Driver core: Fix first line of kernel-doc for a few functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swapfile.c
blob84374d8cf814db6e131be7c42fdbd7450b7282d5
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
55 static struct swap_list_t swap_list = {-1, -1};
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 static DEFINE_MUTEX(swapon_mutex);
61 static inline unsigned char swap_count(unsigned char ent)
63 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
70 swp_entry_t entry = swp_entry(si->type, offset);
71 struct page *page;
72 int ret = 0;
74 page = find_get_page(&swapper_space, entry.val);
75 if (!page)
76 return 0;
78 * This function is called from scan_swap_map() and it's called
79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 * We have to use trylock for avoiding deadlock. This is a special
81 * case and you should use try_to_free_swap() with explicit lock_page()
82 * in usual operations.
84 if (trylock_page(page)) {
85 ret = try_to_free_swap(page);
86 unlock_page(page);
88 page_cache_release(page);
89 return ret;
93 * We need this because the bdev->unplug_fn can sleep and we cannot
94 * hold swap_lock while calling the unplug_fn. And swap_lock
95 * cannot be turned into a mutex.
97 static DECLARE_RWSEM(swap_unplug_sem);
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
101 swp_entry_t entry;
103 down_read(&swap_unplug_sem);
104 entry.val = page_private(page);
105 if (PageSwapCache(page)) {
106 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107 struct backing_dev_info *bdi;
110 * If the page is removed from swapcache from under us (with a
111 * racy try_to_unuse/swapoff) we need an additional reference
112 * count to avoid reading garbage from page_private(page) above.
113 * If the WARN_ON triggers during a swapoff it maybe the race
114 * condition and it's harmless. However if it triggers without
115 * swapoff it signals a problem.
117 WARN_ON(page_count(page) <= 1);
119 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120 blk_run_backing_dev(bdi, page);
122 up_read(&swap_unplug_sem);
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
129 static int discard_swap(struct swap_info_struct *si)
131 struct swap_extent *se;
132 sector_t start_block;
133 sector_t nr_blocks;
134 int err = 0;
136 /* Do not discard the swap header page! */
137 se = &si->first_swap_extent;
138 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 if (nr_blocks) {
141 err = blkdev_issue_discard(si->bdev, start_block,
142 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143 if (err)
144 return err;
145 cond_resched();
148 list_for_each_entry(se, &si->first_swap_extent.list, list) {
149 start_block = se->start_block << (PAGE_SHIFT - 9);
150 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 err = blkdev_issue_discard(si->bdev, start_block,
153 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154 if (err)
155 break;
157 cond_resched();
159 return err; /* That will often be -EOPNOTSUPP */
163 * swap allocation tell device that a cluster of swap can now be discarded,
164 * to allow the swap device to optimize its wear-levelling.
166 static void discard_swap_cluster(struct swap_info_struct *si,
167 pgoff_t start_page, pgoff_t nr_pages)
169 struct swap_extent *se = si->curr_swap_extent;
170 int found_extent = 0;
172 while (nr_pages) {
173 struct list_head *lh;
175 if (se->start_page <= start_page &&
176 start_page < se->start_page + se->nr_pages) {
177 pgoff_t offset = start_page - se->start_page;
178 sector_t start_block = se->start_block + offset;
179 sector_t nr_blocks = se->nr_pages - offset;
181 if (nr_blocks > nr_pages)
182 nr_blocks = nr_pages;
183 start_page += nr_blocks;
184 nr_pages -= nr_blocks;
186 if (!found_extent++)
187 si->curr_swap_extent = se;
189 start_block <<= PAGE_SHIFT - 9;
190 nr_blocks <<= PAGE_SHIFT - 9;
191 if (blkdev_issue_discard(si->bdev, start_block,
192 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
193 break;
196 lh = se->list.next;
197 se = list_entry(lh, struct swap_extent, list);
201 static int wait_for_discard(void *word)
203 schedule();
204 return 0;
207 #define SWAPFILE_CLUSTER 256
208 #define LATENCY_LIMIT 256
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211 unsigned char usage)
213 unsigned long offset;
214 unsigned long scan_base;
215 unsigned long last_in_cluster = 0;
216 int latency_ration = LATENCY_LIMIT;
217 int found_free_cluster = 0;
220 * We try to cluster swap pages by allocating them sequentially
221 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
222 * way, however, we resort to first-free allocation, starting
223 * a new cluster. This prevents us from scattering swap pages
224 * all over the entire swap partition, so that we reduce
225 * overall disk seek times between swap pages. -- sct
226 * But we do now try to find an empty cluster. -Andrea
227 * And we let swap pages go all over an SSD partition. Hugh
230 si->flags += SWP_SCANNING;
231 scan_base = offset = si->cluster_next;
233 if (unlikely(!si->cluster_nr--)) {
234 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235 si->cluster_nr = SWAPFILE_CLUSTER - 1;
236 goto checks;
238 if (si->flags & SWP_DISCARDABLE) {
240 * Start range check on racing allocations, in case
241 * they overlap the cluster we eventually decide on
242 * (we scan without swap_lock to allow preemption).
243 * It's hardly conceivable that cluster_nr could be
244 * wrapped during our scan, but don't depend on it.
246 if (si->lowest_alloc)
247 goto checks;
248 si->lowest_alloc = si->max;
249 si->highest_alloc = 0;
251 spin_unlock(&swap_lock);
254 * If seek is expensive, start searching for new cluster from
255 * start of partition, to minimize the span of allocated swap.
256 * But if seek is cheap, search from our current position, so
257 * that swap is allocated from all over the partition: if the
258 * Flash Translation Layer only remaps within limited zones,
259 * we don't want to wear out the first zone too quickly.
261 if (!(si->flags & SWP_SOLIDSTATE))
262 scan_base = offset = si->lowest_bit;
263 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
265 /* Locate the first empty (unaligned) cluster */
266 for (; last_in_cluster <= si->highest_bit; offset++) {
267 if (si->swap_map[offset])
268 last_in_cluster = offset + SWAPFILE_CLUSTER;
269 else if (offset == last_in_cluster) {
270 spin_lock(&swap_lock);
271 offset -= SWAPFILE_CLUSTER - 1;
272 si->cluster_next = offset;
273 si->cluster_nr = SWAPFILE_CLUSTER - 1;
274 found_free_cluster = 1;
275 goto checks;
277 if (unlikely(--latency_ration < 0)) {
278 cond_resched();
279 latency_ration = LATENCY_LIMIT;
283 offset = si->lowest_bit;
284 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
286 /* Locate the first empty (unaligned) cluster */
287 for (; last_in_cluster < scan_base; offset++) {
288 if (si->swap_map[offset])
289 last_in_cluster = offset + SWAPFILE_CLUSTER;
290 else if (offset == last_in_cluster) {
291 spin_lock(&swap_lock);
292 offset -= SWAPFILE_CLUSTER - 1;
293 si->cluster_next = offset;
294 si->cluster_nr = SWAPFILE_CLUSTER - 1;
295 found_free_cluster = 1;
296 goto checks;
298 if (unlikely(--latency_ration < 0)) {
299 cond_resched();
300 latency_ration = LATENCY_LIMIT;
304 offset = scan_base;
305 spin_lock(&swap_lock);
306 si->cluster_nr = SWAPFILE_CLUSTER - 1;
307 si->lowest_alloc = 0;
310 checks:
311 if (!(si->flags & SWP_WRITEOK))
312 goto no_page;
313 if (!si->highest_bit)
314 goto no_page;
315 if (offset > si->highest_bit)
316 scan_base = offset = si->lowest_bit;
318 /* reuse swap entry of cache-only swap if not busy. */
319 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
320 int swap_was_freed;
321 spin_unlock(&swap_lock);
322 swap_was_freed = __try_to_reclaim_swap(si, offset);
323 spin_lock(&swap_lock);
324 /* entry was freed successfully, try to use this again */
325 if (swap_was_freed)
326 goto checks;
327 goto scan; /* check next one */
330 if (si->swap_map[offset])
331 goto scan;
333 if (offset == si->lowest_bit)
334 si->lowest_bit++;
335 if (offset == si->highest_bit)
336 si->highest_bit--;
337 si->inuse_pages++;
338 if (si->inuse_pages == si->pages) {
339 si->lowest_bit = si->max;
340 si->highest_bit = 0;
342 si->swap_map[offset] = usage;
343 si->cluster_next = offset + 1;
344 si->flags -= SWP_SCANNING;
346 if (si->lowest_alloc) {
348 * Only set when SWP_DISCARDABLE, and there's a scan
349 * for a free cluster in progress or just completed.
351 if (found_free_cluster) {
353 * To optimize wear-levelling, discard the
354 * old data of the cluster, taking care not to
355 * discard any of its pages that have already
356 * been allocated by racing tasks (offset has
357 * already stepped over any at the beginning).
359 if (offset < si->highest_alloc &&
360 si->lowest_alloc <= last_in_cluster)
361 last_in_cluster = si->lowest_alloc - 1;
362 si->flags |= SWP_DISCARDING;
363 spin_unlock(&swap_lock);
365 if (offset < last_in_cluster)
366 discard_swap_cluster(si, offset,
367 last_in_cluster - offset + 1);
369 spin_lock(&swap_lock);
370 si->lowest_alloc = 0;
371 si->flags &= ~SWP_DISCARDING;
373 smp_mb(); /* wake_up_bit advises this */
374 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
376 } else if (si->flags & SWP_DISCARDING) {
378 * Delay using pages allocated by racing tasks
379 * until the whole discard has been issued. We
380 * could defer that delay until swap_writepage,
381 * but it's easier to keep this self-contained.
383 spin_unlock(&swap_lock);
384 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385 wait_for_discard, TASK_UNINTERRUPTIBLE);
386 spin_lock(&swap_lock);
387 } else {
389 * Note pages allocated by racing tasks while
390 * scan for a free cluster is in progress, so
391 * that its final discard can exclude them.
393 if (offset < si->lowest_alloc)
394 si->lowest_alloc = offset;
395 if (offset > si->highest_alloc)
396 si->highest_alloc = offset;
399 return offset;
401 scan:
402 spin_unlock(&swap_lock);
403 while (++offset <= si->highest_bit) {
404 if (!si->swap_map[offset]) {
405 spin_lock(&swap_lock);
406 goto checks;
408 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409 spin_lock(&swap_lock);
410 goto checks;
412 if (unlikely(--latency_ration < 0)) {
413 cond_resched();
414 latency_ration = LATENCY_LIMIT;
417 offset = si->lowest_bit;
418 while (++offset < scan_base) {
419 if (!si->swap_map[offset]) {
420 spin_lock(&swap_lock);
421 goto checks;
423 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424 spin_lock(&swap_lock);
425 goto checks;
427 if (unlikely(--latency_ration < 0)) {
428 cond_resched();
429 latency_ration = LATENCY_LIMIT;
432 spin_lock(&swap_lock);
434 no_page:
435 si->flags -= SWP_SCANNING;
436 return 0;
439 swp_entry_t get_swap_page(void)
441 struct swap_info_struct *si;
442 pgoff_t offset;
443 int type, next;
444 int wrapped = 0;
446 spin_lock(&swap_lock);
447 if (nr_swap_pages <= 0)
448 goto noswap;
449 nr_swap_pages--;
451 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
452 si = swap_info[type];
453 next = si->next;
454 if (next < 0 ||
455 (!wrapped && si->prio != swap_info[next]->prio)) {
456 next = swap_list.head;
457 wrapped++;
460 if (!si->highest_bit)
461 continue;
462 if (!(si->flags & SWP_WRITEOK))
463 continue;
465 swap_list.next = next;
466 /* This is called for allocating swap entry for cache */
467 offset = scan_swap_map(si, SWAP_HAS_CACHE);
468 if (offset) {
469 spin_unlock(&swap_lock);
470 return swp_entry(type, offset);
472 next = swap_list.next;
475 nr_swap_pages++;
476 noswap:
477 spin_unlock(&swap_lock);
478 return (swp_entry_t) {0};
481 /* The only caller of this function is now susupend routine */
482 swp_entry_t get_swap_page_of_type(int type)
484 struct swap_info_struct *si;
485 pgoff_t offset;
487 spin_lock(&swap_lock);
488 si = swap_info[type];
489 if (si && (si->flags & SWP_WRITEOK)) {
490 nr_swap_pages--;
491 /* This is called for allocating swap entry, not cache */
492 offset = scan_swap_map(si, 1);
493 if (offset) {
494 spin_unlock(&swap_lock);
495 return swp_entry(type, offset);
497 nr_swap_pages++;
499 spin_unlock(&swap_lock);
500 return (swp_entry_t) {0};
503 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
505 struct swap_info_struct *p;
506 unsigned long offset, type;
508 if (!entry.val)
509 goto out;
510 type = swp_type(entry);
511 if (type >= nr_swapfiles)
512 goto bad_nofile;
513 p = swap_info[type];
514 if (!(p->flags & SWP_USED))
515 goto bad_device;
516 offset = swp_offset(entry);
517 if (offset >= p->max)
518 goto bad_offset;
519 if (!p->swap_map[offset])
520 goto bad_free;
521 spin_lock(&swap_lock);
522 return p;
524 bad_free:
525 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
526 goto out;
527 bad_offset:
528 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
529 goto out;
530 bad_device:
531 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
532 goto out;
533 bad_nofile:
534 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
535 out:
536 return NULL;
539 static unsigned char swap_entry_free(struct swap_info_struct *p,
540 swp_entry_t entry, unsigned char usage)
542 unsigned long offset = swp_offset(entry);
543 unsigned char count;
544 unsigned char has_cache;
546 count = p->swap_map[offset];
547 has_cache = count & SWAP_HAS_CACHE;
548 count &= ~SWAP_HAS_CACHE;
550 if (usage == SWAP_HAS_CACHE) {
551 VM_BUG_ON(!has_cache);
552 has_cache = 0;
553 } else if (count == SWAP_MAP_SHMEM) {
555 * Or we could insist on shmem.c using a special
556 * swap_shmem_free() and free_shmem_swap_and_cache()...
558 count = 0;
559 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560 if (count == COUNT_CONTINUED) {
561 if (swap_count_continued(p, offset, count))
562 count = SWAP_MAP_MAX | COUNT_CONTINUED;
563 else
564 count = SWAP_MAP_MAX;
565 } else
566 count--;
569 if (!count)
570 mem_cgroup_uncharge_swap(entry);
572 usage = count | has_cache;
573 p->swap_map[offset] = usage;
575 /* free if no reference */
576 if (!usage) {
577 if (offset < p->lowest_bit)
578 p->lowest_bit = offset;
579 if (offset > p->highest_bit)
580 p->highest_bit = offset;
581 if (swap_list.next >= 0 &&
582 p->prio > swap_info[swap_list.next]->prio)
583 swap_list.next = p->type;
584 nr_swap_pages++;
585 p->inuse_pages--;
588 return usage;
592 * Caller has made sure that the swapdevice corresponding to entry
593 * is still around or has not been recycled.
595 void swap_free(swp_entry_t entry)
597 struct swap_info_struct *p;
599 p = swap_info_get(entry);
600 if (p) {
601 swap_entry_free(p, entry, 1);
602 spin_unlock(&swap_lock);
607 * Called after dropping swapcache to decrease refcnt to swap entries.
609 void swapcache_free(swp_entry_t entry, struct page *page)
611 struct swap_info_struct *p;
612 unsigned char count;
614 p = swap_info_get(entry);
615 if (p) {
616 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
617 if (page)
618 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
619 spin_unlock(&swap_lock);
624 * How many references to page are currently swapped out?
625 * This does not give an exact answer when swap count is continued,
626 * but does include the high COUNT_CONTINUED flag to allow for that.
628 static inline int page_swapcount(struct page *page)
630 int count = 0;
631 struct swap_info_struct *p;
632 swp_entry_t entry;
634 entry.val = page_private(page);
635 p = swap_info_get(entry);
636 if (p) {
637 count = swap_count(p->swap_map[swp_offset(entry)]);
638 spin_unlock(&swap_lock);
640 return count;
644 * We can write to an anon page without COW if there are no other references
645 * to it. And as a side-effect, free up its swap: because the old content
646 * on disk will never be read, and seeking back there to write new content
647 * later would only waste time away from clustering.
649 int reuse_swap_page(struct page *page)
651 int count;
653 VM_BUG_ON(!PageLocked(page));
654 if (unlikely(PageKsm(page)))
655 return 0;
656 count = page_mapcount(page);
657 if (count <= 1 && PageSwapCache(page)) {
658 count += page_swapcount(page);
659 if (count == 1 && !PageWriteback(page)) {
660 delete_from_swap_cache(page);
661 SetPageDirty(page);
664 return count <= 1;
668 * If swap is getting full, or if there are no more mappings of this page,
669 * then try_to_free_swap is called to free its swap space.
671 int try_to_free_swap(struct page *page)
673 VM_BUG_ON(!PageLocked(page));
675 if (!PageSwapCache(page))
676 return 0;
677 if (PageWriteback(page))
678 return 0;
679 if (page_swapcount(page))
680 return 0;
682 delete_from_swap_cache(page);
683 SetPageDirty(page);
684 return 1;
688 * Free the swap entry like above, but also try to
689 * free the page cache entry if it is the last user.
691 int free_swap_and_cache(swp_entry_t entry)
693 struct swap_info_struct *p;
694 struct page *page = NULL;
696 if (non_swap_entry(entry))
697 return 1;
699 p = swap_info_get(entry);
700 if (p) {
701 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
702 page = find_get_page(&swapper_space, entry.val);
703 if (page && !trylock_page(page)) {
704 page_cache_release(page);
705 page = NULL;
708 spin_unlock(&swap_lock);
710 if (page) {
712 * Not mapped elsewhere, or swap space full? Free it!
713 * Also recheck PageSwapCache now page is locked (above).
715 if (PageSwapCache(page) && !PageWriteback(page) &&
716 (!page_mapped(page) || vm_swap_full())) {
717 delete_from_swap_cache(page);
718 SetPageDirty(page);
720 unlock_page(page);
721 page_cache_release(page);
723 return p != NULL;
726 #ifdef CONFIG_HIBERNATION
728 * Find the swap type that corresponds to given device (if any).
730 * @offset - number of the PAGE_SIZE-sized block of the device, starting
731 * from 0, in which the swap header is expected to be located.
733 * This is needed for the suspend to disk (aka swsusp).
735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
737 struct block_device *bdev = NULL;
738 int type;
740 if (device)
741 bdev = bdget(device);
743 spin_lock(&swap_lock);
744 for (type = 0; type < nr_swapfiles; type++) {
745 struct swap_info_struct *sis = swap_info[type];
747 if (!(sis->flags & SWP_WRITEOK))
748 continue;
750 if (!bdev) {
751 if (bdev_p)
752 *bdev_p = bdgrab(sis->bdev);
754 spin_unlock(&swap_lock);
755 return type;
757 if (bdev == sis->bdev) {
758 struct swap_extent *se = &sis->first_swap_extent;
760 if (se->start_block == offset) {
761 if (bdev_p)
762 *bdev_p = bdgrab(sis->bdev);
764 spin_unlock(&swap_lock);
765 bdput(bdev);
766 return type;
770 spin_unlock(&swap_lock);
771 if (bdev)
772 bdput(bdev);
774 return -ENODEV;
778 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
779 * corresponding to given index in swap_info (swap type).
781 sector_t swapdev_block(int type, pgoff_t offset)
783 struct block_device *bdev;
785 if ((unsigned int)type >= nr_swapfiles)
786 return 0;
787 if (!(swap_info[type]->flags & SWP_WRITEOK))
788 return 0;
789 return map_swap_entry(swp_entry(type, offset), &bdev);
793 * Return either the total number of swap pages of given type, or the number
794 * of free pages of that type (depending on @free)
796 * This is needed for software suspend
798 unsigned int count_swap_pages(int type, int free)
800 unsigned int n = 0;
802 spin_lock(&swap_lock);
803 if ((unsigned int)type < nr_swapfiles) {
804 struct swap_info_struct *sis = swap_info[type];
806 if (sis->flags & SWP_WRITEOK) {
807 n = sis->pages;
808 if (free)
809 n -= sis->inuse_pages;
812 spin_unlock(&swap_lock);
813 return n;
815 #endif /* CONFIG_HIBERNATION */
818 * No need to decide whether this PTE shares the swap entry with others,
819 * just let do_wp_page work it out if a write is requested later - to
820 * force COW, vm_page_prot omits write permission from any private vma.
822 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
823 unsigned long addr, swp_entry_t entry, struct page *page)
825 struct mem_cgroup *ptr = NULL;
826 spinlock_t *ptl;
827 pte_t *pte;
828 int ret = 1;
830 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
831 ret = -ENOMEM;
832 goto out_nolock;
835 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
836 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
837 if (ret > 0)
838 mem_cgroup_cancel_charge_swapin(ptr);
839 ret = 0;
840 goto out;
843 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
844 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
845 get_page(page);
846 set_pte_at(vma->vm_mm, addr, pte,
847 pte_mkold(mk_pte(page, vma->vm_page_prot)));
848 page_add_anon_rmap(page, vma, addr);
849 mem_cgroup_commit_charge_swapin(page, ptr);
850 swap_free(entry);
852 * Move the page to the active list so it is not
853 * immediately swapped out again after swapon.
855 activate_page(page);
856 out:
857 pte_unmap_unlock(pte, ptl);
858 out_nolock:
859 return ret;
862 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
863 unsigned long addr, unsigned long end,
864 swp_entry_t entry, struct page *page)
866 pte_t swp_pte = swp_entry_to_pte(entry);
867 pte_t *pte;
868 int ret = 0;
871 * We don't actually need pte lock while scanning for swp_pte: since
872 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
873 * page table while we're scanning; though it could get zapped, and on
874 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
875 * of unmatched parts which look like swp_pte, so unuse_pte must
876 * recheck under pte lock. Scanning without pte lock lets it be
877 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
879 pte = pte_offset_map(pmd, addr);
880 do {
882 * swapoff spends a _lot_ of time in this loop!
883 * Test inline before going to call unuse_pte.
885 if (unlikely(pte_same(*pte, swp_pte))) {
886 pte_unmap(pte);
887 ret = unuse_pte(vma, pmd, addr, entry, page);
888 if (ret)
889 goto out;
890 pte = pte_offset_map(pmd, addr);
892 } while (pte++, addr += PAGE_SIZE, addr != end);
893 pte_unmap(pte - 1);
894 out:
895 return ret;
898 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
899 unsigned long addr, unsigned long end,
900 swp_entry_t entry, struct page *page)
902 pmd_t *pmd;
903 unsigned long next;
904 int ret;
906 pmd = pmd_offset(pud, addr);
907 do {
908 next = pmd_addr_end(addr, end);
909 if (pmd_none_or_clear_bad(pmd))
910 continue;
911 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
912 if (ret)
913 return ret;
914 } while (pmd++, addr = next, addr != end);
915 return 0;
918 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
919 unsigned long addr, unsigned long end,
920 swp_entry_t entry, struct page *page)
922 pud_t *pud;
923 unsigned long next;
924 int ret;
926 pud = pud_offset(pgd, addr);
927 do {
928 next = pud_addr_end(addr, end);
929 if (pud_none_or_clear_bad(pud))
930 continue;
931 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
932 if (ret)
933 return ret;
934 } while (pud++, addr = next, addr != end);
935 return 0;
938 static int unuse_vma(struct vm_area_struct *vma,
939 swp_entry_t entry, struct page *page)
941 pgd_t *pgd;
942 unsigned long addr, end, next;
943 int ret;
945 if (page_anon_vma(page)) {
946 addr = page_address_in_vma(page, vma);
947 if (addr == -EFAULT)
948 return 0;
949 else
950 end = addr + PAGE_SIZE;
951 } else {
952 addr = vma->vm_start;
953 end = vma->vm_end;
956 pgd = pgd_offset(vma->vm_mm, addr);
957 do {
958 next = pgd_addr_end(addr, end);
959 if (pgd_none_or_clear_bad(pgd))
960 continue;
961 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
962 if (ret)
963 return ret;
964 } while (pgd++, addr = next, addr != end);
965 return 0;
968 static int unuse_mm(struct mm_struct *mm,
969 swp_entry_t entry, struct page *page)
971 struct vm_area_struct *vma;
972 int ret = 0;
974 if (!down_read_trylock(&mm->mmap_sem)) {
976 * Activate page so shrink_inactive_list is unlikely to unmap
977 * its ptes while lock is dropped, so swapoff can make progress.
979 activate_page(page);
980 unlock_page(page);
981 down_read(&mm->mmap_sem);
982 lock_page(page);
984 for (vma = mm->mmap; vma; vma = vma->vm_next) {
985 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
986 break;
988 up_read(&mm->mmap_sem);
989 return (ret < 0)? ret: 0;
993 * Scan swap_map from current position to next entry still in use.
994 * Recycle to start on reaching the end, returning 0 when empty.
996 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
997 unsigned int prev)
999 unsigned int max = si->max;
1000 unsigned int i = prev;
1001 unsigned char count;
1004 * No need for swap_lock here: we're just looking
1005 * for whether an entry is in use, not modifying it; false
1006 * hits are okay, and sys_swapoff() has already prevented new
1007 * allocations from this area (while holding swap_lock).
1009 for (;;) {
1010 if (++i >= max) {
1011 if (!prev) {
1012 i = 0;
1013 break;
1016 * No entries in use at top of swap_map,
1017 * loop back to start and recheck there.
1019 max = prev + 1;
1020 prev = 0;
1021 i = 1;
1023 count = si->swap_map[i];
1024 if (count && swap_count(count) != SWAP_MAP_BAD)
1025 break;
1027 return i;
1031 * We completely avoid races by reading each swap page in advance,
1032 * and then search for the process using it. All the necessary
1033 * page table adjustments can then be made atomically.
1035 static int try_to_unuse(unsigned int type)
1037 struct swap_info_struct *si = swap_info[type];
1038 struct mm_struct *start_mm;
1039 unsigned char *swap_map;
1040 unsigned char swcount;
1041 struct page *page;
1042 swp_entry_t entry;
1043 unsigned int i = 0;
1044 int retval = 0;
1047 * When searching mms for an entry, a good strategy is to
1048 * start at the first mm we freed the previous entry from
1049 * (though actually we don't notice whether we or coincidence
1050 * freed the entry). Initialize this start_mm with a hold.
1052 * A simpler strategy would be to start at the last mm we
1053 * freed the previous entry from; but that would take less
1054 * advantage of mmlist ordering, which clusters forked mms
1055 * together, child after parent. If we race with dup_mmap(), we
1056 * prefer to resolve parent before child, lest we miss entries
1057 * duplicated after we scanned child: using last mm would invert
1058 * that.
1060 start_mm = &init_mm;
1061 atomic_inc(&init_mm.mm_users);
1064 * Keep on scanning until all entries have gone. Usually,
1065 * one pass through swap_map is enough, but not necessarily:
1066 * there are races when an instance of an entry might be missed.
1068 while ((i = find_next_to_unuse(si, i)) != 0) {
1069 if (signal_pending(current)) {
1070 retval = -EINTR;
1071 break;
1075 * Get a page for the entry, using the existing swap
1076 * cache page if there is one. Otherwise, get a clean
1077 * page and read the swap into it.
1079 swap_map = &si->swap_map[i];
1080 entry = swp_entry(type, i);
1081 page = read_swap_cache_async(entry,
1082 GFP_HIGHUSER_MOVABLE, NULL, 0);
1083 if (!page) {
1085 * Either swap_duplicate() failed because entry
1086 * has been freed independently, and will not be
1087 * reused since sys_swapoff() already disabled
1088 * allocation from here, or alloc_page() failed.
1090 if (!*swap_map)
1091 continue;
1092 retval = -ENOMEM;
1093 break;
1097 * Don't hold on to start_mm if it looks like exiting.
1099 if (atomic_read(&start_mm->mm_users) == 1) {
1100 mmput(start_mm);
1101 start_mm = &init_mm;
1102 atomic_inc(&init_mm.mm_users);
1106 * Wait for and lock page. When do_swap_page races with
1107 * try_to_unuse, do_swap_page can handle the fault much
1108 * faster than try_to_unuse can locate the entry. This
1109 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1110 * defer to do_swap_page in such a case - in some tests,
1111 * do_swap_page and try_to_unuse repeatedly compete.
1113 wait_on_page_locked(page);
1114 wait_on_page_writeback(page);
1115 lock_page(page);
1116 wait_on_page_writeback(page);
1119 * Remove all references to entry.
1121 swcount = *swap_map;
1122 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1123 retval = shmem_unuse(entry, page);
1124 /* page has already been unlocked and released */
1125 if (retval < 0)
1126 break;
1127 continue;
1129 if (swap_count(swcount) && start_mm != &init_mm)
1130 retval = unuse_mm(start_mm, entry, page);
1132 if (swap_count(*swap_map)) {
1133 int set_start_mm = (*swap_map >= swcount);
1134 struct list_head *p = &start_mm->mmlist;
1135 struct mm_struct *new_start_mm = start_mm;
1136 struct mm_struct *prev_mm = start_mm;
1137 struct mm_struct *mm;
1139 atomic_inc(&new_start_mm->mm_users);
1140 atomic_inc(&prev_mm->mm_users);
1141 spin_lock(&mmlist_lock);
1142 while (swap_count(*swap_map) && !retval &&
1143 (p = p->next) != &start_mm->mmlist) {
1144 mm = list_entry(p, struct mm_struct, mmlist);
1145 if (!atomic_inc_not_zero(&mm->mm_users))
1146 continue;
1147 spin_unlock(&mmlist_lock);
1148 mmput(prev_mm);
1149 prev_mm = mm;
1151 cond_resched();
1153 swcount = *swap_map;
1154 if (!swap_count(swcount)) /* any usage ? */
1156 else if (mm == &init_mm)
1157 set_start_mm = 1;
1158 else
1159 retval = unuse_mm(mm, entry, page);
1161 if (set_start_mm && *swap_map < swcount) {
1162 mmput(new_start_mm);
1163 atomic_inc(&mm->mm_users);
1164 new_start_mm = mm;
1165 set_start_mm = 0;
1167 spin_lock(&mmlist_lock);
1169 spin_unlock(&mmlist_lock);
1170 mmput(prev_mm);
1171 mmput(start_mm);
1172 start_mm = new_start_mm;
1174 if (retval) {
1175 unlock_page(page);
1176 page_cache_release(page);
1177 break;
1181 * If a reference remains (rare), we would like to leave
1182 * the page in the swap cache; but try_to_unmap could
1183 * then re-duplicate the entry once we drop page lock,
1184 * so we might loop indefinitely; also, that page could
1185 * not be swapped out to other storage meanwhile. So:
1186 * delete from cache even if there's another reference,
1187 * after ensuring that the data has been saved to disk -
1188 * since if the reference remains (rarer), it will be
1189 * read from disk into another page. Splitting into two
1190 * pages would be incorrect if swap supported "shared
1191 * private" pages, but they are handled by tmpfs files.
1193 * Given how unuse_vma() targets one particular offset
1194 * in an anon_vma, once the anon_vma has been determined,
1195 * this splitting happens to be just what is needed to
1196 * handle where KSM pages have been swapped out: re-reading
1197 * is unnecessarily slow, but we can fix that later on.
1199 if (swap_count(*swap_map) &&
1200 PageDirty(page) && PageSwapCache(page)) {
1201 struct writeback_control wbc = {
1202 .sync_mode = WB_SYNC_NONE,
1205 swap_writepage(page, &wbc);
1206 lock_page(page);
1207 wait_on_page_writeback(page);
1211 * It is conceivable that a racing task removed this page from
1212 * swap cache just before we acquired the page lock at the top,
1213 * or while we dropped it in unuse_mm(). The page might even
1214 * be back in swap cache on another swap area: that we must not
1215 * delete, since it may not have been written out to swap yet.
1217 if (PageSwapCache(page) &&
1218 likely(page_private(page) == entry.val))
1219 delete_from_swap_cache(page);
1222 * So we could skip searching mms once swap count went
1223 * to 1, we did not mark any present ptes as dirty: must
1224 * mark page dirty so shrink_page_list will preserve it.
1226 SetPageDirty(page);
1227 unlock_page(page);
1228 page_cache_release(page);
1231 * Make sure that we aren't completely killing
1232 * interactive performance.
1234 cond_resched();
1237 mmput(start_mm);
1238 return retval;
1242 * After a successful try_to_unuse, if no swap is now in use, we know
1243 * we can empty the mmlist. swap_lock must be held on entry and exit.
1244 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1245 * added to the mmlist just after page_duplicate - before would be racy.
1247 static void drain_mmlist(void)
1249 struct list_head *p, *next;
1250 unsigned int type;
1252 for (type = 0; type < nr_swapfiles; type++)
1253 if (swap_info[type]->inuse_pages)
1254 return;
1255 spin_lock(&mmlist_lock);
1256 list_for_each_safe(p, next, &init_mm.mmlist)
1257 list_del_init(p);
1258 spin_unlock(&mmlist_lock);
1262 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1263 * corresponds to page offset for the specified swap entry.
1264 * Note that the type of this function is sector_t, but it returns page offset
1265 * into the bdev, not sector offset.
1267 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1269 struct swap_info_struct *sis;
1270 struct swap_extent *start_se;
1271 struct swap_extent *se;
1272 pgoff_t offset;
1274 sis = swap_info[swp_type(entry)];
1275 *bdev = sis->bdev;
1277 offset = swp_offset(entry);
1278 start_se = sis->curr_swap_extent;
1279 se = start_se;
1281 for ( ; ; ) {
1282 struct list_head *lh;
1284 if (se->start_page <= offset &&
1285 offset < (se->start_page + se->nr_pages)) {
1286 return se->start_block + (offset - se->start_page);
1288 lh = se->list.next;
1289 se = list_entry(lh, struct swap_extent, list);
1290 sis->curr_swap_extent = se;
1291 BUG_ON(se == start_se); /* It *must* be present */
1296 * Returns the page offset into bdev for the specified page's swap entry.
1298 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1300 swp_entry_t entry;
1301 entry.val = page_private(page);
1302 return map_swap_entry(entry, bdev);
1306 * Free all of a swapdev's extent information
1308 static void destroy_swap_extents(struct swap_info_struct *sis)
1310 while (!list_empty(&sis->first_swap_extent.list)) {
1311 struct swap_extent *se;
1313 se = list_entry(sis->first_swap_extent.list.next,
1314 struct swap_extent, list);
1315 list_del(&se->list);
1316 kfree(se);
1321 * Add a block range (and the corresponding page range) into this swapdev's
1322 * extent list. The extent list is kept sorted in page order.
1324 * This function rather assumes that it is called in ascending page order.
1326 static int
1327 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1328 unsigned long nr_pages, sector_t start_block)
1330 struct swap_extent *se;
1331 struct swap_extent *new_se;
1332 struct list_head *lh;
1334 if (start_page == 0) {
1335 se = &sis->first_swap_extent;
1336 sis->curr_swap_extent = se;
1337 se->start_page = 0;
1338 se->nr_pages = nr_pages;
1339 se->start_block = start_block;
1340 return 1;
1341 } else {
1342 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1343 se = list_entry(lh, struct swap_extent, list);
1344 BUG_ON(se->start_page + se->nr_pages != start_page);
1345 if (se->start_block + se->nr_pages == start_block) {
1346 /* Merge it */
1347 se->nr_pages += nr_pages;
1348 return 0;
1353 * No merge. Insert a new extent, preserving ordering.
1355 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1356 if (new_se == NULL)
1357 return -ENOMEM;
1358 new_se->start_page = start_page;
1359 new_se->nr_pages = nr_pages;
1360 new_se->start_block = start_block;
1362 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1363 return 1;
1367 * A `swap extent' is a simple thing which maps a contiguous range of pages
1368 * onto a contiguous range of disk blocks. An ordered list of swap extents
1369 * is built at swapon time and is then used at swap_writepage/swap_readpage
1370 * time for locating where on disk a page belongs.
1372 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1373 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1374 * swap files identically.
1376 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1377 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1378 * swapfiles are handled *identically* after swapon time.
1380 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1381 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1382 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1383 * requirements, they are simply tossed out - we will never use those blocks
1384 * for swapping.
1386 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1387 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1388 * which will scribble on the fs.
1390 * The amount of disk space which a single swap extent represents varies.
1391 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1392 * extents in the list. To avoid much list walking, we cache the previous
1393 * search location in `curr_swap_extent', and start new searches from there.
1394 * This is extremely effective. The average number of iterations in
1395 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1397 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1399 struct inode *inode;
1400 unsigned blocks_per_page;
1401 unsigned long page_no;
1402 unsigned blkbits;
1403 sector_t probe_block;
1404 sector_t last_block;
1405 sector_t lowest_block = -1;
1406 sector_t highest_block = 0;
1407 int nr_extents = 0;
1408 int ret;
1410 inode = sis->swap_file->f_mapping->host;
1411 if (S_ISBLK(inode->i_mode)) {
1412 ret = add_swap_extent(sis, 0, sis->max, 0);
1413 *span = sis->pages;
1414 goto out;
1417 blkbits = inode->i_blkbits;
1418 blocks_per_page = PAGE_SIZE >> blkbits;
1421 * Map all the blocks into the extent list. This code doesn't try
1422 * to be very smart.
1424 probe_block = 0;
1425 page_no = 0;
1426 last_block = i_size_read(inode) >> blkbits;
1427 while ((probe_block + blocks_per_page) <= last_block &&
1428 page_no < sis->max) {
1429 unsigned block_in_page;
1430 sector_t first_block;
1432 first_block = bmap(inode, probe_block);
1433 if (first_block == 0)
1434 goto bad_bmap;
1437 * It must be PAGE_SIZE aligned on-disk
1439 if (first_block & (blocks_per_page - 1)) {
1440 probe_block++;
1441 goto reprobe;
1444 for (block_in_page = 1; block_in_page < blocks_per_page;
1445 block_in_page++) {
1446 sector_t block;
1448 block = bmap(inode, probe_block + block_in_page);
1449 if (block == 0)
1450 goto bad_bmap;
1451 if (block != first_block + block_in_page) {
1452 /* Discontiguity */
1453 probe_block++;
1454 goto reprobe;
1458 first_block >>= (PAGE_SHIFT - blkbits);
1459 if (page_no) { /* exclude the header page */
1460 if (first_block < lowest_block)
1461 lowest_block = first_block;
1462 if (first_block > highest_block)
1463 highest_block = first_block;
1467 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1469 ret = add_swap_extent(sis, page_no, 1, first_block);
1470 if (ret < 0)
1471 goto out;
1472 nr_extents += ret;
1473 page_no++;
1474 probe_block += blocks_per_page;
1475 reprobe:
1476 continue;
1478 ret = nr_extents;
1479 *span = 1 + highest_block - lowest_block;
1480 if (page_no == 0)
1481 page_no = 1; /* force Empty message */
1482 sis->max = page_no;
1483 sis->pages = page_no - 1;
1484 sis->highest_bit = page_no - 1;
1485 out:
1486 return ret;
1487 bad_bmap:
1488 printk(KERN_ERR "swapon: swapfile has holes\n");
1489 ret = -EINVAL;
1490 goto out;
1493 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1495 struct swap_info_struct *p = NULL;
1496 unsigned char *swap_map;
1497 struct file *swap_file, *victim;
1498 struct address_space *mapping;
1499 struct inode *inode;
1500 char *pathname;
1501 int i, type, prev;
1502 int err;
1504 if (!capable(CAP_SYS_ADMIN))
1505 return -EPERM;
1507 pathname = getname(specialfile);
1508 err = PTR_ERR(pathname);
1509 if (IS_ERR(pathname))
1510 goto out;
1512 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1513 putname(pathname);
1514 err = PTR_ERR(victim);
1515 if (IS_ERR(victim))
1516 goto out;
1518 mapping = victim->f_mapping;
1519 prev = -1;
1520 spin_lock(&swap_lock);
1521 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1522 p = swap_info[type];
1523 if (p->flags & SWP_WRITEOK) {
1524 if (p->swap_file->f_mapping == mapping)
1525 break;
1527 prev = type;
1529 if (type < 0) {
1530 err = -EINVAL;
1531 spin_unlock(&swap_lock);
1532 goto out_dput;
1534 if (!security_vm_enough_memory(p->pages))
1535 vm_unacct_memory(p->pages);
1536 else {
1537 err = -ENOMEM;
1538 spin_unlock(&swap_lock);
1539 goto out_dput;
1541 if (prev < 0)
1542 swap_list.head = p->next;
1543 else
1544 swap_info[prev]->next = p->next;
1545 if (type == swap_list.next) {
1546 /* just pick something that's safe... */
1547 swap_list.next = swap_list.head;
1549 if (p->prio < 0) {
1550 for (i = p->next; i >= 0; i = swap_info[i]->next)
1551 swap_info[i]->prio = p->prio--;
1552 least_priority++;
1554 nr_swap_pages -= p->pages;
1555 total_swap_pages -= p->pages;
1556 p->flags &= ~SWP_WRITEOK;
1557 spin_unlock(&swap_lock);
1559 current->flags |= PF_OOM_ORIGIN;
1560 err = try_to_unuse(type);
1561 current->flags &= ~PF_OOM_ORIGIN;
1563 if (err) {
1564 /* re-insert swap space back into swap_list */
1565 spin_lock(&swap_lock);
1566 if (p->prio < 0)
1567 p->prio = --least_priority;
1568 prev = -1;
1569 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1570 if (p->prio >= swap_info[i]->prio)
1571 break;
1572 prev = i;
1574 p->next = i;
1575 if (prev < 0)
1576 swap_list.head = swap_list.next = type;
1577 else
1578 swap_info[prev]->next = type;
1579 nr_swap_pages += p->pages;
1580 total_swap_pages += p->pages;
1581 p->flags |= SWP_WRITEOK;
1582 spin_unlock(&swap_lock);
1583 goto out_dput;
1586 /* wait for any unplug function to finish */
1587 down_write(&swap_unplug_sem);
1588 up_write(&swap_unplug_sem);
1590 destroy_swap_extents(p);
1591 if (p->flags & SWP_CONTINUED)
1592 free_swap_count_continuations(p);
1594 mutex_lock(&swapon_mutex);
1595 spin_lock(&swap_lock);
1596 drain_mmlist();
1598 /* wait for anyone still in scan_swap_map */
1599 p->highest_bit = 0; /* cuts scans short */
1600 while (p->flags >= SWP_SCANNING) {
1601 spin_unlock(&swap_lock);
1602 schedule_timeout_uninterruptible(1);
1603 spin_lock(&swap_lock);
1606 swap_file = p->swap_file;
1607 p->swap_file = NULL;
1608 p->max = 0;
1609 swap_map = p->swap_map;
1610 p->swap_map = NULL;
1611 p->flags = 0;
1612 spin_unlock(&swap_lock);
1613 mutex_unlock(&swapon_mutex);
1614 vfree(swap_map);
1615 /* Destroy swap account informatin */
1616 swap_cgroup_swapoff(type);
1618 inode = mapping->host;
1619 if (S_ISBLK(inode->i_mode)) {
1620 struct block_device *bdev = I_BDEV(inode);
1621 set_blocksize(bdev, p->old_block_size);
1622 bd_release(bdev);
1623 } else {
1624 mutex_lock(&inode->i_mutex);
1625 inode->i_flags &= ~S_SWAPFILE;
1626 mutex_unlock(&inode->i_mutex);
1628 filp_close(swap_file, NULL);
1629 err = 0;
1631 out_dput:
1632 filp_close(victim, NULL);
1633 out:
1634 return err;
1637 #ifdef CONFIG_PROC_FS
1638 /* iterator */
1639 static void *swap_start(struct seq_file *swap, loff_t *pos)
1641 struct swap_info_struct *si;
1642 int type;
1643 loff_t l = *pos;
1645 mutex_lock(&swapon_mutex);
1647 if (!l)
1648 return SEQ_START_TOKEN;
1650 for (type = 0; type < nr_swapfiles; type++) {
1651 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1652 si = swap_info[type];
1653 if (!(si->flags & SWP_USED) || !si->swap_map)
1654 continue;
1655 if (!--l)
1656 return si;
1659 return NULL;
1662 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1664 struct swap_info_struct *si = v;
1665 int type;
1667 if (v == SEQ_START_TOKEN)
1668 type = 0;
1669 else
1670 type = si->type + 1;
1672 for (; type < nr_swapfiles; type++) {
1673 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1674 si = swap_info[type];
1675 if (!(si->flags & SWP_USED) || !si->swap_map)
1676 continue;
1677 ++*pos;
1678 return si;
1681 return NULL;
1684 static void swap_stop(struct seq_file *swap, void *v)
1686 mutex_unlock(&swapon_mutex);
1689 static int swap_show(struct seq_file *swap, void *v)
1691 struct swap_info_struct *si = v;
1692 struct file *file;
1693 int len;
1695 if (si == SEQ_START_TOKEN) {
1696 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1697 return 0;
1700 file = si->swap_file;
1701 len = seq_path(swap, &file->f_path, " \t\n\\");
1702 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1703 len < 40 ? 40 - len : 1, " ",
1704 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1705 "partition" : "file\t",
1706 si->pages << (PAGE_SHIFT - 10),
1707 si->inuse_pages << (PAGE_SHIFT - 10),
1708 si->prio);
1709 return 0;
1712 static const struct seq_operations swaps_op = {
1713 .start = swap_start,
1714 .next = swap_next,
1715 .stop = swap_stop,
1716 .show = swap_show
1719 static int swaps_open(struct inode *inode, struct file *file)
1721 return seq_open(file, &swaps_op);
1724 static const struct file_operations proc_swaps_operations = {
1725 .open = swaps_open,
1726 .read = seq_read,
1727 .llseek = seq_lseek,
1728 .release = seq_release,
1731 static int __init procswaps_init(void)
1733 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1734 return 0;
1736 __initcall(procswaps_init);
1737 #endif /* CONFIG_PROC_FS */
1739 #ifdef MAX_SWAPFILES_CHECK
1740 static int __init max_swapfiles_check(void)
1742 MAX_SWAPFILES_CHECK();
1743 return 0;
1745 late_initcall(max_swapfiles_check);
1746 #endif
1749 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1751 * The swapon system call
1753 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1755 struct swap_info_struct *p;
1756 char *name = NULL;
1757 struct block_device *bdev = NULL;
1758 struct file *swap_file = NULL;
1759 struct address_space *mapping;
1760 unsigned int type;
1761 int i, prev;
1762 int error;
1763 union swap_header *swap_header;
1764 unsigned int nr_good_pages;
1765 int nr_extents = 0;
1766 sector_t span;
1767 unsigned long maxpages;
1768 unsigned long swapfilepages;
1769 unsigned char *swap_map = NULL;
1770 struct page *page = NULL;
1771 struct inode *inode = NULL;
1772 int did_down = 0;
1774 if (!capable(CAP_SYS_ADMIN))
1775 return -EPERM;
1777 p = kzalloc(sizeof(*p), GFP_KERNEL);
1778 if (!p)
1779 return -ENOMEM;
1781 spin_lock(&swap_lock);
1782 for (type = 0; type < nr_swapfiles; type++) {
1783 if (!(swap_info[type]->flags & SWP_USED))
1784 break;
1786 error = -EPERM;
1787 if (type >= MAX_SWAPFILES) {
1788 spin_unlock(&swap_lock);
1789 kfree(p);
1790 goto out;
1792 if (type >= nr_swapfiles) {
1793 p->type = type;
1794 swap_info[type] = p;
1796 * Write swap_info[type] before nr_swapfiles, in case a
1797 * racing procfs swap_start() or swap_next() is reading them.
1798 * (We never shrink nr_swapfiles, we never free this entry.)
1800 smp_wmb();
1801 nr_swapfiles++;
1802 } else {
1803 kfree(p);
1804 p = swap_info[type];
1806 * Do not memset this entry: a racing procfs swap_next()
1807 * would be relying on p->type to remain valid.
1810 INIT_LIST_HEAD(&p->first_swap_extent.list);
1811 p->flags = SWP_USED;
1812 p->next = -1;
1813 spin_unlock(&swap_lock);
1815 name = getname(specialfile);
1816 error = PTR_ERR(name);
1817 if (IS_ERR(name)) {
1818 name = NULL;
1819 goto bad_swap_2;
1821 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1822 error = PTR_ERR(swap_file);
1823 if (IS_ERR(swap_file)) {
1824 swap_file = NULL;
1825 goto bad_swap_2;
1828 p->swap_file = swap_file;
1829 mapping = swap_file->f_mapping;
1830 inode = mapping->host;
1832 error = -EBUSY;
1833 for (i = 0; i < nr_swapfiles; i++) {
1834 struct swap_info_struct *q = swap_info[i];
1836 if (i == type || !q->swap_file)
1837 continue;
1838 if (mapping == q->swap_file->f_mapping)
1839 goto bad_swap;
1842 error = -EINVAL;
1843 if (S_ISBLK(inode->i_mode)) {
1844 bdev = I_BDEV(inode);
1845 error = bd_claim(bdev, sys_swapon);
1846 if (error < 0) {
1847 bdev = NULL;
1848 error = -EINVAL;
1849 goto bad_swap;
1851 p->old_block_size = block_size(bdev);
1852 error = set_blocksize(bdev, PAGE_SIZE);
1853 if (error < 0)
1854 goto bad_swap;
1855 p->bdev = bdev;
1856 } else if (S_ISREG(inode->i_mode)) {
1857 p->bdev = inode->i_sb->s_bdev;
1858 mutex_lock(&inode->i_mutex);
1859 did_down = 1;
1860 if (IS_SWAPFILE(inode)) {
1861 error = -EBUSY;
1862 goto bad_swap;
1864 } else {
1865 goto bad_swap;
1868 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1871 * Read the swap header.
1873 if (!mapping->a_ops->readpage) {
1874 error = -EINVAL;
1875 goto bad_swap;
1877 page = read_mapping_page(mapping, 0, swap_file);
1878 if (IS_ERR(page)) {
1879 error = PTR_ERR(page);
1880 goto bad_swap;
1882 swap_header = kmap(page);
1884 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1885 printk(KERN_ERR "Unable to find swap-space signature\n");
1886 error = -EINVAL;
1887 goto bad_swap;
1890 /* swap partition endianess hack... */
1891 if (swab32(swap_header->info.version) == 1) {
1892 swab32s(&swap_header->info.version);
1893 swab32s(&swap_header->info.last_page);
1894 swab32s(&swap_header->info.nr_badpages);
1895 for (i = 0; i < swap_header->info.nr_badpages; i++)
1896 swab32s(&swap_header->info.badpages[i]);
1898 /* Check the swap header's sub-version */
1899 if (swap_header->info.version != 1) {
1900 printk(KERN_WARNING
1901 "Unable to handle swap header version %d\n",
1902 swap_header->info.version);
1903 error = -EINVAL;
1904 goto bad_swap;
1907 p->lowest_bit = 1;
1908 p->cluster_next = 1;
1909 p->cluster_nr = 0;
1912 * Find out how many pages are allowed for a single swap
1913 * device. There are two limiting factors: 1) the number of
1914 * bits for the swap offset in the swp_entry_t type and
1915 * 2) the number of bits in the a swap pte as defined by
1916 * the different architectures. In order to find the
1917 * largest possible bit mask a swap entry with swap type 0
1918 * and swap offset ~0UL is created, encoded to a swap pte,
1919 * decoded to a swp_entry_t again and finally the swap
1920 * offset is extracted. This will mask all the bits from
1921 * the initial ~0UL mask that can't be encoded in either
1922 * the swp_entry_t or the architecture definition of a
1923 * swap pte.
1925 maxpages = swp_offset(pte_to_swp_entry(
1926 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1927 if (maxpages > swap_header->info.last_page) {
1928 maxpages = swap_header->info.last_page + 1;
1929 /* p->max is an unsigned int: don't overflow it */
1930 if ((unsigned int)maxpages == 0)
1931 maxpages = UINT_MAX;
1933 p->highest_bit = maxpages - 1;
1935 error = -EINVAL;
1936 if (!maxpages)
1937 goto bad_swap;
1938 if (swapfilepages && maxpages > swapfilepages) {
1939 printk(KERN_WARNING
1940 "Swap area shorter than signature indicates\n");
1941 goto bad_swap;
1943 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1944 goto bad_swap;
1945 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1946 goto bad_swap;
1948 /* OK, set up the swap map and apply the bad block list */
1949 swap_map = vmalloc(maxpages);
1950 if (!swap_map) {
1951 error = -ENOMEM;
1952 goto bad_swap;
1955 memset(swap_map, 0, maxpages);
1956 nr_good_pages = maxpages - 1; /* omit header page */
1958 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1959 unsigned int page_nr = swap_header->info.badpages[i];
1960 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
1961 error = -EINVAL;
1962 goto bad_swap;
1964 if (page_nr < maxpages) {
1965 swap_map[page_nr] = SWAP_MAP_BAD;
1966 nr_good_pages--;
1970 error = swap_cgroup_swapon(type, maxpages);
1971 if (error)
1972 goto bad_swap;
1974 if (nr_good_pages) {
1975 swap_map[0] = SWAP_MAP_BAD;
1976 p->max = maxpages;
1977 p->pages = nr_good_pages;
1978 nr_extents = setup_swap_extents(p, &span);
1979 if (nr_extents < 0) {
1980 error = nr_extents;
1981 goto bad_swap;
1983 nr_good_pages = p->pages;
1985 if (!nr_good_pages) {
1986 printk(KERN_WARNING "Empty swap-file\n");
1987 error = -EINVAL;
1988 goto bad_swap;
1991 if (p->bdev) {
1992 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1993 p->flags |= SWP_SOLIDSTATE;
1994 p->cluster_next = 1 + (random32() % p->highest_bit);
1996 if (discard_swap(p) == 0)
1997 p->flags |= SWP_DISCARDABLE;
2000 mutex_lock(&swapon_mutex);
2001 spin_lock(&swap_lock);
2002 if (swap_flags & SWAP_FLAG_PREFER)
2003 p->prio =
2004 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2005 else
2006 p->prio = --least_priority;
2007 p->swap_map = swap_map;
2008 p->flags |= SWP_WRITEOK;
2009 nr_swap_pages += nr_good_pages;
2010 total_swap_pages += nr_good_pages;
2012 printk(KERN_INFO "Adding %uk swap on %s. "
2013 "Priority:%d extents:%d across:%lluk %s%s\n",
2014 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2015 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2016 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2017 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2019 /* insert swap space into swap_list: */
2020 prev = -1;
2021 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2022 if (p->prio >= swap_info[i]->prio)
2023 break;
2024 prev = i;
2026 p->next = i;
2027 if (prev < 0)
2028 swap_list.head = swap_list.next = type;
2029 else
2030 swap_info[prev]->next = type;
2031 spin_unlock(&swap_lock);
2032 mutex_unlock(&swapon_mutex);
2033 error = 0;
2034 goto out;
2035 bad_swap:
2036 if (bdev) {
2037 set_blocksize(bdev, p->old_block_size);
2038 bd_release(bdev);
2040 destroy_swap_extents(p);
2041 swap_cgroup_swapoff(type);
2042 bad_swap_2:
2043 spin_lock(&swap_lock);
2044 p->swap_file = NULL;
2045 p->flags = 0;
2046 spin_unlock(&swap_lock);
2047 vfree(swap_map);
2048 if (swap_file)
2049 filp_close(swap_file, NULL);
2050 out:
2051 if (page && !IS_ERR(page)) {
2052 kunmap(page);
2053 page_cache_release(page);
2055 if (name)
2056 putname(name);
2057 if (did_down) {
2058 if (!error)
2059 inode->i_flags |= S_SWAPFILE;
2060 mutex_unlock(&inode->i_mutex);
2062 return error;
2065 void si_swapinfo(struct sysinfo *val)
2067 unsigned int type;
2068 unsigned long nr_to_be_unused = 0;
2070 spin_lock(&swap_lock);
2071 for (type = 0; type < nr_swapfiles; type++) {
2072 struct swap_info_struct *si = swap_info[type];
2074 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2075 nr_to_be_unused += si->inuse_pages;
2077 val->freeswap = nr_swap_pages + nr_to_be_unused;
2078 val->totalswap = total_swap_pages + nr_to_be_unused;
2079 spin_unlock(&swap_lock);
2083 * Verify that a swap entry is valid and increment its swap map count.
2085 * Returns error code in following case.
2086 * - success -> 0
2087 * - swp_entry is invalid -> EINVAL
2088 * - swp_entry is migration entry -> EINVAL
2089 * - swap-cache reference is requested but there is already one. -> EEXIST
2090 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2091 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2093 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2095 struct swap_info_struct *p;
2096 unsigned long offset, type;
2097 unsigned char count;
2098 unsigned char has_cache;
2099 int err = -EINVAL;
2101 if (non_swap_entry(entry))
2102 goto out;
2104 type = swp_type(entry);
2105 if (type >= nr_swapfiles)
2106 goto bad_file;
2107 p = swap_info[type];
2108 offset = swp_offset(entry);
2110 spin_lock(&swap_lock);
2111 if (unlikely(offset >= p->max))
2112 goto unlock_out;
2114 count = p->swap_map[offset];
2115 has_cache = count & SWAP_HAS_CACHE;
2116 count &= ~SWAP_HAS_CACHE;
2117 err = 0;
2119 if (usage == SWAP_HAS_CACHE) {
2121 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2122 if (!has_cache && count)
2123 has_cache = SWAP_HAS_CACHE;
2124 else if (has_cache) /* someone else added cache */
2125 err = -EEXIST;
2126 else /* no users remaining */
2127 err = -ENOENT;
2129 } else if (count || has_cache) {
2131 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2132 count += usage;
2133 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2134 err = -EINVAL;
2135 else if (swap_count_continued(p, offset, count))
2136 count = COUNT_CONTINUED;
2137 else
2138 err = -ENOMEM;
2139 } else
2140 err = -ENOENT; /* unused swap entry */
2142 p->swap_map[offset] = count | has_cache;
2144 unlock_out:
2145 spin_unlock(&swap_lock);
2146 out:
2147 return err;
2149 bad_file:
2150 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2151 goto out;
2155 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2156 * (in which case its reference count is never incremented).
2158 void swap_shmem_alloc(swp_entry_t entry)
2160 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2164 * Increase reference count of swap entry by 1.
2165 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2166 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2167 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2168 * might occur if a page table entry has got corrupted.
2170 int swap_duplicate(swp_entry_t entry)
2172 int err = 0;
2174 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2175 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2176 return err;
2180 * @entry: swap entry for which we allocate swap cache.
2182 * Called when allocating swap cache for existing swap entry,
2183 * This can return error codes. Returns 0 at success.
2184 * -EBUSY means there is a swap cache.
2185 * Note: return code is different from swap_duplicate().
2187 int swapcache_prepare(swp_entry_t entry)
2189 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2193 * swap_lock prevents swap_map being freed. Don't grab an extra
2194 * reference on the swaphandle, it doesn't matter if it becomes unused.
2196 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2198 struct swap_info_struct *si;
2199 int our_page_cluster = page_cluster;
2200 pgoff_t target, toff;
2201 pgoff_t base, end;
2202 int nr_pages = 0;
2204 if (!our_page_cluster) /* no readahead */
2205 return 0;
2207 si = swap_info[swp_type(entry)];
2208 target = swp_offset(entry);
2209 base = (target >> our_page_cluster) << our_page_cluster;
2210 end = base + (1 << our_page_cluster);
2211 if (!base) /* first page is swap header */
2212 base++;
2214 spin_lock(&swap_lock);
2215 if (end > si->max) /* don't go beyond end of map */
2216 end = si->max;
2218 /* Count contiguous allocated slots above our target */
2219 for (toff = target; ++toff < end; nr_pages++) {
2220 /* Don't read in free or bad pages */
2221 if (!si->swap_map[toff])
2222 break;
2223 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2224 break;
2226 /* Count contiguous allocated slots below our target */
2227 for (toff = target; --toff >= base; nr_pages++) {
2228 /* Don't read in free or bad pages */
2229 if (!si->swap_map[toff])
2230 break;
2231 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2232 break;
2234 spin_unlock(&swap_lock);
2237 * Indicate starting offset, and return number of pages to get:
2238 * if only 1, say 0, since there's then no readahead to be done.
2240 *offset = ++toff;
2241 return nr_pages? ++nr_pages: 0;
2245 * add_swap_count_continuation - called when a swap count is duplicated
2246 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2247 * page of the original vmalloc'ed swap_map, to hold the continuation count
2248 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2249 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2251 * These continuation pages are seldom referenced: the common paths all work
2252 * on the original swap_map, only referring to a continuation page when the
2253 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2255 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2256 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2257 * can be called after dropping locks.
2259 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2261 struct swap_info_struct *si;
2262 struct page *head;
2263 struct page *page;
2264 struct page *list_page;
2265 pgoff_t offset;
2266 unsigned char count;
2269 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2270 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2272 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2274 si = swap_info_get(entry);
2275 if (!si) {
2277 * An acceptable race has occurred since the failing
2278 * __swap_duplicate(): the swap entry has been freed,
2279 * perhaps even the whole swap_map cleared for swapoff.
2281 goto outer;
2284 offset = swp_offset(entry);
2285 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2287 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2289 * The higher the swap count, the more likely it is that tasks
2290 * will race to add swap count continuation: we need to avoid
2291 * over-provisioning.
2293 goto out;
2296 if (!page) {
2297 spin_unlock(&swap_lock);
2298 return -ENOMEM;
2302 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2303 * no architecture is using highmem pages for kernel pagetables: so it
2304 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2306 head = vmalloc_to_page(si->swap_map + offset);
2307 offset &= ~PAGE_MASK;
2310 * Page allocation does not initialize the page's lru field,
2311 * but it does always reset its private field.
2313 if (!page_private(head)) {
2314 BUG_ON(count & COUNT_CONTINUED);
2315 INIT_LIST_HEAD(&head->lru);
2316 set_page_private(head, SWP_CONTINUED);
2317 si->flags |= SWP_CONTINUED;
2320 list_for_each_entry(list_page, &head->lru, lru) {
2321 unsigned char *map;
2324 * If the previous map said no continuation, but we've found
2325 * a continuation page, free our allocation and use this one.
2327 if (!(count & COUNT_CONTINUED))
2328 goto out;
2330 map = kmap_atomic(list_page, KM_USER0) + offset;
2331 count = *map;
2332 kunmap_atomic(map, KM_USER0);
2335 * If this continuation count now has some space in it,
2336 * free our allocation and use this one.
2338 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2339 goto out;
2342 list_add_tail(&page->lru, &head->lru);
2343 page = NULL; /* now it's attached, don't free it */
2344 out:
2345 spin_unlock(&swap_lock);
2346 outer:
2347 if (page)
2348 __free_page(page);
2349 return 0;
2353 * swap_count_continued - when the original swap_map count is incremented
2354 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2355 * into, carry if so, or else fail until a new continuation page is allocated;
2356 * when the original swap_map count is decremented from 0 with continuation,
2357 * borrow from the continuation and report whether it still holds more.
2358 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2360 static bool swap_count_continued(struct swap_info_struct *si,
2361 pgoff_t offset, unsigned char count)
2363 struct page *head;
2364 struct page *page;
2365 unsigned char *map;
2367 head = vmalloc_to_page(si->swap_map + offset);
2368 if (page_private(head) != SWP_CONTINUED) {
2369 BUG_ON(count & COUNT_CONTINUED);
2370 return false; /* need to add count continuation */
2373 offset &= ~PAGE_MASK;
2374 page = list_entry(head->lru.next, struct page, lru);
2375 map = kmap_atomic(page, KM_USER0) + offset;
2377 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2378 goto init_map; /* jump over SWAP_CONT_MAX checks */
2380 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2382 * Think of how you add 1 to 999
2384 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2385 kunmap_atomic(map, KM_USER0);
2386 page = list_entry(page->lru.next, struct page, lru);
2387 BUG_ON(page == head);
2388 map = kmap_atomic(page, KM_USER0) + offset;
2390 if (*map == SWAP_CONT_MAX) {
2391 kunmap_atomic(map, KM_USER0);
2392 page = list_entry(page->lru.next, struct page, lru);
2393 if (page == head)
2394 return false; /* add count continuation */
2395 map = kmap_atomic(page, KM_USER0) + offset;
2396 init_map: *map = 0; /* we didn't zero the page */
2398 *map += 1;
2399 kunmap_atomic(map, KM_USER0);
2400 page = list_entry(page->lru.prev, struct page, lru);
2401 while (page != head) {
2402 map = kmap_atomic(page, KM_USER0) + offset;
2403 *map = COUNT_CONTINUED;
2404 kunmap_atomic(map, KM_USER0);
2405 page = list_entry(page->lru.prev, struct page, lru);
2407 return true; /* incremented */
2409 } else { /* decrementing */
2411 * Think of how you subtract 1 from 1000
2413 BUG_ON(count != COUNT_CONTINUED);
2414 while (*map == COUNT_CONTINUED) {
2415 kunmap_atomic(map, KM_USER0);
2416 page = list_entry(page->lru.next, struct page, lru);
2417 BUG_ON(page == head);
2418 map = kmap_atomic(page, KM_USER0) + offset;
2420 BUG_ON(*map == 0);
2421 *map -= 1;
2422 if (*map == 0)
2423 count = 0;
2424 kunmap_atomic(map, KM_USER0);
2425 page = list_entry(page->lru.prev, struct page, lru);
2426 while (page != head) {
2427 map = kmap_atomic(page, KM_USER0) + offset;
2428 *map = SWAP_CONT_MAX | count;
2429 count = COUNT_CONTINUED;
2430 kunmap_atomic(map, KM_USER0);
2431 page = list_entry(page->lru.prev, struct page, lru);
2433 return count == COUNT_CONTINUED;
2438 * free_swap_count_continuations - swapoff free all the continuation pages
2439 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2441 static void free_swap_count_continuations(struct swap_info_struct *si)
2443 pgoff_t offset;
2445 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2446 struct page *head;
2447 head = vmalloc_to_page(si->swap_map + offset);
2448 if (page_private(head)) {
2449 struct list_head *this, *next;
2450 list_for_each_safe(this, next, &head->lru) {
2451 struct page *page;
2452 page = list_entry(this, struct page, lru);
2453 list_del(this);
2454 __free_page(page);