_register_driver(&velocity_driver);
3519 if (ret < 0)
3520 velocity_unregister_notifier();
3521 return ret;
3525 * velocity_cleanup - module unload
3527 * When the velocity hardware is unloaded this function is called.
3528 * It will clean up the notifiers and the unregister the PCI
3529 * driver interface for this hardware. This in turn cleans up
3530 * all discovered interfaces before returning from the function
3532 static void __exit velocity_cleanup_module(void)
3534 velocity_unregister_notifier();
3535 pci_unregister_driver(&velocity_driver);
3538 module_init(velocity_init_module);
3539 module_exit(velocity_cleanup_module);