2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
8 * - completely revamped method functions so they are aware and
9 * independent of the flash geometry (buswidth, interleave, etc.)
10 * - scalability vs code size is completely set at compile-time
11 * (see include/linux/mtd/cfi.h for selection)
12 * - optimized write buffer method
13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
15 * (command set 0x0020)
16 * - added a writev function
17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
18 * - Plugged memory leak in cfi_staa_writev().
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/init.h>
27 #include <asm/byteorder.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/mtd/map.h>
34 #include <linux/mtd/cfi.h>
35 #include <linux/mtd/mtd.h>
38 static int cfi_staa_read(struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
39 static int cfi_staa_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
40 static int cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
41 unsigned long count
, loff_t to
, size_t *retlen
);
42 static int cfi_staa_erase_varsize(struct mtd_info
*, struct erase_info
*);
43 static void cfi_staa_sync (struct mtd_info
*);
44 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
45 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
46 static int cfi_staa_suspend (struct mtd_info
*);
47 static void cfi_staa_resume (struct mtd_info
*);
49 static void cfi_staa_destroy(struct mtd_info
*);
51 struct mtd_info
*cfi_cmdset_0020(struct map_info
*, int);
53 static struct mtd_info
*cfi_staa_setup (struct map_info
*);
55 static struct mtd_chip_driver cfi_staa_chipdrv
= {
56 .probe
= NULL
, /* Not usable directly */
57 .destroy
= cfi_staa_destroy
,
58 .name
= "cfi_cmdset_0020",
62 /* #define DEBUG_LOCK_BITS */
63 //#define DEBUG_CFI_FEATURES
65 #ifdef DEBUG_CFI_FEATURES
66 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
69 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
70 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
71 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
72 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
73 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
74 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
75 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
76 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
77 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
78 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
79 for (i
=9; i
<32; i
++) {
80 if (extp
->FeatureSupport
& (1<<i
))
81 printk(" - Unknown Bit %X: supported\n", i
);
84 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
85 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
87 if (extp
->SuspendCmdSupport
& (1<<i
))
88 printk(" - Unknown Bit %X: supported\n", i
);
91 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
92 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
93 printk(" - Valid Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
94 for (i
=2; i
<16; i
++) {
95 if (extp
->BlkStatusRegMask
& (1<<i
))
96 printk(" - Unknown Bit %X Active: yes\n",i
);
99 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
100 extp
->VccOptimal
>> 8, extp
->VccOptimal
& 0xf);
101 if (extp
->VppOptimal
)
102 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
103 extp
->VppOptimal
>> 8, extp
->VppOptimal
& 0xf);
107 /* This routine is made available to other mtd code via
108 * inter_module_register. It must only be accessed through
109 * inter_module_get which will bump the use count of this module. The
110 * addresses passed back in cfi are valid as long as the use count of
111 * this module is non-zero, i.e. between inter_module_get and
112 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
114 struct mtd_info
*cfi_cmdset_0020(struct map_info
*map
, int primary
)
116 struct cfi_private
*cfi
= map
->fldrv_priv
;
121 * It's a real CFI chip, not one for which the probe
122 * routine faked a CFI structure. So we read the feature
125 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
126 struct cfi_pri_intelext
*extp
;
128 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "ST Microelectronics");
132 if (extp
->MajorVersion
!= '1' ||
133 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '3')) {
134 printk(KERN_ERR
" Unknown ST Microelectronics"
135 " Extended Query version %c.%c.\n",
136 extp
->MajorVersion
, extp
->MinorVersion
);
141 /* Do some byteswapping if necessary */
142 extp
->FeatureSupport
= cfi32_to_cpu(extp
->FeatureSupport
);
143 extp
->BlkStatusRegMask
= cfi32_to_cpu(extp
->BlkStatusRegMask
);
145 #ifdef DEBUG_CFI_FEATURES
146 /* Tell the user about it in lots of lovely detail */
147 cfi_tell_features(extp
);
150 /* Install our own private info structure */
151 cfi
->cmdset_priv
= extp
;
154 for (i
=0; i
< cfi
->numchips
; i
++) {
155 cfi
->chips
[i
].word_write_time
= 128;
156 cfi
->chips
[i
].buffer_write_time
= 128;
157 cfi
->chips
[i
].erase_time
= 1024;
158 cfi
->chips
[i
].ref_point_counter
= 0;
159 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
162 return cfi_staa_setup(map
);
164 EXPORT_SYMBOL_GPL(cfi_cmdset_0020
);
166 static struct mtd_info
*cfi_staa_setup(struct map_info
*map
)
168 struct cfi_private
*cfi
= map
->fldrv_priv
;
169 struct mtd_info
*mtd
;
170 unsigned long offset
= 0;
172 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
174 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
175 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
178 printk(KERN_ERR
"Failed to allocate memory for MTD device\n");
179 kfree(cfi
->cmdset_priv
);
184 mtd
->type
= MTD_NORFLASH
;
185 mtd
->size
= devsize
* cfi
->numchips
;
187 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
188 mtd
->eraseregions
= kmalloc(sizeof(struct mtd_erase_region_info
)
189 * mtd
->numeraseregions
, GFP_KERNEL
);
190 if (!mtd
->eraseregions
) {
191 printk(KERN_ERR
"Failed to allocate memory for MTD erase region info\n");
192 kfree(cfi
->cmdset_priv
);
197 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
198 unsigned long ernum
, ersize
;
199 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
200 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
202 if (mtd
->erasesize
< ersize
) {
203 mtd
->erasesize
= ersize
;
205 for (j
=0; j
<cfi
->numchips
; j
++) {
206 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
207 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
208 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
210 offset
+= (ersize
* ernum
);
213 if (offset
!= devsize
) {
215 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
216 kfree(mtd
->eraseregions
);
217 kfree(cfi
->cmdset_priv
);
222 for (i
=0; i
<mtd
->numeraseregions
;i
++){
223 printk(KERN_DEBUG
"%d: offset=0x%llx,size=0x%x,blocks=%d\n",
224 i
, (unsigned long long)mtd
->eraseregions
[i
].offset
,
225 mtd
->eraseregions
[i
].erasesize
,
226 mtd
->eraseregions
[i
].numblocks
);
229 /* Also select the correct geometry setup too */
230 mtd
->erase
= cfi_staa_erase_varsize
;
231 mtd
->read
= cfi_staa_read
;
232 mtd
->write
= cfi_staa_write_buffers
;
233 mtd
->writev
= cfi_staa_writev
;
234 mtd
->sync
= cfi_staa_sync
;
235 mtd
->lock
= cfi_staa_lock
;
236 mtd
->unlock
= cfi_staa_unlock
;
237 mtd
->suspend
= cfi_staa_suspend
;
238 mtd
->resume
= cfi_staa_resume
;
239 mtd
->flags
= MTD_CAP_NORFLASH
& ~MTD_BIT_WRITEABLE
;
240 mtd
->writesize
= 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
241 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
242 map
->fldrv
= &cfi_staa_chipdrv
;
243 __module_get(THIS_MODULE
);
244 mtd
->name
= map
->name
;
249 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
251 map_word status
, status_OK
;
253 DECLARE_WAITQUEUE(wait
, current
);
255 unsigned long cmd_addr
;
256 struct cfi_private
*cfi
= map
->fldrv_priv
;
260 /* Ensure cmd read/writes are aligned. */
261 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
263 /* Let's determine this according to the interleave only once */
264 status_OK
= CMD(0x80);
266 timeo
= jiffies
+ HZ
;
268 mutex_lock(&chip
->mutex
);
270 /* Check that the chip's ready to talk to us.
271 * If it's in FL_ERASING state, suspend it and make it talk now.
273 switch (chip
->state
) {
275 if (!(((struct cfi_pri_intelext
*)cfi
->cmdset_priv
)->FeatureSupport
& 2))
276 goto sleep
; /* We don't support erase suspend */
278 map_write (map
, CMD(0xb0), cmd_addr
);
279 /* If the flash has finished erasing, then 'erase suspend'
280 * appears to make some (28F320) flash devices switch to
281 * 'read' mode. Make sure that we switch to 'read status'
282 * mode so we get the right data. --rmk
284 map_write(map
, CMD(0x70), cmd_addr
);
285 chip
->oldstate
= FL_ERASING
;
286 chip
->state
= FL_ERASE_SUSPENDING
;
287 // printk("Erase suspending at 0x%lx\n", cmd_addr);
289 status
= map_read(map
, cmd_addr
);
290 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
293 if (time_after(jiffies
, timeo
)) {
295 map_write(map
, CMD(0xd0), cmd_addr
);
296 /* make sure we're in 'read status' mode */
297 map_write(map
, CMD(0x70), cmd_addr
);
298 chip
->state
= FL_ERASING
;
300 mutex_unlock(&chip
->mutex
);
301 printk(KERN_ERR
"Chip not ready after erase "
302 "suspended: status = 0x%lx\n", status
.x
[0]);
306 mutex_unlock(&chip
->mutex
);
308 mutex_lock(&chip
->mutex
);
312 map_write(map
, CMD(0xff), cmd_addr
);
313 chip
->state
= FL_READY
;
326 map_write(map
, CMD(0x70), cmd_addr
);
327 chip
->state
= FL_STATUS
;
330 status
= map_read(map
, cmd_addr
);
331 if (map_word_andequal(map
, status
, status_OK
, status_OK
)) {
332 map_write(map
, CMD(0xff), cmd_addr
);
333 chip
->state
= FL_READY
;
337 /* Urgh. Chip not yet ready to talk to us. */
338 if (time_after(jiffies
, timeo
)) {
339 mutex_unlock(&chip
->mutex
);
340 printk(KERN_ERR
"waiting for chip to be ready timed out in read. WSM status = %lx\n", status
.x
[0]);
344 /* Latency issues. Drop the lock, wait a while and retry */
345 mutex_unlock(&chip
->mutex
);
351 /* Stick ourselves on a wait queue to be woken when
352 someone changes the status */
353 set_current_state(TASK_UNINTERRUPTIBLE
);
354 add_wait_queue(&chip
->wq
, &wait
);
355 mutex_unlock(&chip
->mutex
);
357 remove_wait_queue(&chip
->wq
, &wait
);
358 timeo
= jiffies
+ HZ
;
362 map_copy_from(map
, buf
, adr
, len
);
365 chip
->state
= chip
->oldstate
;
366 /* What if one interleaved chip has finished and the
367 other hasn't? The old code would leave the finished
368 one in READY mode. That's bad, and caused -EROFS
369 errors to be returned from do_erase_oneblock because
370 that's the only bit it checked for at the time.
371 As the state machine appears to explicitly allow
372 sending the 0x70 (Read Status) command to an erasing
373 chip and expecting it to be ignored, that's what we
375 map_write(map
, CMD(0xd0), cmd_addr
);
376 map_write(map
, CMD(0x70), cmd_addr
);
380 mutex_unlock(&chip
->mutex
);
384 static int cfi_staa_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
386 struct map_info
*map
= mtd
->priv
;
387 struct cfi_private
*cfi
= map
->fldrv_priv
;
392 /* ofs: offset within the first chip that the first read should start */
393 chipnum
= (from
>> cfi
->chipshift
);
394 ofs
= from
- (chipnum
<< cfi
->chipshift
);
399 unsigned long thislen
;
401 if (chipnum
>= cfi
->numchips
)
404 if ((len
+ ofs
-1) >> cfi
->chipshift
)
405 thislen
= (1<<cfi
->chipshift
) - ofs
;
409 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
423 static inline int do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
424 unsigned long adr
, const u_char
*buf
, int len
)
426 struct cfi_private
*cfi
= map
->fldrv_priv
;
427 map_word status
, status_OK
;
428 unsigned long cmd_adr
, timeo
;
429 DECLARE_WAITQUEUE(wait
, current
);
432 /* M58LW064A requires bus alignment for buffer wriets -- saw */
433 if (adr
& (map_bankwidth(map
)-1))
436 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
438 cmd_adr
= adr
& ~(wbufsize
-1);
440 /* Let's determine this according to the interleave only once */
441 status_OK
= CMD(0x80);
443 timeo
= jiffies
+ HZ
;
446 #ifdef DEBUG_CFI_FEATURES
447 printk("%s: chip->state[%d]\n", __func__
, chip
->state
);
449 mutex_lock(&chip
->mutex
);
451 /* Check that the chip's ready to talk to us.
452 * Later, we can actually think about interrupting it
453 * if it's in FL_ERASING state.
454 * Not just yet, though.
456 switch (chip
->state
) {
462 map_write(map
, CMD(0x70), cmd_adr
);
463 chip
->state
= FL_STATUS
;
464 #ifdef DEBUG_CFI_FEATURES
465 printk("%s: 1 status[%x]\n", __func__
, map_read(map
, cmd_adr
));
469 status
= map_read(map
, cmd_adr
);
470 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
472 /* Urgh. Chip not yet ready to talk to us. */
473 if (time_after(jiffies
, timeo
)) {
474 mutex_unlock(&chip
->mutex
);
475 printk(KERN_ERR
"waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
476 status
.x
[0], map_read(map
, cmd_adr
).x
[0]);
480 /* Latency issues. Drop the lock, wait a while and retry */
481 mutex_unlock(&chip
->mutex
);
486 /* Stick ourselves on a wait queue to be woken when
487 someone changes the status */
488 set_current_state(TASK_UNINTERRUPTIBLE
);
489 add_wait_queue(&chip
->wq
, &wait
);
490 mutex_unlock(&chip
->mutex
);
492 remove_wait_queue(&chip
->wq
, &wait
);
493 timeo
= jiffies
+ HZ
;
498 map_write(map
, CMD(0xe8), cmd_adr
);
499 chip
->state
= FL_WRITING_TO_BUFFER
;
503 status
= map_read(map
, cmd_adr
);
504 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
507 mutex_unlock(&chip
->mutex
);
509 mutex_lock(&chip
->mutex
);
512 /* Argh. Not ready for write to buffer */
514 map_write(map
, CMD(0x70), cmd_adr
);
515 chip
->state
= FL_STATUS
;
516 mutex_unlock(&chip
->mutex
);
517 printk(KERN_ERR
"Chip not ready for buffer write. Xstatus = %lx\n", status
.x
[0]);
522 /* Write length of data to come */
523 map_write(map
, CMD(len
/map_bankwidth(map
)-1), cmd_adr
);
527 z
+= map_bankwidth(map
), buf
+= map_bankwidth(map
)) {
529 d
= map_word_load(map
, buf
);
530 map_write(map
, d
, adr
+z
);
533 map_write(map
, CMD(0xd0), cmd_adr
);
534 chip
->state
= FL_WRITING
;
536 mutex_unlock(&chip
->mutex
);
537 cfi_udelay(chip
->buffer_write_time
);
538 mutex_lock(&chip
->mutex
);
540 timeo
= jiffies
+ (HZ
/2);
543 if (chip
->state
!= FL_WRITING
) {
544 /* Someone's suspended the write. Sleep */
545 set_current_state(TASK_UNINTERRUPTIBLE
);
546 add_wait_queue(&chip
->wq
, &wait
);
547 mutex_unlock(&chip
->mutex
);
549 remove_wait_queue(&chip
->wq
, &wait
);
550 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
551 mutex_lock(&chip
->mutex
);
555 status
= map_read(map
, cmd_adr
);
556 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
559 /* OK Still waiting */
560 if (time_after(jiffies
, timeo
)) {
562 map_write(map
, CMD(0x50), cmd_adr
);
563 /* put back into read status register mode */
564 map_write(map
, CMD(0x70), adr
);
565 chip
->state
= FL_STATUS
;
567 mutex_unlock(&chip
->mutex
);
568 printk(KERN_ERR
"waiting for chip to be ready timed out in bufwrite\n");
572 /* Latency issues. Drop the lock, wait a while and retry */
573 mutex_unlock(&chip
->mutex
);
576 mutex_lock(&chip
->mutex
);
579 chip
->buffer_write_time
--;
580 if (!chip
->buffer_write_time
)
581 chip
->buffer_write_time
++;
584 chip
->buffer_write_time
++;
586 /* Done and happy. */
588 chip
->state
= FL_STATUS
;
590 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
591 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
592 #ifdef DEBUG_CFI_FEATURES
593 printk("%s: 2 status[%lx]\n", __func__
, status
.x
[0]);
596 map_write(map
, CMD(0x50), cmd_adr
);
597 /* put back into read status register mode */
598 map_write(map
, CMD(0x70), adr
);
600 mutex_unlock(&chip
->mutex
);
601 return map_word_bitsset(map
, status
, CMD(0x02)) ? -EROFS
: -EIO
;
604 mutex_unlock(&chip
->mutex
);
609 static int cfi_staa_write_buffers (struct mtd_info
*mtd
, loff_t to
,
610 size_t len
, size_t *retlen
, const u_char
*buf
)
612 struct map_info
*map
= mtd
->priv
;
613 struct cfi_private
*cfi
= map
->fldrv_priv
;
614 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
623 chipnum
= to
>> cfi
->chipshift
;
624 ofs
= to
- (chipnum
<< cfi
->chipshift
);
626 #ifdef DEBUG_CFI_FEATURES
627 printk("%s: map_bankwidth(map)[%x]\n", __func__
, map_bankwidth(map
));
628 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__
, chipnum
, wbufsize
);
629 printk("%s: ofs[%x] len[%x]\n", __func__
, ofs
, len
);
632 /* Write buffer is worth it only if more than one word to write... */
634 /* We must not cross write block boundaries */
635 int size
= wbufsize
- (ofs
& (wbufsize
-1));
640 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
650 if (ofs
>> cfi
->chipshift
) {
653 if (chipnum
== cfi
->numchips
)
662 * Writev for ECC-Flashes is a little more complicated. We need to maintain
663 * a small buffer for this.
664 * XXX: If the buffer size is not a multiple of 2, this will break
666 #define ECCBUF_SIZE (mtd->writesize)
667 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
668 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
670 cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
671 unsigned long count
, loff_t to
, size_t *retlen
)
674 size_t totlen
= 0, thislen
;
680 /* We should fall back to a general writev implementation.
681 * Until that is written, just break.
685 buffer
= kmalloc(ECCBUF_SIZE
, GFP_KERNEL
);
689 for (i
=0; i
<count
; i
++) {
690 size_t elem_len
= vecs
[i
].iov_len
;
691 void *elem_base
= vecs
[i
].iov_base
;
692 if (!elem_len
) /* FIXME: Might be unnecessary. Check that */
694 if (buflen
) { /* cut off head */
695 if (buflen
+ elem_len
< ECCBUF_SIZE
) { /* just accumulate */
696 memcpy(buffer
+buflen
, elem_base
, elem_len
);
700 memcpy(buffer
+buflen
, elem_base
, ECCBUF_SIZE
-buflen
);
701 ret
= mtd
->write(mtd
, to
, ECCBUF_SIZE
, &thislen
, buffer
);
703 if (ret
|| thislen
!= ECCBUF_SIZE
)
705 elem_len
-= thislen
-buflen
;
706 elem_base
+= thislen
-buflen
;
709 if (ECCBUF_DIV(elem_len
)) { /* write clean aligned data */
710 ret
= mtd
->write(mtd
, to
, ECCBUF_DIV(elem_len
), &thislen
, elem_base
);
712 if (ret
|| thislen
!= ECCBUF_DIV(elem_len
))
716 buflen
= ECCBUF_MOD(elem_len
); /* cut off tail */
718 memset(buffer
, 0xff, ECCBUF_SIZE
);
719 memcpy(buffer
, elem_base
+ thislen
, buflen
);
722 if (buflen
) { /* flush last page, even if not full */
723 /* This is sometimes intended behaviour, really */
724 ret
= mtd
->write(mtd
, to
, buflen
, &thislen
, buffer
);
726 if (ret
|| thislen
!= ECCBUF_SIZE
)
737 static inline int do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
739 struct cfi_private
*cfi
= map
->fldrv_priv
;
740 map_word status
, status_OK
;
743 DECLARE_WAITQUEUE(wait
, current
);
748 /* Let's determine this according to the interleave only once */
749 status_OK
= CMD(0x80);
751 timeo
= jiffies
+ HZ
;
753 mutex_lock(&chip
->mutex
);
755 /* Check that the chip's ready to talk to us. */
756 switch (chip
->state
) {
760 map_write(map
, CMD(0x70), adr
);
761 chip
->state
= FL_STATUS
;
764 status
= map_read(map
, adr
);
765 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
768 /* Urgh. Chip not yet ready to talk to us. */
769 if (time_after(jiffies
, timeo
)) {
770 mutex_unlock(&chip
->mutex
);
771 printk(KERN_ERR
"waiting for chip to be ready timed out in erase\n");
775 /* Latency issues. Drop the lock, wait a while and retry */
776 mutex_unlock(&chip
->mutex
);
781 /* Stick ourselves on a wait queue to be woken when
782 someone changes the status */
783 set_current_state(TASK_UNINTERRUPTIBLE
);
784 add_wait_queue(&chip
->wq
, &wait
);
785 mutex_unlock(&chip
->mutex
);
787 remove_wait_queue(&chip
->wq
, &wait
);
788 timeo
= jiffies
+ HZ
;
793 /* Clear the status register first */
794 map_write(map
, CMD(0x50), adr
);
797 map_write(map
, CMD(0x20), adr
);
798 map_write(map
, CMD(0xD0), adr
);
799 chip
->state
= FL_ERASING
;
801 mutex_unlock(&chip
->mutex
);
803 mutex_lock(&chip
->mutex
);
805 /* FIXME. Use a timer to check this, and return immediately. */
806 /* Once the state machine's known to be working I'll do that */
808 timeo
= jiffies
+ (HZ
*20);
810 if (chip
->state
!= FL_ERASING
) {
811 /* Someone's suspended the erase. Sleep */
812 set_current_state(TASK_UNINTERRUPTIBLE
);
813 add_wait_queue(&chip
->wq
, &wait
);
814 mutex_unlock(&chip
->mutex
);
816 remove_wait_queue(&chip
->wq
, &wait
);
817 timeo
= jiffies
+ (HZ
*20); /* FIXME */
818 mutex_lock(&chip
->mutex
);
822 status
= map_read(map
, adr
);
823 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
826 /* OK Still waiting */
827 if (time_after(jiffies
, timeo
)) {
828 map_write(map
, CMD(0x70), adr
);
829 chip
->state
= FL_STATUS
;
830 printk(KERN_ERR
"waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
832 mutex_unlock(&chip
->mutex
);
836 /* Latency issues. Drop the lock, wait a while and retry */
837 mutex_unlock(&chip
->mutex
);
839 mutex_lock(&chip
->mutex
);
845 /* We've broken this before. It doesn't hurt to be safe */
846 map_write(map
, CMD(0x70), adr
);
847 chip
->state
= FL_STATUS
;
848 status
= map_read(map
, adr
);
850 /* check for lock bit */
851 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
852 unsigned char chipstatus
= status
.x
[0];
853 if (!map_word_equal(map
, status
, CMD(chipstatus
))) {
855 for (w
=0; w
<map_words(map
); w
++) {
856 for (i
= 0; i
<cfi_interleave(cfi
); i
++) {
857 chipstatus
|= status
.x
[w
] >> (cfi
->device_type
* 8);
860 printk(KERN_WARNING
"Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
861 status
.x
[0], chipstatus
);
863 /* Reset the error bits */
864 map_write(map
, CMD(0x50), adr
);
865 map_write(map
, CMD(0x70), adr
);
867 if ((chipstatus
& 0x30) == 0x30) {
868 printk(KERN_NOTICE
"Chip reports improper command sequence: status 0x%x\n", chipstatus
);
870 } else if (chipstatus
& 0x02) {
871 /* Protection bit set */
873 } else if (chipstatus
& 0x8) {
875 printk(KERN_WARNING
"Chip reports voltage low on erase: status 0x%x\n", chipstatus
);
877 } else if (chipstatus
& 0x20) {
879 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr
, chipstatus
);
880 timeo
= jiffies
+ HZ
;
881 chip
->state
= FL_STATUS
;
882 mutex_unlock(&chip
->mutex
);
885 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x\n", adr
, chipstatus
);
891 mutex_unlock(&chip
->mutex
);
895 static int cfi_staa_erase_varsize(struct mtd_info
*mtd
,
896 struct erase_info
*instr
)
897 { struct map_info
*map
= mtd
->priv
;
898 struct cfi_private
*cfi
= map
->fldrv_priv
;
899 unsigned long adr
, len
;
900 int chipnum
, ret
= 0;
902 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
904 if (instr
->addr
> mtd
->size
)
907 if ((instr
->len
+ instr
->addr
) > mtd
->size
)
910 /* Check that both start and end of the requested erase are
911 * aligned with the erasesize at the appropriate addresses.
916 /* Skip all erase regions which are ended before the start of
917 the requested erase. Actually, to save on the calculations,
918 we skip to the first erase region which starts after the
919 start of the requested erase, and then go back one.
922 while (i
< mtd
->numeraseregions
&& instr
->addr
>= regions
[i
].offset
)
926 /* OK, now i is pointing at the erase region in which this
927 erase request starts. Check the start of the requested
928 erase range is aligned with the erase size which is in
932 if (instr
->addr
& (regions
[i
].erasesize
-1))
935 /* Remember the erase region we start on */
938 /* Next, check that the end of the requested erase is aligned
939 * with the erase region at that address.
942 while (i
<mtd
->numeraseregions
&& (instr
->addr
+ instr
->len
) >= regions
[i
].offset
)
945 /* As before, drop back one to point at the region in which
946 the address actually falls
950 if ((instr
->addr
+ instr
->len
) & (regions
[i
].erasesize
-1))
953 chipnum
= instr
->addr
>> cfi
->chipshift
;
954 adr
= instr
->addr
- (chipnum
<< cfi
->chipshift
);
960 ret
= do_erase_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
965 adr
+= regions
[i
].erasesize
;
966 len
-= regions
[i
].erasesize
;
968 if (adr
% (1<< cfi
->chipshift
) == (((unsigned long)regions
[i
].offset
+ (regions
[i
].erasesize
* regions
[i
].numblocks
)) %( 1<< cfi
->chipshift
)))
971 if (adr
>> cfi
->chipshift
) {
975 if (chipnum
>= cfi
->numchips
)
980 instr
->state
= MTD_ERASE_DONE
;
981 mtd_erase_callback(instr
);
986 static void cfi_staa_sync (struct mtd_info
*mtd
)
988 struct map_info
*map
= mtd
->priv
;
989 struct cfi_private
*cfi
= map
->fldrv_priv
;
993 DECLARE_WAITQUEUE(wait
, current
);
995 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
996 chip
= &cfi
->chips
[i
];
999 mutex_lock(&chip
->mutex
);
1001 switch(chip
->state
) {
1005 case FL_JEDEC_QUERY
:
1006 chip
->oldstate
= chip
->state
;
1007 chip
->state
= FL_SYNCING
;
1008 /* No need to wake_up() on this state change -
1009 * as the whole point is that nobody can do anything
1010 * with the chip now anyway.
1013 mutex_unlock(&chip
->mutex
);
1017 /* Not an idle state */
1018 set_current_state(TASK_UNINTERRUPTIBLE
);
1019 add_wait_queue(&chip
->wq
, &wait
);
1021 mutex_unlock(&chip
->mutex
);
1023 remove_wait_queue(&chip
->wq
, &wait
);
1029 /* Unlock the chips again */
1031 for (i
--; i
>=0; i
--) {
1032 chip
= &cfi
->chips
[i
];
1034 mutex_lock(&chip
->mutex
);
1036 if (chip
->state
== FL_SYNCING
) {
1037 chip
->state
= chip
->oldstate
;
1040 mutex_unlock(&chip
->mutex
);
1044 static inline int do_lock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1046 struct cfi_private
*cfi
= map
->fldrv_priv
;
1047 map_word status
, status_OK
;
1048 unsigned long timeo
= jiffies
+ HZ
;
1049 DECLARE_WAITQUEUE(wait
, current
);
1053 /* Let's determine this according to the interleave only once */
1054 status_OK
= CMD(0x80);
1056 timeo
= jiffies
+ HZ
;
1058 mutex_lock(&chip
->mutex
);
1060 /* Check that the chip's ready to talk to us. */
1061 switch (chip
->state
) {
1063 case FL_JEDEC_QUERY
:
1065 map_write(map
, CMD(0x70), adr
);
1066 chip
->state
= FL_STATUS
;
1069 status
= map_read(map
, adr
);
1070 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1073 /* Urgh. Chip not yet ready to talk to us. */
1074 if (time_after(jiffies
, timeo
)) {
1075 mutex_unlock(&chip
->mutex
);
1076 printk(KERN_ERR
"waiting for chip to be ready timed out in lock\n");
1080 /* Latency issues. Drop the lock, wait a while and retry */
1081 mutex_unlock(&chip
->mutex
);
1086 /* Stick ourselves on a wait queue to be woken when
1087 someone changes the status */
1088 set_current_state(TASK_UNINTERRUPTIBLE
);
1089 add_wait_queue(&chip
->wq
, &wait
);
1090 mutex_unlock(&chip
->mutex
);
1092 remove_wait_queue(&chip
->wq
, &wait
);
1093 timeo
= jiffies
+ HZ
;
1098 map_write(map
, CMD(0x60), adr
);
1099 map_write(map
, CMD(0x01), adr
);
1100 chip
->state
= FL_LOCKING
;
1102 mutex_unlock(&chip
->mutex
);
1104 mutex_lock(&chip
->mutex
);
1106 /* FIXME. Use a timer to check this, and return immediately. */
1107 /* Once the state machine's known to be working I'll do that */
1109 timeo
= jiffies
+ (HZ
*2);
1112 status
= map_read(map
, adr
);
1113 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1116 /* OK Still waiting */
1117 if (time_after(jiffies
, timeo
)) {
1118 map_write(map
, CMD(0x70), adr
);
1119 chip
->state
= FL_STATUS
;
1120 printk(KERN_ERR
"waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1122 mutex_unlock(&chip
->mutex
);
1126 /* Latency issues. Drop the lock, wait a while and retry */
1127 mutex_unlock(&chip
->mutex
);
1129 mutex_lock(&chip
->mutex
);
1132 /* Done and happy. */
1133 chip
->state
= FL_STATUS
;
1136 mutex_unlock(&chip
->mutex
);
1139 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1141 struct map_info
*map
= mtd
->priv
;
1142 struct cfi_private
*cfi
= map
->fldrv_priv
;
1144 int chipnum
, ret
= 0;
1145 #ifdef DEBUG_LOCK_BITS
1146 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1149 if (ofs
& (mtd
->erasesize
- 1))
1152 if (len
& (mtd
->erasesize
-1))
1155 if ((len
+ ofs
) > mtd
->size
)
1158 chipnum
= ofs
>> cfi
->chipshift
;
1159 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1163 #ifdef DEBUG_LOCK_BITS
1164 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1165 printk("before lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1166 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1169 ret
= do_lock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1171 #ifdef DEBUG_LOCK_BITS
1172 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1173 printk("after lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1174 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1180 adr
+= mtd
->erasesize
;
1181 len
-= mtd
->erasesize
;
1183 if (adr
>> cfi
->chipshift
) {
1187 if (chipnum
>= cfi
->numchips
)
1193 static inline int do_unlock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1195 struct cfi_private
*cfi
= map
->fldrv_priv
;
1196 map_word status
, status_OK
;
1197 unsigned long timeo
= jiffies
+ HZ
;
1198 DECLARE_WAITQUEUE(wait
, current
);
1202 /* Let's determine this according to the interleave only once */
1203 status_OK
= CMD(0x80);
1205 timeo
= jiffies
+ HZ
;
1207 mutex_lock(&chip
->mutex
);
1209 /* Check that the chip's ready to talk to us. */
1210 switch (chip
->state
) {
1212 case FL_JEDEC_QUERY
:
1214 map_write(map
, CMD(0x70), adr
);
1215 chip
->state
= FL_STATUS
;
1218 status
= map_read(map
, adr
);
1219 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1222 /* Urgh. Chip not yet ready to talk to us. */
1223 if (time_after(jiffies
, timeo
)) {
1224 mutex_unlock(&chip
->mutex
);
1225 printk(KERN_ERR
"waiting for chip to be ready timed out in unlock\n");
1229 /* Latency issues. Drop the lock, wait a while and retry */
1230 mutex_unlock(&chip
->mutex
);
1235 /* Stick ourselves on a wait queue to be woken when
1236 someone changes the status */
1237 set_current_state(TASK_UNINTERRUPTIBLE
);
1238 add_wait_queue(&chip
->wq
, &wait
);
1239 mutex_unlock(&chip
->mutex
);
1241 remove_wait_queue(&chip
->wq
, &wait
);
1242 timeo
= jiffies
+ HZ
;
1247 map_write(map
, CMD(0x60), adr
);
1248 map_write(map
, CMD(0xD0), adr
);
1249 chip
->state
= FL_UNLOCKING
;
1251 mutex_unlock(&chip
->mutex
);
1253 mutex_lock(&chip
->mutex
);
1255 /* FIXME. Use a timer to check this, and return immediately. */
1256 /* Once the state machine's known to be working I'll do that */
1258 timeo
= jiffies
+ (HZ
*2);
1261 status
= map_read(map
, adr
);
1262 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1265 /* OK Still waiting */
1266 if (time_after(jiffies
, timeo
)) {
1267 map_write(map
, CMD(0x70), adr
);
1268 chip
->state
= FL_STATUS
;
1269 printk(KERN_ERR
"waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1271 mutex_unlock(&chip
->mutex
);
1275 /* Latency issues. Drop the unlock, wait a while and retry */
1276 mutex_unlock(&chip
->mutex
);
1278 mutex_lock(&chip
->mutex
);
1281 /* Done and happy. */
1282 chip
->state
= FL_STATUS
;
1285 mutex_unlock(&chip
->mutex
);
1288 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1290 struct map_info
*map
= mtd
->priv
;
1291 struct cfi_private
*cfi
= map
->fldrv_priv
;
1293 int chipnum
, ret
= 0;
1294 #ifdef DEBUG_LOCK_BITS
1295 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1298 chipnum
= ofs
>> cfi
->chipshift
;
1299 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1301 #ifdef DEBUG_LOCK_BITS
1303 unsigned long temp_adr
= adr
;
1304 unsigned long temp_len
= len
;
1306 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1308 printk("before unlock %x: block status register is %x\n",temp_adr
,cfi_read_query(map
, temp_adr
+(2*ofs_factor
)));
1309 temp_adr
+= mtd
->erasesize
;
1310 temp_len
-= mtd
->erasesize
;
1312 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1316 ret
= do_unlock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1318 #ifdef DEBUG_LOCK_BITS
1319 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1320 printk("after unlock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1321 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1327 static int cfi_staa_suspend(struct mtd_info
*mtd
)
1329 struct map_info
*map
= mtd
->priv
;
1330 struct cfi_private
*cfi
= map
->fldrv_priv
;
1332 struct flchip
*chip
;
1335 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1336 chip
= &cfi
->chips
[i
];
1338 mutex_lock(&chip
->mutex
);
1340 switch(chip
->state
) {
1344 case FL_JEDEC_QUERY
:
1345 chip
->oldstate
= chip
->state
;
1346 chip
->state
= FL_PM_SUSPENDED
;
1347 /* No need to wake_up() on this state change -
1348 * as the whole point is that nobody can do anything
1349 * with the chip now anyway.
1351 case FL_PM_SUSPENDED
:
1358 mutex_unlock(&chip
->mutex
);
1361 /* Unlock the chips again */
1364 for (i
--; i
>=0; i
--) {
1365 chip
= &cfi
->chips
[i
];
1367 mutex_lock(&chip
->mutex
);
1369 if (chip
->state
== FL_PM_SUSPENDED
) {
1370 /* No need to force it into a known state here,
1371 because we're returning failure, and it didn't
1373 chip
->state
= chip
->oldstate
;
1376 mutex_unlock(&chip
->mutex
);
1383 static void cfi_staa_resume(struct mtd_info
*mtd
)
1385 struct map_info
*map
= mtd
->priv
;
1386 struct cfi_private
*cfi
= map
->fldrv_priv
;
1388 struct flchip
*chip
;
1390 for (i
=0; i
<cfi
->numchips
; i
++) {
1392 chip
= &cfi
->chips
[i
];
1394 mutex_lock(&chip
->mutex
);
1396 /* Go to known state. Chip may have been power cycled */
1397 if (chip
->state
== FL_PM_SUSPENDED
) {
1398 map_write(map
, CMD(0xFF), 0);
1399 chip
->state
= FL_READY
;
1403 mutex_unlock(&chip
->mutex
);
1407 static void cfi_staa_destroy(struct mtd_info
*mtd
)
1409 struct map_info
*map
= mtd
->priv
;
1410 struct cfi_private
*cfi
= map
->fldrv_priv
;
1411 kfree(cfi
->cmdset_priv
);
1415 MODULE_LICENSE("GPL");