md: removing typedefs: mdk_rdev_t -> struct md_rdev
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blobe015f403d69e3d41b6f9c154bc0eb5712be9cbc8
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(mddev_t *mddev)
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
104 static inline int speed_max(mddev_t *mddev)
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
110 static struct ctl_table_header *raid_table_header;
112 static ctl_table raid_table[] = {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
130 static ctl_table raid_dir_table[] = {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
140 static ctl_table raid_root_table[] = {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
150 static const struct block_device_operations md_fops;
152 static int start_readonly;
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
158 static void mddev_bio_destructor(struct bio *bio)
160 mddev_t *mddev, **mddevp;
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
165 bio_free(bio, mddev->bio_set);
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 mddev_t *mddev)
171 struct bio *b;
172 mddev_t **mddevp;
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 mddev_t *mddev)
191 struct bio *b;
192 mddev_t **mddevp;
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
216 return b;
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220 void md_trim_bio(struct bio *bio, int offset, int size)
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
264 sofar += bvec->bv_len;
267 EXPORT_SYMBOL_GPL(md_trim_bio);
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(mddev_t *mddev)
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
286 EXPORT_SYMBOL_GPL(md_new_event);
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
291 static void md_new_event_inintr(mddev_t *mddev)
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
312 #define for_each_mddev(mddev,tmp) \
314 for (({ spin_lock(&all_mddevs_lock); \
315 tmp = all_mddevs.next; \
316 mddev = NULL;}); \
317 ({ if (tmp != &all_mddevs) \
318 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (mddev) mddev_put(mddev); \
321 mddev = list_entry(tmp, mddev_t, all_mddevs); \
322 tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 tmp = tmp->next;}) \
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 static int md_make_request(struct request_queue *q, struct bio *bio)
337 const int rw = bio_data_dir(bio);
338 mddev_t *mddev = q->queuedata;
339 int rv;
340 int cpu;
341 unsigned int sectors;
343 if (mddev == NULL || mddev->pers == NULL
344 || !mddev->ready) {
345 bio_io_error(bio);
346 return 0;
348 smp_rmb(); /* Ensure implications of 'active' are visible */
349 rcu_read_lock();
350 if (mddev->suspended) {
351 DEFINE_WAIT(__wait);
352 for (;;) {
353 prepare_to_wait(&mddev->sb_wait, &__wait,
354 TASK_UNINTERRUPTIBLE);
355 if (!mddev->suspended)
356 break;
357 rcu_read_unlock();
358 schedule();
359 rcu_read_lock();
361 finish_wait(&mddev->sb_wait, &__wait);
363 atomic_inc(&mddev->active_io);
364 rcu_read_unlock();
367 * save the sectors now since our bio can
368 * go away inside make_request
370 sectors = bio_sectors(bio);
371 rv = mddev->pers->make_request(mddev, bio);
373 cpu = part_stat_lock();
374 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376 part_stat_unlock();
378 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379 wake_up(&mddev->sb_wait);
381 return rv;
384 /* mddev_suspend makes sure no new requests are submitted
385 * to the device, and that any requests that have been submitted
386 * are completely handled.
387 * Once ->stop is called and completes, the module will be completely
388 * unused.
390 void mddev_suspend(mddev_t *mddev)
392 BUG_ON(mddev->suspended);
393 mddev->suspended = 1;
394 synchronize_rcu();
395 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
396 mddev->pers->quiesce(mddev, 1);
398 EXPORT_SYMBOL_GPL(mddev_suspend);
400 void mddev_resume(mddev_t *mddev)
402 mddev->suspended = 0;
403 wake_up(&mddev->sb_wait);
404 mddev->pers->quiesce(mddev, 0);
406 md_wakeup_thread(mddev->thread);
407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
409 EXPORT_SYMBOL_GPL(mddev_resume);
411 int mddev_congested(mddev_t *mddev, int bits)
413 return mddev->suspended;
415 EXPORT_SYMBOL(mddev_congested);
418 * Generic flush handling for md
421 static void md_end_flush(struct bio *bio, int err)
423 struct md_rdev *rdev = bio->bi_private;
424 mddev_t *mddev = rdev->mddev;
426 rdev_dec_pending(rdev, mddev);
428 if (atomic_dec_and_test(&mddev->flush_pending)) {
429 /* The pre-request flush has finished */
430 queue_work(md_wq, &mddev->flush_work);
432 bio_put(bio);
435 static void md_submit_flush_data(struct work_struct *ws);
437 static void submit_flushes(struct work_struct *ws)
439 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
440 struct md_rdev *rdev;
442 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443 atomic_set(&mddev->flush_pending, 1);
444 rcu_read_lock();
445 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
446 if (rdev->raid_disk >= 0 &&
447 !test_bit(Faulty, &rdev->flags)) {
448 /* Take two references, one is dropped
449 * when request finishes, one after
450 * we reclaim rcu_read_lock
452 struct bio *bi;
453 atomic_inc(&rdev->nr_pending);
454 atomic_inc(&rdev->nr_pending);
455 rcu_read_unlock();
456 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
457 bi->bi_end_io = md_end_flush;
458 bi->bi_private = rdev;
459 bi->bi_bdev = rdev->bdev;
460 atomic_inc(&mddev->flush_pending);
461 submit_bio(WRITE_FLUSH, bi);
462 rcu_read_lock();
463 rdev_dec_pending(rdev, mddev);
465 rcu_read_unlock();
466 if (atomic_dec_and_test(&mddev->flush_pending))
467 queue_work(md_wq, &mddev->flush_work);
470 static void md_submit_flush_data(struct work_struct *ws)
472 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
473 struct bio *bio = mddev->flush_bio;
475 if (bio->bi_size == 0)
476 /* an empty barrier - all done */
477 bio_endio(bio, 0);
478 else {
479 bio->bi_rw &= ~REQ_FLUSH;
480 if (mddev->pers->make_request(mddev, bio))
481 generic_make_request(bio);
484 mddev->flush_bio = NULL;
485 wake_up(&mddev->sb_wait);
488 void md_flush_request(mddev_t *mddev, struct bio *bio)
490 spin_lock_irq(&mddev->write_lock);
491 wait_event_lock_irq(mddev->sb_wait,
492 !mddev->flush_bio,
493 mddev->write_lock, /*nothing*/);
494 mddev->flush_bio = bio;
495 spin_unlock_irq(&mddev->write_lock);
497 INIT_WORK(&mddev->flush_work, submit_flushes);
498 queue_work(md_wq, &mddev->flush_work);
500 EXPORT_SYMBOL(md_flush_request);
502 /* Support for plugging.
503 * This mirrors the plugging support in request_queue, but does not
504 * require having a whole queue or request structures.
505 * We allocate an md_plug_cb for each md device and each thread it gets
506 * plugged on. This links tot the private plug_handle structure in the
507 * personality data where we keep a count of the number of outstanding
508 * plugs so other code can see if a plug is active.
510 struct md_plug_cb {
511 struct blk_plug_cb cb;
512 mddev_t *mddev;
515 static void plugger_unplug(struct blk_plug_cb *cb)
517 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
518 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
519 md_wakeup_thread(mdcb->mddev->thread);
520 kfree(mdcb);
523 /* Check that an unplug wakeup will come shortly.
524 * If not, wakeup the md thread immediately
526 int mddev_check_plugged(mddev_t *mddev)
528 struct blk_plug *plug = current->plug;
529 struct md_plug_cb *mdcb;
531 if (!plug)
532 return 0;
534 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
535 if (mdcb->cb.callback == plugger_unplug &&
536 mdcb->mddev == mddev) {
537 /* Already on the list, move to top */
538 if (mdcb != list_first_entry(&plug->cb_list,
539 struct md_plug_cb,
540 cb.list))
541 list_move(&mdcb->cb.list, &plug->cb_list);
542 return 1;
545 /* Not currently on the callback list */
546 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
547 if (!mdcb)
548 return 0;
550 mdcb->mddev = mddev;
551 mdcb->cb.callback = plugger_unplug;
552 atomic_inc(&mddev->plug_cnt);
553 list_add(&mdcb->cb.list, &plug->cb_list);
554 return 1;
556 EXPORT_SYMBOL_GPL(mddev_check_plugged);
558 static inline mddev_t *mddev_get(mddev_t *mddev)
560 atomic_inc(&mddev->active);
561 return mddev;
564 static void mddev_delayed_delete(struct work_struct *ws);
566 static void mddev_put(mddev_t *mddev)
568 struct bio_set *bs = NULL;
570 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
571 return;
572 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
573 mddev->ctime == 0 && !mddev->hold_active) {
574 /* Array is not configured at all, and not held active,
575 * so destroy it */
576 list_del(&mddev->all_mddevs);
577 bs = mddev->bio_set;
578 mddev->bio_set = NULL;
579 if (mddev->gendisk) {
580 /* We did a probe so need to clean up. Call
581 * queue_work inside the spinlock so that
582 * flush_workqueue() after mddev_find will
583 * succeed in waiting for the work to be done.
585 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
586 queue_work(md_misc_wq, &mddev->del_work);
587 } else
588 kfree(mddev);
590 spin_unlock(&all_mddevs_lock);
591 if (bs)
592 bioset_free(bs);
595 void mddev_init(mddev_t *mddev)
597 mutex_init(&mddev->open_mutex);
598 mutex_init(&mddev->reconfig_mutex);
599 mutex_init(&mddev->bitmap_info.mutex);
600 INIT_LIST_HEAD(&mddev->disks);
601 INIT_LIST_HEAD(&mddev->all_mddevs);
602 init_timer(&mddev->safemode_timer);
603 atomic_set(&mddev->active, 1);
604 atomic_set(&mddev->openers, 0);
605 atomic_set(&mddev->active_io, 0);
606 atomic_set(&mddev->plug_cnt, 0);
607 spin_lock_init(&mddev->write_lock);
608 atomic_set(&mddev->flush_pending, 0);
609 init_waitqueue_head(&mddev->sb_wait);
610 init_waitqueue_head(&mddev->recovery_wait);
611 mddev->reshape_position = MaxSector;
612 mddev->resync_min = 0;
613 mddev->resync_max = MaxSector;
614 mddev->level = LEVEL_NONE;
616 EXPORT_SYMBOL_GPL(mddev_init);
618 static mddev_t * mddev_find(dev_t unit)
620 mddev_t *mddev, *new = NULL;
622 if (unit && MAJOR(unit) != MD_MAJOR)
623 unit &= ~((1<<MdpMinorShift)-1);
625 retry:
626 spin_lock(&all_mddevs_lock);
628 if (unit) {
629 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
630 if (mddev->unit == unit) {
631 mddev_get(mddev);
632 spin_unlock(&all_mddevs_lock);
633 kfree(new);
634 return mddev;
637 if (new) {
638 list_add(&new->all_mddevs, &all_mddevs);
639 spin_unlock(&all_mddevs_lock);
640 new->hold_active = UNTIL_IOCTL;
641 return new;
643 } else if (new) {
644 /* find an unused unit number */
645 static int next_minor = 512;
646 int start = next_minor;
647 int is_free = 0;
648 int dev = 0;
649 while (!is_free) {
650 dev = MKDEV(MD_MAJOR, next_minor);
651 next_minor++;
652 if (next_minor > MINORMASK)
653 next_minor = 0;
654 if (next_minor == start) {
655 /* Oh dear, all in use. */
656 spin_unlock(&all_mddevs_lock);
657 kfree(new);
658 return NULL;
661 is_free = 1;
662 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
663 if (mddev->unit == dev) {
664 is_free = 0;
665 break;
668 new->unit = dev;
669 new->md_minor = MINOR(dev);
670 new->hold_active = UNTIL_STOP;
671 list_add(&new->all_mddevs, &all_mddevs);
672 spin_unlock(&all_mddevs_lock);
673 return new;
675 spin_unlock(&all_mddevs_lock);
677 new = kzalloc(sizeof(*new), GFP_KERNEL);
678 if (!new)
679 return NULL;
681 new->unit = unit;
682 if (MAJOR(unit) == MD_MAJOR)
683 new->md_minor = MINOR(unit);
684 else
685 new->md_minor = MINOR(unit) >> MdpMinorShift;
687 mddev_init(new);
689 goto retry;
692 static inline int mddev_lock(mddev_t * mddev)
694 return mutex_lock_interruptible(&mddev->reconfig_mutex);
697 static inline int mddev_is_locked(mddev_t *mddev)
699 return mutex_is_locked(&mddev->reconfig_mutex);
702 static inline int mddev_trylock(mddev_t * mddev)
704 return mutex_trylock(&mddev->reconfig_mutex);
707 static struct attribute_group md_redundancy_group;
709 static void mddev_unlock(mddev_t * mddev)
711 if (mddev->to_remove) {
712 /* These cannot be removed under reconfig_mutex as
713 * an access to the files will try to take reconfig_mutex
714 * while holding the file unremovable, which leads to
715 * a deadlock.
716 * So hold set sysfs_active while the remove in happeing,
717 * and anything else which might set ->to_remove or my
718 * otherwise change the sysfs namespace will fail with
719 * -EBUSY if sysfs_active is still set.
720 * We set sysfs_active under reconfig_mutex and elsewhere
721 * test it under the same mutex to ensure its correct value
722 * is seen.
724 struct attribute_group *to_remove = mddev->to_remove;
725 mddev->to_remove = NULL;
726 mddev->sysfs_active = 1;
727 mutex_unlock(&mddev->reconfig_mutex);
729 if (mddev->kobj.sd) {
730 if (to_remove != &md_redundancy_group)
731 sysfs_remove_group(&mddev->kobj, to_remove);
732 if (mddev->pers == NULL ||
733 mddev->pers->sync_request == NULL) {
734 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
735 if (mddev->sysfs_action)
736 sysfs_put(mddev->sysfs_action);
737 mddev->sysfs_action = NULL;
740 mddev->sysfs_active = 0;
741 } else
742 mutex_unlock(&mddev->reconfig_mutex);
744 /* was we've dropped the mutex we need a spinlock to
745 * make sur the thread doesn't disappear
747 spin_lock(&pers_lock);
748 md_wakeup_thread(mddev->thread);
749 spin_unlock(&pers_lock);
752 static struct md_rdev * find_rdev_nr(mddev_t *mddev, int nr)
754 struct md_rdev *rdev;
756 list_for_each_entry(rdev, &mddev->disks, same_set)
757 if (rdev->desc_nr == nr)
758 return rdev;
760 return NULL;
763 static struct md_rdev * find_rdev(mddev_t * mddev, dev_t dev)
765 struct md_rdev *rdev;
767 list_for_each_entry(rdev, &mddev->disks, same_set)
768 if (rdev->bdev->bd_dev == dev)
769 return rdev;
771 return NULL;
774 static struct mdk_personality *find_pers(int level, char *clevel)
776 struct mdk_personality *pers;
777 list_for_each_entry(pers, &pers_list, list) {
778 if (level != LEVEL_NONE && pers->level == level)
779 return pers;
780 if (strcmp(pers->name, clevel)==0)
781 return pers;
783 return NULL;
786 /* return the offset of the super block in 512byte sectors */
787 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
789 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
790 return MD_NEW_SIZE_SECTORS(num_sectors);
793 static int alloc_disk_sb(struct md_rdev * rdev)
795 if (rdev->sb_page)
796 MD_BUG();
798 rdev->sb_page = alloc_page(GFP_KERNEL);
799 if (!rdev->sb_page) {
800 printk(KERN_ALERT "md: out of memory.\n");
801 return -ENOMEM;
804 return 0;
807 static void free_disk_sb(struct md_rdev * rdev)
809 if (rdev->sb_page) {
810 put_page(rdev->sb_page);
811 rdev->sb_loaded = 0;
812 rdev->sb_page = NULL;
813 rdev->sb_start = 0;
814 rdev->sectors = 0;
816 if (rdev->bb_page) {
817 put_page(rdev->bb_page);
818 rdev->bb_page = NULL;
823 static void super_written(struct bio *bio, int error)
825 struct md_rdev *rdev = bio->bi_private;
826 mddev_t *mddev = rdev->mddev;
828 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
829 printk("md: super_written gets error=%d, uptodate=%d\n",
830 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
831 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
832 md_error(mddev, rdev);
835 if (atomic_dec_and_test(&mddev->pending_writes))
836 wake_up(&mddev->sb_wait);
837 bio_put(bio);
840 void md_super_write(mddev_t *mddev, struct md_rdev *rdev,
841 sector_t sector, int size, struct page *page)
843 /* write first size bytes of page to sector of rdev
844 * Increment mddev->pending_writes before returning
845 * and decrement it on completion, waking up sb_wait
846 * if zero is reached.
847 * If an error occurred, call md_error
849 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
851 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
852 bio->bi_sector = sector;
853 bio_add_page(bio, page, size, 0);
854 bio->bi_private = rdev;
855 bio->bi_end_io = super_written;
857 atomic_inc(&mddev->pending_writes);
858 submit_bio(WRITE_FLUSH_FUA, bio);
861 void md_super_wait(mddev_t *mddev)
863 /* wait for all superblock writes that were scheduled to complete */
864 DEFINE_WAIT(wq);
865 for(;;) {
866 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
867 if (atomic_read(&mddev->pending_writes)==0)
868 break;
869 schedule();
871 finish_wait(&mddev->sb_wait, &wq);
874 static void bi_complete(struct bio *bio, int error)
876 complete((struct completion*)bio->bi_private);
879 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
880 struct page *page, int rw, bool metadata_op)
882 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
883 struct completion event;
884 int ret;
886 rw |= REQ_SYNC;
888 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
889 rdev->meta_bdev : rdev->bdev;
890 if (metadata_op)
891 bio->bi_sector = sector + rdev->sb_start;
892 else
893 bio->bi_sector = sector + rdev->data_offset;
894 bio_add_page(bio, page, size, 0);
895 init_completion(&event);
896 bio->bi_private = &event;
897 bio->bi_end_io = bi_complete;
898 submit_bio(rw, bio);
899 wait_for_completion(&event);
901 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
902 bio_put(bio);
903 return ret;
905 EXPORT_SYMBOL_GPL(sync_page_io);
907 static int read_disk_sb(struct md_rdev * rdev, int size)
909 char b[BDEVNAME_SIZE];
910 if (!rdev->sb_page) {
911 MD_BUG();
912 return -EINVAL;
914 if (rdev->sb_loaded)
915 return 0;
918 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
919 goto fail;
920 rdev->sb_loaded = 1;
921 return 0;
923 fail:
924 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
925 bdevname(rdev->bdev,b));
926 return -EINVAL;
929 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
931 return sb1->set_uuid0 == sb2->set_uuid0 &&
932 sb1->set_uuid1 == sb2->set_uuid1 &&
933 sb1->set_uuid2 == sb2->set_uuid2 &&
934 sb1->set_uuid3 == sb2->set_uuid3;
937 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
939 int ret;
940 mdp_super_t *tmp1, *tmp2;
942 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
943 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
945 if (!tmp1 || !tmp2) {
946 ret = 0;
947 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
948 goto abort;
951 *tmp1 = *sb1;
952 *tmp2 = *sb2;
955 * nr_disks is not constant
957 tmp1->nr_disks = 0;
958 tmp2->nr_disks = 0;
960 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
961 abort:
962 kfree(tmp1);
963 kfree(tmp2);
964 return ret;
968 static u32 md_csum_fold(u32 csum)
970 csum = (csum & 0xffff) + (csum >> 16);
971 return (csum & 0xffff) + (csum >> 16);
974 static unsigned int calc_sb_csum(mdp_super_t * sb)
976 u64 newcsum = 0;
977 u32 *sb32 = (u32*)sb;
978 int i;
979 unsigned int disk_csum, csum;
981 disk_csum = sb->sb_csum;
982 sb->sb_csum = 0;
984 for (i = 0; i < MD_SB_BYTES/4 ; i++)
985 newcsum += sb32[i];
986 csum = (newcsum & 0xffffffff) + (newcsum>>32);
989 #ifdef CONFIG_ALPHA
990 /* This used to use csum_partial, which was wrong for several
991 * reasons including that different results are returned on
992 * different architectures. It isn't critical that we get exactly
993 * the same return value as before (we always csum_fold before
994 * testing, and that removes any differences). However as we
995 * know that csum_partial always returned a 16bit value on
996 * alphas, do a fold to maximise conformity to previous behaviour.
998 sb->sb_csum = md_csum_fold(disk_csum);
999 #else
1000 sb->sb_csum = disk_csum;
1001 #endif
1002 return csum;
1007 * Handle superblock details.
1008 * We want to be able to handle multiple superblock formats
1009 * so we have a common interface to them all, and an array of
1010 * different handlers.
1011 * We rely on user-space to write the initial superblock, and support
1012 * reading and updating of superblocks.
1013 * Interface methods are:
1014 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1015 * loads and validates a superblock on dev.
1016 * if refdev != NULL, compare superblocks on both devices
1017 * Return:
1018 * 0 - dev has a superblock that is compatible with refdev
1019 * 1 - dev has a superblock that is compatible and newer than refdev
1020 * so dev should be used as the refdev in future
1021 * -EINVAL superblock incompatible or invalid
1022 * -othererror e.g. -EIO
1024 * int validate_super(mddev_t *mddev, struct md_rdev *dev)
1025 * Verify that dev is acceptable into mddev.
1026 * The first time, mddev->raid_disks will be 0, and data from
1027 * dev should be merged in. Subsequent calls check that dev
1028 * is new enough. Return 0 or -EINVAL
1030 * void sync_super(mddev_t *mddev, struct md_rdev *dev)
1031 * Update the superblock for rdev with data in mddev
1032 * This does not write to disc.
1036 struct super_type {
1037 char *name;
1038 struct module *owner;
1039 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1040 int minor_version);
1041 int (*validate_super)(mddev_t *mddev, struct md_rdev *rdev);
1042 void (*sync_super)(mddev_t *mddev, struct md_rdev *rdev);
1043 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1044 sector_t num_sectors);
1048 * Check that the given mddev has no bitmap.
1050 * This function is called from the run method of all personalities that do not
1051 * support bitmaps. It prints an error message and returns non-zero if mddev
1052 * has a bitmap. Otherwise, it returns 0.
1055 int md_check_no_bitmap(mddev_t *mddev)
1057 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1058 return 0;
1059 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1060 mdname(mddev), mddev->pers->name);
1061 return 1;
1063 EXPORT_SYMBOL(md_check_no_bitmap);
1066 * load_super for 0.90.0
1068 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1070 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1071 mdp_super_t *sb;
1072 int ret;
1075 * Calculate the position of the superblock (512byte sectors),
1076 * it's at the end of the disk.
1078 * It also happens to be a multiple of 4Kb.
1080 rdev->sb_start = calc_dev_sboffset(rdev);
1082 ret = read_disk_sb(rdev, MD_SB_BYTES);
1083 if (ret) return ret;
1085 ret = -EINVAL;
1087 bdevname(rdev->bdev, b);
1088 sb = page_address(rdev->sb_page);
1090 if (sb->md_magic != MD_SB_MAGIC) {
1091 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1093 goto abort;
1096 if (sb->major_version != 0 ||
1097 sb->minor_version < 90 ||
1098 sb->minor_version > 91) {
1099 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1100 sb->major_version, sb->minor_version,
1102 goto abort;
1105 if (sb->raid_disks <= 0)
1106 goto abort;
1108 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1109 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1111 goto abort;
1114 rdev->preferred_minor = sb->md_minor;
1115 rdev->data_offset = 0;
1116 rdev->sb_size = MD_SB_BYTES;
1117 rdev->badblocks.shift = -1;
1119 if (sb->level == LEVEL_MULTIPATH)
1120 rdev->desc_nr = -1;
1121 else
1122 rdev->desc_nr = sb->this_disk.number;
1124 if (!refdev) {
1125 ret = 1;
1126 } else {
1127 __u64 ev1, ev2;
1128 mdp_super_t *refsb = page_address(refdev->sb_page);
1129 if (!uuid_equal(refsb, sb)) {
1130 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1131 b, bdevname(refdev->bdev,b2));
1132 goto abort;
1134 if (!sb_equal(refsb, sb)) {
1135 printk(KERN_WARNING "md: %s has same UUID"
1136 " but different superblock to %s\n",
1137 b, bdevname(refdev->bdev, b2));
1138 goto abort;
1140 ev1 = md_event(sb);
1141 ev2 = md_event(refsb);
1142 if (ev1 > ev2)
1143 ret = 1;
1144 else
1145 ret = 0;
1147 rdev->sectors = rdev->sb_start;
1148 /* Limit to 4TB as metadata cannot record more than that */
1149 if (rdev->sectors >= (2ULL << 32))
1150 rdev->sectors = (2ULL << 32) - 2;
1152 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1153 /* "this cannot possibly happen" ... */
1154 ret = -EINVAL;
1156 abort:
1157 return ret;
1161 * validate_super for 0.90.0
1163 static int super_90_validate(mddev_t *mddev, struct md_rdev *rdev)
1165 mdp_disk_t *desc;
1166 mdp_super_t *sb = page_address(rdev->sb_page);
1167 __u64 ev1 = md_event(sb);
1169 rdev->raid_disk = -1;
1170 clear_bit(Faulty, &rdev->flags);
1171 clear_bit(In_sync, &rdev->flags);
1172 clear_bit(WriteMostly, &rdev->flags);
1174 if (mddev->raid_disks == 0) {
1175 mddev->major_version = 0;
1176 mddev->minor_version = sb->minor_version;
1177 mddev->patch_version = sb->patch_version;
1178 mddev->external = 0;
1179 mddev->chunk_sectors = sb->chunk_size >> 9;
1180 mddev->ctime = sb->ctime;
1181 mddev->utime = sb->utime;
1182 mddev->level = sb->level;
1183 mddev->clevel[0] = 0;
1184 mddev->layout = sb->layout;
1185 mddev->raid_disks = sb->raid_disks;
1186 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1187 mddev->events = ev1;
1188 mddev->bitmap_info.offset = 0;
1189 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1191 if (mddev->minor_version >= 91) {
1192 mddev->reshape_position = sb->reshape_position;
1193 mddev->delta_disks = sb->delta_disks;
1194 mddev->new_level = sb->new_level;
1195 mddev->new_layout = sb->new_layout;
1196 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1197 } else {
1198 mddev->reshape_position = MaxSector;
1199 mddev->delta_disks = 0;
1200 mddev->new_level = mddev->level;
1201 mddev->new_layout = mddev->layout;
1202 mddev->new_chunk_sectors = mddev->chunk_sectors;
1205 if (sb->state & (1<<MD_SB_CLEAN))
1206 mddev->recovery_cp = MaxSector;
1207 else {
1208 if (sb->events_hi == sb->cp_events_hi &&
1209 sb->events_lo == sb->cp_events_lo) {
1210 mddev->recovery_cp = sb->recovery_cp;
1211 } else
1212 mddev->recovery_cp = 0;
1215 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1216 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1217 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1218 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1220 mddev->max_disks = MD_SB_DISKS;
1222 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1223 mddev->bitmap_info.file == NULL)
1224 mddev->bitmap_info.offset =
1225 mddev->bitmap_info.default_offset;
1227 } else if (mddev->pers == NULL) {
1228 /* Insist on good event counter while assembling, except
1229 * for spares (which don't need an event count) */
1230 ++ev1;
1231 if (sb->disks[rdev->desc_nr].state & (
1232 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1233 if (ev1 < mddev->events)
1234 return -EINVAL;
1235 } else if (mddev->bitmap) {
1236 /* if adding to array with a bitmap, then we can accept an
1237 * older device ... but not too old.
1239 if (ev1 < mddev->bitmap->events_cleared)
1240 return 0;
1241 } else {
1242 if (ev1 < mddev->events)
1243 /* just a hot-add of a new device, leave raid_disk at -1 */
1244 return 0;
1247 if (mddev->level != LEVEL_MULTIPATH) {
1248 desc = sb->disks + rdev->desc_nr;
1250 if (desc->state & (1<<MD_DISK_FAULTY))
1251 set_bit(Faulty, &rdev->flags);
1252 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1253 desc->raid_disk < mddev->raid_disks */) {
1254 set_bit(In_sync, &rdev->flags);
1255 rdev->raid_disk = desc->raid_disk;
1256 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1257 /* active but not in sync implies recovery up to
1258 * reshape position. We don't know exactly where
1259 * that is, so set to zero for now */
1260 if (mddev->minor_version >= 91) {
1261 rdev->recovery_offset = 0;
1262 rdev->raid_disk = desc->raid_disk;
1265 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1266 set_bit(WriteMostly, &rdev->flags);
1267 } else /* MULTIPATH are always insync */
1268 set_bit(In_sync, &rdev->flags);
1269 return 0;
1273 * sync_super for 0.90.0
1275 static void super_90_sync(mddev_t *mddev, struct md_rdev *rdev)
1277 mdp_super_t *sb;
1278 struct md_rdev *rdev2;
1279 int next_spare = mddev->raid_disks;
1282 /* make rdev->sb match mddev data..
1284 * 1/ zero out disks
1285 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1286 * 3/ any empty disks < next_spare become removed
1288 * disks[0] gets initialised to REMOVED because
1289 * we cannot be sure from other fields if it has
1290 * been initialised or not.
1292 int i;
1293 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1295 rdev->sb_size = MD_SB_BYTES;
1297 sb = page_address(rdev->sb_page);
1299 memset(sb, 0, sizeof(*sb));
1301 sb->md_magic = MD_SB_MAGIC;
1302 sb->major_version = mddev->major_version;
1303 sb->patch_version = mddev->patch_version;
1304 sb->gvalid_words = 0; /* ignored */
1305 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1306 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1307 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1308 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1310 sb->ctime = mddev->ctime;
1311 sb->level = mddev->level;
1312 sb->size = mddev->dev_sectors / 2;
1313 sb->raid_disks = mddev->raid_disks;
1314 sb->md_minor = mddev->md_minor;
1315 sb->not_persistent = 0;
1316 sb->utime = mddev->utime;
1317 sb->state = 0;
1318 sb->events_hi = (mddev->events>>32);
1319 sb->events_lo = (u32)mddev->events;
1321 if (mddev->reshape_position == MaxSector)
1322 sb->minor_version = 90;
1323 else {
1324 sb->minor_version = 91;
1325 sb->reshape_position = mddev->reshape_position;
1326 sb->new_level = mddev->new_level;
1327 sb->delta_disks = mddev->delta_disks;
1328 sb->new_layout = mddev->new_layout;
1329 sb->new_chunk = mddev->new_chunk_sectors << 9;
1331 mddev->minor_version = sb->minor_version;
1332 if (mddev->in_sync)
1334 sb->recovery_cp = mddev->recovery_cp;
1335 sb->cp_events_hi = (mddev->events>>32);
1336 sb->cp_events_lo = (u32)mddev->events;
1337 if (mddev->recovery_cp == MaxSector)
1338 sb->state = (1<< MD_SB_CLEAN);
1339 } else
1340 sb->recovery_cp = 0;
1342 sb->layout = mddev->layout;
1343 sb->chunk_size = mddev->chunk_sectors << 9;
1345 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1346 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1348 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1349 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1350 mdp_disk_t *d;
1351 int desc_nr;
1352 int is_active = test_bit(In_sync, &rdev2->flags);
1354 if (rdev2->raid_disk >= 0 &&
1355 sb->minor_version >= 91)
1356 /* we have nowhere to store the recovery_offset,
1357 * but if it is not below the reshape_position,
1358 * we can piggy-back on that.
1360 is_active = 1;
1361 if (rdev2->raid_disk < 0 ||
1362 test_bit(Faulty, &rdev2->flags))
1363 is_active = 0;
1364 if (is_active)
1365 desc_nr = rdev2->raid_disk;
1366 else
1367 desc_nr = next_spare++;
1368 rdev2->desc_nr = desc_nr;
1369 d = &sb->disks[rdev2->desc_nr];
1370 nr_disks++;
1371 d->number = rdev2->desc_nr;
1372 d->major = MAJOR(rdev2->bdev->bd_dev);
1373 d->minor = MINOR(rdev2->bdev->bd_dev);
1374 if (is_active)
1375 d->raid_disk = rdev2->raid_disk;
1376 else
1377 d->raid_disk = rdev2->desc_nr; /* compatibility */
1378 if (test_bit(Faulty, &rdev2->flags))
1379 d->state = (1<<MD_DISK_FAULTY);
1380 else if (is_active) {
1381 d->state = (1<<MD_DISK_ACTIVE);
1382 if (test_bit(In_sync, &rdev2->flags))
1383 d->state |= (1<<MD_DISK_SYNC);
1384 active++;
1385 working++;
1386 } else {
1387 d->state = 0;
1388 spare++;
1389 working++;
1391 if (test_bit(WriteMostly, &rdev2->flags))
1392 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1394 /* now set the "removed" and "faulty" bits on any missing devices */
1395 for (i=0 ; i < mddev->raid_disks ; i++) {
1396 mdp_disk_t *d = &sb->disks[i];
1397 if (d->state == 0 && d->number == 0) {
1398 d->number = i;
1399 d->raid_disk = i;
1400 d->state = (1<<MD_DISK_REMOVED);
1401 d->state |= (1<<MD_DISK_FAULTY);
1402 failed++;
1405 sb->nr_disks = nr_disks;
1406 sb->active_disks = active;
1407 sb->working_disks = working;
1408 sb->failed_disks = failed;
1409 sb->spare_disks = spare;
1411 sb->this_disk = sb->disks[rdev->desc_nr];
1412 sb->sb_csum = calc_sb_csum(sb);
1416 * rdev_size_change for 0.90.0
1418 static unsigned long long
1419 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1421 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1422 return 0; /* component must fit device */
1423 if (rdev->mddev->bitmap_info.offset)
1424 return 0; /* can't move bitmap */
1425 rdev->sb_start = calc_dev_sboffset(rdev);
1426 if (!num_sectors || num_sectors > rdev->sb_start)
1427 num_sectors = rdev->sb_start;
1428 /* Limit to 4TB as metadata cannot record more than that.
1429 * 4TB == 2^32 KB, or 2*2^32 sectors.
1431 if (num_sectors >= (2ULL << 32))
1432 num_sectors = (2ULL << 32) - 2;
1433 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1434 rdev->sb_page);
1435 md_super_wait(rdev->mddev);
1436 return num_sectors;
1441 * version 1 superblock
1444 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1446 __le32 disk_csum;
1447 u32 csum;
1448 unsigned long long newcsum;
1449 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1450 __le32 *isuper = (__le32*)sb;
1451 int i;
1453 disk_csum = sb->sb_csum;
1454 sb->sb_csum = 0;
1455 newcsum = 0;
1456 for (i=0; size>=4; size -= 4 )
1457 newcsum += le32_to_cpu(*isuper++);
1459 if (size == 2)
1460 newcsum += le16_to_cpu(*(__le16*) isuper);
1462 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1463 sb->sb_csum = disk_csum;
1464 return cpu_to_le32(csum);
1467 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1468 int acknowledged);
1469 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1471 struct mdp_superblock_1 *sb;
1472 int ret;
1473 sector_t sb_start;
1474 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1475 int bmask;
1478 * Calculate the position of the superblock in 512byte sectors.
1479 * It is always aligned to a 4K boundary and
1480 * depeding on minor_version, it can be:
1481 * 0: At least 8K, but less than 12K, from end of device
1482 * 1: At start of device
1483 * 2: 4K from start of device.
1485 switch(minor_version) {
1486 case 0:
1487 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1488 sb_start -= 8*2;
1489 sb_start &= ~(sector_t)(4*2-1);
1490 break;
1491 case 1:
1492 sb_start = 0;
1493 break;
1494 case 2:
1495 sb_start = 8;
1496 break;
1497 default:
1498 return -EINVAL;
1500 rdev->sb_start = sb_start;
1502 /* superblock is rarely larger than 1K, but it can be larger,
1503 * and it is safe to read 4k, so we do that
1505 ret = read_disk_sb(rdev, 4096);
1506 if (ret) return ret;
1509 sb = page_address(rdev->sb_page);
1511 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1512 sb->major_version != cpu_to_le32(1) ||
1513 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1514 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1515 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1516 return -EINVAL;
1518 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1519 printk("md: invalid superblock checksum on %s\n",
1520 bdevname(rdev->bdev,b));
1521 return -EINVAL;
1523 if (le64_to_cpu(sb->data_size) < 10) {
1524 printk("md: data_size too small on %s\n",
1525 bdevname(rdev->bdev,b));
1526 return -EINVAL;
1529 rdev->preferred_minor = 0xffff;
1530 rdev->data_offset = le64_to_cpu(sb->data_offset);
1531 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1533 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1534 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1535 if (rdev->sb_size & bmask)
1536 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1538 if (minor_version
1539 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1540 return -EINVAL;
1542 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1543 rdev->desc_nr = -1;
1544 else
1545 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1547 if (!rdev->bb_page) {
1548 rdev->bb_page = alloc_page(GFP_KERNEL);
1549 if (!rdev->bb_page)
1550 return -ENOMEM;
1552 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1553 rdev->badblocks.count == 0) {
1554 /* need to load the bad block list.
1555 * Currently we limit it to one page.
1557 s32 offset;
1558 sector_t bb_sector;
1559 u64 *bbp;
1560 int i;
1561 int sectors = le16_to_cpu(sb->bblog_size);
1562 if (sectors > (PAGE_SIZE / 512))
1563 return -EINVAL;
1564 offset = le32_to_cpu(sb->bblog_offset);
1565 if (offset == 0)
1566 return -EINVAL;
1567 bb_sector = (long long)offset;
1568 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1569 rdev->bb_page, READ, true))
1570 return -EIO;
1571 bbp = (u64 *)page_address(rdev->bb_page);
1572 rdev->badblocks.shift = sb->bblog_shift;
1573 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1574 u64 bb = le64_to_cpu(*bbp);
1575 int count = bb & (0x3ff);
1576 u64 sector = bb >> 10;
1577 sector <<= sb->bblog_shift;
1578 count <<= sb->bblog_shift;
1579 if (bb + 1 == 0)
1580 break;
1581 if (md_set_badblocks(&rdev->badblocks,
1582 sector, count, 1) == 0)
1583 return -EINVAL;
1585 } else if (sb->bblog_offset == 0)
1586 rdev->badblocks.shift = -1;
1588 if (!refdev) {
1589 ret = 1;
1590 } else {
1591 __u64 ev1, ev2;
1592 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1594 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1595 sb->level != refsb->level ||
1596 sb->layout != refsb->layout ||
1597 sb->chunksize != refsb->chunksize) {
1598 printk(KERN_WARNING "md: %s has strangely different"
1599 " superblock to %s\n",
1600 bdevname(rdev->bdev,b),
1601 bdevname(refdev->bdev,b2));
1602 return -EINVAL;
1604 ev1 = le64_to_cpu(sb->events);
1605 ev2 = le64_to_cpu(refsb->events);
1607 if (ev1 > ev2)
1608 ret = 1;
1609 else
1610 ret = 0;
1612 if (minor_version)
1613 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1614 le64_to_cpu(sb->data_offset);
1615 else
1616 rdev->sectors = rdev->sb_start;
1617 if (rdev->sectors < le64_to_cpu(sb->data_size))
1618 return -EINVAL;
1619 rdev->sectors = le64_to_cpu(sb->data_size);
1620 if (le64_to_cpu(sb->size) > rdev->sectors)
1621 return -EINVAL;
1622 return ret;
1625 static int super_1_validate(mddev_t *mddev, struct md_rdev *rdev)
1627 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1628 __u64 ev1 = le64_to_cpu(sb->events);
1630 rdev->raid_disk = -1;
1631 clear_bit(Faulty, &rdev->flags);
1632 clear_bit(In_sync, &rdev->flags);
1633 clear_bit(WriteMostly, &rdev->flags);
1635 if (mddev->raid_disks == 0) {
1636 mddev->major_version = 1;
1637 mddev->patch_version = 0;
1638 mddev->external = 0;
1639 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1640 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1641 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1642 mddev->level = le32_to_cpu(sb->level);
1643 mddev->clevel[0] = 0;
1644 mddev->layout = le32_to_cpu(sb->layout);
1645 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1646 mddev->dev_sectors = le64_to_cpu(sb->size);
1647 mddev->events = ev1;
1648 mddev->bitmap_info.offset = 0;
1649 mddev->bitmap_info.default_offset = 1024 >> 9;
1651 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1652 memcpy(mddev->uuid, sb->set_uuid, 16);
1654 mddev->max_disks = (4096-256)/2;
1656 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1657 mddev->bitmap_info.file == NULL )
1658 mddev->bitmap_info.offset =
1659 (__s32)le32_to_cpu(sb->bitmap_offset);
1661 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1662 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1663 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1664 mddev->new_level = le32_to_cpu(sb->new_level);
1665 mddev->new_layout = le32_to_cpu(sb->new_layout);
1666 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1667 } else {
1668 mddev->reshape_position = MaxSector;
1669 mddev->delta_disks = 0;
1670 mddev->new_level = mddev->level;
1671 mddev->new_layout = mddev->layout;
1672 mddev->new_chunk_sectors = mddev->chunk_sectors;
1675 } else if (mddev->pers == NULL) {
1676 /* Insist of good event counter while assembling, except for
1677 * spares (which don't need an event count) */
1678 ++ev1;
1679 if (rdev->desc_nr >= 0 &&
1680 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1681 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1682 if (ev1 < mddev->events)
1683 return -EINVAL;
1684 } else if (mddev->bitmap) {
1685 /* If adding to array with a bitmap, then we can accept an
1686 * older device, but not too old.
1688 if (ev1 < mddev->bitmap->events_cleared)
1689 return 0;
1690 } else {
1691 if (ev1 < mddev->events)
1692 /* just a hot-add of a new device, leave raid_disk at -1 */
1693 return 0;
1695 if (mddev->level != LEVEL_MULTIPATH) {
1696 int role;
1697 if (rdev->desc_nr < 0 ||
1698 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699 role = 0xffff;
1700 rdev->desc_nr = -1;
1701 } else
1702 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703 switch(role) {
1704 case 0xffff: /* spare */
1705 break;
1706 case 0xfffe: /* faulty */
1707 set_bit(Faulty, &rdev->flags);
1708 break;
1709 default:
1710 if ((le32_to_cpu(sb->feature_map) &
1711 MD_FEATURE_RECOVERY_OFFSET))
1712 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1713 else
1714 set_bit(In_sync, &rdev->flags);
1715 rdev->raid_disk = role;
1716 break;
1718 if (sb->devflags & WriteMostly1)
1719 set_bit(WriteMostly, &rdev->flags);
1720 } else /* MULTIPATH are always insync */
1721 set_bit(In_sync, &rdev->flags);
1723 return 0;
1726 static void super_1_sync(mddev_t *mddev, struct md_rdev *rdev)
1728 struct mdp_superblock_1 *sb;
1729 struct md_rdev *rdev2;
1730 int max_dev, i;
1731 /* make rdev->sb match mddev and rdev data. */
1733 sb = page_address(rdev->sb_page);
1735 sb->feature_map = 0;
1736 sb->pad0 = 0;
1737 sb->recovery_offset = cpu_to_le64(0);
1738 memset(sb->pad1, 0, sizeof(sb->pad1));
1739 memset(sb->pad3, 0, sizeof(sb->pad3));
1741 sb->utime = cpu_to_le64((__u64)mddev->utime);
1742 sb->events = cpu_to_le64(mddev->events);
1743 if (mddev->in_sync)
1744 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745 else
1746 sb->resync_offset = cpu_to_le64(0);
1748 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1750 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751 sb->size = cpu_to_le64(mddev->dev_sectors);
1752 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753 sb->level = cpu_to_le32(mddev->level);
1754 sb->layout = cpu_to_le32(mddev->layout);
1756 if (test_bit(WriteMostly, &rdev->flags))
1757 sb->devflags |= WriteMostly1;
1758 else
1759 sb->devflags &= ~WriteMostly1;
1761 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1762 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1763 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1766 if (rdev->raid_disk >= 0 &&
1767 !test_bit(In_sync, &rdev->flags)) {
1768 sb->feature_map |=
1769 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1770 sb->recovery_offset =
1771 cpu_to_le64(rdev->recovery_offset);
1774 if (mddev->reshape_position != MaxSector) {
1775 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1776 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1777 sb->new_layout = cpu_to_le32(mddev->new_layout);
1778 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1779 sb->new_level = cpu_to_le32(mddev->new_level);
1780 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1783 if (rdev->badblocks.count == 0)
1784 /* Nothing to do for bad blocks*/ ;
1785 else if (sb->bblog_offset == 0)
1786 /* Cannot record bad blocks on this device */
1787 md_error(mddev, rdev);
1788 else {
1789 struct badblocks *bb = &rdev->badblocks;
1790 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1791 u64 *p = bb->page;
1792 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1793 if (bb->changed) {
1794 unsigned seq;
1796 retry:
1797 seq = read_seqbegin(&bb->lock);
1799 memset(bbp, 0xff, PAGE_SIZE);
1801 for (i = 0 ; i < bb->count ; i++) {
1802 u64 internal_bb = *p++;
1803 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1804 | BB_LEN(internal_bb));
1805 *bbp++ = cpu_to_le64(store_bb);
1807 if (read_seqretry(&bb->lock, seq))
1808 goto retry;
1810 bb->sector = (rdev->sb_start +
1811 (int)le32_to_cpu(sb->bblog_offset));
1812 bb->size = le16_to_cpu(sb->bblog_size);
1813 bb->changed = 0;
1817 max_dev = 0;
1818 list_for_each_entry(rdev2, &mddev->disks, same_set)
1819 if (rdev2->desc_nr+1 > max_dev)
1820 max_dev = rdev2->desc_nr+1;
1822 if (max_dev > le32_to_cpu(sb->max_dev)) {
1823 int bmask;
1824 sb->max_dev = cpu_to_le32(max_dev);
1825 rdev->sb_size = max_dev * 2 + 256;
1826 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1827 if (rdev->sb_size & bmask)
1828 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1829 } else
1830 max_dev = le32_to_cpu(sb->max_dev);
1832 for (i=0; i<max_dev;i++)
1833 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1836 i = rdev2->desc_nr;
1837 if (test_bit(Faulty, &rdev2->flags))
1838 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1839 else if (test_bit(In_sync, &rdev2->flags))
1840 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1841 else if (rdev2->raid_disk >= 0)
1842 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843 else
1844 sb->dev_roles[i] = cpu_to_le16(0xffff);
1847 sb->sb_csum = calc_sb_1_csum(sb);
1850 static unsigned long long
1851 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 struct mdp_superblock_1 *sb;
1854 sector_t max_sectors;
1855 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1856 return 0; /* component must fit device */
1857 if (rdev->sb_start < rdev->data_offset) {
1858 /* minor versions 1 and 2; superblock before data */
1859 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1860 max_sectors -= rdev->data_offset;
1861 if (!num_sectors || num_sectors > max_sectors)
1862 num_sectors = max_sectors;
1863 } else if (rdev->mddev->bitmap_info.offset) {
1864 /* minor version 0 with bitmap we can't move */
1865 return 0;
1866 } else {
1867 /* minor version 0; superblock after data */
1868 sector_t sb_start;
1869 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1870 sb_start &= ~(sector_t)(4*2 - 1);
1871 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1872 if (!num_sectors || num_sectors > max_sectors)
1873 num_sectors = max_sectors;
1874 rdev->sb_start = sb_start;
1876 sb = page_address(rdev->sb_page);
1877 sb->data_size = cpu_to_le64(num_sectors);
1878 sb->super_offset = rdev->sb_start;
1879 sb->sb_csum = calc_sb_1_csum(sb);
1880 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1881 rdev->sb_page);
1882 md_super_wait(rdev->mddev);
1883 return num_sectors;
1886 static struct super_type super_types[] = {
1887 [0] = {
1888 .name = "0.90.0",
1889 .owner = THIS_MODULE,
1890 .load_super = super_90_load,
1891 .validate_super = super_90_validate,
1892 .sync_super = super_90_sync,
1893 .rdev_size_change = super_90_rdev_size_change,
1895 [1] = {
1896 .name = "md-1",
1897 .owner = THIS_MODULE,
1898 .load_super = super_1_load,
1899 .validate_super = super_1_validate,
1900 .sync_super = super_1_sync,
1901 .rdev_size_change = super_1_rdev_size_change,
1905 static void sync_super(mddev_t *mddev, struct md_rdev *rdev)
1907 if (mddev->sync_super) {
1908 mddev->sync_super(mddev, rdev);
1909 return;
1912 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914 super_types[mddev->major_version].sync_super(mddev, rdev);
1917 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1919 struct md_rdev *rdev, *rdev2;
1921 rcu_read_lock();
1922 rdev_for_each_rcu(rdev, mddev1)
1923 rdev_for_each_rcu(rdev2, mddev2)
1924 if (rdev->bdev->bd_contains ==
1925 rdev2->bdev->bd_contains) {
1926 rcu_read_unlock();
1927 return 1;
1929 rcu_read_unlock();
1930 return 0;
1933 static LIST_HEAD(pending_raid_disks);
1936 * Try to register data integrity profile for an mddev
1938 * This is called when an array is started and after a disk has been kicked
1939 * from the array. It only succeeds if all working and active component devices
1940 * are integrity capable with matching profiles.
1942 int md_integrity_register(mddev_t *mddev)
1944 struct md_rdev *rdev, *reference = NULL;
1946 if (list_empty(&mddev->disks))
1947 return 0; /* nothing to do */
1948 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1949 return 0; /* shouldn't register, or already is */
1950 list_for_each_entry(rdev, &mddev->disks, same_set) {
1951 /* skip spares and non-functional disks */
1952 if (test_bit(Faulty, &rdev->flags))
1953 continue;
1954 if (rdev->raid_disk < 0)
1955 continue;
1956 if (!reference) {
1957 /* Use the first rdev as the reference */
1958 reference = rdev;
1959 continue;
1961 /* does this rdev's profile match the reference profile? */
1962 if (blk_integrity_compare(reference->bdev->bd_disk,
1963 rdev->bdev->bd_disk) < 0)
1964 return -EINVAL;
1966 if (!reference || !bdev_get_integrity(reference->bdev))
1967 return 0;
1969 * All component devices are integrity capable and have matching
1970 * profiles, register the common profile for the md device.
1972 if (blk_integrity_register(mddev->gendisk,
1973 bdev_get_integrity(reference->bdev)) != 0) {
1974 printk(KERN_ERR "md: failed to register integrity for %s\n",
1975 mdname(mddev));
1976 return -EINVAL;
1978 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1979 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1980 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1981 mdname(mddev));
1982 return -EINVAL;
1984 return 0;
1986 EXPORT_SYMBOL(md_integrity_register);
1988 /* Disable data integrity if non-capable/non-matching disk is being added */
1989 void md_integrity_add_rdev(struct md_rdev *rdev, mddev_t *mddev)
1991 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1992 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994 if (!bi_mddev) /* nothing to do */
1995 return;
1996 if (rdev->raid_disk < 0) /* skip spares */
1997 return;
1998 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1999 rdev->bdev->bd_disk) >= 0)
2000 return;
2001 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2002 blk_integrity_unregister(mddev->gendisk);
2004 EXPORT_SYMBOL(md_integrity_add_rdev);
2006 static int bind_rdev_to_array(struct md_rdev * rdev, mddev_t * mddev)
2008 char b[BDEVNAME_SIZE];
2009 struct kobject *ko;
2010 char *s;
2011 int err;
2013 if (rdev->mddev) {
2014 MD_BUG();
2015 return -EINVAL;
2018 /* prevent duplicates */
2019 if (find_rdev(mddev, rdev->bdev->bd_dev))
2020 return -EEXIST;
2022 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2023 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2024 rdev->sectors < mddev->dev_sectors)) {
2025 if (mddev->pers) {
2026 /* Cannot change size, so fail
2027 * If mddev->level <= 0, then we don't care
2028 * about aligning sizes (e.g. linear)
2030 if (mddev->level > 0)
2031 return -ENOSPC;
2032 } else
2033 mddev->dev_sectors = rdev->sectors;
2036 /* Verify rdev->desc_nr is unique.
2037 * If it is -1, assign a free number, else
2038 * check number is not in use
2040 if (rdev->desc_nr < 0) {
2041 int choice = 0;
2042 if (mddev->pers) choice = mddev->raid_disks;
2043 while (find_rdev_nr(mddev, choice))
2044 choice++;
2045 rdev->desc_nr = choice;
2046 } else {
2047 if (find_rdev_nr(mddev, rdev->desc_nr))
2048 return -EBUSY;
2050 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2051 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2052 mdname(mddev), mddev->max_disks);
2053 return -EBUSY;
2055 bdevname(rdev->bdev,b);
2056 while ( (s=strchr(b, '/')) != NULL)
2057 *s = '!';
2059 rdev->mddev = mddev;
2060 printk(KERN_INFO "md: bind<%s>\n", b);
2062 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2063 goto fail;
2065 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2066 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2067 /* failure here is OK */;
2068 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070 list_add_rcu(&rdev->same_set, &mddev->disks);
2071 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073 /* May as well allow recovery to be retried once */
2074 mddev->recovery_disabled++;
2076 return 0;
2078 fail:
2079 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2080 b, mdname(mddev));
2081 return err;
2084 static void md_delayed_delete(struct work_struct *ws)
2086 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2087 kobject_del(&rdev->kobj);
2088 kobject_put(&rdev->kobj);
2091 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 char b[BDEVNAME_SIZE];
2094 if (!rdev->mddev) {
2095 MD_BUG();
2096 return;
2098 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2099 list_del_rcu(&rdev->same_set);
2100 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2101 rdev->mddev = NULL;
2102 sysfs_remove_link(&rdev->kobj, "block");
2103 sysfs_put(rdev->sysfs_state);
2104 rdev->sysfs_state = NULL;
2105 kfree(rdev->badblocks.page);
2106 rdev->badblocks.count = 0;
2107 rdev->badblocks.page = NULL;
2108 /* We need to delay this, otherwise we can deadlock when
2109 * writing to 'remove' to "dev/state". We also need
2110 * to delay it due to rcu usage.
2112 synchronize_rcu();
2113 INIT_WORK(&rdev->del_work, md_delayed_delete);
2114 kobject_get(&rdev->kobj);
2115 queue_work(md_misc_wq, &rdev->del_work);
2119 * prevent the device from being mounted, repartitioned or
2120 * otherwise reused by a RAID array (or any other kernel
2121 * subsystem), by bd_claiming the device.
2123 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 int err = 0;
2126 struct block_device *bdev;
2127 char b[BDEVNAME_SIZE];
2129 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2130 shared ? (struct md_rdev *)lock_rdev : rdev);
2131 if (IS_ERR(bdev)) {
2132 printk(KERN_ERR "md: could not open %s.\n",
2133 __bdevname(dev, b));
2134 return PTR_ERR(bdev);
2136 rdev->bdev = bdev;
2137 return err;
2140 static void unlock_rdev(struct md_rdev *rdev)
2142 struct block_device *bdev = rdev->bdev;
2143 rdev->bdev = NULL;
2144 if (!bdev)
2145 MD_BUG();
2146 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2149 void md_autodetect_dev(dev_t dev);
2151 static void export_rdev(struct md_rdev * rdev)
2153 char b[BDEVNAME_SIZE];
2154 printk(KERN_INFO "md: export_rdev(%s)\n",
2155 bdevname(rdev->bdev,b));
2156 if (rdev->mddev)
2157 MD_BUG();
2158 free_disk_sb(rdev);
2159 #ifndef MODULE
2160 if (test_bit(AutoDetected, &rdev->flags))
2161 md_autodetect_dev(rdev->bdev->bd_dev);
2162 #endif
2163 unlock_rdev(rdev);
2164 kobject_put(&rdev->kobj);
2167 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 unbind_rdev_from_array(rdev);
2170 export_rdev(rdev);
2173 static void export_array(mddev_t *mddev)
2175 struct md_rdev *rdev, *tmp;
2177 rdev_for_each(rdev, tmp, mddev) {
2178 if (!rdev->mddev) {
2179 MD_BUG();
2180 continue;
2182 kick_rdev_from_array(rdev);
2184 if (!list_empty(&mddev->disks))
2185 MD_BUG();
2186 mddev->raid_disks = 0;
2187 mddev->major_version = 0;
2190 static void print_desc(mdp_disk_t *desc)
2192 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2193 desc->major,desc->minor,desc->raid_disk,desc->state);
2196 static void print_sb_90(mdp_super_t *sb)
2198 int i;
2200 printk(KERN_INFO
2201 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2202 sb->major_version, sb->minor_version, sb->patch_version,
2203 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2204 sb->ctime);
2205 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2206 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2207 sb->md_minor, sb->layout, sb->chunk_size);
2208 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2209 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2210 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2211 sb->failed_disks, sb->spare_disks,
2212 sb->sb_csum, (unsigned long)sb->events_lo);
2214 printk(KERN_INFO);
2215 for (i = 0; i < MD_SB_DISKS; i++) {
2216 mdp_disk_t *desc;
2218 desc = sb->disks + i;
2219 if (desc->number || desc->major || desc->minor ||
2220 desc->raid_disk || (desc->state && (desc->state != 4))) {
2221 printk(" D %2d: ", i);
2222 print_desc(desc);
2225 printk(KERN_INFO "md: THIS: ");
2226 print_desc(&sb->this_disk);
2229 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 __u8 *uuid;
2233 uuid = sb->set_uuid;
2234 printk(KERN_INFO
2235 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2236 "md: Name: \"%s\" CT:%llu\n",
2237 le32_to_cpu(sb->major_version),
2238 le32_to_cpu(sb->feature_map),
2239 uuid,
2240 sb->set_name,
2241 (unsigned long long)le64_to_cpu(sb->ctime)
2242 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244 uuid = sb->device_uuid;
2245 printk(KERN_INFO
2246 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2247 " RO:%llu\n"
2248 "md: Dev:%08x UUID: %pU\n"
2249 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2250 "md: (MaxDev:%u) \n",
2251 le32_to_cpu(sb->level),
2252 (unsigned long long)le64_to_cpu(sb->size),
2253 le32_to_cpu(sb->raid_disks),
2254 le32_to_cpu(sb->layout),
2255 le32_to_cpu(sb->chunksize),
2256 (unsigned long long)le64_to_cpu(sb->data_offset),
2257 (unsigned long long)le64_to_cpu(sb->data_size),
2258 (unsigned long long)le64_to_cpu(sb->super_offset),
2259 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2260 le32_to_cpu(sb->dev_number),
2261 uuid,
2262 sb->devflags,
2263 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2264 (unsigned long long)le64_to_cpu(sb->events),
2265 (unsigned long long)le64_to_cpu(sb->resync_offset),
2266 le32_to_cpu(sb->sb_csum),
2267 le32_to_cpu(sb->max_dev)
2271 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 char b[BDEVNAME_SIZE];
2274 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2275 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2276 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2277 rdev->desc_nr);
2278 if (rdev->sb_loaded) {
2279 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2280 switch (major_version) {
2281 case 0:
2282 print_sb_90(page_address(rdev->sb_page));
2283 break;
2284 case 1:
2285 print_sb_1(page_address(rdev->sb_page));
2286 break;
2288 } else
2289 printk(KERN_INFO "md: no rdev superblock!\n");
2292 static void md_print_devices(void)
2294 struct list_head *tmp;
2295 struct md_rdev *rdev;
2296 mddev_t *mddev;
2297 char b[BDEVNAME_SIZE];
2299 printk("\n");
2300 printk("md: **********************************\n");
2301 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2302 printk("md: **********************************\n");
2303 for_each_mddev(mddev, tmp) {
2305 if (mddev->bitmap)
2306 bitmap_print_sb(mddev->bitmap);
2307 else
2308 printk("%s: ", mdname(mddev));
2309 list_for_each_entry(rdev, &mddev->disks, same_set)
2310 printk("<%s>", bdevname(rdev->bdev,b));
2311 printk("\n");
2313 list_for_each_entry(rdev, &mddev->disks, same_set)
2314 print_rdev(rdev, mddev->major_version);
2316 printk("md: **********************************\n");
2317 printk("\n");
2321 static void sync_sbs(mddev_t * mddev, int nospares)
2323 /* Update each superblock (in-memory image), but
2324 * if we are allowed to, skip spares which already
2325 * have the right event counter, or have one earlier
2326 * (which would mean they aren't being marked as dirty
2327 * with the rest of the array)
2329 struct md_rdev *rdev;
2330 list_for_each_entry(rdev, &mddev->disks, same_set) {
2331 if (rdev->sb_events == mddev->events ||
2332 (nospares &&
2333 rdev->raid_disk < 0 &&
2334 rdev->sb_events+1 == mddev->events)) {
2335 /* Don't update this superblock */
2336 rdev->sb_loaded = 2;
2337 } else {
2338 sync_super(mddev, rdev);
2339 rdev->sb_loaded = 1;
2344 static void md_update_sb(mddev_t * mddev, int force_change)
2346 struct md_rdev *rdev;
2347 int sync_req;
2348 int nospares = 0;
2349 int any_badblocks_changed = 0;
2351 repeat:
2352 /* First make sure individual recovery_offsets are correct */
2353 list_for_each_entry(rdev, &mddev->disks, same_set) {
2354 if (rdev->raid_disk >= 0 &&
2355 mddev->delta_disks >= 0 &&
2356 !test_bit(In_sync, &rdev->flags) &&
2357 mddev->curr_resync_completed > rdev->recovery_offset)
2358 rdev->recovery_offset = mddev->curr_resync_completed;
2361 if (!mddev->persistent) {
2362 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2363 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2364 if (!mddev->external) {
2365 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2366 list_for_each_entry(rdev, &mddev->disks, same_set) {
2367 if (rdev->badblocks.changed) {
2368 md_ack_all_badblocks(&rdev->badblocks);
2369 md_error(mddev, rdev);
2371 clear_bit(Blocked, &rdev->flags);
2372 clear_bit(BlockedBadBlocks, &rdev->flags);
2373 wake_up(&rdev->blocked_wait);
2376 wake_up(&mddev->sb_wait);
2377 return;
2380 spin_lock_irq(&mddev->write_lock);
2382 mddev->utime = get_seconds();
2384 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2385 force_change = 1;
2386 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2387 /* just a clean<-> dirty transition, possibly leave spares alone,
2388 * though if events isn't the right even/odd, we will have to do
2389 * spares after all
2391 nospares = 1;
2392 if (force_change)
2393 nospares = 0;
2394 if (mddev->degraded)
2395 /* If the array is degraded, then skipping spares is both
2396 * dangerous and fairly pointless.
2397 * Dangerous because a device that was removed from the array
2398 * might have a event_count that still looks up-to-date,
2399 * so it can be re-added without a resync.
2400 * Pointless because if there are any spares to skip,
2401 * then a recovery will happen and soon that array won't
2402 * be degraded any more and the spare can go back to sleep then.
2404 nospares = 0;
2406 sync_req = mddev->in_sync;
2408 /* If this is just a dirty<->clean transition, and the array is clean
2409 * and 'events' is odd, we can roll back to the previous clean state */
2410 if (nospares
2411 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2412 && mddev->can_decrease_events
2413 && mddev->events != 1) {
2414 mddev->events--;
2415 mddev->can_decrease_events = 0;
2416 } else {
2417 /* otherwise we have to go forward and ... */
2418 mddev->events ++;
2419 mddev->can_decrease_events = nospares;
2422 if (!mddev->events) {
2424 * oops, this 64-bit counter should never wrap.
2425 * Either we are in around ~1 trillion A.C., assuming
2426 * 1 reboot per second, or we have a bug:
2428 MD_BUG();
2429 mddev->events --;
2432 list_for_each_entry(rdev, &mddev->disks, same_set) {
2433 if (rdev->badblocks.changed)
2434 any_badblocks_changed++;
2435 if (test_bit(Faulty, &rdev->flags))
2436 set_bit(FaultRecorded, &rdev->flags);
2439 sync_sbs(mddev, nospares);
2440 spin_unlock_irq(&mddev->write_lock);
2442 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2443 mdname(mddev), mddev->in_sync);
2445 bitmap_update_sb(mddev->bitmap);
2446 list_for_each_entry(rdev, &mddev->disks, same_set) {
2447 char b[BDEVNAME_SIZE];
2449 if (rdev->sb_loaded != 1)
2450 continue; /* no noise on spare devices */
2452 if (!test_bit(Faulty, &rdev->flags)) {
2453 md_super_write(mddev,rdev,
2454 rdev->sb_start, rdev->sb_size,
2455 rdev->sb_page);
2456 pr_debug("md: (write) %s's sb offset: %llu\n",
2457 bdevname(rdev->bdev, b),
2458 (unsigned long long)rdev->sb_start);
2459 rdev->sb_events = mddev->events;
2460 if (rdev->badblocks.size) {
2461 md_super_write(mddev, rdev,
2462 rdev->badblocks.sector,
2463 rdev->badblocks.size << 9,
2464 rdev->bb_page);
2465 rdev->badblocks.size = 0;
2468 } else
2469 pr_debug("md: %s (skipping faulty)\n",
2470 bdevname(rdev->bdev, b));
2471 if (mddev->level == LEVEL_MULTIPATH)
2472 /* only need to write one superblock... */
2473 break;
2475 md_super_wait(mddev);
2476 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2478 spin_lock_irq(&mddev->write_lock);
2479 if (mddev->in_sync != sync_req ||
2480 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2481 /* have to write it out again */
2482 spin_unlock_irq(&mddev->write_lock);
2483 goto repeat;
2485 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2486 spin_unlock_irq(&mddev->write_lock);
2487 wake_up(&mddev->sb_wait);
2488 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2489 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2491 list_for_each_entry(rdev, &mddev->disks, same_set) {
2492 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2493 clear_bit(Blocked, &rdev->flags);
2495 if (any_badblocks_changed)
2496 md_ack_all_badblocks(&rdev->badblocks);
2497 clear_bit(BlockedBadBlocks, &rdev->flags);
2498 wake_up(&rdev->blocked_wait);
2502 /* words written to sysfs files may, or may not, be \n terminated.
2503 * We want to accept with case. For this we use cmd_match.
2505 static int cmd_match(const char *cmd, const char *str)
2507 /* See if cmd, written into a sysfs file, matches
2508 * str. They must either be the same, or cmd can
2509 * have a trailing newline
2511 while (*cmd && *str && *cmd == *str) {
2512 cmd++;
2513 str++;
2515 if (*cmd == '\n')
2516 cmd++;
2517 if (*str || *cmd)
2518 return 0;
2519 return 1;
2522 struct rdev_sysfs_entry {
2523 struct attribute attr;
2524 ssize_t (*show)(struct md_rdev *, char *);
2525 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2528 static ssize_t
2529 state_show(struct md_rdev *rdev, char *page)
2531 char *sep = "";
2532 size_t len = 0;
2534 if (test_bit(Faulty, &rdev->flags) ||
2535 rdev->badblocks.unacked_exist) {
2536 len+= sprintf(page+len, "%sfaulty",sep);
2537 sep = ",";
2539 if (test_bit(In_sync, &rdev->flags)) {
2540 len += sprintf(page+len, "%sin_sync",sep);
2541 sep = ",";
2543 if (test_bit(WriteMostly, &rdev->flags)) {
2544 len += sprintf(page+len, "%swrite_mostly",sep);
2545 sep = ",";
2547 if (test_bit(Blocked, &rdev->flags) ||
2548 rdev->badblocks.unacked_exist) {
2549 len += sprintf(page+len, "%sblocked", sep);
2550 sep = ",";
2552 if (!test_bit(Faulty, &rdev->flags) &&
2553 !test_bit(In_sync, &rdev->flags)) {
2554 len += sprintf(page+len, "%sspare", sep);
2555 sep = ",";
2557 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2558 len += sprintf(page+len, "%swrite_error", sep);
2559 sep = ",";
2561 return len+sprintf(page+len, "\n");
2564 static ssize_t
2565 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2567 /* can write
2568 * faulty - simulates an error
2569 * remove - disconnects the device
2570 * writemostly - sets write_mostly
2571 * -writemostly - clears write_mostly
2572 * blocked - sets the Blocked flags
2573 * -blocked - clears the Blocked and possibly simulates an error
2574 * insync - sets Insync providing device isn't active
2575 * write_error - sets WriteErrorSeen
2576 * -write_error - clears WriteErrorSeen
2578 int err = -EINVAL;
2579 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2580 md_error(rdev->mddev, rdev);
2581 if (test_bit(Faulty, &rdev->flags))
2582 err = 0;
2583 else
2584 err = -EBUSY;
2585 } else if (cmd_match(buf, "remove")) {
2586 if (rdev->raid_disk >= 0)
2587 err = -EBUSY;
2588 else {
2589 mddev_t *mddev = rdev->mddev;
2590 kick_rdev_from_array(rdev);
2591 if (mddev->pers)
2592 md_update_sb(mddev, 1);
2593 md_new_event(mddev);
2594 err = 0;
2596 } else if (cmd_match(buf, "writemostly")) {
2597 set_bit(WriteMostly, &rdev->flags);
2598 err = 0;
2599 } else if (cmd_match(buf, "-writemostly")) {
2600 clear_bit(WriteMostly, &rdev->flags);
2601 err = 0;
2602 } else if (cmd_match(buf, "blocked")) {
2603 set_bit(Blocked, &rdev->flags);
2604 err = 0;
2605 } else if (cmd_match(buf, "-blocked")) {
2606 if (!test_bit(Faulty, &rdev->flags) &&
2607 rdev->badblocks.unacked_exist) {
2608 /* metadata handler doesn't understand badblocks,
2609 * so we need to fail the device
2611 md_error(rdev->mddev, rdev);
2613 clear_bit(Blocked, &rdev->flags);
2614 clear_bit(BlockedBadBlocks, &rdev->flags);
2615 wake_up(&rdev->blocked_wait);
2616 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2617 md_wakeup_thread(rdev->mddev->thread);
2619 err = 0;
2620 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2621 set_bit(In_sync, &rdev->flags);
2622 err = 0;
2623 } else if (cmd_match(buf, "write_error")) {
2624 set_bit(WriteErrorSeen, &rdev->flags);
2625 err = 0;
2626 } else if (cmd_match(buf, "-write_error")) {
2627 clear_bit(WriteErrorSeen, &rdev->flags);
2628 err = 0;
2630 if (!err)
2631 sysfs_notify_dirent_safe(rdev->sysfs_state);
2632 return err ? err : len;
2634 static struct rdev_sysfs_entry rdev_state =
2635 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2637 static ssize_t
2638 errors_show(struct md_rdev *rdev, char *page)
2640 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2643 static ssize_t
2644 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2646 char *e;
2647 unsigned long n = simple_strtoul(buf, &e, 10);
2648 if (*buf && (*e == 0 || *e == '\n')) {
2649 atomic_set(&rdev->corrected_errors, n);
2650 return len;
2652 return -EINVAL;
2654 static struct rdev_sysfs_entry rdev_errors =
2655 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2657 static ssize_t
2658 slot_show(struct md_rdev *rdev, char *page)
2660 if (rdev->raid_disk < 0)
2661 return sprintf(page, "none\n");
2662 else
2663 return sprintf(page, "%d\n", rdev->raid_disk);
2666 static ssize_t
2667 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2669 char *e;
2670 int err;
2671 int slot = simple_strtoul(buf, &e, 10);
2672 if (strncmp(buf, "none", 4)==0)
2673 slot = -1;
2674 else if (e==buf || (*e && *e!= '\n'))
2675 return -EINVAL;
2676 if (rdev->mddev->pers && slot == -1) {
2677 /* Setting 'slot' on an active array requires also
2678 * updating the 'rd%d' link, and communicating
2679 * with the personality with ->hot_*_disk.
2680 * For now we only support removing
2681 * failed/spare devices. This normally happens automatically,
2682 * but not when the metadata is externally managed.
2684 if (rdev->raid_disk == -1)
2685 return -EEXIST;
2686 /* personality does all needed checks */
2687 if (rdev->mddev->pers->hot_remove_disk == NULL)
2688 return -EINVAL;
2689 err = rdev->mddev->pers->
2690 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2691 if (err)
2692 return err;
2693 sysfs_unlink_rdev(rdev->mddev, rdev);
2694 rdev->raid_disk = -1;
2695 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2696 md_wakeup_thread(rdev->mddev->thread);
2697 } else if (rdev->mddev->pers) {
2698 struct md_rdev *rdev2;
2699 /* Activating a spare .. or possibly reactivating
2700 * if we ever get bitmaps working here.
2703 if (rdev->raid_disk != -1)
2704 return -EBUSY;
2706 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2707 return -EBUSY;
2709 if (rdev->mddev->pers->hot_add_disk == NULL)
2710 return -EINVAL;
2712 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2713 if (rdev2->raid_disk == slot)
2714 return -EEXIST;
2716 if (slot >= rdev->mddev->raid_disks &&
2717 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2718 return -ENOSPC;
2720 rdev->raid_disk = slot;
2721 if (test_bit(In_sync, &rdev->flags))
2722 rdev->saved_raid_disk = slot;
2723 else
2724 rdev->saved_raid_disk = -1;
2725 err = rdev->mddev->pers->
2726 hot_add_disk(rdev->mddev, rdev);
2727 if (err) {
2728 rdev->raid_disk = -1;
2729 return err;
2730 } else
2731 sysfs_notify_dirent_safe(rdev->sysfs_state);
2732 if (sysfs_link_rdev(rdev->mddev, rdev))
2733 /* failure here is OK */;
2734 /* don't wakeup anyone, leave that to userspace. */
2735 } else {
2736 if (slot >= rdev->mddev->raid_disks &&
2737 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2738 return -ENOSPC;
2739 rdev->raid_disk = slot;
2740 /* assume it is working */
2741 clear_bit(Faulty, &rdev->flags);
2742 clear_bit(WriteMostly, &rdev->flags);
2743 set_bit(In_sync, &rdev->flags);
2744 sysfs_notify_dirent_safe(rdev->sysfs_state);
2746 return len;
2750 static struct rdev_sysfs_entry rdev_slot =
2751 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2753 static ssize_t
2754 offset_show(struct md_rdev *rdev, char *page)
2756 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2759 static ssize_t
2760 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2762 char *e;
2763 unsigned long long offset = simple_strtoull(buf, &e, 10);
2764 if (e==buf || (*e && *e != '\n'))
2765 return -EINVAL;
2766 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2767 return -EBUSY;
2768 if (rdev->sectors && rdev->mddev->external)
2769 /* Must set offset before size, so overlap checks
2770 * can be sane */
2771 return -EBUSY;
2772 rdev->data_offset = offset;
2773 return len;
2776 static struct rdev_sysfs_entry rdev_offset =
2777 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2779 static ssize_t
2780 rdev_size_show(struct md_rdev *rdev, char *page)
2782 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2785 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2787 /* check if two start/length pairs overlap */
2788 if (s1+l1 <= s2)
2789 return 0;
2790 if (s2+l2 <= s1)
2791 return 0;
2792 return 1;
2795 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2797 unsigned long long blocks;
2798 sector_t new;
2800 if (strict_strtoull(buf, 10, &blocks) < 0)
2801 return -EINVAL;
2803 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2804 return -EINVAL; /* sector conversion overflow */
2806 new = blocks * 2;
2807 if (new != blocks * 2)
2808 return -EINVAL; /* unsigned long long to sector_t overflow */
2810 *sectors = new;
2811 return 0;
2814 static ssize_t
2815 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2817 mddev_t *my_mddev = rdev->mddev;
2818 sector_t oldsectors = rdev->sectors;
2819 sector_t sectors;
2821 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2822 return -EINVAL;
2823 if (my_mddev->pers && rdev->raid_disk >= 0) {
2824 if (my_mddev->persistent) {
2825 sectors = super_types[my_mddev->major_version].
2826 rdev_size_change(rdev, sectors);
2827 if (!sectors)
2828 return -EBUSY;
2829 } else if (!sectors)
2830 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2831 rdev->data_offset;
2833 if (sectors < my_mddev->dev_sectors)
2834 return -EINVAL; /* component must fit device */
2836 rdev->sectors = sectors;
2837 if (sectors > oldsectors && my_mddev->external) {
2838 /* need to check that all other rdevs with the same ->bdev
2839 * do not overlap. We need to unlock the mddev to avoid
2840 * a deadlock. We have already changed rdev->sectors, and if
2841 * we have to change it back, we will have the lock again.
2843 mddev_t *mddev;
2844 int overlap = 0;
2845 struct list_head *tmp;
2847 mddev_unlock(my_mddev);
2848 for_each_mddev(mddev, tmp) {
2849 struct md_rdev *rdev2;
2851 mddev_lock(mddev);
2852 list_for_each_entry(rdev2, &mddev->disks, same_set)
2853 if (rdev->bdev == rdev2->bdev &&
2854 rdev != rdev2 &&
2855 overlaps(rdev->data_offset, rdev->sectors,
2856 rdev2->data_offset,
2857 rdev2->sectors)) {
2858 overlap = 1;
2859 break;
2861 mddev_unlock(mddev);
2862 if (overlap) {
2863 mddev_put(mddev);
2864 break;
2867 mddev_lock(my_mddev);
2868 if (overlap) {
2869 /* Someone else could have slipped in a size
2870 * change here, but doing so is just silly.
2871 * We put oldsectors back because we *know* it is
2872 * safe, and trust userspace not to race with
2873 * itself
2875 rdev->sectors = oldsectors;
2876 return -EBUSY;
2879 return len;
2882 static struct rdev_sysfs_entry rdev_size =
2883 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2886 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2888 unsigned long long recovery_start = rdev->recovery_offset;
2890 if (test_bit(In_sync, &rdev->flags) ||
2891 recovery_start == MaxSector)
2892 return sprintf(page, "none\n");
2894 return sprintf(page, "%llu\n", recovery_start);
2897 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2899 unsigned long long recovery_start;
2901 if (cmd_match(buf, "none"))
2902 recovery_start = MaxSector;
2903 else if (strict_strtoull(buf, 10, &recovery_start))
2904 return -EINVAL;
2906 if (rdev->mddev->pers &&
2907 rdev->raid_disk >= 0)
2908 return -EBUSY;
2910 rdev->recovery_offset = recovery_start;
2911 if (recovery_start == MaxSector)
2912 set_bit(In_sync, &rdev->flags);
2913 else
2914 clear_bit(In_sync, &rdev->flags);
2915 return len;
2918 static struct rdev_sysfs_entry rdev_recovery_start =
2919 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2922 static ssize_t
2923 badblocks_show(struct badblocks *bb, char *page, int unack);
2924 static ssize_t
2925 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2927 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2929 return badblocks_show(&rdev->badblocks, page, 0);
2931 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2933 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2934 /* Maybe that ack was all we needed */
2935 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2936 wake_up(&rdev->blocked_wait);
2937 return rv;
2939 static struct rdev_sysfs_entry rdev_bad_blocks =
2940 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2943 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2945 return badblocks_show(&rdev->badblocks, page, 1);
2947 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2949 return badblocks_store(&rdev->badblocks, page, len, 1);
2951 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2952 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2954 static struct attribute *rdev_default_attrs[] = {
2955 &rdev_state.attr,
2956 &rdev_errors.attr,
2957 &rdev_slot.attr,
2958 &rdev_offset.attr,
2959 &rdev_size.attr,
2960 &rdev_recovery_start.attr,
2961 &rdev_bad_blocks.attr,
2962 &rdev_unack_bad_blocks.attr,
2963 NULL,
2965 static ssize_t
2966 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2968 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2969 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2970 mddev_t *mddev = rdev->mddev;
2971 ssize_t rv;
2973 if (!entry->show)
2974 return -EIO;
2976 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2977 if (!rv) {
2978 if (rdev->mddev == NULL)
2979 rv = -EBUSY;
2980 else
2981 rv = entry->show(rdev, page);
2982 mddev_unlock(mddev);
2984 return rv;
2987 static ssize_t
2988 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2989 const char *page, size_t length)
2991 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2992 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2993 ssize_t rv;
2994 mddev_t *mddev = rdev->mddev;
2996 if (!entry->store)
2997 return -EIO;
2998 if (!capable(CAP_SYS_ADMIN))
2999 return -EACCES;
3000 rv = mddev ? mddev_lock(mddev): -EBUSY;
3001 if (!rv) {
3002 if (rdev->mddev == NULL)
3003 rv = -EBUSY;
3004 else
3005 rv = entry->store(rdev, page, length);
3006 mddev_unlock(mddev);
3008 return rv;
3011 static void rdev_free(struct kobject *ko)
3013 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3014 kfree(rdev);
3016 static const struct sysfs_ops rdev_sysfs_ops = {
3017 .show = rdev_attr_show,
3018 .store = rdev_attr_store,
3020 static struct kobj_type rdev_ktype = {
3021 .release = rdev_free,
3022 .sysfs_ops = &rdev_sysfs_ops,
3023 .default_attrs = rdev_default_attrs,
3026 int md_rdev_init(struct md_rdev *rdev)
3028 rdev->desc_nr = -1;
3029 rdev->saved_raid_disk = -1;
3030 rdev->raid_disk = -1;
3031 rdev->flags = 0;
3032 rdev->data_offset = 0;
3033 rdev->sb_events = 0;
3034 rdev->last_read_error.tv_sec = 0;
3035 rdev->last_read_error.tv_nsec = 0;
3036 rdev->sb_loaded = 0;
3037 rdev->bb_page = NULL;
3038 atomic_set(&rdev->nr_pending, 0);
3039 atomic_set(&rdev->read_errors, 0);
3040 atomic_set(&rdev->corrected_errors, 0);
3042 INIT_LIST_HEAD(&rdev->same_set);
3043 init_waitqueue_head(&rdev->blocked_wait);
3045 /* Add space to store bad block list.
3046 * This reserves the space even on arrays where it cannot
3047 * be used - I wonder if that matters
3049 rdev->badblocks.count = 0;
3050 rdev->badblocks.shift = 0;
3051 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3052 seqlock_init(&rdev->badblocks.lock);
3053 if (rdev->badblocks.page == NULL)
3054 return -ENOMEM;
3056 return 0;
3058 EXPORT_SYMBOL_GPL(md_rdev_init);
3060 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3062 * mark the device faulty if:
3064 * - the device is nonexistent (zero size)
3065 * - the device has no valid superblock
3067 * a faulty rdev _never_ has rdev->sb set.
3069 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3071 char b[BDEVNAME_SIZE];
3072 int err;
3073 struct md_rdev *rdev;
3074 sector_t size;
3076 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3077 if (!rdev) {
3078 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3079 return ERR_PTR(-ENOMEM);
3082 err = md_rdev_init(rdev);
3083 if (err)
3084 goto abort_free;
3085 err = alloc_disk_sb(rdev);
3086 if (err)
3087 goto abort_free;
3089 err = lock_rdev(rdev, newdev, super_format == -2);
3090 if (err)
3091 goto abort_free;
3093 kobject_init(&rdev->kobj, &rdev_ktype);
3095 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3096 if (!size) {
3097 printk(KERN_WARNING
3098 "md: %s has zero or unknown size, marking faulty!\n",
3099 bdevname(rdev->bdev,b));
3100 err = -EINVAL;
3101 goto abort_free;
3104 if (super_format >= 0) {
3105 err = super_types[super_format].
3106 load_super(rdev, NULL, super_minor);
3107 if (err == -EINVAL) {
3108 printk(KERN_WARNING
3109 "md: %s does not have a valid v%d.%d "
3110 "superblock, not importing!\n",
3111 bdevname(rdev->bdev,b),
3112 super_format, super_minor);
3113 goto abort_free;
3115 if (err < 0) {
3116 printk(KERN_WARNING
3117 "md: could not read %s's sb, not importing!\n",
3118 bdevname(rdev->bdev,b));
3119 goto abort_free;
3122 if (super_format == -1)
3123 /* hot-add for 0.90, or non-persistent: so no badblocks */
3124 rdev->badblocks.shift = -1;
3126 return rdev;
3128 abort_free:
3129 if (rdev->bdev)
3130 unlock_rdev(rdev);
3131 free_disk_sb(rdev);
3132 kfree(rdev->badblocks.page);
3133 kfree(rdev);
3134 return ERR_PTR(err);
3138 * Check a full RAID array for plausibility
3142 static void analyze_sbs(mddev_t * mddev)
3144 int i;
3145 struct md_rdev *rdev, *freshest, *tmp;
3146 char b[BDEVNAME_SIZE];
3148 freshest = NULL;
3149 rdev_for_each(rdev, tmp, mddev)
3150 switch (super_types[mddev->major_version].
3151 load_super(rdev, freshest, mddev->minor_version)) {
3152 case 1:
3153 freshest = rdev;
3154 break;
3155 case 0:
3156 break;
3157 default:
3158 printk( KERN_ERR \
3159 "md: fatal superblock inconsistency in %s"
3160 " -- removing from array\n",
3161 bdevname(rdev->bdev,b));
3162 kick_rdev_from_array(rdev);
3166 super_types[mddev->major_version].
3167 validate_super(mddev, freshest);
3169 i = 0;
3170 rdev_for_each(rdev, tmp, mddev) {
3171 if (mddev->max_disks &&
3172 (rdev->desc_nr >= mddev->max_disks ||
3173 i > mddev->max_disks)) {
3174 printk(KERN_WARNING
3175 "md: %s: %s: only %d devices permitted\n",
3176 mdname(mddev), bdevname(rdev->bdev, b),
3177 mddev->max_disks);
3178 kick_rdev_from_array(rdev);
3179 continue;
3181 if (rdev != freshest)
3182 if (super_types[mddev->major_version].
3183 validate_super(mddev, rdev)) {
3184 printk(KERN_WARNING "md: kicking non-fresh %s"
3185 " from array!\n",
3186 bdevname(rdev->bdev,b));
3187 kick_rdev_from_array(rdev);
3188 continue;
3190 if (mddev->level == LEVEL_MULTIPATH) {
3191 rdev->desc_nr = i++;
3192 rdev->raid_disk = rdev->desc_nr;
3193 set_bit(In_sync, &rdev->flags);
3194 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3195 rdev->raid_disk = -1;
3196 clear_bit(In_sync, &rdev->flags);
3201 /* Read a fixed-point number.
3202 * Numbers in sysfs attributes should be in "standard" units where
3203 * possible, so time should be in seconds.
3204 * However we internally use a a much smaller unit such as
3205 * milliseconds or jiffies.
3206 * This function takes a decimal number with a possible fractional
3207 * component, and produces an integer which is the result of
3208 * multiplying that number by 10^'scale'.
3209 * all without any floating-point arithmetic.
3211 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3213 unsigned long result = 0;
3214 long decimals = -1;
3215 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3216 if (*cp == '.')
3217 decimals = 0;
3218 else if (decimals < scale) {
3219 unsigned int value;
3220 value = *cp - '0';
3221 result = result * 10 + value;
3222 if (decimals >= 0)
3223 decimals++;
3225 cp++;
3227 if (*cp == '\n')
3228 cp++;
3229 if (*cp)
3230 return -EINVAL;
3231 if (decimals < 0)
3232 decimals = 0;
3233 while (decimals < scale) {
3234 result *= 10;
3235 decimals ++;
3237 *res = result;
3238 return 0;
3242 static void md_safemode_timeout(unsigned long data);
3244 static ssize_t
3245 safe_delay_show(mddev_t *mddev, char *page)
3247 int msec = (mddev->safemode_delay*1000)/HZ;
3248 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3250 static ssize_t
3251 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3253 unsigned long msec;
3255 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3256 return -EINVAL;
3257 if (msec == 0)
3258 mddev->safemode_delay = 0;
3259 else {
3260 unsigned long old_delay = mddev->safemode_delay;
3261 mddev->safemode_delay = (msec*HZ)/1000;
3262 if (mddev->safemode_delay == 0)
3263 mddev->safemode_delay = 1;
3264 if (mddev->safemode_delay < old_delay)
3265 md_safemode_timeout((unsigned long)mddev);
3267 return len;
3269 static struct md_sysfs_entry md_safe_delay =
3270 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3272 static ssize_t
3273 level_show(mddev_t *mddev, char *page)
3275 struct mdk_personality *p = mddev->pers;
3276 if (p)
3277 return sprintf(page, "%s\n", p->name);
3278 else if (mddev->clevel[0])
3279 return sprintf(page, "%s\n", mddev->clevel);
3280 else if (mddev->level != LEVEL_NONE)
3281 return sprintf(page, "%d\n", mddev->level);
3282 else
3283 return 0;
3286 static ssize_t
3287 level_store(mddev_t *mddev, const char *buf, size_t len)
3289 char clevel[16];
3290 ssize_t rv = len;
3291 struct mdk_personality *pers;
3292 long level;
3293 void *priv;
3294 struct md_rdev *rdev;
3296 if (mddev->pers == NULL) {
3297 if (len == 0)
3298 return 0;
3299 if (len >= sizeof(mddev->clevel))
3300 return -ENOSPC;
3301 strncpy(mddev->clevel, buf, len);
3302 if (mddev->clevel[len-1] == '\n')
3303 len--;
3304 mddev->clevel[len] = 0;
3305 mddev->level = LEVEL_NONE;
3306 return rv;
3309 /* request to change the personality. Need to ensure:
3310 * - array is not engaged in resync/recovery/reshape
3311 * - old personality can be suspended
3312 * - new personality will access other array.
3315 if (mddev->sync_thread ||
3316 mddev->reshape_position != MaxSector ||
3317 mddev->sysfs_active)
3318 return -EBUSY;
3320 if (!mddev->pers->quiesce) {
3321 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3322 mdname(mddev), mddev->pers->name);
3323 return -EINVAL;
3326 /* Now find the new personality */
3327 if (len == 0 || len >= sizeof(clevel))
3328 return -EINVAL;
3329 strncpy(clevel, buf, len);
3330 if (clevel[len-1] == '\n')
3331 len--;
3332 clevel[len] = 0;
3333 if (strict_strtol(clevel, 10, &level))
3334 level = LEVEL_NONE;
3336 if (request_module("md-%s", clevel) != 0)
3337 request_module("md-level-%s", clevel);
3338 spin_lock(&pers_lock);
3339 pers = find_pers(level, clevel);
3340 if (!pers || !try_module_get(pers->owner)) {
3341 spin_unlock(&pers_lock);
3342 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3343 return -EINVAL;
3345 spin_unlock(&pers_lock);
3347 if (pers == mddev->pers) {
3348 /* Nothing to do! */
3349 module_put(pers->owner);
3350 return rv;
3352 if (!pers->takeover) {
3353 module_put(pers->owner);
3354 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3355 mdname(mddev), clevel);
3356 return -EINVAL;
3359 list_for_each_entry(rdev, &mddev->disks, same_set)
3360 rdev->new_raid_disk = rdev->raid_disk;
3362 /* ->takeover must set new_* and/or delta_disks
3363 * if it succeeds, and may set them when it fails.
3365 priv = pers->takeover(mddev);
3366 if (IS_ERR(priv)) {
3367 mddev->new_level = mddev->level;
3368 mddev->new_layout = mddev->layout;
3369 mddev->new_chunk_sectors = mddev->chunk_sectors;
3370 mddev->raid_disks -= mddev->delta_disks;
3371 mddev->delta_disks = 0;
3372 module_put(pers->owner);
3373 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3374 mdname(mddev), clevel);
3375 return PTR_ERR(priv);
3378 /* Looks like we have a winner */
3379 mddev_suspend(mddev);
3380 mddev->pers->stop(mddev);
3382 if (mddev->pers->sync_request == NULL &&
3383 pers->sync_request != NULL) {
3384 /* need to add the md_redundancy_group */
3385 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3386 printk(KERN_WARNING
3387 "md: cannot register extra attributes for %s\n",
3388 mdname(mddev));
3389 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3391 if (mddev->pers->sync_request != NULL &&
3392 pers->sync_request == NULL) {
3393 /* need to remove the md_redundancy_group */
3394 if (mddev->to_remove == NULL)
3395 mddev->to_remove = &md_redundancy_group;
3398 if (mddev->pers->sync_request == NULL &&
3399 mddev->external) {
3400 /* We are converting from a no-redundancy array
3401 * to a redundancy array and metadata is managed
3402 * externally so we need to be sure that writes
3403 * won't block due to a need to transition
3404 * clean->dirty
3405 * until external management is started.
3407 mddev->in_sync = 0;
3408 mddev->safemode_delay = 0;
3409 mddev->safemode = 0;
3412 list_for_each_entry(rdev, &mddev->disks, same_set) {
3413 if (rdev->raid_disk < 0)
3414 continue;
3415 if (rdev->new_raid_disk >= mddev->raid_disks)
3416 rdev->new_raid_disk = -1;
3417 if (rdev->new_raid_disk == rdev->raid_disk)
3418 continue;
3419 sysfs_unlink_rdev(mddev, rdev);
3421 list_for_each_entry(rdev, &mddev->disks, same_set) {
3422 if (rdev->raid_disk < 0)
3423 continue;
3424 if (rdev->new_raid_disk == rdev->raid_disk)
3425 continue;
3426 rdev->raid_disk = rdev->new_raid_disk;
3427 if (rdev->raid_disk < 0)
3428 clear_bit(In_sync, &rdev->flags);
3429 else {
3430 if (sysfs_link_rdev(mddev, rdev))
3431 printk(KERN_WARNING "md: cannot register rd%d"
3432 " for %s after level change\n",
3433 rdev->raid_disk, mdname(mddev));
3437 module_put(mddev->pers->owner);
3438 mddev->pers = pers;
3439 mddev->private = priv;
3440 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3441 mddev->level = mddev->new_level;
3442 mddev->layout = mddev->new_layout;
3443 mddev->chunk_sectors = mddev->new_chunk_sectors;
3444 mddev->delta_disks = 0;
3445 mddev->degraded = 0;
3446 if (mddev->pers->sync_request == NULL) {
3447 /* this is now an array without redundancy, so
3448 * it must always be in_sync
3450 mddev->in_sync = 1;
3451 del_timer_sync(&mddev->safemode_timer);
3453 pers->run(mddev);
3454 mddev_resume(mddev);
3455 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3456 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3457 md_wakeup_thread(mddev->thread);
3458 sysfs_notify(&mddev->kobj, NULL, "level");
3459 md_new_event(mddev);
3460 return rv;
3463 static struct md_sysfs_entry md_level =
3464 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3467 static ssize_t
3468 layout_show(mddev_t *mddev, char *page)
3470 /* just a number, not meaningful for all levels */
3471 if (mddev->reshape_position != MaxSector &&
3472 mddev->layout != mddev->new_layout)
3473 return sprintf(page, "%d (%d)\n",
3474 mddev->new_layout, mddev->layout);
3475 return sprintf(page, "%d\n", mddev->layout);
3478 static ssize_t
3479 layout_store(mddev_t *mddev, const char *buf, size_t len)
3481 char *e;
3482 unsigned long n = simple_strtoul(buf, &e, 10);
3484 if (!*buf || (*e && *e != '\n'))
3485 return -EINVAL;
3487 if (mddev->pers) {
3488 int err;
3489 if (mddev->pers->check_reshape == NULL)
3490 return -EBUSY;
3491 mddev->new_layout = n;
3492 err = mddev->pers->check_reshape(mddev);
3493 if (err) {
3494 mddev->new_layout = mddev->layout;
3495 return err;
3497 } else {
3498 mddev->new_layout = n;
3499 if (mddev->reshape_position == MaxSector)
3500 mddev->layout = n;
3502 return len;
3504 static struct md_sysfs_entry md_layout =
3505 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3508 static ssize_t
3509 raid_disks_show(mddev_t *mddev, char *page)
3511 if (mddev->raid_disks == 0)
3512 return 0;
3513 if (mddev->reshape_position != MaxSector &&
3514 mddev->delta_disks != 0)
3515 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3516 mddev->raid_disks - mddev->delta_disks);
3517 return sprintf(page, "%d\n", mddev->raid_disks);
3520 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3522 static ssize_t
3523 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3525 char *e;
3526 int rv = 0;
3527 unsigned long n = simple_strtoul(buf, &e, 10);
3529 if (!*buf || (*e && *e != '\n'))
3530 return -EINVAL;
3532 if (mddev->pers)
3533 rv = update_raid_disks(mddev, n);
3534 else if (mddev->reshape_position != MaxSector) {
3535 int olddisks = mddev->raid_disks - mddev->delta_disks;
3536 mddev->delta_disks = n - olddisks;
3537 mddev->raid_disks = n;
3538 } else
3539 mddev->raid_disks = n;
3540 return rv ? rv : len;
3542 static struct md_sysfs_entry md_raid_disks =
3543 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3545 static ssize_t
3546 chunk_size_show(mddev_t *mddev, char *page)
3548 if (mddev->reshape_position != MaxSector &&
3549 mddev->chunk_sectors != mddev->new_chunk_sectors)
3550 return sprintf(page, "%d (%d)\n",
3551 mddev->new_chunk_sectors << 9,
3552 mddev->chunk_sectors << 9);
3553 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3556 static ssize_t
3557 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3559 char *e;
3560 unsigned long n = simple_strtoul(buf, &e, 10);
3562 if (!*buf || (*e && *e != '\n'))
3563 return -EINVAL;
3565 if (mddev->pers) {
3566 int err;
3567 if (mddev->pers->check_reshape == NULL)
3568 return -EBUSY;
3569 mddev->new_chunk_sectors = n >> 9;
3570 err = mddev->pers->check_reshape(mddev);
3571 if (err) {
3572 mddev->new_chunk_sectors = mddev->chunk_sectors;
3573 return err;
3575 } else {
3576 mddev->new_chunk_sectors = n >> 9;
3577 if (mddev->reshape_position == MaxSector)
3578 mddev->chunk_sectors = n >> 9;
3580 return len;
3582 static struct md_sysfs_entry md_chunk_size =
3583 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3585 static ssize_t
3586 resync_start_show(mddev_t *mddev, char *page)
3588 if (mddev->recovery_cp == MaxSector)
3589 return sprintf(page, "none\n");
3590 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3593 static ssize_t
3594 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3596 char *e;
3597 unsigned long long n = simple_strtoull(buf, &e, 10);
3599 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3600 return -EBUSY;
3601 if (cmd_match(buf, "none"))
3602 n = MaxSector;
3603 else if (!*buf || (*e && *e != '\n'))
3604 return -EINVAL;
3606 mddev->recovery_cp = n;
3607 return len;
3609 static struct md_sysfs_entry md_resync_start =
3610 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3613 * The array state can be:
3615 * clear
3616 * No devices, no size, no level
3617 * Equivalent to STOP_ARRAY ioctl
3618 * inactive
3619 * May have some settings, but array is not active
3620 * all IO results in error
3621 * When written, doesn't tear down array, but just stops it
3622 * suspended (not supported yet)
3623 * All IO requests will block. The array can be reconfigured.
3624 * Writing this, if accepted, will block until array is quiescent
3625 * readonly
3626 * no resync can happen. no superblocks get written.
3627 * write requests fail
3628 * read-auto
3629 * like readonly, but behaves like 'clean' on a write request.
3631 * clean - no pending writes, but otherwise active.
3632 * When written to inactive array, starts without resync
3633 * If a write request arrives then
3634 * if metadata is known, mark 'dirty' and switch to 'active'.
3635 * if not known, block and switch to write-pending
3636 * If written to an active array that has pending writes, then fails.
3637 * active
3638 * fully active: IO and resync can be happening.
3639 * When written to inactive array, starts with resync
3641 * write-pending
3642 * clean, but writes are blocked waiting for 'active' to be written.
3644 * active-idle
3645 * like active, but no writes have been seen for a while (100msec).
3648 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3649 write_pending, active_idle, bad_word};
3650 static char *array_states[] = {
3651 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3652 "write-pending", "active-idle", NULL };
3654 static int match_word(const char *word, char **list)
3656 int n;
3657 for (n=0; list[n]; n++)
3658 if (cmd_match(word, list[n]))
3659 break;
3660 return n;
3663 static ssize_t
3664 array_state_show(mddev_t *mddev, char *page)
3666 enum array_state st = inactive;
3668 if (mddev->pers)
3669 switch(mddev->ro) {
3670 case 1:
3671 st = readonly;
3672 break;
3673 case 2:
3674 st = read_auto;
3675 break;
3676 case 0:
3677 if (mddev->in_sync)
3678 st = clean;
3679 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3680 st = write_pending;
3681 else if (mddev->safemode)
3682 st = active_idle;
3683 else
3684 st = active;
3686 else {
3687 if (list_empty(&mddev->disks) &&
3688 mddev->raid_disks == 0 &&
3689 mddev->dev_sectors == 0)
3690 st = clear;
3691 else
3692 st = inactive;
3694 return sprintf(page, "%s\n", array_states[st]);
3697 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3698 static int md_set_readonly(mddev_t * mddev, int is_open);
3699 static int do_md_run(mddev_t * mddev);
3700 static int restart_array(mddev_t *mddev);
3702 static ssize_t
3703 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3705 int err = -EINVAL;
3706 enum array_state st = match_word(buf, array_states);
3707 switch(st) {
3708 case bad_word:
3709 break;
3710 case clear:
3711 /* stopping an active array */
3712 if (atomic_read(&mddev->openers) > 0)
3713 return -EBUSY;
3714 err = do_md_stop(mddev, 0, 0);
3715 break;
3716 case inactive:
3717 /* stopping an active array */
3718 if (mddev->pers) {
3719 if (atomic_read(&mddev->openers) > 0)
3720 return -EBUSY;
3721 err = do_md_stop(mddev, 2, 0);
3722 } else
3723 err = 0; /* already inactive */
3724 break;
3725 case suspended:
3726 break; /* not supported yet */
3727 case readonly:
3728 if (mddev->pers)
3729 err = md_set_readonly(mddev, 0);
3730 else {
3731 mddev->ro = 1;
3732 set_disk_ro(mddev->gendisk, 1);
3733 err = do_md_run(mddev);
3735 break;
3736 case read_auto:
3737 if (mddev->pers) {
3738 if (mddev->ro == 0)
3739 err = md_set_readonly(mddev, 0);
3740 else if (mddev->ro == 1)
3741 err = restart_array(mddev);
3742 if (err == 0) {
3743 mddev->ro = 2;
3744 set_disk_ro(mddev->gendisk, 0);
3746 } else {
3747 mddev->ro = 2;
3748 err = do_md_run(mddev);
3750 break;
3751 case clean:
3752 if (mddev->pers) {
3753 restart_array(mddev);
3754 spin_lock_irq(&mddev->write_lock);
3755 if (atomic_read(&mddev->writes_pending) == 0) {
3756 if (mddev->in_sync == 0) {
3757 mddev->in_sync = 1;
3758 if (mddev->safemode == 1)
3759 mddev->safemode = 0;
3760 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3762 err = 0;
3763 } else
3764 err = -EBUSY;
3765 spin_unlock_irq(&mddev->write_lock);
3766 } else
3767 err = -EINVAL;
3768 break;
3769 case active:
3770 if (mddev->pers) {
3771 restart_array(mddev);
3772 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3773 wake_up(&mddev->sb_wait);
3774 err = 0;
3775 } else {
3776 mddev->ro = 0;
3777 set_disk_ro(mddev->gendisk, 0);
3778 err = do_md_run(mddev);
3780 break;
3781 case write_pending:
3782 case active_idle:
3783 /* these cannot be set */
3784 break;
3786 if (err)
3787 return err;
3788 else {
3789 sysfs_notify_dirent_safe(mddev->sysfs_state);
3790 return len;
3793 static struct md_sysfs_entry md_array_state =
3794 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3796 static ssize_t
3797 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3798 return sprintf(page, "%d\n",
3799 atomic_read(&mddev->max_corr_read_errors));
3802 static ssize_t
3803 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3805 char *e;
3806 unsigned long n = simple_strtoul(buf, &e, 10);
3808 if (*buf && (*e == 0 || *e == '\n')) {
3809 atomic_set(&mddev->max_corr_read_errors, n);
3810 return len;
3812 return -EINVAL;
3815 static struct md_sysfs_entry max_corr_read_errors =
3816 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3817 max_corrected_read_errors_store);
3819 static ssize_t
3820 null_show(mddev_t *mddev, char *page)
3822 return -EINVAL;
3825 static ssize_t
3826 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3828 /* buf must be %d:%d\n? giving major and minor numbers */
3829 /* The new device is added to the array.
3830 * If the array has a persistent superblock, we read the
3831 * superblock to initialise info and check validity.
3832 * Otherwise, only checking done is that in bind_rdev_to_array,
3833 * which mainly checks size.
3835 char *e;
3836 int major = simple_strtoul(buf, &e, 10);
3837 int minor;
3838 dev_t dev;
3839 struct md_rdev *rdev;
3840 int err;
3842 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3843 return -EINVAL;
3844 minor = simple_strtoul(e+1, &e, 10);
3845 if (*e && *e != '\n')
3846 return -EINVAL;
3847 dev = MKDEV(major, minor);
3848 if (major != MAJOR(dev) ||
3849 minor != MINOR(dev))
3850 return -EOVERFLOW;
3853 if (mddev->persistent) {
3854 rdev = md_import_device(dev, mddev->major_version,
3855 mddev->minor_version);
3856 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3857 struct md_rdev *rdev0
3858 = list_entry(mddev->disks.next,
3859 struct md_rdev, same_set);
3860 err = super_types[mddev->major_version]
3861 .load_super(rdev, rdev0, mddev->minor_version);
3862 if (err < 0)
3863 goto out;
3865 } else if (mddev->external)
3866 rdev = md_import_device(dev, -2, -1);
3867 else
3868 rdev = md_import_device(dev, -1, -1);
3870 if (IS_ERR(rdev))
3871 return PTR_ERR(rdev);
3872 err = bind_rdev_to_array(rdev, mddev);
3873 out:
3874 if (err)
3875 export_rdev(rdev);
3876 return err ? err : len;
3879 static struct md_sysfs_entry md_new_device =
3880 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3882 static ssize_t
3883 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3885 char *end;
3886 unsigned long chunk, end_chunk;
3888 if (!mddev->bitmap)
3889 goto out;
3890 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3891 while (*buf) {
3892 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3893 if (buf == end) break;
3894 if (*end == '-') { /* range */
3895 buf = end + 1;
3896 end_chunk = simple_strtoul(buf, &end, 0);
3897 if (buf == end) break;
3899 if (*end && !isspace(*end)) break;
3900 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3901 buf = skip_spaces(end);
3903 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3904 out:
3905 return len;
3908 static struct md_sysfs_entry md_bitmap =
3909 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3911 static ssize_t
3912 size_show(mddev_t *mddev, char *page)
3914 return sprintf(page, "%llu\n",
3915 (unsigned long long)mddev->dev_sectors / 2);
3918 static int update_size(mddev_t *mddev, sector_t num_sectors);
3920 static ssize_t
3921 size_store(mddev_t *mddev, const char *buf, size_t len)
3923 /* If array is inactive, we can reduce the component size, but
3924 * not increase it (except from 0).
3925 * If array is active, we can try an on-line resize
3927 sector_t sectors;
3928 int err = strict_blocks_to_sectors(buf, &sectors);
3930 if (err < 0)
3931 return err;
3932 if (mddev->pers) {
3933 err = update_size(mddev, sectors);
3934 md_update_sb(mddev, 1);
3935 } else {
3936 if (mddev->dev_sectors == 0 ||
3937 mddev->dev_sectors > sectors)
3938 mddev->dev_sectors = sectors;
3939 else
3940 err = -ENOSPC;
3942 return err ? err : len;
3945 static struct md_sysfs_entry md_size =
3946 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3949 /* Metdata version.
3950 * This is one of
3951 * 'none' for arrays with no metadata (good luck...)
3952 * 'external' for arrays with externally managed metadata,
3953 * or N.M for internally known formats
3955 static ssize_t
3956 metadata_show(mddev_t *mddev, char *page)
3958 if (mddev->persistent)
3959 return sprintf(page, "%d.%d\n",
3960 mddev->major_version, mddev->minor_version);
3961 else if (mddev->external)
3962 return sprintf(page, "external:%s\n", mddev->metadata_type);
3963 else
3964 return sprintf(page, "none\n");
3967 static ssize_t
3968 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3970 int major, minor;
3971 char *e;
3972 /* Changing the details of 'external' metadata is
3973 * always permitted. Otherwise there must be
3974 * no devices attached to the array.
3976 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3978 else if (!list_empty(&mddev->disks))
3979 return -EBUSY;
3981 if (cmd_match(buf, "none")) {
3982 mddev->persistent = 0;
3983 mddev->external = 0;
3984 mddev->major_version = 0;
3985 mddev->minor_version = 90;
3986 return len;
3988 if (strncmp(buf, "external:", 9) == 0) {
3989 size_t namelen = len-9;
3990 if (namelen >= sizeof(mddev->metadata_type))
3991 namelen = sizeof(mddev->metadata_type)-1;
3992 strncpy(mddev->metadata_type, buf+9, namelen);
3993 mddev->metadata_type[namelen] = 0;
3994 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3995 mddev->metadata_type[--namelen] = 0;
3996 mddev->persistent = 0;
3997 mddev->external = 1;
3998 mddev->major_version = 0;
3999 mddev->minor_version = 90;
4000 return len;
4002 major = simple_strtoul(buf, &e, 10);
4003 if (e==buf || *e != '.')
4004 return -EINVAL;
4005 buf = e+1;
4006 minor = simple_strtoul(buf, &e, 10);
4007 if (e==buf || (*e && *e != '\n') )
4008 return -EINVAL;
4009 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4010 return -ENOENT;
4011 mddev->major_version = major;
4012 mddev->minor_version = minor;
4013 mddev->persistent = 1;
4014 mddev->external = 0;
4015 return len;
4018 static struct md_sysfs_entry md_metadata =
4019 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4021 static ssize_t
4022 action_show(mddev_t *mddev, char *page)
4024 char *type = "idle";
4025 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4026 type = "frozen";
4027 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4028 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4029 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4030 type = "reshape";
4031 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4032 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4033 type = "resync";
4034 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4035 type = "check";
4036 else
4037 type = "repair";
4038 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4039 type = "recover";
4041 return sprintf(page, "%s\n", type);
4044 static void reap_sync_thread(mddev_t *mddev);
4046 static ssize_t
4047 action_store(mddev_t *mddev, const char *page, size_t len)
4049 if (!mddev->pers || !mddev->pers->sync_request)
4050 return -EINVAL;
4052 if (cmd_match(page, "frozen"))
4053 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4054 else
4055 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4057 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4058 if (mddev->sync_thread) {
4059 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4060 reap_sync_thread(mddev);
4062 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4063 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4064 return -EBUSY;
4065 else if (cmd_match(page, "resync"))
4066 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4067 else if (cmd_match(page, "recover")) {
4068 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4069 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4070 } else if (cmd_match(page, "reshape")) {
4071 int err;
4072 if (mddev->pers->start_reshape == NULL)
4073 return -EINVAL;
4074 err = mddev->pers->start_reshape(mddev);
4075 if (err)
4076 return err;
4077 sysfs_notify(&mddev->kobj, NULL, "degraded");
4078 } else {
4079 if (cmd_match(page, "check"))
4080 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4081 else if (!cmd_match(page, "repair"))
4082 return -EINVAL;
4083 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4084 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4086 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4087 md_wakeup_thread(mddev->thread);
4088 sysfs_notify_dirent_safe(mddev->sysfs_action);
4089 return len;
4092 static ssize_t
4093 mismatch_cnt_show(mddev_t *mddev, char *page)
4095 return sprintf(page, "%llu\n",
4096 (unsigned long long) mddev->resync_mismatches);
4099 static struct md_sysfs_entry md_scan_mode =
4100 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4103 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4105 static ssize_t
4106 sync_min_show(mddev_t *mddev, char *page)
4108 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4109 mddev->sync_speed_min ? "local": "system");
4112 static ssize_t
4113 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
4115 int min;
4116 char *e;
4117 if (strncmp(buf, "system", 6)==0) {
4118 mddev->sync_speed_min = 0;
4119 return len;
4121 min = simple_strtoul(buf, &e, 10);
4122 if (buf == e || (*e && *e != '\n') || min <= 0)
4123 return -EINVAL;
4124 mddev->sync_speed_min = min;
4125 return len;
4128 static struct md_sysfs_entry md_sync_min =
4129 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4131 static ssize_t
4132 sync_max_show(mddev_t *mddev, char *page)
4134 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4135 mddev->sync_speed_max ? "local": "system");
4138 static ssize_t
4139 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
4141 int max;
4142 char *e;
4143 if (strncmp(buf, "system", 6)==0) {
4144 mddev->sync_speed_max = 0;
4145 return len;
4147 max = simple_strtoul(buf, &e, 10);
4148 if (buf == e || (*e && *e != '\n') || max <= 0)
4149 return -EINVAL;
4150 mddev->sync_speed_max = max;
4151 return len;
4154 static struct md_sysfs_entry md_sync_max =
4155 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4157 static ssize_t
4158 degraded_show(mddev_t *mddev, char *page)
4160 return sprintf(page, "%d\n", mddev->degraded);
4162 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4164 static ssize_t
4165 sync_force_parallel_show(mddev_t *mddev, char *page)
4167 return sprintf(page, "%d\n", mddev->parallel_resync);
4170 static ssize_t
4171 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
4173 long n;
4175 if (strict_strtol(buf, 10, &n))
4176 return -EINVAL;
4178 if (n != 0 && n != 1)
4179 return -EINVAL;
4181 mddev->parallel_resync = n;
4183 if (mddev->sync_thread)
4184 wake_up(&resync_wait);
4186 return len;
4189 /* force parallel resync, even with shared block devices */
4190 static struct md_sysfs_entry md_sync_force_parallel =
4191 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4192 sync_force_parallel_show, sync_force_parallel_store);
4194 static ssize_t
4195 sync_speed_show(mddev_t *mddev, char *page)
4197 unsigned long resync, dt, db;
4198 if (mddev->curr_resync == 0)
4199 return sprintf(page, "none\n");
4200 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4201 dt = (jiffies - mddev->resync_mark) / HZ;
4202 if (!dt) dt++;
4203 db = resync - mddev->resync_mark_cnt;
4204 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4207 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4209 static ssize_t
4210 sync_completed_show(mddev_t *mddev, char *page)
4212 unsigned long long max_sectors, resync;
4214 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4215 return sprintf(page, "none\n");
4217 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4218 max_sectors = mddev->resync_max_sectors;
4219 else
4220 max_sectors = mddev->dev_sectors;
4222 resync = mddev->curr_resync_completed;
4223 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4226 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4228 static ssize_t
4229 min_sync_show(mddev_t *mddev, char *page)
4231 return sprintf(page, "%llu\n",
4232 (unsigned long long)mddev->resync_min);
4234 static ssize_t
4235 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
4237 unsigned long long min;
4238 if (strict_strtoull(buf, 10, &min))
4239 return -EINVAL;
4240 if (min > mddev->resync_max)
4241 return -EINVAL;
4242 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4243 return -EBUSY;
4245 /* Must be a multiple of chunk_size */
4246 if (mddev->chunk_sectors) {
4247 sector_t temp = min;
4248 if (sector_div(temp, mddev->chunk_sectors))
4249 return -EINVAL;
4251 mddev->resync_min = min;
4253 return len;
4256 static struct md_sysfs_entry md_min_sync =
4257 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4259 static ssize_t
4260 max_sync_show(mddev_t *mddev, char *page)
4262 if (mddev->resync_max == MaxSector)
4263 return sprintf(page, "max\n");
4264 else
4265 return sprintf(page, "%llu\n",
4266 (unsigned long long)mddev->resync_max);
4268 static ssize_t
4269 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4271 if (strncmp(buf, "max", 3) == 0)
4272 mddev->resync_max = MaxSector;
4273 else {
4274 unsigned long long max;
4275 if (strict_strtoull(buf, 10, &max))
4276 return -EINVAL;
4277 if (max < mddev->resync_min)
4278 return -EINVAL;
4279 if (max < mddev->resync_max &&
4280 mddev->ro == 0 &&
4281 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4282 return -EBUSY;
4284 /* Must be a multiple of chunk_size */
4285 if (mddev->chunk_sectors) {
4286 sector_t temp = max;
4287 if (sector_div(temp, mddev->chunk_sectors))
4288 return -EINVAL;
4290 mddev->resync_max = max;
4292 wake_up(&mddev->recovery_wait);
4293 return len;
4296 static struct md_sysfs_entry md_max_sync =
4297 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4299 static ssize_t
4300 suspend_lo_show(mddev_t *mddev, char *page)
4302 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4305 static ssize_t
4306 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4308 char *e;
4309 unsigned long long new = simple_strtoull(buf, &e, 10);
4310 unsigned long long old = mddev->suspend_lo;
4312 if (mddev->pers == NULL ||
4313 mddev->pers->quiesce == NULL)
4314 return -EINVAL;
4315 if (buf == e || (*e && *e != '\n'))
4316 return -EINVAL;
4318 mddev->suspend_lo = new;
4319 if (new >= old)
4320 /* Shrinking suspended region */
4321 mddev->pers->quiesce(mddev, 2);
4322 else {
4323 /* Expanding suspended region - need to wait */
4324 mddev->pers->quiesce(mddev, 1);
4325 mddev->pers->quiesce(mddev, 0);
4327 return len;
4329 static struct md_sysfs_entry md_suspend_lo =
4330 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4333 static ssize_t
4334 suspend_hi_show(mddev_t *mddev, char *page)
4336 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4339 static ssize_t
4340 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4342 char *e;
4343 unsigned long long new = simple_strtoull(buf, &e, 10);
4344 unsigned long long old = mddev->suspend_hi;
4346 if (mddev->pers == NULL ||
4347 mddev->pers->quiesce == NULL)
4348 return -EINVAL;
4349 if (buf == e || (*e && *e != '\n'))
4350 return -EINVAL;
4352 mddev->suspend_hi = new;
4353 if (new <= old)
4354 /* Shrinking suspended region */
4355 mddev->pers->quiesce(mddev, 2);
4356 else {
4357 /* Expanding suspended region - need to wait */
4358 mddev->pers->quiesce(mddev, 1);
4359 mddev->pers->quiesce(mddev, 0);
4361 return len;
4363 static struct md_sysfs_entry md_suspend_hi =
4364 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4366 static ssize_t
4367 reshape_position_show(mddev_t *mddev, char *page)
4369 if (mddev->reshape_position != MaxSector)
4370 return sprintf(page, "%llu\n",
4371 (unsigned long long)mddev->reshape_position);
4372 strcpy(page, "none\n");
4373 return 5;
4376 static ssize_t
4377 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4379 char *e;
4380 unsigned long long new = simple_strtoull(buf, &e, 10);
4381 if (mddev->pers)
4382 return -EBUSY;
4383 if (buf == e || (*e && *e != '\n'))
4384 return -EINVAL;
4385 mddev->reshape_position = new;
4386 mddev->delta_disks = 0;
4387 mddev->new_level = mddev->level;
4388 mddev->new_layout = mddev->layout;
4389 mddev->new_chunk_sectors = mddev->chunk_sectors;
4390 return len;
4393 static struct md_sysfs_entry md_reshape_position =
4394 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4395 reshape_position_store);
4397 static ssize_t
4398 array_size_show(mddev_t *mddev, char *page)
4400 if (mddev->external_size)
4401 return sprintf(page, "%llu\n",
4402 (unsigned long long)mddev->array_sectors/2);
4403 else
4404 return sprintf(page, "default\n");
4407 static ssize_t
4408 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4410 sector_t sectors;
4412 if (strncmp(buf, "default", 7) == 0) {
4413 if (mddev->pers)
4414 sectors = mddev->pers->size(mddev, 0, 0);
4415 else
4416 sectors = mddev->array_sectors;
4418 mddev->external_size = 0;
4419 } else {
4420 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4421 return -EINVAL;
4422 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4423 return -E2BIG;
4425 mddev->external_size = 1;
4428 mddev->array_sectors = sectors;
4429 if (mddev->pers) {
4430 set_capacity(mddev->gendisk, mddev->array_sectors);
4431 revalidate_disk(mddev->gendisk);
4433 return len;
4436 static struct md_sysfs_entry md_array_size =
4437 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4438 array_size_store);
4440 static struct attribute *md_default_attrs[] = {
4441 &md_level.attr,
4442 &md_layout.attr,
4443 &md_raid_disks.attr,
4444 &md_chunk_size.attr,
4445 &md_size.attr,
4446 &md_resync_start.attr,
4447 &md_metadata.attr,
4448 &md_new_device.attr,
4449 &md_safe_delay.attr,
4450 &md_array_state.attr,
4451 &md_reshape_position.attr,
4452 &md_array_size.attr,
4453 &max_corr_read_errors.attr,
4454 NULL,
4457 static struct attribute *md_redundancy_attrs[] = {
4458 &md_scan_mode.attr,
4459 &md_mismatches.attr,
4460 &md_sync_min.attr,
4461 &md_sync_max.attr,
4462 &md_sync_speed.attr,
4463 &md_sync_force_parallel.attr,
4464 &md_sync_completed.attr,
4465 &md_min_sync.attr,
4466 &md_max_sync.attr,
4467 &md_suspend_lo.attr,
4468 &md_suspend_hi.attr,
4469 &md_bitmap.attr,
4470 &md_degraded.attr,
4471 NULL,
4473 static struct attribute_group md_redundancy_group = {
4474 .name = NULL,
4475 .attrs = md_redundancy_attrs,
4479 static ssize_t
4480 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4482 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4483 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4484 ssize_t rv;
4486 if (!entry->show)
4487 return -EIO;
4488 rv = mddev_lock(mddev);
4489 if (!rv) {
4490 rv = entry->show(mddev, page);
4491 mddev_unlock(mddev);
4493 return rv;
4496 static ssize_t
4497 md_attr_store(struct kobject *kobj, struct attribute *attr,
4498 const char *page, size_t length)
4500 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4501 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4502 ssize_t rv;
4504 if (!entry->store)
4505 return -EIO;
4506 if (!capable(CAP_SYS_ADMIN))
4507 return -EACCES;
4508 rv = mddev_lock(mddev);
4509 if (mddev->hold_active == UNTIL_IOCTL)
4510 mddev->hold_active = 0;
4511 if (!rv) {
4512 rv = entry->store(mddev, page, length);
4513 mddev_unlock(mddev);
4515 return rv;
4518 static void md_free(struct kobject *ko)
4520 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4522 if (mddev->sysfs_state)
4523 sysfs_put(mddev->sysfs_state);
4525 if (mddev->gendisk) {
4526 del_gendisk(mddev->gendisk);
4527 put_disk(mddev->gendisk);
4529 if (mddev->queue)
4530 blk_cleanup_queue(mddev->queue);
4532 kfree(mddev);
4535 static const struct sysfs_ops md_sysfs_ops = {
4536 .show = md_attr_show,
4537 .store = md_attr_store,
4539 static struct kobj_type md_ktype = {
4540 .release = md_free,
4541 .sysfs_ops = &md_sysfs_ops,
4542 .default_attrs = md_default_attrs,
4545 int mdp_major = 0;
4547 static void mddev_delayed_delete(struct work_struct *ws)
4549 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4551 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4552 kobject_del(&mddev->kobj);
4553 kobject_put(&mddev->kobj);
4556 static int md_alloc(dev_t dev, char *name)
4558 static DEFINE_MUTEX(disks_mutex);
4559 mddev_t *mddev = mddev_find(dev);
4560 struct gendisk *disk;
4561 int partitioned;
4562 int shift;
4563 int unit;
4564 int error;
4566 if (!mddev)
4567 return -ENODEV;
4569 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4570 shift = partitioned ? MdpMinorShift : 0;
4571 unit = MINOR(mddev->unit) >> shift;
4573 /* wait for any previous instance of this device to be
4574 * completely removed (mddev_delayed_delete).
4576 flush_workqueue(md_misc_wq);
4578 mutex_lock(&disks_mutex);
4579 error = -EEXIST;
4580 if (mddev->gendisk)
4581 goto abort;
4583 if (name) {
4584 /* Need to ensure that 'name' is not a duplicate.
4586 mddev_t *mddev2;
4587 spin_lock(&all_mddevs_lock);
4589 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4590 if (mddev2->gendisk &&
4591 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4592 spin_unlock(&all_mddevs_lock);
4593 goto abort;
4595 spin_unlock(&all_mddevs_lock);
4598 error = -ENOMEM;
4599 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4600 if (!mddev->queue)
4601 goto abort;
4602 mddev->queue->queuedata = mddev;
4604 blk_queue_make_request(mddev->queue, md_make_request);
4606 disk = alloc_disk(1 << shift);
4607 if (!disk) {
4608 blk_cleanup_queue(mddev->queue);
4609 mddev->queue = NULL;
4610 goto abort;
4612 disk->major = MAJOR(mddev->unit);
4613 disk->first_minor = unit << shift;
4614 if (name)
4615 strcpy(disk->disk_name, name);
4616 else if (partitioned)
4617 sprintf(disk->disk_name, "md_d%d", unit);
4618 else
4619 sprintf(disk->disk_name, "md%d", unit);
4620 disk->fops = &md_fops;
4621 disk->private_data = mddev;
4622 disk->queue = mddev->queue;
4623 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4624 /* Allow extended partitions. This makes the
4625 * 'mdp' device redundant, but we can't really
4626 * remove it now.
4628 disk->flags |= GENHD_FL_EXT_DEVT;
4629 mddev->gendisk = disk;
4630 /* As soon as we call add_disk(), another thread could get
4631 * through to md_open, so make sure it doesn't get too far
4633 mutex_lock(&mddev->open_mutex);
4634 add_disk(disk);
4636 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4637 &disk_to_dev(disk)->kobj, "%s", "md");
4638 if (error) {
4639 /* This isn't possible, but as kobject_init_and_add is marked
4640 * __must_check, we must do something with the result
4642 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4643 disk->disk_name);
4644 error = 0;
4646 if (mddev->kobj.sd &&
4647 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4648 printk(KERN_DEBUG "pointless warning\n");
4649 mutex_unlock(&mddev->open_mutex);
4650 abort:
4651 mutex_unlock(&disks_mutex);
4652 if (!error && mddev->kobj.sd) {
4653 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4654 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4656 mddev_put(mddev);
4657 return error;
4660 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4662 md_alloc(dev, NULL);
4663 return NULL;
4666 static int add_named_array(const char *val, struct kernel_param *kp)
4668 /* val must be "md_*" where * is not all digits.
4669 * We allocate an array with a large free minor number, and
4670 * set the name to val. val must not already be an active name.
4672 int len = strlen(val);
4673 char buf[DISK_NAME_LEN];
4675 while (len && val[len-1] == '\n')
4676 len--;
4677 if (len >= DISK_NAME_LEN)
4678 return -E2BIG;
4679 strlcpy(buf, val, len+1);
4680 if (strncmp(buf, "md_", 3) != 0)
4681 return -EINVAL;
4682 return md_alloc(0, buf);
4685 static void md_safemode_timeout(unsigned long data)
4687 mddev_t *mddev = (mddev_t *) data;
4689 if (!atomic_read(&mddev->writes_pending)) {
4690 mddev->safemode = 1;
4691 if (mddev->external)
4692 sysfs_notify_dirent_safe(mddev->sysfs_state);
4694 md_wakeup_thread(mddev->thread);
4697 static int start_dirty_degraded;
4699 int md_run(mddev_t *mddev)
4701 int err;
4702 struct md_rdev *rdev;
4703 struct mdk_personality *pers;
4705 if (list_empty(&mddev->disks))
4706 /* cannot run an array with no devices.. */
4707 return -EINVAL;
4709 if (mddev->pers)
4710 return -EBUSY;
4711 /* Cannot run until previous stop completes properly */
4712 if (mddev->sysfs_active)
4713 return -EBUSY;
4716 * Analyze all RAID superblock(s)
4718 if (!mddev->raid_disks) {
4719 if (!mddev->persistent)
4720 return -EINVAL;
4721 analyze_sbs(mddev);
4724 if (mddev->level != LEVEL_NONE)
4725 request_module("md-level-%d", mddev->level);
4726 else if (mddev->clevel[0])
4727 request_module("md-%s", mddev->clevel);
4730 * Drop all container device buffers, from now on
4731 * the only valid external interface is through the md
4732 * device.
4734 list_for_each_entry(rdev, &mddev->disks, same_set) {
4735 if (test_bit(Faulty, &rdev->flags))
4736 continue;
4737 sync_blockdev(rdev->bdev);
4738 invalidate_bdev(rdev->bdev);
4740 /* perform some consistency tests on the device.
4741 * We don't want the data to overlap the metadata,
4742 * Internal Bitmap issues have been handled elsewhere.
4744 if (rdev->meta_bdev) {
4745 /* Nothing to check */;
4746 } else if (rdev->data_offset < rdev->sb_start) {
4747 if (mddev->dev_sectors &&
4748 rdev->data_offset + mddev->dev_sectors
4749 > rdev->sb_start) {
4750 printk("md: %s: data overlaps metadata\n",
4751 mdname(mddev));
4752 return -EINVAL;
4754 } else {
4755 if (rdev->sb_start + rdev->sb_size/512
4756 > rdev->data_offset) {
4757 printk("md: %s: metadata overlaps data\n",
4758 mdname(mddev));
4759 return -EINVAL;
4762 sysfs_notify_dirent_safe(rdev->sysfs_state);
4765 if (mddev->bio_set == NULL)
4766 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4767 sizeof(mddev_t *));
4769 spin_lock(&pers_lock);
4770 pers = find_pers(mddev->level, mddev->clevel);
4771 if (!pers || !try_module_get(pers->owner)) {
4772 spin_unlock(&pers_lock);
4773 if (mddev->level != LEVEL_NONE)
4774 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4775 mddev->level);
4776 else
4777 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4778 mddev->clevel);
4779 return -EINVAL;
4781 mddev->pers = pers;
4782 spin_unlock(&pers_lock);
4783 if (mddev->level != pers->level) {
4784 mddev->level = pers->level;
4785 mddev->new_level = pers->level;
4787 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4789 if (mddev->reshape_position != MaxSector &&
4790 pers->start_reshape == NULL) {
4791 /* This personality cannot handle reshaping... */
4792 mddev->pers = NULL;
4793 module_put(pers->owner);
4794 return -EINVAL;
4797 if (pers->sync_request) {
4798 /* Warn if this is a potentially silly
4799 * configuration.
4801 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4802 struct md_rdev *rdev2;
4803 int warned = 0;
4805 list_for_each_entry(rdev, &mddev->disks, same_set)
4806 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4807 if (rdev < rdev2 &&
4808 rdev->bdev->bd_contains ==
4809 rdev2->bdev->bd_contains) {
4810 printk(KERN_WARNING
4811 "%s: WARNING: %s appears to be"
4812 " on the same physical disk as"
4813 " %s.\n",
4814 mdname(mddev),
4815 bdevname(rdev->bdev,b),
4816 bdevname(rdev2->bdev,b2));
4817 warned = 1;
4821 if (warned)
4822 printk(KERN_WARNING
4823 "True protection against single-disk"
4824 " failure might be compromised.\n");
4827 mddev->recovery = 0;
4828 /* may be over-ridden by personality */
4829 mddev->resync_max_sectors = mddev->dev_sectors;
4831 mddev->ok_start_degraded = start_dirty_degraded;
4833 if (start_readonly && mddev->ro == 0)
4834 mddev->ro = 2; /* read-only, but switch on first write */
4836 err = mddev->pers->run(mddev);
4837 if (err)
4838 printk(KERN_ERR "md: pers->run() failed ...\n");
4839 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4840 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4841 " but 'external_size' not in effect?\n", __func__);
4842 printk(KERN_ERR
4843 "md: invalid array_size %llu > default size %llu\n",
4844 (unsigned long long)mddev->array_sectors / 2,
4845 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4846 err = -EINVAL;
4847 mddev->pers->stop(mddev);
4849 if (err == 0 && mddev->pers->sync_request) {
4850 err = bitmap_create(mddev);
4851 if (err) {
4852 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4853 mdname(mddev), err);
4854 mddev->pers->stop(mddev);
4857 if (err) {
4858 module_put(mddev->pers->owner);
4859 mddev->pers = NULL;
4860 bitmap_destroy(mddev);
4861 return err;
4863 if (mddev->pers->sync_request) {
4864 if (mddev->kobj.sd &&
4865 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4866 printk(KERN_WARNING
4867 "md: cannot register extra attributes for %s\n",
4868 mdname(mddev));
4869 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4870 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4871 mddev->ro = 0;
4873 atomic_set(&mddev->writes_pending,0);
4874 atomic_set(&mddev->max_corr_read_errors,
4875 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4876 mddev->safemode = 0;
4877 mddev->safemode_timer.function = md_safemode_timeout;
4878 mddev->safemode_timer.data = (unsigned long) mddev;
4879 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4880 mddev->in_sync = 1;
4881 smp_wmb();
4882 mddev->ready = 1;
4883 list_for_each_entry(rdev, &mddev->disks, same_set)
4884 if (rdev->raid_disk >= 0)
4885 if (sysfs_link_rdev(mddev, rdev))
4886 /* failure here is OK */;
4888 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4890 if (mddev->flags)
4891 md_update_sb(mddev, 0);
4893 md_new_event(mddev);
4894 sysfs_notify_dirent_safe(mddev->sysfs_state);
4895 sysfs_notify_dirent_safe(mddev->sysfs_action);
4896 sysfs_notify(&mddev->kobj, NULL, "degraded");
4897 return 0;
4899 EXPORT_SYMBOL_GPL(md_run);
4901 static int do_md_run(mddev_t *mddev)
4903 int err;
4905 err = md_run(mddev);
4906 if (err)
4907 goto out;
4908 err = bitmap_load(mddev);
4909 if (err) {
4910 bitmap_destroy(mddev);
4911 goto out;
4914 md_wakeup_thread(mddev->thread);
4915 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4917 set_capacity(mddev->gendisk, mddev->array_sectors);
4918 revalidate_disk(mddev->gendisk);
4919 mddev->changed = 1;
4920 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4921 out:
4922 return err;
4925 static int restart_array(mddev_t *mddev)
4927 struct gendisk *disk = mddev->gendisk;
4929 /* Complain if it has no devices */
4930 if (list_empty(&mddev->disks))
4931 return -ENXIO;
4932 if (!mddev->pers)
4933 return -EINVAL;
4934 if (!mddev->ro)
4935 return -EBUSY;
4936 mddev->safemode = 0;
4937 mddev->ro = 0;
4938 set_disk_ro(disk, 0);
4939 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4940 mdname(mddev));
4941 /* Kick recovery or resync if necessary */
4942 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4943 md_wakeup_thread(mddev->thread);
4944 md_wakeup_thread(mddev->sync_thread);
4945 sysfs_notify_dirent_safe(mddev->sysfs_state);
4946 return 0;
4949 /* similar to deny_write_access, but accounts for our holding a reference
4950 * to the file ourselves */
4951 static int deny_bitmap_write_access(struct file * file)
4953 struct inode *inode = file->f_mapping->host;
4955 spin_lock(&inode->i_lock);
4956 if (atomic_read(&inode->i_writecount) > 1) {
4957 spin_unlock(&inode->i_lock);
4958 return -ETXTBSY;
4960 atomic_set(&inode->i_writecount, -1);
4961 spin_unlock(&inode->i_lock);
4963 return 0;
4966 void restore_bitmap_write_access(struct file *file)
4968 struct inode *inode = file->f_mapping->host;
4970 spin_lock(&inode->i_lock);
4971 atomic_set(&inode->i_writecount, 1);
4972 spin_unlock(&inode->i_lock);
4975 static void md_clean(mddev_t *mddev)
4977 mddev->array_sectors = 0;
4978 mddev->external_size = 0;
4979 mddev->dev_sectors = 0;
4980 mddev->raid_disks = 0;
4981 mddev->recovery_cp = 0;
4982 mddev->resync_min = 0;
4983 mddev->resync_max = MaxSector;
4984 mddev->reshape_position = MaxSector;
4985 mddev->external = 0;
4986 mddev->persistent = 0;
4987 mddev->level = LEVEL_NONE;
4988 mddev->clevel[0] = 0;
4989 mddev->flags = 0;
4990 mddev->ro = 0;
4991 mddev->metadata_type[0] = 0;
4992 mddev->chunk_sectors = 0;
4993 mddev->ctime = mddev->utime = 0;
4994 mddev->layout = 0;
4995 mddev->max_disks = 0;
4996 mddev->events = 0;
4997 mddev->can_decrease_events = 0;
4998 mddev->delta_disks = 0;
4999 mddev->new_level = LEVEL_NONE;
5000 mddev->new_layout = 0;
5001 mddev->new_chunk_sectors = 0;
5002 mddev->curr_resync = 0;
5003 mddev->resync_mismatches = 0;
5004 mddev->suspend_lo = mddev->suspend_hi = 0;
5005 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5006 mddev->recovery = 0;
5007 mddev->in_sync = 0;
5008 mddev->changed = 0;
5009 mddev->degraded = 0;
5010 mddev->safemode = 0;
5011 mddev->bitmap_info.offset = 0;
5012 mddev->bitmap_info.default_offset = 0;
5013 mddev->bitmap_info.chunksize = 0;
5014 mddev->bitmap_info.daemon_sleep = 0;
5015 mddev->bitmap_info.max_write_behind = 0;
5018 static void __md_stop_writes(mddev_t *mddev)
5020 if (mddev->sync_thread) {
5021 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5022 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5023 reap_sync_thread(mddev);
5026 del_timer_sync(&mddev->safemode_timer);
5028 bitmap_flush(mddev);
5029 md_super_wait(mddev);
5031 if (!mddev->in_sync || mddev->flags) {
5032 /* mark array as shutdown cleanly */
5033 mddev->in_sync = 1;
5034 md_update_sb(mddev, 1);
5038 void md_stop_writes(mddev_t *mddev)
5040 mddev_lock(mddev);
5041 __md_stop_writes(mddev);
5042 mddev_unlock(mddev);
5044 EXPORT_SYMBOL_GPL(md_stop_writes);
5046 void md_stop(mddev_t *mddev)
5048 mddev->ready = 0;
5049 mddev->pers->stop(mddev);
5050 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5051 mddev->to_remove = &md_redundancy_group;
5052 module_put(mddev->pers->owner);
5053 mddev->pers = NULL;
5054 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5056 EXPORT_SYMBOL_GPL(md_stop);
5058 static int md_set_readonly(mddev_t *mddev, int is_open)
5060 int err = 0;
5061 mutex_lock(&mddev->open_mutex);
5062 if (atomic_read(&mddev->openers) > is_open) {
5063 printk("md: %s still in use.\n",mdname(mddev));
5064 err = -EBUSY;
5065 goto out;
5067 if (mddev->pers) {
5068 __md_stop_writes(mddev);
5070 err = -ENXIO;
5071 if (mddev->ro==1)
5072 goto out;
5073 mddev->ro = 1;
5074 set_disk_ro(mddev->gendisk, 1);
5075 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5076 sysfs_notify_dirent_safe(mddev->sysfs_state);
5077 err = 0;
5079 out:
5080 mutex_unlock(&mddev->open_mutex);
5081 return err;
5084 /* mode:
5085 * 0 - completely stop and dis-assemble array
5086 * 2 - stop but do not disassemble array
5088 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
5090 struct gendisk *disk = mddev->gendisk;
5091 struct md_rdev *rdev;
5093 mutex_lock(&mddev->open_mutex);
5094 if (atomic_read(&mddev->openers) > is_open ||
5095 mddev->sysfs_active) {
5096 printk("md: %s still in use.\n",mdname(mddev));
5097 mutex_unlock(&mddev->open_mutex);
5098 return -EBUSY;
5101 if (mddev->pers) {
5102 if (mddev->ro)
5103 set_disk_ro(disk, 0);
5105 __md_stop_writes(mddev);
5106 md_stop(mddev);
5107 mddev->queue->merge_bvec_fn = NULL;
5108 mddev->queue->backing_dev_info.congested_fn = NULL;
5110 /* tell userspace to handle 'inactive' */
5111 sysfs_notify_dirent_safe(mddev->sysfs_state);
5113 list_for_each_entry(rdev, &mddev->disks, same_set)
5114 if (rdev->raid_disk >= 0)
5115 sysfs_unlink_rdev(mddev, rdev);
5117 set_capacity(disk, 0);
5118 mutex_unlock(&mddev->open_mutex);
5119 mddev->changed = 1;
5120 revalidate_disk(disk);
5122 if (mddev->ro)
5123 mddev->ro = 0;
5124 } else
5125 mutex_unlock(&mddev->open_mutex);
5127 * Free resources if final stop
5129 if (mode == 0) {
5130 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5132 bitmap_destroy(mddev);
5133 if (mddev->bitmap_info.file) {
5134 restore_bitmap_write_access(mddev->bitmap_info.file);
5135 fput(mddev->bitmap_info.file);
5136 mddev->bitmap_info.file = NULL;
5138 mddev->bitmap_info.offset = 0;
5140 export_array(mddev);
5142 md_clean(mddev);
5143 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5144 if (mddev->hold_active == UNTIL_STOP)
5145 mddev->hold_active = 0;
5147 blk_integrity_unregister(disk);
5148 md_new_event(mddev);
5149 sysfs_notify_dirent_safe(mddev->sysfs_state);
5150 return 0;
5153 #ifndef MODULE
5154 static void autorun_array(mddev_t *mddev)
5156 struct md_rdev *rdev;
5157 int err;
5159 if (list_empty(&mddev->disks))
5160 return;
5162 printk(KERN_INFO "md: running: ");
5164 list_for_each_entry(rdev, &mddev->disks, same_set) {
5165 char b[BDEVNAME_SIZE];
5166 printk("<%s>", bdevname(rdev->bdev,b));
5168 printk("\n");
5170 err = do_md_run(mddev);
5171 if (err) {
5172 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5173 do_md_stop(mddev, 0, 0);
5178 * lets try to run arrays based on all disks that have arrived
5179 * until now. (those are in pending_raid_disks)
5181 * the method: pick the first pending disk, collect all disks with
5182 * the same UUID, remove all from the pending list and put them into
5183 * the 'same_array' list. Then order this list based on superblock
5184 * update time (freshest comes first), kick out 'old' disks and
5185 * compare superblocks. If everything's fine then run it.
5187 * If "unit" is allocated, then bump its reference count
5189 static void autorun_devices(int part)
5191 struct md_rdev *rdev0, *rdev, *tmp;
5192 mddev_t *mddev;
5193 char b[BDEVNAME_SIZE];
5195 printk(KERN_INFO "md: autorun ...\n");
5196 while (!list_empty(&pending_raid_disks)) {
5197 int unit;
5198 dev_t dev;
5199 LIST_HEAD(candidates);
5200 rdev0 = list_entry(pending_raid_disks.next,
5201 struct md_rdev, same_set);
5203 printk(KERN_INFO "md: considering %s ...\n",
5204 bdevname(rdev0->bdev,b));
5205 INIT_LIST_HEAD(&candidates);
5206 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5207 if (super_90_load(rdev, rdev0, 0) >= 0) {
5208 printk(KERN_INFO "md: adding %s ...\n",
5209 bdevname(rdev->bdev,b));
5210 list_move(&rdev->same_set, &candidates);
5213 * now we have a set of devices, with all of them having
5214 * mostly sane superblocks. It's time to allocate the
5215 * mddev.
5217 if (part) {
5218 dev = MKDEV(mdp_major,
5219 rdev0->preferred_minor << MdpMinorShift);
5220 unit = MINOR(dev) >> MdpMinorShift;
5221 } else {
5222 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5223 unit = MINOR(dev);
5225 if (rdev0->preferred_minor != unit) {
5226 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5227 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5228 break;
5231 md_probe(dev, NULL, NULL);
5232 mddev = mddev_find(dev);
5233 if (!mddev || !mddev->gendisk) {
5234 if (mddev)
5235 mddev_put(mddev);
5236 printk(KERN_ERR
5237 "md: cannot allocate memory for md drive.\n");
5238 break;
5240 if (mddev_lock(mddev))
5241 printk(KERN_WARNING "md: %s locked, cannot run\n",
5242 mdname(mddev));
5243 else if (mddev->raid_disks || mddev->major_version
5244 || !list_empty(&mddev->disks)) {
5245 printk(KERN_WARNING
5246 "md: %s already running, cannot run %s\n",
5247 mdname(mddev), bdevname(rdev0->bdev,b));
5248 mddev_unlock(mddev);
5249 } else {
5250 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5251 mddev->persistent = 1;
5252 rdev_for_each_list(rdev, tmp, &candidates) {
5253 list_del_init(&rdev->same_set);
5254 if (bind_rdev_to_array(rdev, mddev))
5255 export_rdev(rdev);
5257 autorun_array(mddev);
5258 mddev_unlock(mddev);
5260 /* on success, candidates will be empty, on error
5261 * it won't...
5263 rdev_for_each_list(rdev, tmp, &candidates) {
5264 list_del_init(&rdev->same_set);
5265 export_rdev(rdev);
5267 mddev_put(mddev);
5269 printk(KERN_INFO "md: ... autorun DONE.\n");
5271 #endif /* !MODULE */
5273 static int get_version(void __user * arg)
5275 mdu_version_t ver;
5277 ver.major = MD_MAJOR_VERSION;
5278 ver.minor = MD_MINOR_VERSION;
5279 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5281 if (copy_to_user(arg, &ver, sizeof(ver)))
5282 return -EFAULT;
5284 return 0;
5287 static int get_array_info(mddev_t * mddev, void __user * arg)
5289 mdu_array_info_t info;
5290 int nr,working,insync,failed,spare;
5291 struct md_rdev *rdev;
5293 nr=working=insync=failed=spare=0;
5294 list_for_each_entry(rdev, &mddev->disks, same_set) {
5295 nr++;
5296 if (test_bit(Faulty, &rdev->flags))
5297 failed++;
5298 else {
5299 working++;
5300 if (test_bit(In_sync, &rdev->flags))
5301 insync++;
5302 else
5303 spare++;
5307 info.major_version = mddev->major_version;
5308 info.minor_version = mddev->minor_version;
5309 info.patch_version = MD_PATCHLEVEL_VERSION;
5310 info.ctime = mddev->ctime;
5311 info.level = mddev->level;
5312 info.size = mddev->dev_sectors / 2;
5313 if (info.size != mddev->dev_sectors / 2) /* overflow */
5314 info.size = -1;
5315 info.nr_disks = nr;
5316 info.raid_disks = mddev->raid_disks;
5317 info.md_minor = mddev->md_minor;
5318 info.not_persistent= !mddev->persistent;
5320 info.utime = mddev->utime;
5321 info.state = 0;
5322 if (mddev->in_sync)
5323 info.state = (1<<MD_SB_CLEAN);
5324 if (mddev->bitmap && mddev->bitmap_info.offset)
5325 info.state = (1<<MD_SB_BITMAP_PRESENT);
5326 info.active_disks = insync;
5327 info.working_disks = working;
5328 info.failed_disks = failed;
5329 info.spare_disks = spare;
5331 info.layout = mddev->layout;
5332 info.chunk_size = mddev->chunk_sectors << 9;
5334 if (copy_to_user(arg, &info, sizeof(info)))
5335 return -EFAULT;
5337 return 0;
5340 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5342 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5343 char *ptr, *buf = NULL;
5344 int err = -ENOMEM;
5346 if (md_allow_write(mddev))
5347 file = kmalloc(sizeof(*file), GFP_NOIO);
5348 else
5349 file = kmalloc(sizeof(*file), GFP_KERNEL);
5351 if (!file)
5352 goto out;
5354 /* bitmap disabled, zero the first byte and copy out */
5355 if (!mddev->bitmap || !mddev->bitmap->file) {
5356 file->pathname[0] = '\0';
5357 goto copy_out;
5360 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5361 if (!buf)
5362 goto out;
5364 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5365 if (IS_ERR(ptr))
5366 goto out;
5368 strcpy(file->pathname, ptr);
5370 copy_out:
5371 err = 0;
5372 if (copy_to_user(arg, file, sizeof(*file)))
5373 err = -EFAULT;
5374 out:
5375 kfree(buf);
5376 kfree(file);
5377 return err;
5380 static int get_disk_info(mddev_t * mddev, void __user * arg)
5382 mdu_disk_info_t info;
5383 struct md_rdev *rdev;
5385 if (copy_from_user(&info, arg, sizeof(info)))
5386 return -EFAULT;
5388 rdev = find_rdev_nr(mddev, info.number);
5389 if (rdev) {
5390 info.major = MAJOR(rdev->bdev->bd_dev);
5391 info.minor = MINOR(rdev->bdev->bd_dev);
5392 info.raid_disk = rdev->raid_disk;
5393 info.state = 0;
5394 if (test_bit(Faulty, &rdev->flags))
5395 info.state |= (1<<MD_DISK_FAULTY);
5396 else if (test_bit(In_sync, &rdev->flags)) {
5397 info.state |= (1<<MD_DISK_ACTIVE);
5398 info.state |= (1<<MD_DISK_SYNC);
5400 if (test_bit(WriteMostly, &rdev->flags))
5401 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5402 } else {
5403 info.major = info.minor = 0;
5404 info.raid_disk = -1;
5405 info.state = (1<<MD_DISK_REMOVED);
5408 if (copy_to_user(arg, &info, sizeof(info)))
5409 return -EFAULT;
5411 return 0;
5414 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5416 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5417 struct md_rdev *rdev;
5418 dev_t dev = MKDEV(info->major,info->minor);
5420 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5421 return -EOVERFLOW;
5423 if (!mddev->raid_disks) {
5424 int err;
5425 /* expecting a device which has a superblock */
5426 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5427 if (IS_ERR(rdev)) {
5428 printk(KERN_WARNING
5429 "md: md_import_device returned %ld\n",
5430 PTR_ERR(rdev));
5431 return PTR_ERR(rdev);
5433 if (!list_empty(&mddev->disks)) {
5434 struct md_rdev *rdev0
5435 = list_entry(mddev->disks.next,
5436 struct md_rdev, same_set);
5437 err = super_types[mddev->major_version]
5438 .load_super(rdev, rdev0, mddev->minor_version);
5439 if (err < 0) {
5440 printk(KERN_WARNING
5441 "md: %s has different UUID to %s\n",
5442 bdevname(rdev->bdev,b),
5443 bdevname(rdev0->bdev,b2));
5444 export_rdev(rdev);
5445 return -EINVAL;
5448 err = bind_rdev_to_array(rdev, mddev);
5449 if (err)
5450 export_rdev(rdev);
5451 return err;
5455 * add_new_disk can be used once the array is assembled
5456 * to add "hot spares". They must already have a superblock
5457 * written
5459 if (mddev->pers) {
5460 int err;
5461 if (!mddev->pers->hot_add_disk) {
5462 printk(KERN_WARNING
5463 "%s: personality does not support diskops!\n",
5464 mdname(mddev));
5465 return -EINVAL;
5467 if (mddev->persistent)
5468 rdev = md_import_device(dev, mddev->major_version,
5469 mddev->minor_version);
5470 else
5471 rdev = md_import_device(dev, -1, -1);
5472 if (IS_ERR(rdev)) {
5473 printk(KERN_WARNING
5474 "md: md_import_device returned %ld\n",
5475 PTR_ERR(rdev));
5476 return PTR_ERR(rdev);
5478 /* set saved_raid_disk if appropriate */
5479 if (!mddev->persistent) {
5480 if (info->state & (1<<MD_DISK_SYNC) &&
5481 info->raid_disk < mddev->raid_disks) {
5482 rdev->raid_disk = info->raid_disk;
5483 set_bit(In_sync, &rdev->flags);
5484 } else
5485 rdev->raid_disk = -1;
5486 } else
5487 super_types[mddev->major_version].
5488 validate_super(mddev, rdev);
5489 if ((info->state & (1<<MD_DISK_SYNC)) &&
5490 (!test_bit(In_sync, &rdev->flags) ||
5491 rdev->raid_disk != info->raid_disk)) {
5492 /* This was a hot-add request, but events doesn't
5493 * match, so reject it.
5495 export_rdev(rdev);
5496 return -EINVAL;
5499 if (test_bit(In_sync, &rdev->flags))
5500 rdev->saved_raid_disk = rdev->raid_disk;
5501 else
5502 rdev->saved_raid_disk = -1;
5504 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5505 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5506 set_bit(WriteMostly, &rdev->flags);
5507 else
5508 clear_bit(WriteMostly, &rdev->flags);
5510 rdev->raid_disk = -1;
5511 err = bind_rdev_to_array(rdev, mddev);
5512 if (!err && !mddev->pers->hot_remove_disk) {
5513 /* If there is hot_add_disk but no hot_remove_disk
5514 * then added disks for geometry changes,
5515 * and should be added immediately.
5517 super_types[mddev->major_version].
5518 validate_super(mddev, rdev);
5519 err = mddev->pers->hot_add_disk(mddev, rdev);
5520 if (err)
5521 unbind_rdev_from_array(rdev);
5523 if (err)
5524 export_rdev(rdev);
5525 else
5526 sysfs_notify_dirent_safe(rdev->sysfs_state);
5528 md_update_sb(mddev, 1);
5529 if (mddev->degraded)
5530 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5531 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5532 if (!err)
5533 md_new_event(mddev);
5534 md_wakeup_thread(mddev->thread);
5535 return err;
5538 /* otherwise, add_new_disk is only allowed
5539 * for major_version==0 superblocks
5541 if (mddev->major_version != 0) {
5542 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5543 mdname(mddev));
5544 return -EINVAL;
5547 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5548 int err;
5549 rdev = md_import_device(dev, -1, 0);
5550 if (IS_ERR(rdev)) {
5551 printk(KERN_WARNING
5552 "md: error, md_import_device() returned %ld\n",
5553 PTR_ERR(rdev));
5554 return PTR_ERR(rdev);
5556 rdev->desc_nr = info->number;
5557 if (info->raid_disk < mddev->raid_disks)
5558 rdev->raid_disk = info->raid_disk;
5559 else
5560 rdev->raid_disk = -1;
5562 if (rdev->raid_disk < mddev->raid_disks)
5563 if (info->state & (1<<MD_DISK_SYNC))
5564 set_bit(In_sync, &rdev->flags);
5566 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5567 set_bit(WriteMostly, &rdev->flags);
5569 if (!mddev->persistent) {
5570 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5571 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5572 } else
5573 rdev->sb_start = calc_dev_sboffset(rdev);
5574 rdev->sectors = rdev->sb_start;
5576 err = bind_rdev_to_array(rdev, mddev);
5577 if (err) {
5578 export_rdev(rdev);
5579 return err;
5583 return 0;
5586 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5588 char b[BDEVNAME_SIZE];
5589 struct md_rdev *rdev;
5591 rdev = find_rdev(mddev, dev);
5592 if (!rdev)
5593 return -ENXIO;
5595 if (rdev->raid_disk >= 0)
5596 goto busy;
5598 kick_rdev_from_array(rdev);
5599 md_update_sb(mddev, 1);
5600 md_new_event(mddev);
5602 return 0;
5603 busy:
5604 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5605 bdevname(rdev->bdev,b), mdname(mddev));
5606 return -EBUSY;
5609 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5611 char b[BDEVNAME_SIZE];
5612 int err;
5613 struct md_rdev *rdev;
5615 if (!mddev->pers)
5616 return -ENODEV;
5618 if (mddev->major_version != 0) {
5619 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5620 " version-0 superblocks.\n",
5621 mdname(mddev));
5622 return -EINVAL;
5624 if (!mddev->pers->hot_add_disk) {
5625 printk(KERN_WARNING
5626 "%s: personality does not support diskops!\n",
5627 mdname(mddev));
5628 return -EINVAL;
5631 rdev = md_import_device(dev, -1, 0);
5632 if (IS_ERR(rdev)) {
5633 printk(KERN_WARNING
5634 "md: error, md_import_device() returned %ld\n",
5635 PTR_ERR(rdev));
5636 return -EINVAL;
5639 if (mddev->persistent)
5640 rdev->sb_start = calc_dev_sboffset(rdev);
5641 else
5642 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5644 rdev->sectors = rdev->sb_start;
5646 if (test_bit(Faulty, &rdev->flags)) {
5647 printk(KERN_WARNING
5648 "md: can not hot-add faulty %s disk to %s!\n",
5649 bdevname(rdev->bdev,b), mdname(mddev));
5650 err = -EINVAL;
5651 goto abort_export;
5653 clear_bit(In_sync, &rdev->flags);
5654 rdev->desc_nr = -1;
5655 rdev->saved_raid_disk = -1;
5656 err = bind_rdev_to_array(rdev, mddev);
5657 if (err)
5658 goto abort_export;
5661 * The rest should better be atomic, we can have disk failures
5662 * noticed in interrupt contexts ...
5665 rdev->raid_disk = -1;
5667 md_update_sb(mddev, 1);
5670 * Kick recovery, maybe this spare has to be added to the
5671 * array immediately.
5673 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5674 md_wakeup_thread(mddev->thread);
5675 md_new_event(mddev);
5676 return 0;
5678 abort_export:
5679 export_rdev(rdev);
5680 return err;
5683 static int set_bitmap_file(mddev_t *mddev, int fd)
5685 int err;
5687 if (mddev->pers) {
5688 if (!mddev->pers->quiesce)
5689 return -EBUSY;
5690 if (mddev->recovery || mddev->sync_thread)
5691 return -EBUSY;
5692 /* we should be able to change the bitmap.. */
5696 if (fd >= 0) {
5697 if (mddev->bitmap)
5698 return -EEXIST; /* cannot add when bitmap is present */
5699 mddev->bitmap_info.file = fget(fd);
5701 if (mddev->bitmap_info.file == NULL) {
5702 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5703 mdname(mddev));
5704 return -EBADF;
5707 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5708 if (err) {
5709 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5710 mdname(mddev));
5711 fput(mddev->bitmap_info.file);
5712 mddev->bitmap_info.file = NULL;
5713 return err;
5715 mddev->bitmap_info.offset = 0; /* file overrides offset */
5716 } else if (mddev->bitmap == NULL)
5717 return -ENOENT; /* cannot remove what isn't there */
5718 err = 0;
5719 if (mddev->pers) {
5720 mddev->pers->quiesce(mddev, 1);
5721 if (fd >= 0) {
5722 err = bitmap_create(mddev);
5723 if (!err)
5724 err = bitmap_load(mddev);
5726 if (fd < 0 || err) {
5727 bitmap_destroy(mddev);
5728 fd = -1; /* make sure to put the file */
5730 mddev->pers->quiesce(mddev, 0);
5732 if (fd < 0) {
5733 if (mddev->bitmap_info.file) {
5734 restore_bitmap_write_access(mddev->bitmap_info.file);
5735 fput(mddev->bitmap_info.file);
5737 mddev->bitmap_info.file = NULL;
5740 return err;
5744 * set_array_info is used two different ways
5745 * The original usage is when creating a new array.
5746 * In this usage, raid_disks is > 0 and it together with
5747 * level, size, not_persistent,layout,chunksize determine the
5748 * shape of the array.
5749 * This will always create an array with a type-0.90.0 superblock.
5750 * The newer usage is when assembling an array.
5751 * In this case raid_disks will be 0, and the major_version field is
5752 * use to determine which style super-blocks are to be found on the devices.
5753 * The minor and patch _version numbers are also kept incase the
5754 * super_block handler wishes to interpret them.
5756 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5759 if (info->raid_disks == 0) {
5760 /* just setting version number for superblock loading */
5761 if (info->major_version < 0 ||
5762 info->major_version >= ARRAY_SIZE(super_types) ||
5763 super_types[info->major_version].name == NULL) {
5764 /* maybe try to auto-load a module? */
5765 printk(KERN_INFO
5766 "md: superblock version %d not known\n",
5767 info->major_version);
5768 return -EINVAL;
5770 mddev->major_version = info->major_version;
5771 mddev->minor_version = info->minor_version;
5772 mddev->patch_version = info->patch_version;
5773 mddev->persistent = !info->not_persistent;
5774 /* ensure mddev_put doesn't delete this now that there
5775 * is some minimal configuration.
5777 mddev->ctime = get_seconds();
5778 return 0;
5780 mddev->major_version = MD_MAJOR_VERSION;
5781 mddev->minor_version = MD_MINOR_VERSION;
5782 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5783 mddev->ctime = get_seconds();
5785 mddev->level = info->level;
5786 mddev->clevel[0] = 0;
5787 mddev->dev_sectors = 2 * (sector_t)info->size;
5788 mddev->raid_disks = info->raid_disks;
5789 /* don't set md_minor, it is determined by which /dev/md* was
5790 * openned
5792 if (info->state & (1<<MD_SB_CLEAN))
5793 mddev->recovery_cp = MaxSector;
5794 else
5795 mddev->recovery_cp = 0;
5796 mddev->persistent = ! info->not_persistent;
5797 mddev->external = 0;
5799 mddev->layout = info->layout;
5800 mddev->chunk_sectors = info->chunk_size >> 9;
5802 mddev->max_disks = MD_SB_DISKS;
5804 if (mddev->persistent)
5805 mddev->flags = 0;
5806 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5808 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5809 mddev->bitmap_info.offset = 0;
5811 mddev->reshape_position = MaxSector;
5814 * Generate a 128 bit UUID
5816 get_random_bytes(mddev->uuid, 16);
5818 mddev->new_level = mddev->level;
5819 mddev->new_chunk_sectors = mddev->chunk_sectors;
5820 mddev->new_layout = mddev->layout;
5821 mddev->delta_disks = 0;
5823 return 0;
5826 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5828 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5830 if (mddev->external_size)
5831 return;
5833 mddev->array_sectors = array_sectors;
5835 EXPORT_SYMBOL(md_set_array_sectors);
5837 static int update_size(mddev_t *mddev, sector_t num_sectors)
5839 struct md_rdev *rdev;
5840 int rv;
5841 int fit = (num_sectors == 0);
5843 if (mddev->pers->resize == NULL)
5844 return -EINVAL;
5845 /* The "num_sectors" is the number of sectors of each device that
5846 * is used. This can only make sense for arrays with redundancy.
5847 * linear and raid0 always use whatever space is available. We can only
5848 * consider changing this number if no resync or reconstruction is
5849 * happening, and if the new size is acceptable. It must fit before the
5850 * sb_start or, if that is <data_offset, it must fit before the size
5851 * of each device. If num_sectors is zero, we find the largest size
5852 * that fits.
5854 if (mddev->sync_thread)
5855 return -EBUSY;
5856 if (mddev->bitmap)
5857 /* Sorry, cannot grow a bitmap yet, just remove it,
5858 * grow, and re-add.
5860 return -EBUSY;
5861 list_for_each_entry(rdev, &mddev->disks, same_set) {
5862 sector_t avail = rdev->sectors;
5864 if (fit && (num_sectors == 0 || num_sectors > avail))
5865 num_sectors = avail;
5866 if (avail < num_sectors)
5867 return -ENOSPC;
5869 rv = mddev->pers->resize(mddev, num_sectors);
5870 if (!rv)
5871 revalidate_disk(mddev->gendisk);
5872 return rv;
5875 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5877 int rv;
5878 /* change the number of raid disks */
5879 if (mddev->pers->check_reshape == NULL)
5880 return -EINVAL;
5881 if (raid_disks <= 0 ||
5882 (mddev->max_disks && raid_disks >= mddev->max_disks))
5883 return -EINVAL;
5884 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5885 return -EBUSY;
5886 mddev->delta_disks = raid_disks - mddev->raid_disks;
5888 rv = mddev->pers->check_reshape(mddev);
5889 if (rv < 0)
5890 mddev->delta_disks = 0;
5891 return rv;
5896 * update_array_info is used to change the configuration of an
5897 * on-line array.
5898 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5899 * fields in the info are checked against the array.
5900 * Any differences that cannot be handled will cause an error.
5901 * Normally, only one change can be managed at a time.
5903 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5905 int rv = 0;
5906 int cnt = 0;
5907 int state = 0;
5909 /* calculate expected state,ignoring low bits */
5910 if (mddev->bitmap && mddev->bitmap_info.offset)
5911 state |= (1 << MD_SB_BITMAP_PRESENT);
5913 if (mddev->major_version != info->major_version ||
5914 mddev->minor_version != info->minor_version ||
5915 /* mddev->patch_version != info->patch_version || */
5916 mddev->ctime != info->ctime ||
5917 mddev->level != info->level ||
5918 /* mddev->layout != info->layout || */
5919 !mddev->persistent != info->not_persistent||
5920 mddev->chunk_sectors != info->chunk_size >> 9 ||
5921 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5922 ((state^info->state) & 0xfffffe00)
5924 return -EINVAL;
5925 /* Check there is only one change */
5926 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5927 cnt++;
5928 if (mddev->raid_disks != info->raid_disks)
5929 cnt++;
5930 if (mddev->layout != info->layout)
5931 cnt++;
5932 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5933 cnt++;
5934 if (cnt == 0)
5935 return 0;
5936 if (cnt > 1)
5937 return -EINVAL;
5939 if (mddev->layout != info->layout) {
5940 /* Change layout
5941 * we don't need to do anything at the md level, the
5942 * personality will take care of it all.
5944 if (mddev->pers->check_reshape == NULL)
5945 return -EINVAL;
5946 else {
5947 mddev->new_layout = info->layout;
5948 rv = mddev->pers->check_reshape(mddev);
5949 if (rv)
5950 mddev->new_layout = mddev->layout;
5951 return rv;
5954 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5955 rv = update_size(mddev, (sector_t)info->size * 2);
5957 if (mddev->raid_disks != info->raid_disks)
5958 rv = update_raid_disks(mddev, info->raid_disks);
5960 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5961 if (mddev->pers->quiesce == NULL)
5962 return -EINVAL;
5963 if (mddev->recovery || mddev->sync_thread)
5964 return -EBUSY;
5965 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5966 /* add the bitmap */
5967 if (mddev->bitmap)
5968 return -EEXIST;
5969 if (mddev->bitmap_info.default_offset == 0)
5970 return -EINVAL;
5971 mddev->bitmap_info.offset =
5972 mddev->bitmap_info.default_offset;
5973 mddev->pers->quiesce(mddev, 1);
5974 rv = bitmap_create(mddev);
5975 if (!rv)
5976 rv = bitmap_load(mddev);
5977 if (rv)
5978 bitmap_destroy(mddev);
5979 mddev->pers->quiesce(mddev, 0);
5980 } else {
5981 /* remove the bitmap */
5982 if (!mddev->bitmap)
5983 return -ENOENT;
5984 if (mddev->bitmap->file)
5985 return -EINVAL;
5986 mddev->pers->quiesce(mddev, 1);
5987 bitmap_destroy(mddev);
5988 mddev->pers->quiesce(mddev, 0);
5989 mddev->bitmap_info.offset = 0;
5992 md_update_sb(mddev, 1);
5993 return rv;
5996 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5998 struct md_rdev *rdev;
6000 if (mddev->pers == NULL)
6001 return -ENODEV;
6003 rdev = find_rdev(mddev, dev);
6004 if (!rdev)
6005 return -ENODEV;
6007 md_error(mddev, rdev);
6008 if (!test_bit(Faulty, &rdev->flags))
6009 return -EBUSY;
6010 return 0;
6014 * We have a problem here : there is no easy way to give a CHS
6015 * virtual geometry. We currently pretend that we have a 2 heads
6016 * 4 sectors (with a BIG number of cylinders...). This drives
6017 * dosfs just mad... ;-)
6019 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6021 mddev_t *mddev = bdev->bd_disk->private_data;
6023 geo->heads = 2;
6024 geo->sectors = 4;
6025 geo->cylinders = mddev->array_sectors / 8;
6026 return 0;
6029 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6030 unsigned int cmd, unsigned long arg)
6032 int err = 0;
6033 void __user *argp = (void __user *)arg;
6034 mddev_t *mddev = NULL;
6035 int ro;
6037 if (!capable(CAP_SYS_ADMIN))
6038 return -EACCES;
6041 * Commands dealing with the RAID driver but not any
6042 * particular array:
6044 switch (cmd)
6046 case RAID_VERSION:
6047 err = get_version(argp);
6048 goto done;
6050 case PRINT_RAID_DEBUG:
6051 err = 0;
6052 md_print_devices();
6053 goto done;
6055 #ifndef MODULE
6056 case RAID_AUTORUN:
6057 err = 0;
6058 autostart_arrays(arg);
6059 goto done;
6060 #endif
6061 default:;
6065 * Commands creating/starting a new array:
6068 mddev = bdev->bd_disk->private_data;
6070 if (!mddev) {
6071 BUG();
6072 goto abort;
6075 err = mddev_lock(mddev);
6076 if (err) {
6077 printk(KERN_INFO
6078 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6079 err, cmd);
6080 goto abort;
6083 switch (cmd)
6085 case SET_ARRAY_INFO:
6087 mdu_array_info_t info;
6088 if (!arg)
6089 memset(&info, 0, sizeof(info));
6090 else if (copy_from_user(&info, argp, sizeof(info))) {
6091 err = -EFAULT;
6092 goto abort_unlock;
6094 if (mddev->pers) {
6095 err = update_array_info(mddev, &info);
6096 if (err) {
6097 printk(KERN_WARNING "md: couldn't update"
6098 " array info. %d\n", err);
6099 goto abort_unlock;
6101 goto done_unlock;
6103 if (!list_empty(&mddev->disks)) {
6104 printk(KERN_WARNING
6105 "md: array %s already has disks!\n",
6106 mdname(mddev));
6107 err = -EBUSY;
6108 goto abort_unlock;
6110 if (mddev->raid_disks) {
6111 printk(KERN_WARNING
6112 "md: array %s already initialised!\n",
6113 mdname(mddev));
6114 err = -EBUSY;
6115 goto abort_unlock;
6117 err = set_array_info(mddev, &info);
6118 if (err) {
6119 printk(KERN_WARNING "md: couldn't set"
6120 " array info. %d\n", err);
6121 goto abort_unlock;
6124 goto done_unlock;
6126 default:;
6130 * Commands querying/configuring an existing array:
6132 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6133 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6134 if ((!mddev->raid_disks && !mddev->external)
6135 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6136 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6137 && cmd != GET_BITMAP_FILE) {
6138 err = -ENODEV;
6139 goto abort_unlock;
6143 * Commands even a read-only array can execute:
6145 switch (cmd)
6147 case GET_ARRAY_INFO:
6148 err = get_array_info(mddev, argp);
6149 goto done_unlock;
6151 case GET_BITMAP_FILE:
6152 err = get_bitmap_file(mddev, argp);
6153 goto done_unlock;
6155 case GET_DISK_INFO:
6156 err = get_disk_info(mddev, argp);
6157 goto done_unlock;
6159 case RESTART_ARRAY_RW:
6160 err = restart_array(mddev);
6161 goto done_unlock;
6163 case STOP_ARRAY:
6164 err = do_md_stop(mddev, 0, 1);
6165 goto done_unlock;
6167 case STOP_ARRAY_RO:
6168 err = md_set_readonly(mddev, 1);
6169 goto done_unlock;
6171 case BLKROSET:
6172 if (get_user(ro, (int __user *)(arg))) {
6173 err = -EFAULT;
6174 goto done_unlock;
6176 err = -EINVAL;
6178 /* if the bdev is going readonly the value of mddev->ro
6179 * does not matter, no writes are coming
6181 if (ro)
6182 goto done_unlock;
6184 /* are we are already prepared for writes? */
6185 if (mddev->ro != 1)
6186 goto done_unlock;
6188 /* transitioning to readauto need only happen for
6189 * arrays that call md_write_start
6191 if (mddev->pers) {
6192 err = restart_array(mddev);
6193 if (err == 0) {
6194 mddev->ro = 2;
6195 set_disk_ro(mddev->gendisk, 0);
6198 goto done_unlock;
6202 * The remaining ioctls are changing the state of the
6203 * superblock, so we do not allow them on read-only arrays.
6204 * However non-MD ioctls (e.g. get-size) will still come through
6205 * here and hit the 'default' below, so only disallow
6206 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6208 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6209 if (mddev->ro == 2) {
6210 mddev->ro = 0;
6211 sysfs_notify_dirent_safe(mddev->sysfs_state);
6212 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6213 md_wakeup_thread(mddev->thread);
6214 } else {
6215 err = -EROFS;
6216 goto abort_unlock;
6220 switch (cmd)
6222 case ADD_NEW_DISK:
6224 mdu_disk_info_t info;
6225 if (copy_from_user(&info, argp, sizeof(info)))
6226 err = -EFAULT;
6227 else
6228 err = add_new_disk(mddev, &info);
6229 goto done_unlock;
6232 case HOT_REMOVE_DISK:
6233 err = hot_remove_disk(mddev, new_decode_dev(arg));
6234 goto done_unlock;
6236 case HOT_ADD_DISK:
6237 err = hot_add_disk(mddev, new_decode_dev(arg));
6238 goto done_unlock;
6240 case SET_DISK_FAULTY:
6241 err = set_disk_faulty(mddev, new_decode_dev(arg));
6242 goto done_unlock;
6244 case RUN_ARRAY:
6245 err = do_md_run(mddev);
6246 goto done_unlock;
6248 case SET_BITMAP_FILE:
6249 err = set_bitmap_file(mddev, (int)arg);
6250 goto done_unlock;
6252 default:
6253 err = -EINVAL;
6254 goto abort_unlock;
6257 done_unlock:
6258 abort_unlock:
6259 if (mddev->hold_active == UNTIL_IOCTL &&
6260 err != -EINVAL)
6261 mddev->hold_active = 0;
6262 mddev_unlock(mddev);
6264 return err;
6265 done:
6266 if (err)
6267 MD_BUG();
6268 abort:
6269 return err;
6271 #ifdef CONFIG_COMPAT
6272 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6273 unsigned int cmd, unsigned long arg)
6275 switch (cmd) {
6276 case HOT_REMOVE_DISK:
6277 case HOT_ADD_DISK:
6278 case SET_DISK_FAULTY:
6279 case SET_BITMAP_FILE:
6280 /* These take in integer arg, do not convert */
6281 break;
6282 default:
6283 arg = (unsigned long)compat_ptr(arg);
6284 break;
6287 return md_ioctl(bdev, mode, cmd, arg);
6289 #endif /* CONFIG_COMPAT */
6291 static int md_open(struct block_device *bdev, fmode_t mode)
6294 * Succeed if we can lock the mddev, which confirms that
6295 * it isn't being stopped right now.
6297 mddev_t *mddev = mddev_find(bdev->bd_dev);
6298 int err;
6300 if (mddev->gendisk != bdev->bd_disk) {
6301 /* we are racing with mddev_put which is discarding this
6302 * bd_disk.
6304 mddev_put(mddev);
6305 /* Wait until bdev->bd_disk is definitely gone */
6306 flush_workqueue(md_misc_wq);
6307 /* Then retry the open from the top */
6308 return -ERESTARTSYS;
6310 BUG_ON(mddev != bdev->bd_disk->private_data);
6312 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6313 goto out;
6315 err = 0;
6316 atomic_inc(&mddev->openers);
6317 mutex_unlock(&mddev->open_mutex);
6319 check_disk_change(bdev);
6320 out:
6321 return err;
6324 static int md_release(struct gendisk *disk, fmode_t mode)
6326 mddev_t *mddev = disk->private_data;
6328 BUG_ON(!mddev);
6329 atomic_dec(&mddev->openers);
6330 mddev_put(mddev);
6332 return 0;
6335 static int md_media_changed(struct gendisk *disk)
6337 mddev_t *mddev = disk->private_data;
6339 return mddev->changed;
6342 static int md_revalidate(struct gendisk *disk)
6344 mddev_t *mddev = disk->private_data;
6346 mddev->changed = 0;
6347 return 0;
6349 static const struct block_device_operations md_fops =
6351 .owner = THIS_MODULE,
6352 .open = md_open,
6353 .release = md_release,
6354 .ioctl = md_ioctl,
6355 #ifdef CONFIG_COMPAT
6356 .compat_ioctl = md_compat_ioctl,
6357 #endif
6358 .getgeo = md_getgeo,
6359 .media_changed = md_media_changed,
6360 .revalidate_disk= md_revalidate,
6363 static int md_thread(void * arg)
6365 mdk_thread_t *thread = arg;
6368 * md_thread is a 'system-thread', it's priority should be very
6369 * high. We avoid resource deadlocks individually in each
6370 * raid personality. (RAID5 does preallocation) We also use RR and
6371 * the very same RT priority as kswapd, thus we will never get
6372 * into a priority inversion deadlock.
6374 * we definitely have to have equal or higher priority than
6375 * bdflush, otherwise bdflush will deadlock if there are too
6376 * many dirty RAID5 blocks.
6379 allow_signal(SIGKILL);
6380 while (!kthread_should_stop()) {
6382 /* We need to wait INTERRUPTIBLE so that
6383 * we don't add to the load-average.
6384 * That means we need to be sure no signals are
6385 * pending
6387 if (signal_pending(current))
6388 flush_signals(current);
6390 wait_event_interruptible_timeout
6391 (thread->wqueue,
6392 test_bit(THREAD_WAKEUP, &thread->flags)
6393 || kthread_should_stop(),
6394 thread->timeout);
6396 clear_bit(THREAD_WAKEUP, &thread->flags);
6397 if (!kthread_should_stop())
6398 thread->run(thread->mddev);
6401 return 0;
6404 void md_wakeup_thread(mdk_thread_t *thread)
6406 if (thread) {
6407 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6408 set_bit(THREAD_WAKEUP, &thread->flags);
6409 wake_up(&thread->wqueue);
6413 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6414 const char *name)
6416 mdk_thread_t *thread;
6418 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6419 if (!thread)
6420 return NULL;
6422 init_waitqueue_head(&thread->wqueue);
6424 thread->run = run;
6425 thread->mddev = mddev;
6426 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6427 thread->tsk = kthread_run(md_thread, thread,
6428 "%s_%s",
6429 mdname(thread->mddev),
6430 name ?: mddev->pers->name);
6431 if (IS_ERR(thread->tsk)) {
6432 kfree(thread);
6433 return NULL;
6435 return thread;
6438 void md_unregister_thread(mdk_thread_t **threadp)
6440 mdk_thread_t *thread = *threadp;
6441 if (!thread)
6442 return;
6443 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6444 /* Locking ensures that mddev_unlock does not wake_up a
6445 * non-existent thread
6447 spin_lock(&pers_lock);
6448 *threadp = NULL;
6449 spin_unlock(&pers_lock);
6451 kthread_stop(thread->tsk);
6452 kfree(thread);
6455 void md_error(mddev_t *mddev, struct md_rdev *rdev)
6457 if (!mddev) {
6458 MD_BUG();
6459 return;
6462 if (!rdev || test_bit(Faulty, &rdev->flags))
6463 return;
6465 if (!mddev->pers || !mddev->pers->error_handler)
6466 return;
6467 mddev->pers->error_handler(mddev,rdev);
6468 if (mddev->degraded)
6469 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6470 sysfs_notify_dirent_safe(rdev->sysfs_state);
6471 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6472 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6473 md_wakeup_thread(mddev->thread);
6474 if (mddev->event_work.func)
6475 queue_work(md_misc_wq, &mddev->event_work);
6476 md_new_event_inintr(mddev);
6479 /* seq_file implementation /proc/mdstat */
6481 static void status_unused(struct seq_file *seq)
6483 int i = 0;
6484 struct md_rdev *rdev;
6486 seq_printf(seq, "unused devices: ");
6488 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6489 char b[BDEVNAME_SIZE];
6490 i++;
6491 seq_printf(seq, "%s ",
6492 bdevname(rdev->bdev,b));
6494 if (!i)
6495 seq_printf(seq, "<none>");
6497 seq_printf(seq, "\n");
6501 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6503 sector_t max_sectors, resync, res;
6504 unsigned long dt, db;
6505 sector_t rt;
6506 int scale;
6507 unsigned int per_milli;
6509 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6511 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6512 max_sectors = mddev->resync_max_sectors;
6513 else
6514 max_sectors = mddev->dev_sectors;
6517 * Should not happen.
6519 if (!max_sectors) {
6520 MD_BUG();
6521 return;
6523 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6524 * in a sector_t, and (max_sectors>>scale) will fit in a
6525 * u32, as those are the requirements for sector_div.
6526 * Thus 'scale' must be at least 10
6528 scale = 10;
6529 if (sizeof(sector_t) > sizeof(unsigned long)) {
6530 while ( max_sectors/2 > (1ULL<<(scale+32)))
6531 scale++;
6533 res = (resync>>scale)*1000;
6534 sector_div(res, (u32)((max_sectors>>scale)+1));
6536 per_milli = res;
6538 int i, x = per_milli/50, y = 20-x;
6539 seq_printf(seq, "[");
6540 for (i = 0; i < x; i++)
6541 seq_printf(seq, "=");
6542 seq_printf(seq, ">");
6543 for (i = 0; i < y; i++)
6544 seq_printf(seq, ".");
6545 seq_printf(seq, "] ");
6547 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6548 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6549 "reshape" :
6550 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6551 "check" :
6552 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6553 "resync" : "recovery"))),
6554 per_milli/10, per_milli % 10,
6555 (unsigned long long) resync/2,
6556 (unsigned long long) max_sectors/2);
6559 * dt: time from mark until now
6560 * db: blocks written from mark until now
6561 * rt: remaining time
6563 * rt is a sector_t, so could be 32bit or 64bit.
6564 * So we divide before multiply in case it is 32bit and close
6565 * to the limit.
6566 * We scale the divisor (db) by 32 to avoid losing precision
6567 * near the end of resync when the number of remaining sectors
6568 * is close to 'db'.
6569 * We then divide rt by 32 after multiplying by db to compensate.
6570 * The '+1' avoids division by zero if db is very small.
6572 dt = ((jiffies - mddev->resync_mark) / HZ);
6573 if (!dt) dt++;
6574 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6575 - mddev->resync_mark_cnt;
6577 rt = max_sectors - resync; /* number of remaining sectors */
6578 sector_div(rt, db/32+1);
6579 rt *= dt;
6580 rt >>= 5;
6582 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6583 ((unsigned long)rt % 60)/6);
6585 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6588 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6590 struct list_head *tmp;
6591 loff_t l = *pos;
6592 mddev_t *mddev;
6594 if (l >= 0x10000)
6595 return NULL;
6596 if (!l--)
6597 /* header */
6598 return (void*)1;
6600 spin_lock(&all_mddevs_lock);
6601 list_for_each(tmp,&all_mddevs)
6602 if (!l--) {
6603 mddev = list_entry(tmp, mddev_t, all_mddevs);
6604 mddev_get(mddev);
6605 spin_unlock(&all_mddevs_lock);
6606 return mddev;
6608 spin_unlock(&all_mddevs_lock);
6609 if (!l--)
6610 return (void*)2;/* tail */
6611 return NULL;
6614 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6616 struct list_head *tmp;
6617 mddev_t *next_mddev, *mddev = v;
6619 ++*pos;
6620 if (v == (void*)2)
6621 return NULL;
6623 spin_lock(&all_mddevs_lock);
6624 if (v == (void*)1)
6625 tmp = all_mddevs.next;
6626 else
6627 tmp = mddev->all_mddevs.next;
6628 if (tmp != &all_mddevs)
6629 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6630 else {
6631 next_mddev = (void*)2;
6632 *pos = 0x10000;
6634 spin_unlock(&all_mddevs_lock);
6636 if (v != (void*)1)
6637 mddev_put(mddev);
6638 return next_mddev;
6642 static void md_seq_stop(struct seq_file *seq, void *v)
6644 mddev_t *mddev = v;
6646 if (mddev && v != (void*)1 && v != (void*)2)
6647 mddev_put(mddev);
6650 static int md_seq_show(struct seq_file *seq, void *v)
6652 mddev_t *mddev = v;
6653 sector_t sectors;
6654 struct md_rdev *rdev;
6655 struct bitmap *bitmap;
6657 if (v == (void*)1) {
6658 struct mdk_personality *pers;
6659 seq_printf(seq, "Personalities : ");
6660 spin_lock(&pers_lock);
6661 list_for_each_entry(pers, &pers_list, list)
6662 seq_printf(seq, "[%s] ", pers->name);
6664 spin_unlock(&pers_lock);
6665 seq_printf(seq, "\n");
6666 seq->poll_event = atomic_read(&md_event_count);
6667 return 0;
6669 if (v == (void*)2) {
6670 status_unused(seq);
6671 return 0;
6674 if (mddev_lock(mddev) < 0)
6675 return -EINTR;
6677 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6678 seq_printf(seq, "%s : %sactive", mdname(mddev),
6679 mddev->pers ? "" : "in");
6680 if (mddev->pers) {
6681 if (mddev->ro==1)
6682 seq_printf(seq, " (read-only)");
6683 if (mddev->ro==2)
6684 seq_printf(seq, " (auto-read-only)");
6685 seq_printf(seq, " %s", mddev->pers->name);
6688 sectors = 0;
6689 list_for_each_entry(rdev, &mddev->disks, same_set) {
6690 char b[BDEVNAME_SIZE];
6691 seq_printf(seq, " %s[%d]",
6692 bdevname(rdev->bdev,b), rdev->desc_nr);
6693 if (test_bit(WriteMostly, &rdev->flags))
6694 seq_printf(seq, "(W)");
6695 if (test_bit(Faulty, &rdev->flags)) {
6696 seq_printf(seq, "(F)");
6697 continue;
6698 } else if (rdev->raid_disk < 0)
6699 seq_printf(seq, "(S)"); /* spare */
6700 sectors += rdev->sectors;
6703 if (!list_empty(&mddev->disks)) {
6704 if (mddev->pers)
6705 seq_printf(seq, "\n %llu blocks",
6706 (unsigned long long)
6707 mddev->array_sectors / 2);
6708 else
6709 seq_printf(seq, "\n %llu blocks",
6710 (unsigned long long)sectors / 2);
6712 if (mddev->persistent) {
6713 if (mddev->major_version != 0 ||
6714 mddev->minor_version != 90) {
6715 seq_printf(seq," super %d.%d",
6716 mddev->major_version,
6717 mddev->minor_version);
6719 } else if (mddev->external)
6720 seq_printf(seq, " super external:%s",
6721 mddev->metadata_type);
6722 else
6723 seq_printf(seq, " super non-persistent");
6725 if (mddev->pers) {
6726 mddev->pers->status(seq, mddev);
6727 seq_printf(seq, "\n ");
6728 if (mddev->pers->sync_request) {
6729 if (mddev->curr_resync > 2) {
6730 status_resync(seq, mddev);
6731 seq_printf(seq, "\n ");
6732 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6733 seq_printf(seq, "\tresync=DELAYED\n ");
6734 else if (mddev->recovery_cp < MaxSector)
6735 seq_printf(seq, "\tresync=PENDING\n ");
6737 } else
6738 seq_printf(seq, "\n ");
6740 if ((bitmap = mddev->bitmap)) {
6741 unsigned long chunk_kb;
6742 unsigned long flags;
6743 spin_lock_irqsave(&bitmap->lock, flags);
6744 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6745 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6746 "%lu%s chunk",
6747 bitmap->pages - bitmap->missing_pages,
6748 bitmap->pages,
6749 (bitmap->pages - bitmap->missing_pages)
6750 << (PAGE_SHIFT - 10),
6751 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6752 chunk_kb ? "KB" : "B");
6753 if (bitmap->file) {
6754 seq_printf(seq, ", file: ");
6755 seq_path(seq, &bitmap->file->f_path, " \t\n");
6758 seq_printf(seq, "\n");
6759 spin_unlock_irqrestore(&bitmap->lock, flags);
6762 seq_printf(seq, "\n");
6764 mddev_unlock(mddev);
6766 return 0;
6769 static const struct seq_operations md_seq_ops = {
6770 .start = md_seq_start,
6771 .next = md_seq_next,
6772 .stop = md_seq_stop,
6773 .show = md_seq_show,
6776 static int md_seq_open(struct inode *inode, struct file *file)
6778 struct seq_file *seq;
6779 int error;
6781 error = seq_open(file, &md_seq_ops);
6782 if (error)
6783 return error;
6785 seq = file->private_data;
6786 seq->poll_event = atomic_read(&md_event_count);
6787 return error;
6790 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6792 struct seq_file *seq = filp->private_data;
6793 int mask;
6795 poll_wait(filp, &md_event_waiters, wait);
6797 /* always allow read */
6798 mask = POLLIN | POLLRDNORM;
6800 if (seq->poll_event != atomic_read(&md_event_count))
6801 mask |= POLLERR | POLLPRI;
6802 return mask;
6805 static const struct file_operations md_seq_fops = {
6806 .owner = THIS_MODULE,
6807 .open = md_seq_open,
6808 .read = seq_read,
6809 .llseek = seq_lseek,
6810 .release = seq_release_private,
6811 .poll = mdstat_poll,
6814 int register_md_personality(struct mdk_personality *p)
6816 spin_lock(&pers_lock);
6817 list_add_tail(&p->list, &pers_list);
6818 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6819 spin_unlock(&pers_lock);
6820 return 0;
6823 int unregister_md_personality(struct mdk_personality *p)
6825 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6826 spin_lock(&pers_lock);
6827 list_del_init(&p->list);
6828 spin_unlock(&pers_lock);
6829 return 0;
6832 static int is_mddev_idle(mddev_t *mddev, int init)
6834 struct md_rdev * rdev;
6835 int idle;
6836 int curr_events;
6838 idle = 1;
6839 rcu_read_lock();
6840 rdev_for_each_rcu(rdev, mddev) {
6841 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6842 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6843 (int)part_stat_read(&disk->part0, sectors[1]) -
6844 atomic_read(&disk->sync_io);
6845 /* sync IO will cause sync_io to increase before the disk_stats
6846 * as sync_io is counted when a request starts, and
6847 * disk_stats is counted when it completes.
6848 * So resync activity will cause curr_events to be smaller than
6849 * when there was no such activity.
6850 * non-sync IO will cause disk_stat to increase without
6851 * increasing sync_io so curr_events will (eventually)
6852 * be larger than it was before. Once it becomes
6853 * substantially larger, the test below will cause
6854 * the array to appear non-idle, and resync will slow
6855 * down.
6856 * If there is a lot of outstanding resync activity when
6857 * we set last_event to curr_events, then all that activity
6858 * completing might cause the array to appear non-idle
6859 * and resync will be slowed down even though there might
6860 * not have been non-resync activity. This will only
6861 * happen once though. 'last_events' will soon reflect
6862 * the state where there is little or no outstanding
6863 * resync requests, and further resync activity will
6864 * always make curr_events less than last_events.
6867 if (init || curr_events - rdev->last_events > 64) {
6868 rdev->last_events = curr_events;
6869 idle = 0;
6872 rcu_read_unlock();
6873 return idle;
6876 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6878 /* another "blocks" (512byte) blocks have been synced */
6879 atomic_sub(blocks, &mddev->recovery_active);
6880 wake_up(&mddev->recovery_wait);
6881 if (!ok) {
6882 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6883 md_wakeup_thread(mddev->thread);
6884 // stop recovery, signal do_sync ....
6889 /* md_write_start(mddev, bi)
6890 * If we need to update some array metadata (e.g. 'active' flag
6891 * in superblock) before writing, schedule a superblock update
6892 * and wait for it to complete.
6894 void md_write_start(mddev_t *mddev, struct bio *bi)
6896 int did_change = 0;
6897 if (bio_data_dir(bi) != WRITE)
6898 return;
6900 BUG_ON(mddev->ro == 1);
6901 if (mddev->ro == 2) {
6902 /* need to switch to read/write */
6903 mddev->ro = 0;
6904 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6905 md_wakeup_thread(mddev->thread);
6906 md_wakeup_thread(mddev->sync_thread);
6907 did_change = 1;
6909 atomic_inc(&mddev->writes_pending);
6910 if (mddev->safemode == 1)
6911 mddev->safemode = 0;
6912 if (mddev->in_sync) {
6913 spin_lock_irq(&mddev->write_lock);
6914 if (mddev->in_sync) {
6915 mddev->in_sync = 0;
6916 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6917 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6918 md_wakeup_thread(mddev->thread);
6919 did_change = 1;
6921 spin_unlock_irq(&mddev->write_lock);
6923 if (did_change)
6924 sysfs_notify_dirent_safe(mddev->sysfs_state);
6925 wait_event(mddev->sb_wait,
6926 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6929 void md_write_end(mddev_t *mddev)
6931 if (atomic_dec_and_test(&mddev->writes_pending)) {
6932 if (mddev->safemode == 2)
6933 md_wakeup_thread(mddev->thread);
6934 else if (mddev->safemode_delay)
6935 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6939 /* md_allow_write(mddev)
6940 * Calling this ensures that the array is marked 'active' so that writes
6941 * may proceed without blocking. It is important to call this before
6942 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6943 * Must be called with mddev_lock held.
6945 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6946 * is dropped, so return -EAGAIN after notifying userspace.
6948 int md_allow_write(mddev_t *mddev)
6950 if (!mddev->pers)
6951 return 0;
6952 if (mddev->ro)
6953 return 0;
6954 if (!mddev->pers->sync_request)
6955 return 0;
6957 spin_lock_irq(&mddev->write_lock);
6958 if (mddev->in_sync) {
6959 mddev->in_sync = 0;
6960 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6961 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6962 if (mddev->safemode_delay &&
6963 mddev->safemode == 0)
6964 mddev->safemode = 1;
6965 spin_unlock_irq(&mddev->write_lock);
6966 md_update_sb(mddev, 0);
6967 sysfs_notify_dirent_safe(mddev->sysfs_state);
6968 } else
6969 spin_unlock_irq(&mddev->write_lock);
6971 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6972 return -EAGAIN;
6973 else
6974 return 0;
6976 EXPORT_SYMBOL_GPL(md_allow_write);
6978 #define SYNC_MARKS 10
6979 #define SYNC_MARK_STEP (3*HZ)
6980 void md_do_sync(mddev_t *mddev)
6982 mddev_t *mddev2;
6983 unsigned int currspeed = 0,
6984 window;
6985 sector_t max_sectors,j, io_sectors;
6986 unsigned long mark[SYNC_MARKS];
6987 sector_t mark_cnt[SYNC_MARKS];
6988 int last_mark,m;
6989 struct list_head *tmp;
6990 sector_t last_check;
6991 int skipped = 0;
6992 struct md_rdev *rdev;
6993 char *desc;
6995 /* just incase thread restarts... */
6996 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6997 return;
6998 if (mddev->ro) /* never try to sync a read-only array */
6999 return;
7001 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7002 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7003 desc = "data-check";
7004 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7005 desc = "requested-resync";
7006 else
7007 desc = "resync";
7008 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7009 desc = "reshape";
7010 else
7011 desc = "recovery";
7013 /* we overload curr_resync somewhat here.
7014 * 0 == not engaged in resync at all
7015 * 2 == checking that there is no conflict with another sync
7016 * 1 == like 2, but have yielded to allow conflicting resync to
7017 * commense
7018 * other == active in resync - this many blocks
7020 * Before starting a resync we must have set curr_resync to
7021 * 2, and then checked that every "conflicting" array has curr_resync
7022 * less than ours. When we find one that is the same or higher
7023 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7024 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7025 * This will mean we have to start checking from the beginning again.
7029 do {
7030 mddev->curr_resync = 2;
7032 try_again:
7033 if (kthread_should_stop())
7034 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7036 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7037 goto skip;
7038 for_each_mddev(mddev2, tmp) {
7039 if (mddev2 == mddev)
7040 continue;
7041 if (!mddev->parallel_resync
7042 && mddev2->curr_resync
7043 && match_mddev_units(mddev, mddev2)) {
7044 DEFINE_WAIT(wq);
7045 if (mddev < mddev2 && mddev->curr_resync == 2) {
7046 /* arbitrarily yield */
7047 mddev->curr_resync = 1;
7048 wake_up(&resync_wait);
7050 if (mddev > mddev2 && mddev->curr_resync == 1)
7051 /* no need to wait here, we can wait the next
7052 * time 'round when curr_resync == 2
7054 continue;
7055 /* We need to wait 'interruptible' so as not to
7056 * contribute to the load average, and not to
7057 * be caught by 'softlockup'
7059 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7060 if (!kthread_should_stop() &&
7061 mddev2->curr_resync >= mddev->curr_resync) {
7062 printk(KERN_INFO "md: delaying %s of %s"
7063 " until %s has finished (they"
7064 " share one or more physical units)\n",
7065 desc, mdname(mddev), mdname(mddev2));
7066 mddev_put(mddev2);
7067 if (signal_pending(current))
7068 flush_signals(current);
7069 schedule();
7070 finish_wait(&resync_wait, &wq);
7071 goto try_again;
7073 finish_wait(&resync_wait, &wq);
7076 } while (mddev->curr_resync < 2);
7078 j = 0;
7079 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7080 /* resync follows the size requested by the personality,
7081 * which defaults to physical size, but can be virtual size
7083 max_sectors = mddev->resync_max_sectors;
7084 mddev->resync_mismatches = 0;
7085 /* we don't use the checkpoint if there's a bitmap */
7086 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7087 j = mddev->resync_min;
7088 else if (!mddev->bitmap)
7089 j = mddev->recovery_cp;
7091 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7092 max_sectors = mddev->dev_sectors;
7093 else {
7094 /* recovery follows the physical size of devices */
7095 max_sectors = mddev->dev_sectors;
7096 j = MaxSector;
7097 rcu_read_lock();
7098 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7099 if (rdev->raid_disk >= 0 &&
7100 !test_bit(Faulty, &rdev->flags) &&
7101 !test_bit(In_sync, &rdev->flags) &&
7102 rdev->recovery_offset < j)
7103 j = rdev->recovery_offset;
7104 rcu_read_unlock();
7107 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7108 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7109 " %d KB/sec/disk.\n", speed_min(mddev));
7110 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7111 "(but not more than %d KB/sec) for %s.\n",
7112 speed_max(mddev), desc);
7114 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7116 io_sectors = 0;
7117 for (m = 0; m < SYNC_MARKS; m++) {
7118 mark[m] = jiffies;
7119 mark_cnt[m] = io_sectors;
7121 last_mark = 0;
7122 mddev->resync_mark = mark[last_mark];
7123 mddev->resync_mark_cnt = mark_cnt[last_mark];
7126 * Tune reconstruction:
7128 window = 32*(PAGE_SIZE/512);
7129 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7130 window/2, (unsigned long long)max_sectors/2);
7132 atomic_set(&mddev->recovery_active, 0);
7133 last_check = 0;
7135 if (j>2) {
7136 printk(KERN_INFO
7137 "md: resuming %s of %s from checkpoint.\n",
7138 desc, mdname(mddev));
7139 mddev->curr_resync = j;
7141 mddev->curr_resync_completed = j;
7143 while (j < max_sectors) {
7144 sector_t sectors;
7146 skipped = 0;
7148 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7149 ((mddev->curr_resync > mddev->curr_resync_completed &&
7150 (mddev->curr_resync - mddev->curr_resync_completed)
7151 > (max_sectors >> 4)) ||
7152 (j - mddev->curr_resync_completed)*2
7153 >= mddev->resync_max - mddev->curr_resync_completed
7154 )) {
7155 /* time to update curr_resync_completed */
7156 wait_event(mddev->recovery_wait,
7157 atomic_read(&mddev->recovery_active) == 0);
7158 mddev->curr_resync_completed = j;
7159 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7160 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7163 while (j >= mddev->resync_max && !kthread_should_stop()) {
7164 /* As this condition is controlled by user-space,
7165 * we can block indefinitely, so use '_interruptible'
7166 * to avoid triggering warnings.
7168 flush_signals(current); /* just in case */
7169 wait_event_interruptible(mddev->recovery_wait,
7170 mddev->resync_max > j
7171 || kthread_should_stop());
7174 if (kthread_should_stop())
7175 goto interrupted;
7177 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7178 currspeed < speed_min(mddev));
7179 if (sectors == 0) {
7180 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7181 goto out;
7184 if (!skipped) { /* actual IO requested */
7185 io_sectors += sectors;
7186 atomic_add(sectors, &mddev->recovery_active);
7189 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7190 break;
7192 j += sectors;
7193 if (j>1) mddev->curr_resync = j;
7194 mddev->curr_mark_cnt = io_sectors;
7195 if (last_check == 0)
7196 /* this is the earliest that rebuild will be
7197 * visible in /proc/mdstat
7199 md_new_event(mddev);
7201 if (last_check + window > io_sectors || j == max_sectors)
7202 continue;
7204 last_check = io_sectors;
7205 repeat:
7206 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7207 /* step marks */
7208 int next = (last_mark+1) % SYNC_MARKS;
7210 mddev->resync_mark = mark[next];
7211 mddev->resync_mark_cnt = mark_cnt[next];
7212 mark[next] = jiffies;
7213 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7214 last_mark = next;
7218 if (kthread_should_stop())
7219 goto interrupted;
7223 * this loop exits only if either when we are slower than
7224 * the 'hard' speed limit, or the system was IO-idle for
7225 * a jiffy.
7226 * the system might be non-idle CPU-wise, but we only care
7227 * about not overloading the IO subsystem. (things like an
7228 * e2fsck being done on the RAID array should execute fast)
7230 cond_resched();
7232 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7233 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7235 if (currspeed > speed_min(mddev)) {
7236 if ((currspeed > speed_max(mddev)) ||
7237 !is_mddev_idle(mddev, 0)) {
7238 msleep(500);
7239 goto repeat;
7243 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7245 * this also signals 'finished resyncing' to md_stop
7247 out:
7248 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7250 /* tell personality that we are finished */
7251 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7253 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7254 mddev->curr_resync > 2) {
7255 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7256 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7257 if (mddev->curr_resync >= mddev->recovery_cp) {
7258 printk(KERN_INFO
7259 "md: checkpointing %s of %s.\n",
7260 desc, mdname(mddev));
7261 mddev->recovery_cp = mddev->curr_resync;
7263 } else
7264 mddev->recovery_cp = MaxSector;
7265 } else {
7266 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7267 mddev->curr_resync = MaxSector;
7268 rcu_read_lock();
7269 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7270 if (rdev->raid_disk >= 0 &&
7271 mddev->delta_disks >= 0 &&
7272 !test_bit(Faulty, &rdev->flags) &&
7273 !test_bit(In_sync, &rdev->flags) &&
7274 rdev->recovery_offset < mddev->curr_resync)
7275 rdev->recovery_offset = mddev->curr_resync;
7276 rcu_read_unlock();
7279 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7281 skip:
7282 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7283 /* We completed so min/max setting can be forgotten if used. */
7284 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7285 mddev->resync_min = 0;
7286 mddev->resync_max = MaxSector;
7287 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7288 mddev->resync_min = mddev->curr_resync_completed;
7289 mddev->curr_resync = 0;
7290 wake_up(&resync_wait);
7291 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7292 md_wakeup_thread(mddev->thread);
7293 return;
7295 interrupted:
7297 * got a signal, exit.
7299 printk(KERN_INFO
7300 "md: md_do_sync() got signal ... exiting\n");
7301 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7302 goto out;
7305 EXPORT_SYMBOL_GPL(md_do_sync);
7307 static int remove_and_add_spares(mddev_t *mddev)
7309 struct md_rdev *rdev;
7310 int spares = 0;
7312 mddev->curr_resync_completed = 0;
7314 list_for_each_entry(rdev, &mddev->disks, same_set)
7315 if (rdev->raid_disk >= 0 &&
7316 !test_bit(Blocked, &rdev->flags) &&
7317 (test_bit(Faulty, &rdev->flags) ||
7318 ! test_bit(In_sync, &rdev->flags)) &&
7319 atomic_read(&rdev->nr_pending)==0) {
7320 if (mddev->pers->hot_remove_disk(
7321 mddev, rdev->raid_disk)==0) {
7322 sysfs_unlink_rdev(mddev, rdev);
7323 rdev->raid_disk = -1;
7327 if (mddev->degraded) {
7328 list_for_each_entry(rdev, &mddev->disks, same_set) {
7329 if (rdev->raid_disk >= 0 &&
7330 !test_bit(In_sync, &rdev->flags) &&
7331 !test_bit(Faulty, &rdev->flags))
7332 spares++;
7333 if (rdev->raid_disk < 0
7334 && !test_bit(Faulty, &rdev->flags)) {
7335 rdev->recovery_offset = 0;
7336 if (mddev->pers->
7337 hot_add_disk(mddev, rdev) == 0) {
7338 if (sysfs_link_rdev(mddev, rdev))
7339 /* failure here is OK */;
7340 spares++;
7341 md_new_event(mddev);
7342 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7343 } else
7344 break;
7348 return spares;
7351 static void reap_sync_thread(mddev_t *mddev)
7353 struct md_rdev *rdev;
7355 /* resync has finished, collect result */
7356 md_unregister_thread(&mddev->sync_thread);
7357 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7358 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7359 /* success...*/
7360 /* activate any spares */
7361 if (mddev->pers->spare_active(mddev))
7362 sysfs_notify(&mddev->kobj, NULL,
7363 "degraded");
7365 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7366 mddev->pers->finish_reshape)
7367 mddev->pers->finish_reshape(mddev);
7368 md_update_sb(mddev, 1);
7370 /* if array is no-longer degraded, then any saved_raid_disk
7371 * information must be scrapped
7373 if (!mddev->degraded)
7374 list_for_each_entry(rdev, &mddev->disks, same_set)
7375 rdev->saved_raid_disk = -1;
7377 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7378 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7379 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7380 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7381 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7382 /* flag recovery needed just to double check */
7383 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7384 sysfs_notify_dirent_safe(mddev->sysfs_action);
7385 md_new_event(mddev);
7386 if (mddev->event_work.func)
7387 queue_work(md_misc_wq, &mddev->event_work);
7391 * This routine is regularly called by all per-raid-array threads to
7392 * deal with generic issues like resync and super-block update.
7393 * Raid personalities that don't have a thread (linear/raid0) do not
7394 * need this as they never do any recovery or update the superblock.
7396 * It does not do any resync itself, but rather "forks" off other threads
7397 * to do that as needed.
7398 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7399 * "->recovery" and create a thread at ->sync_thread.
7400 * When the thread finishes it sets MD_RECOVERY_DONE
7401 * and wakeups up this thread which will reap the thread and finish up.
7402 * This thread also removes any faulty devices (with nr_pending == 0).
7404 * The overall approach is:
7405 * 1/ if the superblock needs updating, update it.
7406 * 2/ If a recovery thread is running, don't do anything else.
7407 * 3/ If recovery has finished, clean up, possibly marking spares active.
7408 * 4/ If there are any faulty devices, remove them.
7409 * 5/ If array is degraded, try to add spares devices
7410 * 6/ If array has spares or is not in-sync, start a resync thread.
7412 void md_check_recovery(mddev_t *mddev)
7414 if (mddev->suspended)
7415 return;
7417 if (mddev->bitmap)
7418 bitmap_daemon_work(mddev);
7420 if (signal_pending(current)) {
7421 if (mddev->pers->sync_request && !mddev->external) {
7422 printk(KERN_INFO "md: %s in immediate safe mode\n",
7423 mdname(mddev));
7424 mddev->safemode = 2;
7426 flush_signals(current);
7429 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7430 return;
7431 if ( ! (
7432 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7433 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7434 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7435 (mddev->external == 0 && mddev->safemode == 1) ||
7436 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7437 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7439 return;
7441 if (mddev_trylock(mddev)) {
7442 int spares = 0;
7444 if (mddev->ro) {
7445 /* Only thing we do on a ro array is remove
7446 * failed devices.
7448 struct md_rdev *rdev;
7449 list_for_each_entry(rdev, &mddev->disks, same_set)
7450 if (rdev->raid_disk >= 0 &&
7451 !test_bit(Blocked, &rdev->flags) &&
7452 test_bit(Faulty, &rdev->flags) &&
7453 atomic_read(&rdev->nr_pending)==0) {
7454 if (mddev->pers->hot_remove_disk(
7455 mddev, rdev->raid_disk)==0) {
7456 sysfs_unlink_rdev(mddev, rdev);
7457 rdev->raid_disk = -1;
7460 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7461 goto unlock;
7464 if (!mddev->external) {
7465 int did_change = 0;
7466 spin_lock_irq(&mddev->write_lock);
7467 if (mddev->safemode &&
7468 !atomic_read(&mddev->writes_pending) &&
7469 !mddev->in_sync &&
7470 mddev->recovery_cp == MaxSector) {
7471 mddev->in_sync = 1;
7472 did_change = 1;
7473 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7475 if (mddev->safemode == 1)
7476 mddev->safemode = 0;
7477 spin_unlock_irq(&mddev->write_lock);
7478 if (did_change)
7479 sysfs_notify_dirent_safe(mddev->sysfs_state);
7482 if (mddev->flags)
7483 md_update_sb(mddev, 0);
7485 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7486 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7487 /* resync/recovery still happening */
7488 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7489 goto unlock;
7491 if (mddev->sync_thread) {
7492 reap_sync_thread(mddev);
7493 goto unlock;
7495 /* Set RUNNING before clearing NEEDED to avoid
7496 * any transients in the value of "sync_action".
7498 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7499 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7500 /* Clear some bits that don't mean anything, but
7501 * might be left set
7503 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7504 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7506 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7507 goto unlock;
7508 /* no recovery is running.
7509 * remove any failed drives, then
7510 * add spares if possible.
7511 * Spare are also removed and re-added, to allow
7512 * the personality to fail the re-add.
7515 if (mddev->reshape_position != MaxSector) {
7516 if (mddev->pers->check_reshape == NULL ||
7517 mddev->pers->check_reshape(mddev) != 0)
7518 /* Cannot proceed */
7519 goto unlock;
7520 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7521 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7522 } else if ((spares = remove_and_add_spares(mddev))) {
7523 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7524 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7525 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7526 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7527 } else if (mddev->recovery_cp < MaxSector) {
7528 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7529 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7530 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7531 /* nothing to be done ... */
7532 goto unlock;
7534 if (mddev->pers->sync_request) {
7535 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7536 /* We are adding a device or devices to an array
7537 * which has the bitmap stored on all devices.
7538 * So make sure all bitmap pages get written
7540 bitmap_write_all(mddev->bitmap);
7542 mddev->sync_thread = md_register_thread(md_do_sync,
7543 mddev,
7544 "resync");
7545 if (!mddev->sync_thread) {
7546 printk(KERN_ERR "%s: could not start resync"
7547 " thread...\n",
7548 mdname(mddev));
7549 /* leave the spares where they are, it shouldn't hurt */
7550 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7551 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7552 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7553 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7554 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7555 } else
7556 md_wakeup_thread(mddev->sync_thread);
7557 sysfs_notify_dirent_safe(mddev->sysfs_action);
7558 md_new_event(mddev);
7560 unlock:
7561 if (!mddev->sync_thread) {
7562 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7563 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7564 &mddev->recovery))
7565 if (mddev->sysfs_action)
7566 sysfs_notify_dirent_safe(mddev->sysfs_action);
7568 mddev_unlock(mddev);
7572 void md_wait_for_blocked_rdev(struct md_rdev *rdev, mddev_t *mddev)
7574 sysfs_notify_dirent_safe(rdev->sysfs_state);
7575 wait_event_timeout(rdev->blocked_wait,
7576 !test_bit(Blocked, &rdev->flags) &&
7577 !test_bit(BlockedBadBlocks, &rdev->flags),
7578 msecs_to_jiffies(5000));
7579 rdev_dec_pending(rdev, mddev);
7581 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7584 /* Bad block management.
7585 * We can record which blocks on each device are 'bad' and so just
7586 * fail those blocks, or that stripe, rather than the whole device.
7587 * Entries in the bad-block table are 64bits wide. This comprises:
7588 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7589 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7590 * A 'shift' can be set so that larger blocks are tracked and
7591 * consequently larger devices can be covered.
7592 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7594 * Locking of the bad-block table uses a seqlock so md_is_badblock
7595 * might need to retry if it is very unlucky.
7596 * We will sometimes want to check for bad blocks in a bi_end_io function,
7597 * so we use the write_seqlock_irq variant.
7599 * When looking for a bad block we specify a range and want to
7600 * know if any block in the range is bad. So we binary-search
7601 * to the last range that starts at-or-before the given endpoint,
7602 * (or "before the sector after the target range")
7603 * then see if it ends after the given start.
7604 * We return
7605 * 0 if there are no known bad blocks in the range
7606 * 1 if there are known bad block which are all acknowledged
7607 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7608 * plus the start/length of the first bad section we overlap.
7610 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7611 sector_t *first_bad, int *bad_sectors)
7613 int hi;
7614 int lo = 0;
7615 u64 *p = bb->page;
7616 int rv = 0;
7617 sector_t target = s + sectors;
7618 unsigned seq;
7620 if (bb->shift > 0) {
7621 /* round the start down, and the end up */
7622 s >>= bb->shift;
7623 target += (1<<bb->shift) - 1;
7624 target >>= bb->shift;
7625 sectors = target - s;
7627 /* 'target' is now the first block after the bad range */
7629 retry:
7630 seq = read_seqbegin(&bb->lock);
7632 hi = bb->count;
7634 /* Binary search between lo and hi for 'target'
7635 * i.e. for the last range that starts before 'target'
7637 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7638 * are known not to be the last range before target.
7639 * VARIANT: hi-lo is the number of possible
7640 * ranges, and decreases until it reaches 1
7642 while (hi - lo > 1) {
7643 int mid = (lo + hi) / 2;
7644 sector_t a = BB_OFFSET(p[mid]);
7645 if (a < target)
7646 /* This could still be the one, earlier ranges
7647 * could not. */
7648 lo = mid;
7649 else
7650 /* This and later ranges are definitely out. */
7651 hi = mid;
7653 /* 'lo' might be the last that started before target, but 'hi' isn't */
7654 if (hi > lo) {
7655 /* need to check all range that end after 's' to see if
7656 * any are unacknowledged.
7658 while (lo >= 0 &&
7659 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7660 if (BB_OFFSET(p[lo]) < target) {
7661 /* starts before the end, and finishes after
7662 * the start, so they must overlap
7664 if (rv != -1 && BB_ACK(p[lo]))
7665 rv = 1;
7666 else
7667 rv = -1;
7668 *first_bad = BB_OFFSET(p[lo]);
7669 *bad_sectors = BB_LEN(p[lo]);
7671 lo--;
7675 if (read_seqretry(&bb->lock, seq))
7676 goto retry;
7678 return rv;
7680 EXPORT_SYMBOL_GPL(md_is_badblock);
7683 * Add a range of bad blocks to the table.
7684 * This might extend the table, or might contract it
7685 * if two adjacent ranges can be merged.
7686 * We binary-search to find the 'insertion' point, then
7687 * decide how best to handle it.
7689 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7690 int acknowledged)
7692 u64 *p;
7693 int lo, hi;
7694 int rv = 1;
7696 if (bb->shift < 0)
7697 /* badblocks are disabled */
7698 return 0;
7700 if (bb->shift) {
7701 /* round the start down, and the end up */
7702 sector_t next = s + sectors;
7703 s >>= bb->shift;
7704 next += (1<<bb->shift) - 1;
7705 next >>= bb->shift;
7706 sectors = next - s;
7709 write_seqlock_irq(&bb->lock);
7711 p = bb->page;
7712 lo = 0;
7713 hi = bb->count;
7714 /* Find the last range that starts at-or-before 's' */
7715 while (hi - lo > 1) {
7716 int mid = (lo + hi) / 2;
7717 sector_t a = BB_OFFSET(p[mid]);
7718 if (a <= s)
7719 lo = mid;
7720 else
7721 hi = mid;
7723 if (hi > lo && BB_OFFSET(p[lo]) > s)
7724 hi = lo;
7726 if (hi > lo) {
7727 /* we found a range that might merge with the start
7728 * of our new range
7730 sector_t a = BB_OFFSET(p[lo]);
7731 sector_t e = a + BB_LEN(p[lo]);
7732 int ack = BB_ACK(p[lo]);
7733 if (e >= s) {
7734 /* Yes, we can merge with a previous range */
7735 if (s == a && s + sectors >= e)
7736 /* new range covers old */
7737 ack = acknowledged;
7738 else
7739 ack = ack && acknowledged;
7741 if (e < s + sectors)
7742 e = s + sectors;
7743 if (e - a <= BB_MAX_LEN) {
7744 p[lo] = BB_MAKE(a, e-a, ack);
7745 s = e;
7746 } else {
7747 /* does not all fit in one range,
7748 * make p[lo] maximal
7750 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7751 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7752 s = a + BB_MAX_LEN;
7754 sectors = e - s;
7757 if (sectors && hi < bb->count) {
7758 /* 'hi' points to the first range that starts after 's'.
7759 * Maybe we can merge with the start of that range */
7760 sector_t a = BB_OFFSET(p[hi]);
7761 sector_t e = a + BB_LEN(p[hi]);
7762 int ack = BB_ACK(p[hi]);
7763 if (a <= s + sectors) {
7764 /* merging is possible */
7765 if (e <= s + sectors) {
7766 /* full overlap */
7767 e = s + sectors;
7768 ack = acknowledged;
7769 } else
7770 ack = ack && acknowledged;
7772 a = s;
7773 if (e - a <= BB_MAX_LEN) {
7774 p[hi] = BB_MAKE(a, e-a, ack);
7775 s = e;
7776 } else {
7777 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7778 s = a + BB_MAX_LEN;
7780 sectors = e - s;
7781 lo = hi;
7782 hi++;
7785 if (sectors == 0 && hi < bb->count) {
7786 /* we might be able to combine lo and hi */
7787 /* Note: 's' is at the end of 'lo' */
7788 sector_t a = BB_OFFSET(p[hi]);
7789 int lolen = BB_LEN(p[lo]);
7790 int hilen = BB_LEN(p[hi]);
7791 int newlen = lolen + hilen - (s - a);
7792 if (s >= a && newlen < BB_MAX_LEN) {
7793 /* yes, we can combine them */
7794 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7795 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7796 memmove(p + hi, p + hi + 1,
7797 (bb->count - hi - 1) * 8);
7798 bb->count--;
7801 while (sectors) {
7802 /* didn't merge (it all).
7803 * Need to add a range just before 'hi' */
7804 if (bb->count >= MD_MAX_BADBLOCKS) {
7805 /* No room for more */
7806 rv = 0;
7807 break;
7808 } else {
7809 int this_sectors = sectors;
7810 memmove(p + hi + 1, p + hi,
7811 (bb->count - hi) * 8);
7812 bb->count++;
7814 if (this_sectors > BB_MAX_LEN)
7815 this_sectors = BB_MAX_LEN;
7816 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7817 sectors -= this_sectors;
7818 s += this_sectors;
7822 bb->changed = 1;
7823 if (!acknowledged)
7824 bb->unacked_exist = 1;
7825 write_sequnlock_irq(&bb->lock);
7827 return rv;
7830 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7831 int acknowledged)
7833 int rv = md_set_badblocks(&rdev->badblocks,
7834 s + rdev->data_offset, sectors, acknowledged);
7835 if (rv) {
7836 /* Make sure they get written out promptly */
7837 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7838 md_wakeup_thread(rdev->mddev->thread);
7840 return rv;
7842 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7845 * Remove a range of bad blocks from the table.
7846 * This may involve extending the table if we spilt a region,
7847 * but it must not fail. So if the table becomes full, we just
7848 * drop the remove request.
7850 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7852 u64 *p;
7853 int lo, hi;
7854 sector_t target = s + sectors;
7855 int rv = 0;
7857 if (bb->shift > 0) {
7858 /* When clearing we round the start up and the end down.
7859 * This should not matter as the shift should align with
7860 * the block size and no rounding should ever be needed.
7861 * However it is better the think a block is bad when it
7862 * isn't than to think a block is not bad when it is.
7864 s += (1<<bb->shift) - 1;
7865 s >>= bb->shift;
7866 target >>= bb->shift;
7867 sectors = target - s;
7870 write_seqlock_irq(&bb->lock);
7872 p = bb->page;
7873 lo = 0;
7874 hi = bb->count;
7875 /* Find the last range that starts before 'target' */
7876 while (hi - lo > 1) {
7877 int mid = (lo + hi) / 2;
7878 sector_t a = BB_OFFSET(p[mid]);
7879 if (a < target)
7880 lo = mid;
7881 else
7882 hi = mid;
7884 if (hi > lo) {
7885 /* p[lo] is the last range that could overlap the
7886 * current range. Earlier ranges could also overlap,
7887 * but only this one can overlap the end of the range.
7889 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7890 /* Partial overlap, leave the tail of this range */
7891 int ack = BB_ACK(p[lo]);
7892 sector_t a = BB_OFFSET(p[lo]);
7893 sector_t end = a + BB_LEN(p[lo]);
7895 if (a < s) {
7896 /* we need to split this range */
7897 if (bb->count >= MD_MAX_BADBLOCKS) {
7898 rv = 0;
7899 goto out;
7901 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7902 bb->count++;
7903 p[lo] = BB_MAKE(a, s-a, ack);
7904 lo++;
7906 p[lo] = BB_MAKE(target, end - target, ack);
7907 /* there is no longer an overlap */
7908 hi = lo;
7909 lo--;
7911 while (lo >= 0 &&
7912 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7913 /* This range does overlap */
7914 if (BB_OFFSET(p[lo]) < s) {
7915 /* Keep the early parts of this range. */
7916 int ack = BB_ACK(p[lo]);
7917 sector_t start = BB_OFFSET(p[lo]);
7918 p[lo] = BB_MAKE(start, s - start, ack);
7919 /* now low doesn't overlap, so.. */
7920 break;
7922 lo--;
7924 /* 'lo' is strictly before, 'hi' is strictly after,
7925 * anything between needs to be discarded
7927 if (hi - lo > 1) {
7928 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7929 bb->count -= (hi - lo - 1);
7933 bb->changed = 1;
7934 out:
7935 write_sequnlock_irq(&bb->lock);
7936 return rv;
7939 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7941 return md_clear_badblocks(&rdev->badblocks,
7942 s + rdev->data_offset,
7943 sectors);
7945 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7948 * Acknowledge all bad blocks in a list.
7949 * This only succeeds if ->changed is clear. It is used by
7950 * in-kernel metadata updates
7952 void md_ack_all_badblocks(struct badblocks *bb)
7954 if (bb->page == NULL || bb->changed)
7955 /* no point even trying */
7956 return;
7957 write_seqlock_irq(&bb->lock);
7959 if (bb->changed == 0) {
7960 u64 *p = bb->page;
7961 int i;
7962 for (i = 0; i < bb->count ; i++) {
7963 if (!BB_ACK(p[i])) {
7964 sector_t start = BB_OFFSET(p[i]);
7965 int len = BB_LEN(p[i]);
7966 p[i] = BB_MAKE(start, len, 1);
7969 bb->unacked_exist = 0;
7971 write_sequnlock_irq(&bb->lock);
7973 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7975 /* sysfs access to bad-blocks list.
7976 * We present two files.
7977 * 'bad-blocks' lists sector numbers and lengths of ranges that
7978 * are recorded as bad. The list is truncated to fit within
7979 * the one-page limit of sysfs.
7980 * Writing "sector length" to this file adds an acknowledged
7981 * bad block list.
7982 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7983 * been acknowledged. Writing to this file adds bad blocks
7984 * without acknowledging them. This is largely for testing.
7987 static ssize_t
7988 badblocks_show(struct badblocks *bb, char *page, int unack)
7990 size_t len;
7991 int i;
7992 u64 *p = bb->page;
7993 unsigned seq;
7995 if (bb->shift < 0)
7996 return 0;
7998 retry:
7999 seq = read_seqbegin(&bb->lock);
8001 len = 0;
8002 i = 0;
8004 while (len < PAGE_SIZE && i < bb->count) {
8005 sector_t s = BB_OFFSET(p[i]);
8006 unsigned int length = BB_LEN(p[i]);
8007 int ack = BB_ACK(p[i]);
8008 i++;
8010 if (unack && ack)
8011 continue;
8013 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8014 (unsigned long long)s << bb->shift,
8015 length << bb->shift);
8017 if (unack && len == 0)
8018 bb->unacked_exist = 0;
8020 if (read_seqretry(&bb->lock, seq))
8021 goto retry;
8023 return len;
8026 #define DO_DEBUG 1
8028 static ssize_t
8029 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8031 unsigned long long sector;
8032 int length;
8033 char newline;
8034 #ifdef DO_DEBUG
8035 /* Allow clearing via sysfs *only* for testing/debugging.
8036 * Normally only a successful write may clear a badblock
8038 int clear = 0;
8039 if (page[0] == '-') {
8040 clear = 1;
8041 page++;
8043 #endif /* DO_DEBUG */
8045 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8046 case 3:
8047 if (newline != '\n')
8048 return -EINVAL;
8049 case 2:
8050 if (length <= 0)
8051 return -EINVAL;
8052 break;
8053 default:
8054 return -EINVAL;
8057 #ifdef DO_DEBUG
8058 if (clear) {
8059 md_clear_badblocks(bb, sector, length);
8060 return len;
8062 #endif /* DO_DEBUG */
8063 if (md_set_badblocks(bb, sector, length, !unack))
8064 return len;
8065 else
8066 return -ENOSPC;
8069 static int md_notify_reboot(struct notifier_block *this,
8070 unsigned long code, void *x)
8072 struct list_head *tmp;
8073 mddev_t *mddev;
8074 int need_delay = 0;
8076 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8078 printk(KERN_INFO "md: stopping all md devices.\n");
8080 for_each_mddev(mddev, tmp) {
8081 if (mddev_trylock(mddev)) {
8082 /* Force a switch to readonly even array
8083 * appears to still be in use. Hence
8084 * the '100'.
8086 md_set_readonly(mddev, 100);
8087 mddev_unlock(mddev);
8089 need_delay = 1;
8092 * certain more exotic SCSI devices are known to be
8093 * volatile wrt too early system reboots. While the
8094 * right place to handle this issue is the given
8095 * driver, we do want to have a safe RAID driver ...
8097 if (need_delay)
8098 mdelay(1000*1);
8100 return NOTIFY_DONE;
8103 static struct notifier_block md_notifier = {
8104 .notifier_call = md_notify_reboot,
8105 .next = NULL,
8106 .priority = INT_MAX, /* before any real devices */
8109 static void md_geninit(void)
8111 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8113 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8116 static int __init md_init(void)
8118 int ret = -ENOMEM;
8120 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8121 if (!md_wq)
8122 goto err_wq;
8124 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8125 if (!md_misc_wq)
8126 goto err_misc_wq;
8128 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8129 goto err_md;
8131 if ((ret = register_blkdev(0, "mdp")) < 0)
8132 goto err_mdp;
8133 mdp_major = ret;
8135 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8136 md_probe, NULL, NULL);
8137 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8138 md_probe, NULL, NULL);
8140 register_reboot_notifier(&md_notifier);
8141 raid_table_header = register_sysctl_table(raid_root_table);
8143 md_geninit();
8144 return 0;
8146 err_mdp:
8147 unregister_blkdev(MD_MAJOR, "md");
8148 err_md:
8149 destroy_workqueue(md_misc_wq);
8150 err_misc_wq:
8151 destroy_workqueue(md_wq);
8152 err_wq:
8153 return ret;
8156 #ifndef MODULE
8159 * Searches all registered partitions for autorun RAID arrays
8160 * at boot time.
8163 static LIST_HEAD(all_detected_devices);
8164 struct detected_devices_node {
8165 struct list_head list;
8166 dev_t dev;
8169 void md_autodetect_dev(dev_t dev)
8171 struct detected_devices_node *node_detected_dev;
8173 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8174 if (node_detected_dev) {
8175 node_detected_dev->dev = dev;
8176 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8177 } else {
8178 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8179 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8184 static void autostart_arrays(int part)
8186 struct md_rdev *rdev;
8187 struct detected_devices_node *node_detected_dev;
8188 dev_t dev;
8189 int i_scanned, i_passed;
8191 i_scanned = 0;
8192 i_passed = 0;
8194 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8196 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8197 i_scanned++;
8198 node_detected_dev = list_entry(all_detected_devices.next,
8199 struct detected_devices_node, list);
8200 list_del(&node_detected_dev->list);
8201 dev = node_detected_dev->dev;
8202 kfree(node_detected_dev);
8203 rdev = md_import_device(dev,0, 90);
8204 if (IS_ERR(rdev))
8205 continue;
8207 if (test_bit(Faulty, &rdev->flags)) {
8208 MD_BUG();
8209 continue;
8211 set_bit(AutoDetected, &rdev->flags);
8212 list_add(&rdev->same_set, &pending_raid_disks);
8213 i_passed++;
8216 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8217 i_scanned, i_passed);
8219 autorun_devices(part);
8222 #endif /* !MODULE */
8224 static __exit void md_exit(void)
8226 mddev_t *mddev;
8227 struct list_head *tmp;
8229 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8230 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8232 unregister_blkdev(MD_MAJOR,"md");
8233 unregister_blkdev(mdp_major, "mdp");
8234 unregister_reboot_notifier(&md_notifier);
8235 unregister_sysctl_table(raid_table_header);
8236 remove_proc_entry("mdstat", NULL);
8237 for_each_mddev(mddev, tmp) {
8238 export_array(mddev);
8239 mddev->hold_active = 0;
8241 destroy_workqueue(md_misc_wq);
8242 destroy_workqueue(md_wq);
8245 subsys_initcall(md_init);
8246 module_exit(md_exit)
8248 static int get_ro(char *buffer, struct kernel_param *kp)
8250 return sprintf(buffer, "%d", start_readonly);
8252 static int set_ro(const char *val, struct kernel_param *kp)
8254 char *e;
8255 int num = simple_strtoul(val, &e, 10);
8256 if (*val && (*e == '\0' || *e == '\n')) {
8257 start_readonly = num;
8258 return 0;
8260 return -EINVAL;
8263 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8264 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8266 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8268 EXPORT_SYMBOL(register_md_personality);
8269 EXPORT_SYMBOL(unregister_md_personality);
8270 EXPORT_SYMBOL(md_error);
8271 EXPORT_SYMBOL(md_done_sync);
8272 EXPORT_SYMBOL(md_write_start);
8273 EXPORT_SYMBOL(md_write_end);
8274 EXPORT_SYMBOL(md_register_thread);
8275 EXPORT_SYMBOL(md_unregister_thread);
8276 EXPORT_SYMBOL(md_wakeup_thread);
8277 EXPORT_SYMBOL(md_check_recovery);
8278 MODULE_LICENSE("GPL");
8279 MODULE_DESCRIPTION("MD RAID framework");
8280 MODULE_ALIAS("md");
8281 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);