DECnet: don't leak uninitialized stack byte
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / soc / soc-cache.c
blobd214f02cbb65a46314a121948525cb2b005734e1
1 /*
2 * soc-cache.c -- ASoC register cache helpers
4 * Copyright 2009 Wolfson Microelectronics PLC.
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
14 #include <linux/i2c.h>
15 #include <linux/spi/spi.h>
16 #include <sound/soc.h>
18 static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
19 unsigned int reg)
21 u16 *cache = codec->reg_cache;
23 if (reg >= codec->driver->reg_cache_size ||
24 snd_soc_codec_volatile_register(codec, reg)) {
25 if (codec->cache_only)
26 return -1;
28 return codec->hw_read(codec, reg);
31 return cache[reg];
34 static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
35 unsigned int value)
37 u16 *cache = codec->reg_cache;
38 u8 data[2];
39 int ret;
41 data[0] = (reg << 4) | ((value >> 8) & 0x000f);
42 data[1] = value & 0x00ff;
44 if (!snd_soc_codec_volatile_register(codec, reg) &&
45 reg < codec->driver->reg_cache_size)
46 cache[reg] = value;
48 if (codec->cache_only) {
49 codec->cache_sync = 1;
50 return 0;
53 dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
55 ret = codec->hw_write(codec->control_data, data, 2);
56 if (ret == 2)
57 return 0;
58 if (ret < 0)
59 return ret;
60 else
61 return -EIO;
64 #if defined(CONFIG_SPI_MASTER)
65 static int snd_soc_4_12_spi_write(void *control_data, const char *data,
66 int len)
68 struct spi_device *spi = control_data;
69 struct spi_transfer t;
70 struct spi_message m;
71 u8 msg[2];
73 if (len <= 0)
74 return 0;
76 msg[0] = data[1];
77 msg[1] = data[0];
79 spi_message_init(&m);
80 memset(&t, 0, (sizeof t));
82 t.tx_buf = &msg[0];
83 t.len = len;
85 spi_message_add_tail(&t, &m);
86 spi_sync(spi, &m);
88 return len;
90 #else
91 #define snd_soc_4_12_spi_write NULL
92 #endif
94 static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
95 unsigned int reg)
97 u16 *cache = codec->reg_cache;
99 if (reg >= codec->driver->reg_cache_size ||
100 snd_soc_codec_volatile_register(codec, reg)) {
101 if (codec->cache_only)
102 return -1;
104 return codec->hw_read(codec, reg);
107 return cache[reg];
110 static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
111 unsigned int value)
113 u16 *cache = codec->reg_cache;
114 u8 data[2];
115 int ret;
117 data[0] = (reg << 1) | ((value >> 8) & 0x0001);
118 data[1] = value & 0x00ff;
120 if (!snd_soc_codec_volatile_register(codec, reg) &&
121 reg < codec->driver->reg_cache_size)
122 cache[reg] = value;
124 if (codec->cache_only) {
125 codec->cache_sync = 1;
126 return 0;
129 dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
131 ret = codec->hw_write(codec->control_data, data, 2);
132 if (ret == 2)
133 return 0;
134 if (ret < 0)
135 return ret;
136 else
137 return -EIO;
140 #if defined(CONFIG_SPI_MASTER)
141 static int snd_soc_7_9_spi_write(void *control_data, const char *data,
142 int len)
144 struct spi_device *spi = control_data;
145 struct spi_transfer t;
146 struct spi_message m;
147 u8 msg[2];
149 if (len <= 0)
150 return 0;
152 msg[0] = data[0];
153 msg[1] = data[1];
155 spi_message_init(&m);
156 memset(&t, 0, (sizeof t));
158 t.tx_buf = &msg[0];
159 t.len = len;
161 spi_message_add_tail(&t, &m);
162 spi_sync(spi, &m);
164 return len;
166 #else
167 #define snd_soc_7_9_spi_write NULL
168 #endif
170 static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
171 unsigned int value)
173 u8 *cache = codec->reg_cache;
174 u8 data[2];
176 reg &= 0xff;
177 data[0] = reg;
178 data[1] = value & 0xff;
180 if (!snd_soc_codec_volatile_register(codec, reg) &&
181 reg < codec->driver->reg_cache_size)
182 cache[reg] = value;
184 if (codec->cache_only) {
185 codec->cache_sync = 1;
186 return 0;
189 dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
191 if (codec->hw_write(codec->control_data, data, 2) == 2)
192 return 0;
193 else
194 return -EIO;
197 static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
198 unsigned int reg)
200 u8 *cache = codec->reg_cache;
202 reg &= 0xff;
203 if (reg >= codec->driver->reg_cache_size ||
204 snd_soc_codec_volatile_register(codec, reg)) {
205 if (codec->cache_only)
206 return -1;
208 return codec->hw_read(codec, reg);
211 return cache[reg];
214 #if defined(CONFIG_SPI_MASTER)
215 static int snd_soc_8_8_spi_write(void *control_data, const char *data,
216 int len)
218 struct spi_device *spi = control_data;
219 struct spi_transfer t;
220 struct spi_message m;
221 u8 msg[2];
223 if (len <= 0)
224 return 0;
226 msg[0] = data[0];
227 msg[1] = data[1];
229 spi_message_init(&m);
230 memset(&t, 0, (sizeof t));
232 t.tx_buf = &msg[0];
233 t.len = len;
235 spi_message_add_tail(&t, &m);
236 spi_sync(spi, &m);
238 return len;
240 #else
241 #define snd_soc_8_8_spi_write NULL
242 #endif
244 static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
245 unsigned int value)
247 u16 *reg_cache = codec->reg_cache;
248 u8 data[3];
250 data[0] = reg;
251 data[1] = (value >> 8) & 0xff;
252 data[2] = value & 0xff;
254 if (!snd_soc_codec_volatile_register(codec, reg) &&
255 reg < codec->driver->reg_cache_size)
256 reg_cache[reg] = value;
258 if (codec->cache_only) {
259 codec->cache_sync = 1;
260 return 0;
263 dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
265 if (codec->hw_write(codec->control_data, data, 3) == 3)
266 return 0;
267 else
268 return -EIO;
271 static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
272 unsigned int reg)
274 u16 *cache = codec->reg_cache;
276 if (reg >= codec->driver->reg_cache_size ||
277 snd_soc_codec_volatile_register(codec, reg)) {
278 if (codec->cache_only)
279 return -1;
281 return codec->hw_read(codec, reg);
282 } else {
283 return cache[reg];
287 #if defined(CONFIG_SPI_MASTER)
288 static int snd_soc_8_16_spi_write(void *control_data, const char *data,
289 int len)
291 struct spi_device *spi = control_data;
292 struct spi_transfer t;
293 struct spi_message m;
294 u8 msg[3];
296 if (len <= 0)
297 return 0;
299 msg[0] = data[0];
300 msg[1] = data[1];
301 msg[2] = data[2];
303 spi_message_init(&m);
304 memset(&t, 0, (sizeof t));
306 t.tx_buf = &msg[0];
307 t.len = len;
309 spi_message_add_tail(&t, &m);
310 spi_sync(spi, &m);
312 return len;
314 #else
315 #define snd_soc_8_16_spi_write NULL
316 #endif
318 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
319 static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
320 unsigned int r)
322 struct i2c_msg xfer[2];
323 u8 reg = r;
324 u8 data;
325 int ret;
326 struct i2c_client *client = codec->control_data;
328 /* Write register */
329 xfer[0].addr = client->addr;
330 xfer[0].flags = 0;
331 xfer[0].len = 1;
332 xfer[0].buf = &reg;
334 /* Read data */
335 xfer[1].addr = client->addr;
336 xfer[1].flags = I2C_M_RD;
337 xfer[1].len = 1;
338 xfer[1].buf = &data;
340 ret = i2c_transfer(client->adapter, xfer, 2);
341 if (ret != 2) {
342 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
343 return 0;
346 return data;
348 #else
349 #define snd_soc_8_8_read_i2c NULL
350 #endif
352 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
353 static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
354 unsigned int r)
356 struct i2c_msg xfer[2];
357 u8 reg = r;
358 u16 data;
359 int ret;
360 struct i2c_client *client = codec->control_data;
362 /* Write register */
363 xfer[0].addr = client->addr;
364 xfer[0].flags = 0;
365 xfer[0].len = 1;
366 xfer[0].buf = &reg;
368 /* Read data */
369 xfer[1].addr = client->addr;
370 xfer[1].flags = I2C_M_RD;
371 xfer[1].len = 2;
372 xfer[1].buf = (u8 *)&data;
374 ret = i2c_transfer(client->adapter, xfer, 2);
375 if (ret != 2) {
376 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
377 return 0;
380 return (data >> 8) | ((data & 0xff) << 8);
382 #else
383 #define snd_soc_8_16_read_i2c NULL
384 #endif
386 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
387 static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
388 unsigned int r)
390 struct i2c_msg xfer[2];
391 u16 reg = r;
392 u8 data;
393 int ret;
394 struct i2c_client *client = codec->control_data;
396 /* Write register */
397 xfer[0].addr = client->addr;
398 xfer[0].flags = 0;
399 xfer[0].len = 2;
400 xfer[0].buf = (u8 *)&reg;
402 /* Read data */
403 xfer[1].addr = client->addr;
404 xfer[1].flags = I2C_M_RD;
405 xfer[1].len = 1;
406 xfer[1].buf = &data;
408 ret = i2c_transfer(client->adapter, xfer, 2);
409 if (ret != 2) {
410 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
411 return 0;
414 return data;
416 #else
417 #define snd_soc_16_8_read_i2c NULL
418 #endif
420 static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
421 unsigned int reg)
423 u8 *cache = codec->reg_cache;
425 reg &= 0xff;
426 if (reg >= codec->driver->reg_cache_size ||
427 snd_soc_codec_volatile_register(codec, reg)) {
428 if (codec->cache_only)
429 return -1;
431 return codec->hw_read(codec, reg);
434 return cache[reg];
437 static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
438 unsigned int value)
440 u8 *cache = codec->reg_cache;
441 u8 data[3];
442 int ret;
444 data[0] = (reg >> 8) & 0xff;
445 data[1] = reg & 0xff;
446 data[2] = value;
448 reg &= 0xff;
449 if (!snd_soc_codec_volatile_register(codec, reg) &&
450 reg < codec->driver->reg_cache_size)
451 cache[reg] = value;
453 if (codec->cache_only) {
454 codec->cache_sync = 1;
455 return 0;
458 dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
460 ret = codec->hw_write(codec->control_data, data, 3);
461 if (ret == 3)
462 return 0;
463 if (ret < 0)
464 return ret;
465 else
466 return -EIO;
469 #if defined(CONFIG_SPI_MASTER)
470 static int snd_soc_16_8_spi_write(void *control_data, const char *data,
471 int len)
473 struct spi_device *spi = control_data;
474 struct spi_transfer t;
475 struct spi_message m;
476 u8 msg[3];
478 if (len <= 0)
479 return 0;
481 msg[0] = data[0];
482 msg[1] = data[1];
483 msg[2] = data[2];
485 spi_message_init(&m);
486 memset(&t, 0, (sizeof t));
488 t.tx_buf = &msg[0];
489 t.len = len;
491 spi_message_add_tail(&t, &m);
492 spi_sync(spi, &m);
494 return len;
496 #else
497 #define snd_soc_16_8_spi_write NULL
498 #endif
500 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
501 static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
502 unsigned int r)
504 struct i2c_msg xfer[2];
505 u16 reg = cpu_to_be16(r);
506 u16 data;
507 int ret;
508 struct i2c_client *client = codec->control_data;
510 /* Write register */
511 xfer[0].addr = client->addr;
512 xfer[0].flags = 0;
513 xfer[0].len = 2;
514 xfer[0].buf = (u8 *)&reg;
516 /* Read data */
517 xfer[1].addr = client->addr;
518 xfer[1].flags = I2C_M_RD;
519 xfer[1].len = 2;
520 xfer[1].buf = (u8 *)&data;
522 ret = i2c_transfer(client->adapter, xfer, 2);
523 if (ret != 2) {
524 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
525 return 0;
528 return be16_to_cpu(data);
530 #else
531 #define snd_soc_16_16_read_i2c NULL
532 #endif
534 static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
535 unsigned int reg)
537 u16 *cache = codec->reg_cache;
539 if (reg >= codec->driver->reg_cache_size ||
540 snd_soc_codec_volatile_register(codec, reg)) {
541 if (codec->cache_only)
542 return -1;
544 return codec->hw_read(codec, reg);
547 return cache[reg];
550 static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
551 unsigned int value)
553 u16 *cache = codec->reg_cache;
554 u8 data[4];
555 int ret;
557 data[0] = (reg >> 8) & 0xff;
558 data[1] = reg & 0xff;
559 data[2] = (value >> 8) & 0xff;
560 data[3] = value & 0xff;
562 if (!snd_soc_codec_volatile_register(codec, reg) &&
563 reg < codec->driver->reg_cache_size)
564 cache[reg] = value;
566 if (codec->cache_only) {
567 codec->cache_sync = 1;
568 return 0;
571 dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
573 ret = codec->hw_write(codec->control_data, data, 4);
574 if (ret == 4)
575 return 0;
576 if (ret < 0)
577 return ret;
578 else
579 return -EIO;
582 #if defined(CONFIG_SPI_MASTER)
583 static int snd_soc_16_16_spi_write(void *control_data, const char *data,
584 int len)
586 struct spi_device *spi = control_data;
587 struct spi_transfer t;
588 struct spi_message m;
589 u8 msg[4];
591 if (len <= 0)
592 return 0;
594 msg[0] = data[0];
595 msg[1] = data[1];
596 msg[2] = data[2];
597 msg[3] = data[3];
599 spi_message_init(&m);
600 memset(&t, 0, (sizeof t));
602 t.tx_buf = &msg[0];
603 t.len = len;
605 spi_message_add_tail(&t, &m);
606 spi_sync(spi, &m);
608 return len;
610 #else
611 #define snd_soc_16_16_spi_write NULL
612 #endif
614 static struct {
615 int addr_bits;
616 int data_bits;
617 int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
618 int (*spi_write)(void *, const char *, int);
619 unsigned int (*read)(struct snd_soc_codec *, unsigned int);
620 unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
621 } io_types[] = {
623 .addr_bits = 4, .data_bits = 12,
624 .write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
625 .spi_write = snd_soc_4_12_spi_write,
628 .addr_bits = 7, .data_bits = 9,
629 .write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
630 .spi_write = snd_soc_7_9_spi_write,
633 .addr_bits = 8, .data_bits = 8,
634 .write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
635 .i2c_read = snd_soc_8_8_read_i2c,
636 .spi_write = snd_soc_8_8_spi_write,
639 .addr_bits = 8, .data_bits = 16,
640 .write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
641 .i2c_read = snd_soc_8_16_read_i2c,
642 .spi_write = snd_soc_8_16_spi_write,
645 .addr_bits = 16, .data_bits = 8,
646 .write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
647 .i2c_read = snd_soc_16_8_read_i2c,
648 .spi_write = snd_soc_16_8_spi_write,
651 .addr_bits = 16, .data_bits = 16,
652 .write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
653 .i2c_read = snd_soc_16_16_read_i2c,
654 .spi_write = snd_soc_16_16_spi_write,
659 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
661 * @codec: CODEC to configure.
662 * @type: Type of cache.
663 * @addr_bits: Number of bits of register address data.
664 * @data_bits: Number of bits of data per register.
665 * @control: Control bus used.
667 * Register formats are frequently shared between many I2C and SPI
668 * devices. In order to promote code reuse the ASoC core provides
669 * some standard implementations of CODEC read and write operations
670 * which can be set up using this function.
672 * The caller is responsible for allocating and initialising the
673 * actual cache.
675 * Note that at present this code cannot be used by CODECs with
676 * volatile registers.
678 int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
679 int addr_bits, int data_bits,
680 enum snd_soc_control_type control)
682 int i;
684 for (i = 0; i < ARRAY_SIZE(io_types); i++)
685 if (io_types[i].addr_bits == addr_bits &&
686 io_types[i].data_bits == data_bits)
687 break;
688 if (i == ARRAY_SIZE(io_types)) {
689 printk(KERN_ERR
690 "No I/O functions for %d bit address %d bit data\n",
691 addr_bits, data_bits);
692 return -EINVAL;
695 codec->driver->write = io_types[i].write;
696 codec->driver->read = io_types[i].read;
698 switch (control) {
699 case SND_SOC_CUSTOM:
700 break;
702 case SND_SOC_I2C:
703 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
704 codec->hw_write = (hw_write_t)i2c_master_send;
705 #endif
706 if (io_types[i].i2c_read)
707 codec->hw_read = io_types[i].i2c_read;
709 codec->control_data = container_of(codec->dev,
710 struct i2c_client,
711 dev);
712 break;
714 case SND_SOC_SPI:
715 if (io_types[i].spi_write)
716 codec->hw_write = io_types[i].spi_write;
718 codec->control_data = container_of(codec->dev,
719 struct spi_device,
720 dev);
721 break;
724 return 0;
726 EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);