2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
34 #include <scsi/scsi_cmnd.h>
36 static void blk_unplug_work(void *data
);
37 static void blk_unplug_timeout(unsigned long data
);
38 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
41 * For the allocated request tables
43 static kmem_cache_t
*request_cachep
;
46 * For queue allocation
48 static kmem_cache_t
*requestq_cachep
;
51 * For io context allocations
53 static kmem_cache_t
*iocontext_cachep
;
55 static wait_queue_head_t congestion_wqh
[2] = {
56 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
61 * Controlling structure to kblockd
63 static struct workqueue_struct
*kblockd_workqueue
;
65 unsigned long blk_max_low_pfn
, blk_max_pfn
;
67 EXPORT_SYMBOL(blk_max_low_pfn
);
68 EXPORT_SYMBOL(blk_max_pfn
);
70 /* Amount of time in which a process may batch requests */
71 #define BLK_BATCH_TIME (HZ/50UL)
73 /* Number of requests a "batching" process may submit */
74 #define BLK_BATCH_REQ 32
77 * Return the threshold (number of used requests) at which the queue is
78 * considered to be congested. It include a little hysteresis to keep the
79 * context switch rate down.
81 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
83 return q
->nr_congestion_on
;
87 * The threshold at which a queue is considered to be uncongested
89 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
91 return q
->nr_congestion_off
;
94 static void blk_queue_congestion_threshold(struct request_queue
*q
)
98 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
99 if (nr
> q
->nr_requests
)
101 q
->nr_congestion_on
= nr
;
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
106 q
->nr_congestion_off
= nr
;
110 * A queue has just exitted congestion. Note this in the global counter of
111 * congested queues, and wake up anyone who was waiting for requests to be
114 static void clear_queue_congested(request_queue_t
*q
, int rw
)
117 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
119 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
120 clear_bit(bit
, &q
->backing_dev_info
.state
);
121 smp_mb__after_clear_bit();
122 if (waitqueue_active(wqh
))
127 * A queue has just entered congestion. Flag that in the queue's VM-visible
128 * state flags and increment the global gounter of congested queues.
130 static void set_queue_congested(request_queue_t
*q
, int rw
)
134 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
135 set_bit(bit
, &q
->backing_dev_info
.state
);
139 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * Locates the passed device's request queue and returns the address of its
145 * Will return NULL if the request queue cannot be located.
147 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
149 struct backing_dev_info
*ret
= NULL
;
150 request_queue_t
*q
= bdev_get_queue(bdev
);
153 ret
= &q
->backing_dev_info
;
157 EXPORT_SYMBOL(blk_get_backing_dev_info
);
159 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
162 q
->activity_data
= data
;
165 EXPORT_SYMBOL(blk_queue_activity_fn
);
168 * blk_queue_prep_rq - set a prepare_request function for queue
170 * @pfn: prepare_request function
172 * It's possible for a queue to register a prepare_request callback which
173 * is invoked before the request is handed to the request_fn. The goal of
174 * the function is to prepare a request for I/O, it can be used to build a
175 * cdb from the request data for instance.
178 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
183 EXPORT_SYMBOL(blk_queue_prep_rq
);
186 * blk_queue_merge_bvec - set a merge_bvec function for queue
188 * @mbfn: merge_bvec_fn
190 * Usually queues have static limitations on the max sectors or segments that
191 * we can put in a request. Stacking drivers may have some settings that
192 * are dynamic, and thus we have to query the queue whether it is ok to
193 * add a new bio_vec to a bio at a given offset or not. If the block device
194 * has such limitations, it needs to register a merge_bvec_fn to control
195 * the size of bio's sent to it. Note that a block device *must* allow a
196 * single page to be added to an empty bio. The block device driver may want
197 * to use the bio_split() function to deal with these bio's. By default
198 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
203 q
->merge_bvec_fn
= mbfn
;
206 EXPORT_SYMBOL(blk_queue_merge_bvec
);
209 * blk_queue_make_request - define an alternate make_request function for a device
210 * @q: the request queue for the device to be affected
211 * @mfn: the alternate make_request function
214 * The normal way for &struct bios to be passed to a device
215 * driver is for them to be collected into requests on a request
216 * queue, and then to allow the device driver to select requests
217 * off that queue when it is ready. This works well for many block
218 * devices. However some block devices (typically virtual devices
219 * such as md or lvm) do not benefit from the processing on the
220 * request queue, and are served best by having the requests passed
221 * directly to them. This can be achieved by providing a function
222 * to blk_queue_make_request().
225 * The driver that does this *must* be able to deal appropriately
226 * with buffers in "highmemory". This can be accomplished by either calling
227 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
228 * blk_queue_bounce() to create a buffer in normal memory.
230 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
235 q
->nr_requests
= BLKDEV_MAX_RQ
;
236 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
237 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
238 q
->make_request_fn
= mfn
;
239 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
240 q
->backing_dev_info
.state
= 0;
241 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
242 blk_queue_max_sectors(q
, MAX_SECTORS
);
243 blk_queue_hardsect_size(q
, 512);
244 blk_queue_dma_alignment(q
, 511);
245 blk_queue_congestion_threshold(q
);
246 q
->nr_batching
= BLK_BATCH_REQ
;
248 q
->unplug_thresh
= 4; /* hmm */
249 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
250 if (q
->unplug_delay
== 0)
253 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
255 q
->unplug_timer
.function
= blk_unplug_timeout
;
256 q
->unplug_timer
.data
= (unsigned long)q
;
259 * by default assume old behaviour and bounce for any highmem page
261 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
263 blk_queue_activity_fn(q
, NULL
, NULL
);
266 EXPORT_SYMBOL(blk_queue_make_request
);
268 static inline void rq_init(request_queue_t
*q
, struct request
*rq
)
270 INIT_LIST_HEAD(&rq
->queuelist
);
273 rq
->rq_status
= RQ_ACTIVE
;
274 rq
->bio
= rq
->biotail
= NULL
;
283 rq
->nr_phys_segments
= 0;
286 rq
->end_io_data
= NULL
;
290 * blk_queue_ordered - does this queue support ordered writes
291 * @q: the request queue
295 * For journalled file systems, doing ordered writes on a commit
296 * block instead of explicitly doing wait_on_buffer (which is bad
297 * for performance) can be a big win. Block drivers supporting this
298 * feature should call this function and indicate so.
301 void blk_queue_ordered(request_queue_t
*q
, int flag
)
304 case QUEUE_ORDERED_NONE
:
306 kmem_cache_free(request_cachep
, q
->flush_rq
);
310 case QUEUE_ORDERED_TAG
:
313 case QUEUE_ORDERED_FLUSH
:
316 q
->flush_rq
= kmem_cache_alloc(request_cachep
,
320 printk("blk_queue_ordered: bad value %d\n", flag
);
325 EXPORT_SYMBOL(blk_queue_ordered
);
328 * blk_queue_issue_flush_fn - set function for issuing a flush
329 * @q: the request queue
330 * @iff: the function to be called issuing the flush
333 * If a driver supports issuing a flush command, the support is notified
334 * to the block layer by defining it through this call.
337 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
339 q
->issue_flush_fn
= iff
;
342 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
345 * Cache flushing for ordered writes handling
347 static void blk_pre_flush_end_io(struct request
*flush_rq
)
349 struct request
*rq
= flush_rq
->end_io_data
;
350 request_queue_t
*q
= rq
->q
;
352 elv_completed_request(q
, flush_rq
);
354 rq
->flags
|= REQ_BAR_PREFLUSH
;
356 if (!flush_rq
->errors
)
357 elv_requeue_request(q
, rq
);
359 q
->end_flush_fn(q
, flush_rq
);
360 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
365 static void blk_post_flush_end_io(struct request
*flush_rq
)
367 struct request
*rq
= flush_rq
->end_io_data
;
368 request_queue_t
*q
= rq
->q
;
370 elv_completed_request(q
, flush_rq
);
372 rq
->flags
|= REQ_BAR_POSTFLUSH
;
374 q
->end_flush_fn(q
, flush_rq
);
375 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
379 struct request
*blk_start_pre_flush(request_queue_t
*q
, struct request
*rq
)
381 struct request
*flush_rq
= q
->flush_rq
;
383 BUG_ON(!blk_barrier_rq(rq
));
385 if (test_and_set_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
))
388 rq_init(q
, flush_rq
);
389 flush_rq
->elevator_private
= NULL
;
390 flush_rq
->flags
= REQ_BAR_FLUSH
;
391 flush_rq
->rq_disk
= rq
->rq_disk
;
395 * prepare_flush returns 0 if no flush is needed, just mark both
396 * pre and post flush as done in that case
398 if (!q
->prepare_flush_fn(q
, flush_rq
)) {
399 rq
->flags
|= REQ_BAR_PREFLUSH
| REQ_BAR_POSTFLUSH
;
400 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
405 * some drivers dequeue requests right away, some only after io
406 * completion. make sure the request is dequeued.
408 if (!list_empty(&rq
->queuelist
))
409 blkdev_dequeue_request(rq
);
411 flush_rq
->end_io_data
= rq
;
412 flush_rq
->end_io
= blk_pre_flush_end_io
;
414 __elv_add_request(q
, flush_rq
, ELEVATOR_INSERT_FRONT
, 0);
418 static void blk_start_post_flush(request_queue_t
*q
, struct request
*rq
)
420 struct request
*flush_rq
= q
->flush_rq
;
422 BUG_ON(!blk_barrier_rq(rq
));
424 rq_init(q
, flush_rq
);
425 flush_rq
->elevator_private
= NULL
;
426 flush_rq
->flags
= REQ_BAR_FLUSH
;
427 flush_rq
->rq_disk
= rq
->rq_disk
;
430 if (q
->prepare_flush_fn(q
, flush_rq
)) {
431 flush_rq
->end_io_data
= rq
;
432 flush_rq
->end_io
= blk_post_flush_end_io
;
434 __elv_add_request(q
, flush_rq
, ELEVATOR_INSERT_FRONT
, 0);
439 static inline int blk_check_end_barrier(request_queue_t
*q
, struct request
*rq
,
442 if (sectors
> rq
->nr_sectors
)
443 sectors
= rq
->nr_sectors
;
445 rq
->nr_sectors
-= sectors
;
446 return rq
->nr_sectors
;
449 static int __blk_complete_barrier_rq(request_queue_t
*q
, struct request
*rq
,
450 int sectors
, int queue_locked
)
452 if (q
->ordered
!= QUEUE_ORDERED_FLUSH
)
454 if (!blk_fs_request(rq
) || !blk_barrier_rq(rq
))
456 if (blk_barrier_postflush(rq
))
459 if (!blk_check_end_barrier(q
, rq
, sectors
)) {
460 unsigned long flags
= 0;
463 spin_lock_irqsave(q
->queue_lock
, flags
);
465 blk_start_post_flush(q
, rq
);
468 spin_unlock_irqrestore(q
->queue_lock
, flags
);
475 * blk_complete_barrier_rq - complete possible barrier request
476 * @q: the request queue for the device
478 * @sectors: number of sectors to complete
481 * Used in driver end_io handling to determine whether to postpone
482 * completion of a barrier request until a post flush has been done. This
483 * is the unlocked variant, used if the caller doesn't already hold the
486 int blk_complete_barrier_rq(request_queue_t
*q
, struct request
*rq
, int sectors
)
488 return __blk_complete_barrier_rq(q
, rq
, sectors
, 0);
490 EXPORT_SYMBOL(blk_complete_barrier_rq
);
493 * blk_complete_barrier_rq_locked - complete possible barrier request
494 * @q: the request queue for the device
496 * @sectors: number of sectors to complete
499 * See blk_complete_barrier_rq(). This variant must be used if the caller
500 * holds the queue lock.
502 int blk_complete_barrier_rq_locked(request_queue_t
*q
, struct request
*rq
,
505 return __blk_complete_barrier_rq(q
, rq
, sectors
, 1);
507 EXPORT_SYMBOL(blk_complete_barrier_rq_locked
);
510 * blk_queue_bounce_limit - set bounce buffer limit for queue
511 * @q: the request queue for the device
512 * @dma_addr: bus address limit
515 * Different hardware can have different requirements as to what pages
516 * it can do I/O directly to. A low level driver can call
517 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
518 * buffers for doing I/O to pages residing above @page. By default
519 * the block layer sets this to the highest numbered "low" memory page.
521 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
523 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
526 * set appropriate bounce gfp mask -- unfortunately we don't have a
527 * full 4GB zone, so we have to resort to low memory for any bounces.
528 * ISA has its own < 16MB zone.
530 if (bounce_pfn
< blk_max_low_pfn
) {
531 BUG_ON(dma_addr
< BLK_BOUNCE_ISA
);
532 init_emergency_isa_pool();
533 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
535 q
->bounce_gfp
= GFP_NOIO
;
537 q
->bounce_pfn
= bounce_pfn
;
540 EXPORT_SYMBOL(blk_queue_bounce_limit
);
543 * blk_queue_max_sectors - set max sectors for a request for this queue
544 * @q: the request queue for the device
545 * @max_sectors: max sectors in the usual 512b unit
548 * Enables a low level driver to set an upper limit on the size of
551 void blk_queue_max_sectors(request_queue_t
*q
, unsigned short max_sectors
)
553 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
554 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
555 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
558 q
->max_sectors
= q
->max_hw_sectors
= max_sectors
;
561 EXPORT_SYMBOL(blk_queue_max_sectors
);
564 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
565 * @q: the request queue for the device
566 * @max_segments: max number of segments
569 * Enables a low level driver to set an upper limit on the number of
570 * physical data segments in a request. This would be the largest sized
571 * scatter list the driver could handle.
573 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
577 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
580 q
->max_phys_segments
= max_segments
;
583 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
586 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
587 * @q: the request queue for the device
588 * @max_segments: max number of segments
591 * Enables a low level driver to set an upper limit on the number of
592 * hw data segments in a request. This would be the largest number of
593 * address/length pairs the host adapter can actually give as once
596 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
600 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
603 q
->max_hw_segments
= max_segments
;
606 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
609 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
610 * @q: the request queue for the device
611 * @max_size: max size of segment in bytes
614 * Enables a low level driver to set an upper limit on the size of a
617 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
619 if (max_size
< PAGE_CACHE_SIZE
) {
620 max_size
= PAGE_CACHE_SIZE
;
621 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
624 q
->max_segment_size
= max_size
;
627 EXPORT_SYMBOL(blk_queue_max_segment_size
);
630 * blk_queue_hardsect_size - set hardware sector size for the queue
631 * @q: the request queue for the device
632 * @size: the hardware sector size, in bytes
635 * This should typically be set to the lowest possible sector size
636 * that the hardware can operate on (possible without reverting to
637 * even internal read-modify-write operations). Usually the default
638 * of 512 covers most hardware.
640 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
642 q
->hardsect_size
= size
;
645 EXPORT_SYMBOL(blk_queue_hardsect_size
);
648 * Returns the minimum that is _not_ zero, unless both are zero.
650 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
653 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
654 * @t: the stacking driver (top)
655 * @b: the underlying device (bottom)
657 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
659 /* zero is "infinity" */
660 t
->max_sectors
= t
->max_hw_sectors
=
661 min_not_zero(t
->max_sectors
,b
->max_sectors
);
663 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
664 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
665 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
666 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
669 EXPORT_SYMBOL(blk_queue_stack_limits
);
672 * blk_queue_segment_boundary - set boundary rules for segment merging
673 * @q: the request queue for the device
674 * @mask: the memory boundary mask
676 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
678 if (mask
< PAGE_CACHE_SIZE
- 1) {
679 mask
= PAGE_CACHE_SIZE
- 1;
680 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
683 q
->seg_boundary_mask
= mask
;
686 EXPORT_SYMBOL(blk_queue_segment_boundary
);
689 * blk_queue_dma_alignment - set dma length and memory alignment
690 * @q: the request queue for the device
691 * @mask: alignment mask
694 * set required memory and length aligment for direct dma transactions.
695 * this is used when buiding direct io requests for the queue.
698 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
700 q
->dma_alignment
= mask
;
703 EXPORT_SYMBOL(blk_queue_dma_alignment
);
706 * blk_queue_find_tag - find a request by its tag and queue
707 * @q: The request queue for the device
708 * @tag: The tag of the request
711 * Should be used when a device returns a tag and you want to match
714 * no locks need be held.
716 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
718 struct blk_queue_tag
*bqt
= q
->queue_tags
;
720 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
723 return bqt
->tag_index
[tag
];
726 EXPORT_SYMBOL(blk_queue_find_tag
);
729 * __blk_queue_free_tags - release tag maintenance info
730 * @q: the request queue for the device
733 * blk_cleanup_queue() will take care of calling this function, if tagging
734 * has been used. So there's no need to call this directly.
736 static void __blk_queue_free_tags(request_queue_t
*q
)
738 struct blk_queue_tag
*bqt
= q
->queue_tags
;
743 if (atomic_dec_and_test(&bqt
->refcnt
)) {
745 BUG_ON(!list_empty(&bqt
->busy_list
));
747 kfree(bqt
->tag_index
);
748 bqt
->tag_index
= NULL
;
756 q
->queue_tags
= NULL
;
757 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
761 * blk_queue_free_tags - release tag maintenance info
762 * @q: the request queue for the device
765 * This is used to disabled tagged queuing to a device, yet leave
768 void blk_queue_free_tags(request_queue_t
*q
)
770 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
773 EXPORT_SYMBOL(blk_queue_free_tags
);
776 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
778 struct request
**tag_index
;
779 unsigned long *tag_map
;
782 if (depth
> q
->nr_requests
* 2) {
783 depth
= q
->nr_requests
* 2;
784 printk(KERN_ERR
"%s: adjusted depth to %d\n",
785 __FUNCTION__
, depth
);
788 tag_index
= kmalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
792 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
793 tag_map
= kmalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
797 memset(tag_index
, 0, depth
* sizeof(struct request
*));
798 memset(tag_map
, 0, nr_ulongs
* sizeof(unsigned long));
799 tags
->real_max_depth
= depth
;
800 tags
->max_depth
= depth
;
801 tags
->tag_index
= tag_index
;
802 tags
->tag_map
= tag_map
;
811 * blk_queue_init_tags - initialize the queue tag info
812 * @q: the request queue for the device
813 * @depth: the maximum queue depth supported
814 * @tags: the tag to use
816 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
817 struct blk_queue_tag
*tags
)
821 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
823 if (!tags
&& !q
->queue_tags
) {
824 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
828 if (init_tag_map(q
, tags
, depth
))
831 INIT_LIST_HEAD(&tags
->busy_list
);
833 atomic_set(&tags
->refcnt
, 1);
834 } else if (q
->queue_tags
) {
835 if ((rc
= blk_queue_resize_tags(q
, depth
)))
837 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
840 atomic_inc(&tags
->refcnt
);
843 * assign it, all done
845 q
->queue_tags
= tags
;
846 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
853 EXPORT_SYMBOL(blk_queue_init_tags
);
856 * blk_queue_resize_tags - change the queueing depth
857 * @q: the request queue for the device
858 * @new_depth: the new max command queueing depth
861 * Must be called with the queue lock held.
863 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
865 struct blk_queue_tag
*bqt
= q
->queue_tags
;
866 struct request
**tag_index
;
867 unsigned long *tag_map
;
868 int max_depth
, nr_ulongs
;
874 * if we already have large enough real_max_depth. just
875 * adjust max_depth. *NOTE* as requests with tag value
876 * between new_depth and real_max_depth can be in-flight, tag
877 * map can not be shrunk blindly here.
879 if (new_depth
<= bqt
->real_max_depth
) {
880 bqt
->max_depth
= new_depth
;
885 * save the old state info, so we can copy it back
887 tag_index
= bqt
->tag_index
;
888 tag_map
= bqt
->tag_map
;
889 max_depth
= bqt
->real_max_depth
;
891 if (init_tag_map(q
, bqt
, new_depth
))
894 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
895 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
896 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
903 EXPORT_SYMBOL(blk_queue_resize_tags
);
906 * blk_queue_end_tag - end tag operations for a request
907 * @q: the request queue for the device
908 * @rq: the request that has completed
911 * Typically called when end_that_request_first() returns 0, meaning
912 * all transfers have been done for a request. It's important to call
913 * this function before end_that_request_last(), as that will put the
914 * request back on the free list thus corrupting the internal tag list.
917 * queue lock must be held.
919 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
921 struct blk_queue_tag
*bqt
= q
->queue_tags
;
926 if (unlikely(tag
>= bqt
->real_max_depth
))
928 * This can happen after tag depth has been reduced.
929 * FIXME: how about a warning or info message here?
933 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
934 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
939 list_del_init(&rq
->queuelist
);
940 rq
->flags
&= ~REQ_QUEUED
;
943 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
944 printk(KERN_ERR
"%s: tag %d is missing\n",
947 bqt
->tag_index
[tag
] = NULL
;
951 EXPORT_SYMBOL(blk_queue_end_tag
);
954 * blk_queue_start_tag - find a free tag and assign it
955 * @q: the request queue for the device
956 * @rq: the block request that needs tagging
959 * This can either be used as a stand-alone helper, or possibly be
960 * assigned as the queue &prep_rq_fn (in which case &struct request
961 * automagically gets a tag assigned). Note that this function
962 * assumes that any type of request can be queued! if this is not
963 * true for your device, you must check the request type before
964 * calling this function. The request will also be removed from
965 * the request queue, so it's the drivers responsibility to readd
966 * it if it should need to be restarted for some reason.
969 * queue lock must be held.
971 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
973 struct blk_queue_tag
*bqt
= q
->queue_tags
;
976 if (unlikely((rq
->flags
& REQ_QUEUED
))) {
978 "%s: request %p for device [%s] already tagged %d",
980 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
984 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
985 if (tag
>= bqt
->max_depth
)
988 __set_bit(tag
, bqt
->tag_map
);
990 rq
->flags
|= REQ_QUEUED
;
992 bqt
->tag_index
[tag
] = rq
;
993 blkdev_dequeue_request(rq
);
994 list_add(&rq
->queuelist
, &bqt
->busy_list
);
999 EXPORT_SYMBOL(blk_queue_start_tag
);
1002 * blk_queue_invalidate_tags - invalidate all pending tags
1003 * @q: the request queue for the device
1006 * Hardware conditions may dictate a need to stop all pending requests.
1007 * In this case, we will safely clear the block side of the tag queue and
1008 * readd all requests to the request queue in the right order.
1011 * queue lock must be held.
1013 void blk_queue_invalidate_tags(request_queue_t
*q
)
1015 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1016 struct list_head
*tmp
, *n
;
1019 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1020 rq
= list_entry_rq(tmp
);
1022 if (rq
->tag
== -1) {
1024 "%s: bad tag found on list\n", __FUNCTION__
);
1025 list_del_init(&rq
->queuelist
);
1026 rq
->flags
&= ~REQ_QUEUED
;
1028 blk_queue_end_tag(q
, rq
);
1030 rq
->flags
&= ~REQ_STARTED
;
1031 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1035 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1037 static char *rq_flags
[] = {
1057 "REQ_DRIVE_TASKFILE",
1064 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1068 printk("%s: dev %s: flags = ", msg
,
1069 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?");
1072 if (rq
->flags
& (1 << bit
))
1073 printk("%s ", rq_flags
[bit
]);
1075 } while (bit
< __REQ_NR_BITS
);
1077 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1079 rq
->current_nr_sectors
);
1080 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1082 if (rq
->flags
& (REQ_BLOCK_PC
| REQ_PC
)) {
1084 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1085 printk("%02x ", rq
->cmd
[bit
]);
1090 EXPORT_SYMBOL(blk_dump_rq_flags
);
1092 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1094 struct bio_vec
*bv
, *bvprv
= NULL
;
1095 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1096 int high
, highprv
= 1;
1098 if (unlikely(!bio
->bi_io_vec
))
1101 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1102 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1103 bio_for_each_segment(bv
, bio
, i
) {
1105 * the trick here is making sure that a high page is never
1106 * considered part of another segment, since that might
1107 * change with the bounce page.
1109 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1110 if (high
|| highprv
)
1111 goto new_hw_segment
;
1113 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1115 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1117 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1119 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1120 goto new_hw_segment
;
1122 seg_size
+= bv
->bv_len
;
1123 hw_seg_size
+= bv
->bv_len
;
1128 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1129 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1130 hw_seg_size
+= bv
->bv_len
;
1133 if (hw_seg_size
> bio
->bi_hw_front_size
)
1134 bio
->bi_hw_front_size
= hw_seg_size
;
1135 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1141 seg_size
= bv
->bv_len
;
1144 if (hw_seg_size
> bio
->bi_hw_back_size
)
1145 bio
->bi_hw_back_size
= hw_seg_size
;
1146 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1147 bio
->bi_hw_front_size
= hw_seg_size
;
1148 bio
->bi_phys_segments
= nr_phys_segs
;
1149 bio
->bi_hw_segments
= nr_hw_segs
;
1150 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1154 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1157 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1160 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1162 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1166 * bio and nxt are contigous in memory, check if the queue allows
1167 * these two to be merged into one
1169 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1175 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1178 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1179 blk_recount_segments(q
, bio
);
1180 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1181 blk_recount_segments(q
, nxt
);
1182 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1183 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1185 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1192 * map a request to scatterlist, return number of sg entries setup. Caller
1193 * must make sure sg can hold rq->nr_phys_segments entries
1195 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1197 struct bio_vec
*bvec
, *bvprv
;
1199 int nsegs
, i
, cluster
;
1202 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1205 * for each bio in rq
1208 rq_for_each_bio(bio
, rq
) {
1210 * for each segment in bio
1212 bio_for_each_segment(bvec
, bio
, i
) {
1213 int nbytes
= bvec
->bv_len
;
1215 if (bvprv
&& cluster
) {
1216 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1219 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1221 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1224 sg
[nsegs
- 1].length
+= nbytes
;
1227 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1228 sg
[nsegs
].page
= bvec
->bv_page
;
1229 sg
[nsegs
].length
= nbytes
;
1230 sg
[nsegs
].offset
= bvec
->bv_offset
;
1235 } /* segments in bio */
1241 EXPORT_SYMBOL(blk_rq_map_sg
);
1244 * the standard queue merge functions, can be overridden with device
1245 * specific ones if so desired
1248 static inline int ll_new_mergeable(request_queue_t
*q
,
1249 struct request
*req
,
1252 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1254 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1255 req
->flags
|= REQ_NOMERGE
;
1256 if (req
== q
->last_merge
)
1257 q
->last_merge
= NULL
;
1262 * A hw segment is just getting larger, bump just the phys
1265 req
->nr_phys_segments
+= nr_phys_segs
;
1269 static inline int ll_new_hw_segment(request_queue_t
*q
,
1270 struct request
*req
,
1273 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1274 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1276 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1277 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1278 req
->flags
|= REQ_NOMERGE
;
1279 if (req
== q
->last_merge
)
1280 q
->last_merge
= NULL
;
1285 * This will form the start of a new hw segment. Bump both
1288 req
->nr_hw_segments
+= nr_hw_segs
;
1289 req
->nr_phys_segments
+= nr_phys_segs
;
1293 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1298 if (req
->nr_sectors
+ bio_sectors(bio
) > q
->max_sectors
) {
1299 req
->flags
|= REQ_NOMERGE
;
1300 if (req
== q
->last_merge
)
1301 q
->last_merge
= NULL
;
1304 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1305 blk_recount_segments(q
, req
->biotail
);
1306 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1307 blk_recount_segments(q
, bio
);
1308 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1309 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1310 !BIOVEC_VIRT_OVERSIZE(len
)) {
1311 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1314 if (req
->nr_hw_segments
== 1)
1315 req
->bio
->bi_hw_front_size
= len
;
1316 if (bio
->bi_hw_segments
== 1)
1317 bio
->bi_hw_back_size
= len
;
1322 return ll_new_hw_segment(q
, req
, bio
);
1325 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1330 if (req
->nr_sectors
+ bio_sectors(bio
) > q
->max_sectors
) {
1331 req
->flags
|= REQ_NOMERGE
;
1332 if (req
== q
->last_merge
)
1333 q
->last_merge
= NULL
;
1336 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1337 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1338 blk_recount_segments(q
, bio
);
1339 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1340 blk_recount_segments(q
, req
->bio
);
1341 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1342 !BIOVEC_VIRT_OVERSIZE(len
)) {
1343 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1346 if (bio
->bi_hw_segments
== 1)
1347 bio
->bi_hw_front_size
= len
;
1348 if (req
->nr_hw_segments
== 1)
1349 req
->biotail
->bi_hw_back_size
= len
;
1354 return ll_new_hw_segment(q
, req
, bio
);
1357 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1358 struct request
*next
)
1360 int total_phys_segments
;
1361 int total_hw_segments
;
1364 * First check if the either of the requests are re-queued
1365 * requests. Can't merge them if they are.
1367 if (req
->special
|| next
->special
)
1371 * Will it become too large?
1373 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1376 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1377 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1378 total_phys_segments
--;
1380 if (total_phys_segments
> q
->max_phys_segments
)
1383 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1384 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1385 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1387 * propagate the combined length to the end of the requests
1389 if (req
->nr_hw_segments
== 1)
1390 req
->bio
->bi_hw_front_size
= len
;
1391 if (next
->nr_hw_segments
== 1)
1392 next
->biotail
->bi_hw_back_size
= len
;
1393 total_hw_segments
--;
1396 if (total_hw_segments
> q
->max_hw_segments
)
1399 /* Merge is OK... */
1400 req
->nr_phys_segments
= total_phys_segments
;
1401 req
->nr_hw_segments
= total_hw_segments
;
1406 * "plug" the device if there are no outstanding requests: this will
1407 * force the transfer to start only after we have put all the requests
1410 * This is called with interrupts off and no requests on the queue and
1411 * with the queue lock held.
1413 void blk_plug_device(request_queue_t
*q
)
1415 WARN_ON(!irqs_disabled());
1418 * don't plug a stopped queue, it must be paired with blk_start_queue()
1419 * which will restart the queueing
1421 if (test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
))
1424 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1425 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1428 EXPORT_SYMBOL(blk_plug_device
);
1431 * remove the queue from the plugged list, if present. called with
1432 * queue lock held and interrupts disabled.
1434 int blk_remove_plug(request_queue_t
*q
)
1436 WARN_ON(!irqs_disabled());
1438 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1441 del_timer(&q
->unplug_timer
);
1445 EXPORT_SYMBOL(blk_remove_plug
);
1448 * remove the plug and let it rip..
1450 void __generic_unplug_device(request_queue_t
*q
)
1452 if (unlikely(test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
)))
1455 if (!blk_remove_plug(q
))
1460 EXPORT_SYMBOL(__generic_unplug_device
);
1463 * generic_unplug_device - fire a request queue
1464 * @q: The &request_queue_t in question
1467 * Linux uses plugging to build bigger requests queues before letting
1468 * the device have at them. If a queue is plugged, the I/O scheduler
1469 * is still adding and merging requests on the queue. Once the queue
1470 * gets unplugged, the request_fn defined for the queue is invoked and
1471 * transfers started.
1473 void generic_unplug_device(request_queue_t
*q
)
1475 spin_lock_irq(q
->queue_lock
);
1476 __generic_unplug_device(q
);
1477 spin_unlock_irq(q
->queue_lock
);
1479 EXPORT_SYMBOL(generic_unplug_device
);
1481 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1484 request_queue_t
*q
= bdi
->unplug_io_data
;
1487 * devices don't necessarily have an ->unplug_fn defined
1493 static void blk_unplug_work(void *data
)
1495 request_queue_t
*q
= data
;
1500 static void blk_unplug_timeout(unsigned long data
)
1502 request_queue_t
*q
= (request_queue_t
*)data
;
1504 kblockd_schedule_work(&q
->unplug_work
);
1508 * blk_start_queue - restart a previously stopped queue
1509 * @q: The &request_queue_t in question
1512 * blk_start_queue() will clear the stop flag on the queue, and call
1513 * the request_fn for the queue if it was in a stopped state when
1514 * entered. Also see blk_stop_queue(). Queue lock must be held.
1516 void blk_start_queue(request_queue_t
*q
)
1518 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1521 * one level of recursion is ok and is much faster than kicking
1522 * the unplug handling
1524 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1526 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1529 kblockd_schedule_work(&q
->unplug_work
);
1533 EXPORT_SYMBOL(blk_start_queue
);
1536 * blk_stop_queue - stop a queue
1537 * @q: The &request_queue_t in question
1540 * The Linux block layer assumes that a block driver will consume all
1541 * entries on the request queue when the request_fn strategy is called.
1542 * Often this will not happen, because of hardware limitations (queue
1543 * depth settings). If a device driver gets a 'queue full' response,
1544 * or if it simply chooses not to queue more I/O at one point, it can
1545 * call this function to prevent the request_fn from being called until
1546 * the driver has signalled it's ready to go again. This happens by calling
1547 * blk_start_queue() to restart queue operations. Queue lock must be held.
1549 void blk_stop_queue(request_queue_t
*q
)
1552 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1554 EXPORT_SYMBOL(blk_stop_queue
);
1557 * blk_sync_queue - cancel any pending callbacks on a queue
1561 * The block layer may perform asynchronous callback activity
1562 * on a queue, such as calling the unplug function after a timeout.
1563 * A block device may call blk_sync_queue to ensure that any
1564 * such activity is cancelled, thus allowing it to release resources
1565 * the the callbacks might use. The caller must already have made sure
1566 * that its ->make_request_fn will not re-add plugging prior to calling
1570 void blk_sync_queue(struct request_queue
*q
)
1572 del_timer_sync(&q
->unplug_timer
);
1575 EXPORT_SYMBOL(blk_sync_queue
);
1578 * blk_run_queue - run a single device queue
1579 * @q: The queue to run
1581 void blk_run_queue(struct request_queue
*q
)
1583 unsigned long flags
;
1585 spin_lock_irqsave(q
->queue_lock
, flags
);
1587 if (!elv_queue_empty(q
))
1589 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1591 EXPORT_SYMBOL(blk_run_queue
);
1594 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1595 * @q: the request queue to be released
1598 * blk_cleanup_queue is the pair to blk_init_queue() or
1599 * blk_queue_make_request(). It should be called when a request queue is
1600 * being released; typically when a block device is being de-registered.
1601 * Currently, its primary task it to free all the &struct request
1602 * structures that were allocated to the queue and the queue itself.
1605 * Hopefully the low level driver will have finished any
1606 * outstanding requests first...
1608 void blk_cleanup_queue(request_queue_t
* q
)
1610 struct request_list
*rl
= &q
->rq
;
1612 if (!atomic_dec_and_test(&q
->refcnt
))
1616 elevator_exit(q
->elevator
);
1621 mempool_destroy(rl
->rq_pool
);
1624 __blk_queue_free_tags(q
);
1626 blk_queue_ordered(q
, QUEUE_ORDERED_NONE
);
1628 kmem_cache_free(requestq_cachep
, q
);
1631 EXPORT_SYMBOL(blk_cleanup_queue
);
1633 static int blk_init_free_list(request_queue_t
*q
)
1635 struct request_list
*rl
= &q
->rq
;
1637 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1638 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1640 init_waitqueue_head(&rl
->wait
[READ
]);
1641 init_waitqueue_head(&rl
->wait
[WRITE
]);
1643 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1644 mempool_free_slab
, request_cachep
, q
->node
);
1652 static int __make_request(request_queue_t
*, struct bio
*);
1654 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1656 return blk_alloc_queue_node(gfp_mask
, -1);
1658 EXPORT_SYMBOL(blk_alloc_queue
);
1660 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1664 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1668 memset(q
, 0, sizeof(*q
));
1669 init_timer(&q
->unplug_timer
);
1670 atomic_set(&q
->refcnt
, 1);
1672 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1673 q
->backing_dev_info
.unplug_io_data
= q
;
1677 EXPORT_SYMBOL(blk_alloc_queue_node
);
1680 * blk_init_queue - prepare a request queue for use with a block device
1681 * @rfn: The function to be called to process requests that have been
1682 * placed on the queue.
1683 * @lock: Request queue spin lock
1686 * If a block device wishes to use the standard request handling procedures,
1687 * which sorts requests and coalesces adjacent requests, then it must
1688 * call blk_init_queue(). The function @rfn will be called when there
1689 * are requests on the queue that need to be processed. If the device
1690 * supports plugging, then @rfn may not be called immediately when requests
1691 * are available on the queue, but may be called at some time later instead.
1692 * Plugged queues are generally unplugged when a buffer belonging to one
1693 * of the requests on the queue is needed, or due to memory pressure.
1695 * @rfn is not required, or even expected, to remove all requests off the
1696 * queue, but only as many as it can handle at a time. If it does leave
1697 * requests on the queue, it is responsible for arranging that the requests
1698 * get dealt with eventually.
1700 * The queue spin lock must be held while manipulating the requests on the
1703 * Function returns a pointer to the initialized request queue, or NULL if
1704 * it didn't succeed.
1707 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1708 * when the block device is deactivated (such as at module unload).
1711 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1713 return blk_init_queue_node(rfn
, lock
, -1);
1715 EXPORT_SYMBOL(blk_init_queue
);
1718 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1720 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1726 if (blk_init_free_list(q
))
1730 * if caller didn't supply a lock, they get per-queue locking with
1734 spin_lock_init(&q
->__queue_lock
);
1735 lock
= &q
->__queue_lock
;
1738 q
->request_fn
= rfn
;
1739 q
->back_merge_fn
= ll_back_merge_fn
;
1740 q
->front_merge_fn
= ll_front_merge_fn
;
1741 q
->merge_requests_fn
= ll_merge_requests_fn
;
1742 q
->prep_rq_fn
= NULL
;
1743 q
->unplug_fn
= generic_unplug_device
;
1744 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1745 q
->queue_lock
= lock
;
1747 blk_queue_segment_boundary(q
, 0xffffffff);
1749 blk_queue_make_request(q
, __make_request
);
1750 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1752 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1753 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1758 if (!elevator_init(q
, NULL
)) {
1759 blk_queue_congestion_threshold(q
);
1763 blk_cleanup_queue(q
);
1765 kmem_cache_free(requestq_cachep
, q
);
1768 EXPORT_SYMBOL(blk_init_queue_node
);
1770 int blk_get_queue(request_queue_t
*q
)
1772 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1773 atomic_inc(&q
->refcnt
);
1780 EXPORT_SYMBOL(blk_get_queue
);
1782 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1784 if (rq
->flags
& REQ_ELVPRIV
)
1785 elv_put_request(q
, rq
);
1786 mempool_free(rq
, q
->rq
.rq_pool
);
1789 static inline struct request
*
1790 blk_alloc_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1791 int priv
, gfp_t gfp_mask
)
1793 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1799 * first three bits are identical in rq->flags and bio->bi_rw,
1800 * see bio.h and blkdev.h
1805 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
))) {
1806 mempool_free(rq
, q
->rq
.rq_pool
);
1809 rq
->flags
|= REQ_ELVPRIV
;
1816 * ioc_batching returns true if the ioc is a valid batching request and
1817 * should be given priority access to a request.
1819 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
1825 * Make sure the process is able to allocate at least 1 request
1826 * even if the batch times out, otherwise we could theoretically
1829 return ioc
->nr_batch_requests
== q
->nr_batching
||
1830 (ioc
->nr_batch_requests
> 0
1831 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1835 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1836 * will cause the process to be a "batcher" on all queues in the system. This
1837 * is the behaviour we want though - once it gets a wakeup it should be given
1840 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
1842 if (!ioc
|| ioc_batching(q
, ioc
))
1845 ioc
->nr_batch_requests
= q
->nr_batching
;
1846 ioc
->last_waited
= jiffies
;
1849 static void __freed_request(request_queue_t
*q
, int rw
)
1851 struct request_list
*rl
= &q
->rq
;
1853 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
1854 clear_queue_congested(q
, rw
);
1856 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
1857 if (waitqueue_active(&rl
->wait
[rw
]))
1858 wake_up(&rl
->wait
[rw
]);
1860 blk_clear_queue_full(q
, rw
);
1865 * A request has just been released. Account for it, update the full and
1866 * congestion status, wake up any waiters. Called under q->queue_lock.
1868 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
1870 struct request_list
*rl
= &q
->rq
;
1876 __freed_request(q
, rw
);
1878 if (unlikely(rl
->starved
[rw
^ 1]))
1879 __freed_request(q
, rw
^ 1);
1882 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1884 * Get a free request, queue_lock must be held.
1885 * Returns NULL on failure, with queue_lock held.
1886 * Returns !NULL on success, with queue_lock *not held*.
1888 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1891 struct request
*rq
= NULL
;
1892 struct request_list
*rl
= &q
->rq
;
1893 struct io_context
*ioc
= current_io_context(GFP_ATOMIC
);
1896 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
1898 * The queue will fill after this allocation, so set it as
1899 * full, and mark this process as "batching". This process
1900 * will be allowed to complete a batch of requests, others
1903 if (!blk_queue_full(q
, rw
)) {
1904 ioc_set_batching(q
, ioc
);
1905 blk_set_queue_full(q
, rw
);
1909 switch (elv_may_queue(q
, rw
, bio
)) {
1912 case ELV_MQUEUE_MAY
:
1914 case ELV_MQUEUE_MUST
:
1918 if (blk_queue_full(q
, rw
) && !ioc_batching(q
, ioc
)) {
1920 * The queue is full and the allocating process is not a
1921 * "batcher", and not exempted by the IO scheduler
1928 * Only allow batching queuers to allocate up to 50% over the defined
1929 * limit of requests, otherwise we could have thousands of requests
1930 * allocated with any setting of ->nr_requests
1932 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
1936 rl
->starved
[rw
] = 0;
1937 if (rl
->count
[rw
] >= queue_congestion_on_threshold(q
))
1938 set_queue_congested(q
, rw
);
1940 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
1944 spin_unlock_irq(q
->queue_lock
);
1946 rq
= blk_alloc_request(q
, rw
, bio
, priv
, gfp_mask
);
1949 * Allocation failed presumably due to memory. Undo anything
1950 * we might have messed up.
1952 * Allocating task should really be put onto the front of the
1953 * wait queue, but this is pretty rare.
1955 spin_lock_irq(q
->queue_lock
);
1956 freed_request(q
, rw
, priv
);
1959 * in the very unlikely event that allocation failed and no
1960 * requests for this direction was pending, mark us starved
1961 * so that freeing of a request in the other direction will
1962 * notice us. another possible fix would be to split the
1963 * rq mempool into READ and WRITE
1966 if (unlikely(rl
->count
[rw
] == 0))
1967 rl
->starved
[rw
] = 1;
1972 if (ioc_batching(q
, ioc
))
1973 ioc
->nr_batch_requests
--;
1982 * No available requests for this queue, unplug the device and wait for some
1983 * requests to become available.
1985 * Called with q->queue_lock held, and returns with it unlocked.
1987 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
1992 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
1995 struct request_list
*rl
= &q
->rq
;
1997 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
1998 TASK_UNINTERRUPTIBLE
);
2000 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2003 struct io_context
*ioc
;
2005 __generic_unplug_device(q
);
2006 spin_unlock_irq(q
->queue_lock
);
2010 * After sleeping, we become a "batching" process and
2011 * will be able to allocate at least one request, and
2012 * up to a big batch of them for a small period time.
2013 * See ioc_batching, ioc_set_batching
2015 ioc
= current_io_context(GFP_NOIO
);
2016 ioc_set_batching(q
, ioc
);
2018 spin_lock_irq(q
->queue_lock
);
2020 finish_wait(&rl
->wait
[rw
], &wait
);
2026 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2030 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2032 spin_lock_irq(q
->queue_lock
);
2033 if (gfp_mask
& __GFP_WAIT
) {
2034 rq
= get_request_wait(q
, rw
, NULL
);
2036 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2038 spin_unlock_irq(q
->queue_lock
);
2040 /* q->queue_lock is unlocked at this point */
2044 EXPORT_SYMBOL(blk_get_request
);
2047 * blk_requeue_request - put a request back on queue
2048 * @q: request queue where request should be inserted
2049 * @rq: request to be inserted
2052 * Drivers often keep queueing requests until the hardware cannot accept
2053 * more, when that condition happens we need to put the request back
2054 * on the queue. Must be called with queue lock held.
2056 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2058 if (blk_rq_tagged(rq
))
2059 blk_queue_end_tag(q
, rq
);
2061 elv_requeue_request(q
, rq
);
2064 EXPORT_SYMBOL(blk_requeue_request
);
2067 * blk_insert_request - insert a special request in to a request queue
2068 * @q: request queue where request should be inserted
2069 * @rq: request to be inserted
2070 * @at_head: insert request at head or tail of queue
2071 * @data: private data
2074 * Many block devices need to execute commands asynchronously, so they don't
2075 * block the whole kernel from preemption during request execution. This is
2076 * accomplished normally by inserting aritficial requests tagged as
2077 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2078 * scheduled for actual execution by the request queue.
2080 * We have the option of inserting the head or the tail of the queue.
2081 * Typically we use the tail for new ioctls and so forth. We use the head
2082 * of the queue for things like a QUEUE_FULL message from a device, or a
2083 * host that is unable to accept a particular command.
2085 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2086 int at_head
, void *data
)
2088 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2089 unsigned long flags
;
2092 * tell I/O scheduler that this isn't a regular read/write (ie it
2093 * must not attempt merges on this) and that it acts as a soft
2096 rq
->flags
|= REQ_SPECIAL
| REQ_SOFTBARRIER
;
2100 spin_lock_irqsave(q
->queue_lock
, flags
);
2103 * If command is tagged, release the tag
2105 if (blk_rq_tagged(rq
))
2106 blk_queue_end_tag(q
, rq
);
2108 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2109 __elv_add_request(q
, rq
, where
, 0);
2111 if (blk_queue_plugged(q
))
2112 __generic_unplug_device(q
);
2115 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2118 EXPORT_SYMBOL(blk_insert_request
);
2121 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2122 * @q: request queue where request should be inserted
2123 * @rq: request structure to fill
2124 * @ubuf: the user buffer
2125 * @len: length of user data
2128 * Data will be mapped directly for zero copy io, if possible. Otherwise
2129 * a kernel bounce buffer is used.
2131 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2132 * still in process context.
2134 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2135 * before being submitted to the device, as pages mapped may be out of
2136 * reach. It's the callers responsibility to make sure this happens. The
2137 * original bio must be passed back in to blk_rq_unmap_user() for proper
2140 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2143 unsigned long uaddr
;
2147 if (len
> (q
->max_sectors
<< 9))
2152 reading
= rq_data_dir(rq
) == READ
;
2155 * if alignment requirement is satisfied, map in user pages for
2156 * direct dma. else, set up kernel bounce buffers
2158 uaddr
= (unsigned long) ubuf
;
2159 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2160 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2162 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2165 rq
->bio
= rq
->biotail
= bio
;
2166 blk_rq_bio_prep(q
, rq
, bio
);
2168 rq
->buffer
= rq
->data
= NULL
;
2174 * bio is the err-ptr
2176 return PTR_ERR(bio
);
2179 EXPORT_SYMBOL(blk_rq_map_user
);
2182 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2183 * @q: request queue where request should be inserted
2184 * @rq: request to map data to
2185 * @iov: pointer to the iovec
2186 * @iov_count: number of elements in the iovec
2189 * Data will be mapped directly for zero copy io, if possible. Otherwise
2190 * a kernel bounce buffer is used.
2192 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2193 * still in process context.
2195 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2196 * before being submitted to the device, as pages mapped may be out of
2197 * reach. It's the callers responsibility to make sure this happens. The
2198 * original bio must be passed back in to blk_rq_unmap_user() for proper
2201 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2202 struct sg_iovec
*iov
, int iov_count
)
2206 if (!iov
|| iov_count
<= 0)
2209 /* we don't allow misaligned data like bio_map_user() does. If the
2210 * user is using sg, they're expected to know the alignment constraints
2211 * and respect them accordingly */
2212 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2214 return PTR_ERR(bio
);
2216 rq
->bio
= rq
->biotail
= bio
;
2217 blk_rq_bio_prep(q
, rq
, bio
);
2218 rq
->buffer
= rq
->data
= NULL
;
2219 rq
->data_len
= bio
->bi_size
;
2223 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2226 * blk_rq_unmap_user - unmap a request with user data
2227 * @bio: bio to be unmapped
2228 * @ulen: length of user buffer
2231 * Unmap a bio previously mapped by blk_rq_map_user().
2233 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2238 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2239 bio_unmap_user(bio
);
2241 ret
= bio_uncopy_user(bio
);
2247 EXPORT_SYMBOL(blk_rq_unmap_user
);
2250 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2251 * @q: request queue where request should be inserted
2252 * @rq: request to fill
2253 * @kbuf: the kernel buffer
2254 * @len: length of user data
2255 * @gfp_mask: memory allocation flags
2257 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2258 unsigned int len
, gfp_t gfp_mask
)
2262 if (len
> (q
->max_sectors
<< 9))
2267 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2269 return PTR_ERR(bio
);
2271 if (rq_data_dir(rq
) == WRITE
)
2272 bio
->bi_rw
|= (1 << BIO_RW
);
2274 rq
->bio
= rq
->biotail
= bio
;
2275 blk_rq_bio_prep(q
, rq
, bio
);
2277 rq
->buffer
= rq
->data
= NULL
;
2282 EXPORT_SYMBOL(blk_rq_map_kern
);
2285 * blk_execute_rq_nowait - insert a request into queue for execution
2286 * @q: queue to insert the request in
2287 * @bd_disk: matching gendisk
2288 * @rq: request to insert
2289 * @at_head: insert request at head or tail of queue
2290 * @done: I/O completion handler
2293 * Insert a fully prepared request at the back of the io scheduler queue
2294 * for execution. Don't wait for completion.
2296 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2297 struct request
*rq
, int at_head
,
2298 void (*done
)(struct request
*))
2300 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2302 rq
->rq_disk
= bd_disk
;
2303 rq
->flags
|= REQ_NOMERGE
;
2305 elv_add_request(q
, rq
, where
, 1);
2306 generic_unplug_device(q
);
2310 * blk_execute_rq - insert a request into queue for execution
2311 * @q: queue to insert the request in
2312 * @bd_disk: matching gendisk
2313 * @rq: request to insert
2314 * @at_head: insert request at head or tail of queue
2317 * Insert a fully prepared request at the back of the io scheduler queue
2318 * for execution and wait for completion.
2320 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2321 struct request
*rq
, int at_head
)
2323 DECLARE_COMPLETION(wait
);
2324 char sense
[SCSI_SENSE_BUFFERSIZE
];
2328 * we need an extra reference to the request, so we can look at
2329 * it after io completion
2334 memset(sense
, 0, sizeof(sense
));
2339 rq
->waiting
= &wait
;
2340 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2341 wait_for_completion(&wait
);
2350 EXPORT_SYMBOL(blk_execute_rq
);
2353 * blkdev_issue_flush - queue a flush
2354 * @bdev: blockdev to issue flush for
2355 * @error_sector: error sector
2358 * Issue a flush for the block device in question. Caller can supply
2359 * room for storing the error offset in case of a flush error, if they
2360 * wish to. Caller must run wait_for_completion() on its own.
2362 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2366 if (bdev
->bd_disk
== NULL
)
2369 q
= bdev_get_queue(bdev
);
2372 if (!q
->issue_flush_fn
)
2375 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2378 EXPORT_SYMBOL(blkdev_issue_flush
);
2380 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2382 int rw
= rq_data_dir(rq
);
2384 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2388 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2390 disk_round_stats(rq
->rq_disk
);
2391 rq
->rq_disk
->in_flight
++;
2396 * add-request adds a request to the linked list.
2397 * queue lock is held and interrupts disabled, as we muck with the
2398 * request queue list.
2400 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2402 drive_stat_acct(req
, req
->nr_sectors
, 1);
2405 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2408 * elevator indicated where it wants this request to be
2409 * inserted at elevator_merge time
2411 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2415 * disk_round_stats() - Round off the performance stats on a struct
2418 * The average IO queue length and utilisation statistics are maintained
2419 * by observing the current state of the queue length and the amount of
2420 * time it has been in this state for.
2422 * Normally, that accounting is done on IO completion, but that can result
2423 * in more than a second's worth of IO being accounted for within any one
2424 * second, leading to >100% utilisation. To deal with that, we call this
2425 * function to do a round-off before returning the results when reading
2426 * /proc/diskstats. This accounts immediately for all queue usage up to
2427 * the current jiffies and restarts the counters again.
2429 void disk_round_stats(struct gendisk
*disk
)
2431 unsigned long now
= jiffies
;
2433 if (now
== disk
->stamp
)
2436 if (disk
->in_flight
) {
2437 __disk_stat_add(disk
, time_in_queue
,
2438 disk
->in_flight
* (now
- disk
->stamp
));
2439 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2445 * queue lock must be held
2447 static void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2449 struct request_list
*rl
= req
->rl
;
2453 if (unlikely(--req
->ref_count
))
2456 elv_completed_request(q
, req
);
2458 req
->rq_status
= RQ_INACTIVE
;
2462 * Request may not have originated from ll_rw_blk. if not,
2463 * it didn't come out of our reserved rq pools
2466 int rw
= rq_data_dir(req
);
2467 int priv
= req
->flags
& REQ_ELVPRIV
;
2469 BUG_ON(!list_empty(&req
->queuelist
));
2471 blk_free_request(q
, req
);
2472 freed_request(q
, rw
, priv
);
2476 void blk_put_request(struct request
*req
)
2478 unsigned long flags
;
2479 request_queue_t
*q
= req
->q
;
2482 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2483 * following if (q) test.
2486 spin_lock_irqsave(q
->queue_lock
, flags
);
2487 __blk_put_request(q
, req
);
2488 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2492 EXPORT_SYMBOL(blk_put_request
);
2495 * blk_end_sync_rq - executes a completion event on a request
2496 * @rq: request to complete
2498 void blk_end_sync_rq(struct request
*rq
)
2500 struct completion
*waiting
= rq
->waiting
;
2503 __blk_put_request(rq
->q
, rq
);
2506 * complete last, if this is a stack request the process (and thus
2507 * the rq pointer) could be invalid right after this complete()
2511 EXPORT_SYMBOL(blk_end_sync_rq
);
2514 * blk_congestion_wait - wait for a queue to become uncongested
2515 * @rw: READ or WRITE
2516 * @timeout: timeout in jiffies
2518 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2519 * If no queues are congested then just wait for the next request to be
2522 long blk_congestion_wait(int rw
, long timeout
)
2526 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2528 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2529 ret
= io_schedule_timeout(timeout
);
2530 finish_wait(wqh
, &wait
);
2534 EXPORT_SYMBOL(blk_congestion_wait
);
2537 * Has to be called with the request spinlock acquired
2539 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2540 struct request
*next
)
2542 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2548 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2551 if (rq_data_dir(req
) != rq_data_dir(next
)
2552 || req
->rq_disk
!= next
->rq_disk
2553 || next
->waiting
|| next
->special
)
2557 * If we are allowed to merge, then append bio list
2558 * from next to rq and release next. merge_requests_fn
2559 * will have updated segment counts, update sector
2562 if (!q
->merge_requests_fn(q
, req
, next
))
2566 * At this point we have either done a back merge
2567 * or front merge. We need the smaller start_time of
2568 * the merged requests to be the current request
2569 * for accounting purposes.
2571 if (time_after(req
->start_time
, next
->start_time
))
2572 req
->start_time
= next
->start_time
;
2574 req
->biotail
->bi_next
= next
->bio
;
2575 req
->biotail
= next
->biotail
;
2577 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2579 elv_merge_requests(q
, req
, next
);
2582 disk_round_stats(req
->rq_disk
);
2583 req
->rq_disk
->in_flight
--;
2586 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2588 __blk_put_request(q
, next
);
2592 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2594 struct request
*next
= elv_latter_request(q
, rq
);
2597 return attempt_merge(q
, rq
, next
);
2602 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2604 struct request
*prev
= elv_former_request(q
, rq
);
2607 return attempt_merge(q
, prev
, rq
);
2613 * blk_attempt_remerge - attempt to remerge active head with next request
2614 * @q: The &request_queue_t belonging to the device
2615 * @rq: The head request (usually)
2618 * For head-active devices, the queue can easily be unplugged so quickly
2619 * that proper merging is not done on the front request. This may hurt
2620 * performance greatly for some devices. The block layer cannot safely
2621 * do merging on that first request for these queues, but the driver can
2622 * call this function and make it happen any way. Only the driver knows
2623 * when it is safe to do so.
2625 void blk_attempt_remerge(request_queue_t
*q
, struct request
*rq
)
2627 unsigned long flags
;
2629 spin_lock_irqsave(q
->queue_lock
, flags
);
2630 attempt_back_merge(q
, rq
);
2631 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2634 EXPORT_SYMBOL(blk_attempt_remerge
);
2636 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2638 struct request
*req
;
2639 int el_ret
, rw
, nr_sectors
, cur_nr_sectors
, barrier
, err
, sync
;
2640 unsigned short prio
;
2643 sector
= bio
->bi_sector
;
2644 nr_sectors
= bio_sectors(bio
);
2645 cur_nr_sectors
= bio_cur_sectors(bio
);
2646 prio
= bio_prio(bio
);
2648 rw
= bio_data_dir(bio
);
2649 sync
= bio_sync(bio
);
2652 * low level driver can indicate that it wants pages above a
2653 * certain limit bounced to low memory (ie for highmem, or even
2654 * ISA dma in theory)
2656 blk_queue_bounce(q
, &bio
);
2658 spin_lock_prefetch(q
->queue_lock
);
2660 barrier
= bio_barrier(bio
);
2661 if (unlikely(barrier
) && (q
->ordered
== QUEUE_ORDERED_NONE
)) {
2666 spin_lock_irq(q
->queue_lock
);
2668 if (unlikely(barrier
) || elv_queue_empty(q
))
2671 el_ret
= elv_merge(q
, &req
, bio
);
2673 case ELEVATOR_BACK_MERGE
:
2674 BUG_ON(!rq_mergeable(req
));
2676 if (!q
->back_merge_fn(q
, req
, bio
))
2679 req
->biotail
->bi_next
= bio
;
2681 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2682 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2683 drive_stat_acct(req
, nr_sectors
, 0);
2684 if (!attempt_back_merge(q
, req
))
2685 elv_merged_request(q
, req
);
2688 case ELEVATOR_FRONT_MERGE
:
2689 BUG_ON(!rq_mergeable(req
));
2691 if (!q
->front_merge_fn(q
, req
, bio
))
2694 bio
->bi_next
= req
->bio
;
2698 * may not be valid. if the low level driver said
2699 * it didn't need a bounce buffer then it better
2700 * not touch req->buffer either...
2702 req
->buffer
= bio_data(bio
);
2703 req
->current_nr_sectors
= cur_nr_sectors
;
2704 req
->hard_cur_sectors
= cur_nr_sectors
;
2705 req
->sector
= req
->hard_sector
= sector
;
2706 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2707 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2708 drive_stat_acct(req
, nr_sectors
, 0);
2709 if (!attempt_front_merge(q
, req
))
2710 elv_merged_request(q
, req
);
2713 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2720 * Grab a free request. This is might sleep but can not fail.
2721 * Returns with the queue unlocked.
2723 req
= get_request_wait(q
, rw
, bio
);
2726 * After dropping the lock and possibly sleeping here, our request
2727 * may now be mergeable after it had proven unmergeable (above).
2728 * We don't worry about that case for efficiency. It won't happen
2729 * often, and the elevators are able to handle it.
2732 req
->flags
|= REQ_CMD
;
2735 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2737 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2738 req
->flags
|= REQ_FAILFAST
;
2741 * REQ_BARRIER implies no merging, but lets make it explicit
2743 if (unlikely(barrier
))
2744 req
->flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2747 req
->hard_sector
= req
->sector
= sector
;
2748 req
->hard_nr_sectors
= req
->nr_sectors
= nr_sectors
;
2749 req
->current_nr_sectors
= req
->hard_cur_sectors
= cur_nr_sectors
;
2750 req
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2751 req
->nr_hw_segments
= bio_hw_segments(q
, bio
);
2752 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2753 req
->waiting
= NULL
;
2754 req
->bio
= req
->biotail
= bio
;
2756 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2757 req
->start_time
= jiffies
;
2759 spin_lock_irq(q
->queue_lock
);
2760 if (elv_queue_empty(q
))
2762 add_request(q
, req
);
2765 __generic_unplug_device(q
);
2767 spin_unlock_irq(q
->queue_lock
);
2771 bio_endio(bio
, nr_sectors
<< 9, err
);
2776 * If bio->bi_dev is a partition, remap the location
2778 static inline void blk_partition_remap(struct bio
*bio
)
2780 struct block_device
*bdev
= bio
->bi_bdev
;
2782 if (bdev
!= bdev
->bd_contains
) {
2783 struct hd_struct
*p
= bdev
->bd_part
;
2784 const int rw
= bio_data_dir(bio
);
2786 p
->sectors
[rw
] += bio_sectors(bio
);
2789 bio
->bi_sector
+= p
->start_sect
;
2790 bio
->bi_bdev
= bdev
->bd_contains
;
2794 static void handle_bad_sector(struct bio
*bio
)
2796 char b
[BDEVNAME_SIZE
];
2798 printk(KERN_INFO
"attempt to access beyond end of device\n");
2799 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2800 bdevname(bio
->bi_bdev
, b
),
2802 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2803 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2805 set_bit(BIO_EOF
, &bio
->bi_flags
);
2809 * generic_make_request: hand a buffer to its device driver for I/O
2810 * @bio: The bio describing the location in memory and on the device.
2812 * generic_make_request() is used to make I/O requests of block
2813 * devices. It is passed a &struct bio, which describes the I/O that needs
2816 * generic_make_request() does not return any status. The
2817 * success/failure status of the request, along with notification of
2818 * completion, is delivered asynchronously through the bio->bi_end_io
2819 * function described (one day) else where.
2821 * The caller of generic_make_request must make sure that bi_io_vec
2822 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2823 * set to describe the device address, and the
2824 * bi_end_io and optionally bi_private are set to describe how
2825 * completion notification should be signaled.
2827 * generic_make_request and the drivers it calls may use bi_next if this
2828 * bio happens to be merged with someone else, and may change bi_dev and
2829 * bi_sector for remaps as it sees fit. So the values of these fields
2830 * should NOT be depended on after the call to generic_make_request.
2832 void generic_make_request(struct bio
*bio
)
2836 int ret
, nr_sectors
= bio_sectors(bio
);
2839 /* Test device or partition size, when known. */
2840 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
2842 sector_t sector
= bio
->bi_sector
;
2844 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
2846 * This may well happen - the kernel calls bread()
2847 * without checking the size of the device, e.g., when
2848 * mounting a device.
2850 handle_bad_sector(bio
);
2856 * Resolve the mapping until finished. (drivers are
2857 * still free to implement/resolve their own stacking
2858 * by explicitly returning 0)
2860 * NOTE: we don't repeat the blk_size check for each new device.
2861 * Stacking drivers are expected to know what they are doing.
2864 char b
[BDEVNAME_SIZE
];
2866 q
= bdev_get_queue(bio
->bi_bdev
);
2869 "generic_make_request: Trying to access "
2870 "nonexistent block-device %s (%Lu)\n",
2871 bdevname(bio
->bi_bdev
, b
),
2872 (long long) bio
->bi_sector
);
2874 bio_endio(bio
, bio
->bi_size
, -EIO
);
2878 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
2879 printk("bio too big device %s (%u > %u)\n",
2880 bdevname(bio
->bi_bdev
, b
),
2886 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
2890 * If this device has partitions, remap block n
2891 * of partition p to block n+start(p) of the disk.
2893 blk_partition_remap(bio
);
2895 ret
= q
->make_request_fn(q
, bio
);
2899 EXPORT_SYMBOL(generic_make_request
);
2902 * submit_bio: submit a bio to the block device layer for I/O
2903 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2904 * @bio: The &struct bio which describes the I/O
2906 * submit_bio() is very similar in purpose to generic_make_request(), and
2907 * uses that function to do most of the work. Both are fairly rough
2908 * interfaces, @bio must be presetup and ready for I/O.
2911 void submit_bio(int rw
, struct bio
*bio
)
2913 int count
= bio_sectors(bio
);
2915 BIO_BUG_ON(!bio
->bi_size
);
2916 BIO_BUG_ON(!bio
->bi_io_vec
);
2919 mod_page_state(pgpgout
, count
);
2921 mod_page_state(pgpgin
, count
);
2923 if (unlikely(block_dump
)) {
2924 char b
[BDEVNAME_SIZE
];
2925 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
2926 current
->comm
, current
->pid
,
2927 (rw
& WRITE
) ? "WRITE" : "READ",
2928 (unsigned long long)bio
->bi_sector
,
2929 bdevname(bio
->bi_bdev
,b
));
2932 generic_make_request(bio
);
2935 EXPORT_SYMBOL(submit_bio
);
2937 static void blk_recalc_rq_segments(struct request
*rq
)
2939 struct bio
*bio
, *prevbio
= NULL
;
2940 int nr_phys_segs
, nr_hw_segs
;
2941 unsigned int phys_size
, hw_size
;
2942 request_queue_t
*q
= rq
->q
;
2947 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
2948 rq_for_each_bio(bio
, rq
) {
2949 /* Force bio hw/phys segs to be recalculated. */
2950 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
2952 nr_phys_segs
+= bio_phys_segments(q
, bio
);
2953 nr_hw_segs
+= bio_hw_segments(q
, bio
);
2955 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
2956 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
2958 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
2959 pseg
<= q
->max_segment_size
) {
2961 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
2965 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
2966 hseg
<= q
->max_segment_size
) {
2968 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
2975 rq
->nr_phys_segments
= nr_phys_segs
;
2976 rq
->nr_hw_segments
= nr_hw_segs
;
2979 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
2981 if (blk_fs_request(rq
)) {
2982 rq
->hard_sector
+= nsect
;
2983 rq
->hard_nr_sectors
-= nsect
;
2986 * Move the I/O submission pointers ahead if required.
2988 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
2989 (rq
->sector
<= rq
->hard_sector
)) {
2990 rq
->sector
= rq
->hard_sector
;
2991 rq
->nr_sectors
= rq
->hard_nr_sectors
;
2992 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
2993 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
2994 rq
->buffer
= bio_data(rq
->bio
);
2998 * if total number of sectors is less than the first segment
2999 * size, something has gone terribly wrong
3001 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3002 printk("blk: request botched\n");
3003 rq
->nr_sectors
= rq
->current_nr_sectors
;
3008 static int __end_that_request_first(struct request
*req
, int uptodate
,
3011 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3015 * extend uptodate bool to allow < 0 value to be direct io error
3018 if (end_io_error(uptodate
))
3019 error
= !uptodate
? -EIO
: uptodate
;
3022 * for a REQ_BLOCK_PC request, we want to carry any eventual
3023 * sense key with us all the way through
3025 if (!blk_pc_request(req
))
3029 if (blk_fs_request(req
) && !(req
->flags
& REQ_QUIET
))
3030 printk("end_request: I/O error, dev %s, sector %llu\n",
3031 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3032 (unsigned long long)req
->sector
);
3035 if (blk_fs_request(req
) && req
->rq_disk
) {
3036 const int rw
= rq_data_dir(req
);
3038 __disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3041 total_bytes
= bio_nbytes
= 0;
3042 while ((bio
= req
->bio
) != NULL
) {
3045 if (nr_bytes
>= bio
->bi_size
) {
3046 req
->bio
= bio
->bi_next
;
3047 nbytes
= bio
->bi_size
;
3048 bio_endio(bio
, nbytes
, error
);
3052 int idx
= bio
->bi_idx
+ next_idx
;
3054 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3055 blk_dump_rq_flags(req
, "__end_that");
3056 printk("%s: bio idx %d >= vcnt %d\n",
3058 bio
->bi_idx
, bio
->bi_vcnt
);
3062 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3063 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3066 * not a complete bvec done
3068 if (unlikely(nbytes
> nr_bytes
)) {
3069 bio_nbytes
+= nr_bytes
;
3070 total_bytes
+= nr_bytes
;
3075 * advance to the next vector
3078 bio_nbytes
+= nbytes
;
3081 total_bytes
+= nbytes
;
3084 if ((bio
= req
->bio
)) {
3086 * end more in this run, or just return 'not-done'
3088 if (unlikely(nr_bytes
<= 0))
3100 * if the request wasn't completed, update state
3103 bio_endio(bio
, bio_nbytes
, error
);
3104 bio
->bi_idx
+= next_idx
;
3105 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3106 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3109 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3110 blk_recalc_rq_segments(req
);
3115 * end_that_request_first - end I/O on a request
3116 * @req: the request being processed
3117 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3118 * @nr_sectors: number of sectors to end I/O on
3121 * Ends I/O on a number of sectors attached to @req, and sets it up
3122 * for the next range of segments (if any) in the cluster.
3125 * 0 - we are done with this request, call end_that_request_last()
3126 * 1 - still buffers pending for this request
3128 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3130 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3133 EXPORT_SYMBOL(end_that_request_first
);
3136 * end_that_request_chunk - end I/O on a request
3137 * @req: the request being processed
3138 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3139 * @nr_bytes: number of bytes to complete
3142 * Ends I/O on a number of bytes attached to @req, and sets it up
3143 * for the next range of segments (if any). Like end_that_request_first(),
3144 * but deals with bytes instead of sectors.
3147 * 0 - we are done with this request, call end_that_request_last()
3148 * 1 - still buffers pending for this request
3150 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3152 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3155 EXPORT_SYMBOL(end_that_request_chunk
);
3158 * queue lock must be held
3160 void end_that_request_last(struct request
*req
)
3162 struct gendisk
*disk
= req
->rq_disk
;
3164 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3165 laptop_io_completion();
3167 if (disk
&& blk_fs_request(req
)) {
3168 unsigned long duration
= jiffies
- req
->start_time
;
3169 const int rw
= rq_data_dir(req
);
3171 __disk_stat_inc(disk
, ios
[rw
]);
3172 __disk_stat_add(disk
, ticks
[rw
], duration
);
3173 disk_round_stats(disk
);
3179 __blk_put_request(req
->q
, req
);
3182 EXPORT_SYMBOL(end_that_request_last
);
3184 void end_request(struct request
*req
, int uptodate
)
3186 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3187 add_disk_randomness(req
->rq_disk
);
3188 blkdev_dequeue_request(req
);
3189 end_that_request_last(req
);
3193 EXPORT_SYMBOL(end_request
);
3195 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3197 /* first three bits are identical in rq->flags and bio->bi_rw */
3198 rq
->flags
|= (bio
->bi_rw
& 7);
3200 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3201 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3202 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3203 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3204 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3205 rq
->buffer
= bio_data(bio
);
3207 rq
->bio
= rq
->biotail
= bio
;
3210 EXPORT_SYMBOL(blk_rq_bio_prep
);
3212 int kblockd_schedule_work(struct work_struct
*work
)
3214 return queue_work(kblockd_workqueue
, work
);
3217 EXPORT_SYMBOL(kblockd_schedule_work
);
3219 void kblockd_flush(void)
3221 flush_workqueue(kblockd_workqueue
);
3223 EXPORT_SYMBOL(kblockd_flush
);
3225 int __init
blk_dev_init(void)
3227 kblockd_workqueue
= create_workqueue("kblockd");
3228 if (!kblockd_workqueue
)
3229 panic("Failed to create kblockd\n");
3231 request_cachep
= kmem_cache_create("blkdev_requests",
3232 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3234 requestq_cachep
= kmem_cache_create("blkdev_queue",
3235 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3237 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3238 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3240 blk_max_low_pfn
= max_low_pfn
;
3241 blk_max_pfn
= max_pfn
;
3247 * IO Context helper functions
3249 void put_io_context(struct io_context
*ioc
)
3254 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3256 if (atomic_dec_and_test(&ioc
->refcount
)) {
3257 if (ioc
->aic
&& ioc
->aic
->dtor
)
3258 ioc
->aic
->dtor(ioc
->aic
);
3259 if (ioc
->cic
&& ioc
->cic
->dtor
)
3260 ioc
->cic
->dtor(ioc
->cic
);
3262 kmem_cache_free(iocontext_cachep
, ioc
);
3265 EXPORT_SYMBOL(put_io_context
);
3267 /* Called by the exitting task */
3268 void exit_io_context(void)
3270 unsigned long flags
;
3271 struct io_context
*ioc
;
3273 local_irq_save(flags
);
3275 ioc
= current
->io_context
;
3276 current
->io_context
= NULL
;
3278 task_unlock(current
);
3279 local_irq_restore(flags
);
3281 if (ioc
->aic
&& ioc
->aic
->exit
)
3282 ioc
->aic
->exit(ioc
->aic
);
3283 if (ioc
->cic
&& ioc
->cic
->exit
)
3284 ioc
->cic
->exit(ioc
->cic
);
3286 put_io_context(ioc
);
3290 * If the current task has no IO context then create one and initialise it.
3291 * Otherwise, return its existing IO context.
3293 * This returned IO context doesn't have a specifically elevated refcount,
3294 * but since the current task itself holds a reference, the context can be
3295 * used in general code, so long as it stays within `current` context.
3297 struct io_context
*current_io_context(gfp_t gfp_flags
)
3299 struct task_struct
*tsk
= current
;
3300 struct io_context
*ret
;
3302 ret
= tsk
->io_context
;
3306 ret
= kmem_cache_alloc(iocontext_cachep
, gfp_flags
);
3308 atomic_set(&ret
->refcount
, 1);
3309 ret
->task
= current
;
3310 ret
->set_ioprio
= NULL
;
3311 ret
->last_waited
= jiffies
; /* doesn't matter... */
3312 ret
->nr_batch_requests
= 0; /* because this is 0 */
3315 tsk
->io_context
= ret
;
3320 EXPORT_SYMBOL(current_io_context
);
3323 * If the current task has no IO context then create one and initialise it.
3324 * If it does have a context, take a ref on it.
3326 * This is always called in the context of the task which submitted the I/O.
3328 struct io_context
*get_io_context(gfp_t gfp_flags
)
3330 struct io_context
*ret
;
3331 ret
= current_io_context(gfp_flags
);
3333 atomic_inc(&ret
->refcount
);
3336 EXPORT_SYMBOL(get_io_context
);
3338 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3340 struct io_context
*src
= *psrc
;
3341 struct io_context
*dst
= *pdst
;
3344 BUG_ON(atomic_read(&src
->refcount
) == 0);
3345 atomic_inc(&src
->refcount
);
3346 put_io_context(dst
);
3350 EXPORT_SYMBOL(copy_io_context
);
3352 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3354 struct io_context
*temp
;
3359 EXPORT_SYMBOL(swap_io_context
);
3364 struct queue_sysfs_entry
{
3365 struct attribute attr
;
3366 ssize_t (*show
)(struct request_queue
*, char *);
3367 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3371 queue_var_show(unsigned int var
, char *page
)
3373 return sprintf(page
, "%d\n", var
);
3377 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3379 char *p
= (char *) page
;
3381 *var
= simple_strtoul(p
, &p
, 10);
3385 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3387 return queue_var_show(q
->nr_requests
, (page
));
3391 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3393 struct request_list
*rl
= &q
->rq
;
3395 int ret
= queue_var_store(&q
->nr_requests
, page
, count
);
3396 if (q
->nr_requests
< BLKDEV_MIN_RQ
)
3397 q
->nr_requests
= BLKDEV_MIN_RQ
;
3398 blk_queue_congestion_threshold(q
);
3400 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3401 set_queue_congested(q
, READ
);
3402 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3403 clear_queue_congested(q
, READ
);
3405 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3406 set_queue_congested(q
, WRITE
);
3407 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3408 clear_queue_congested(q
, WRITE
);
3410 if (rl
->count
[READ
] >= q
->nr_requests
) {
3411 blk_set_queue_full(q
, READ
);
3412 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3413 blk_clear_queue_full(q
, READ
);
3414 wake_up(&rl
->wait
[READ
]);
3417 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3418 blk_set_queue_full(q
, WRITE
);
3419 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3420 blk_clear_queue_full(q
, WRITE
);
3421 wake_up(&rl
->wait
[WRITE
]);
3426 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3428 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3430 return queue_var_show(ra_kb
, (page
));
3434 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3436 unsigned long ra_kb
;
3437 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3439 spin_lock_irq(q
->queue_lock
);
3440 if (ra_kb
> (q
->max_sectors
>> 1))
3441 ra_kb
= (q
->max_sectors
>> 1);
3443 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3444 spin_unlock_irq(q
->queue_lock
);
3449 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3451 int max_sectors_kb
= q
->max_sectors
>> 1;
3453 return queue_var_show(max_sectors_kb
, (page
));
3457 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3459 unsigned long max_sectors_kb
,
3460 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3461 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3462 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3465 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3468 * Take the queue lock to update the readahead and max_sectors
3469 * values synchronously:
3471 spin_lock_irq(q
->queue_lock
);
3473 * Trim readahead window as well, if necessary:
3475 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3476 if (ra_kb
> max_sectors_kb
)
3477 q
->backing_dev_info
.ra_pages
=
3478 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3480 q
->max_sectors
= max_sectors_kb
<< 1;
3481 spin_unlock_irq(q
->queue_lock
);
3486 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3488 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3490 return queue_var_show(max_hw_sectors_kb
, (page
));
3494 static struct queue_sysfs_entry queue_requests_entry
= {
3495 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3496 .show
= queue_requests_show
,
3497 .store
= queue_requests_store
,
3500 static struct queue_sysfs_entry queue_ra_entry
= {
3501 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3502 .show
= queue_ra_show
,
3503 .store
= queue_ra_store
,
3506 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3507 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3508 .show
= queue_max_sectors_show
,
3509 .store
= queue_max_sectors_store
,
3512 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3513 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3514 .show
= queue_max_hw_sectors_show
,
3517 static struct queue_sysfs_entry queue_iosched_entry
= {
3518 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3519 .show
= elv_iosched_show
,
3520 .store
= elv_iosched_store
,
3523 static struct attribute
*default_attrs
[] = {
3524 &queue_requests_entry
.attr
,
3525 &queue_ra_entry
.attr
,
3526 &queue_max_hw_sectors_entry
.attr
,
3527 &queue_max_sectors_entry
.attr
,
3528 &queue_iosched_entry
.attr
,
3532 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3535 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3537 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3538 struct request_queue
*q
;
3540 q
= container_of(kobj
, struct request_queue
, kobj
);
3544 return entry
->show(q
, page
);
3548 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3549 const char *page
, size_t length
)
3551 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3552 struct request_queue
*q
;
3554 q
= container_of(kobj
, struct request_queue
, kobj
);
3558 return entry
->store(q
, page
, length
);
3561 static struct sysfs_ops queue_sysfs_ops
= {
3562 .show
= queue_attr_show
,
3563 .store
= queue_attr_store
,
3566 static struct kobj_type queue_ktype
= {
3567 .sysfs_ops
= &queue_sysfs_ops
,
3568 .default_attrs
= default_attrs
,
3571 int blk_register_queue(struct gendisk
*disk
)
3575 request_queue_t
*q
= disk
->queue
;
3577 if (!q
|| !q
->request_fn
)
3580 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3581 if (!q
->kobj
.parent
)
3584 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
3585 q
->kobj
.ktype
= &queue_ktype
;
3587 ret
= kobject_register(&q
->kobj
);
3591 ret
= elv_register_queue(q
);
3593 kobject_unregister(&q
->kobj
);
3600 void blk_unregister_queue(struct gendisk
*disk
)
3602 request_queue_t
*q
= disk
->queue
;
3604 if (q
&& q
->request_fn
) {
3605 elv_unregister_queue(q
);
3607 kobject_unregister(&q
->kobj
);
3608 kobject_put(&disk
->kobj
);