net: Generalize socket rx gap / receive queue overflow cmsg
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blob807935693846661cf182bf7e777b6cc77b48dde6
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
94 #include <net/compat.h>
95 #include <net/wext.h>
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
102 unsigned long nr_segs, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
104 unsigned long nr_segs, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
111 #ifdef CONFIG_COMPAT
112 static long compat_sock_ioctl(struct file *file,
113 unsigned int cmd, unsigned long arg);
114 #endif
115 static int sock_fasync(int fd, struct file *filp, int on);
116 static ssize_t sock_sendpage(struct file *file, struct page *page,
117 int offset, size_t size, loff_t *ppos, int more);
118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
119 struct pipe_inode_info *pipe, size_t len,
120 unsigned int flags);
123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124 * in the operation structures but are done directly via the socketcall() multiplexor.
127 static const struct file_operations socket_file_ops = {
128 .owner = THIS_MODULE,
129 .llseek = no_llseek,
130 .aio_read = sock_aio_read,
131 .aio_write = sock_aio_write,
132 .poll = sock_poll,
133 .unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 .compat_ioctl = compat_sock_ioctl,
136 #endif
137 .mmap = sock_mmap,
138 .open = sock_no_open, /* special open code to disallow open via /proc */
139 .release = sock_close,
140 .fasync = sock_fasync,
141 .sendpage = sock_sendpage,
142 .splice_write = generic_splice_sendpage,
143 .splice_read = sock_splice_read,
147 * The protocol list. Each protocol is registered in here.
150 static DEFINE_SPINLOCK(net_family_lock);
151 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
154 * Statistics counters of the socket lists
157 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
160 * Support routines.
161 * Move socket addresses back and forth across the kernel/user
162 * divide and look after the messy bits.
165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
166 16 for IP, 16 for IPX,
167 24 for IPv6,
168 about 80 for AX.25
169 must be at least one bigger than
170 the AF_UNIX size (see net/unix/af_unix.c
171 :unix_mkname()).
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
214 int __user *ulen)
216 int err;
217 int len;
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
236 return __put_user(klen, ulen);
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 static struct inode *sock_alloc_inode(struct super_block *sb)
243 struct socket_alloc *ei;
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 init_waitqueue_head(&ei->socket.wait);
250 ei->socket.fasync_list = NULL;
251 ei->socket.state = SS_UNCONNECTED;
252 ei->socket.flags = 0;
253 ei->socket.ops = NULL;
254 ei->socket.sk = NULL;
255 ei->socket.file = NULL;
257 return &ei->vfs_inode;
260 static void sock_destroy_inode(struct inode *inode)
262 kmem_cache_free(sock_inode_cachep,
263 container_of(inode, struct socket_alloc, vfs_inode));
266 static void init_once(void *foo)
268 struct socket_alloc *ei = (struct socket_alloc *)foo;
270 inode_init_once(&ei->vfs_inode);
273 static int init_inodecache(void)
275 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
276 sizeof(struct socket_alloc),
278 (SLAB_HWCACHE_ALIGN |
279 SLAB_RECLAIM_ACCOUNT |
280 SLAB_MEM_SPREAD),
281 init_once);
282 if (sock_inode_cachep == NULL)
283 return -ENOMEM;
284 return 0;
287 static const struct super_operations sockfs_ops = {
288 .alloc_inode = sock_alloc_inode,
289 .destroy_inode =sock_destroy_inode,
290 .statfs = simple_statfs,
293 static int sockfs_get_sb(struct file_system_type *fs_type,
294 int flags, const char *dev_name, void *data,
295 struct vfsmount *mnt)
297 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
298 mnt);
301 static struct vfsmount *sock_mnt __read_mostly;
303 static struct file_system_type sock_fs_type = {
304 .name = "sockfs",
305 .get_sb = sockfs_get_sb,
306 .kill_sb = kill_anon_super,
309 static int sockfs_delete_dentry(struct dentry *dentry)
312 * At creation time, we pretended this dentry was hashed
313 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 * At delete time, we restore the truth : not hashed.
315 * (so that dput() can proceed correctly)
317 dentry->d_flags |= DCACHE_UNHASHED;
318 return 0;
322 * sockfs_dname() is called from d_path().
324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
327 dentry->d_inode->i_ino);
330 static const struct dentry_operations sockfs_dentry_operations = {
331 .d_delete = sockfs_delete_dentry,
332 .d_dname = sockfs_dname,
336 * Obtains the first available file descriptor and sets it up for use.
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
352 static int sock_alloc_fd(struct file **filep, int flags)
354 int fd;
356 fd = get_unused_fd_flags(flags);
357 if (likely(fd >= 0)) {
358 struct file *file = get_empty_filp();
360 *filep = file;
361 if (unlikely(!file)) {
362 put_unused_fd(fd);
363 return -ENFILE;
365 } else
366 *filep = NULL;
367 return fd;
370 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
372 struct dentry *dentry;
373 struct qstr name = { .name = "" };
375 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
376 if (unlikely(!dentry))
377 return -ENOMEM;
379 dentry->d_op = &sockfs_dentry_operations;
381 * We dont want to push this dentry into global dentry hash table.
382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 * This permits a working /proc/$pid/fd/XXX on sockets
385 dentry->d_flags &= ~DCACHE_UNHASHED;
386 d_instantiate(dentry, SOCK_INODE(sock));
388 sock->file = file;
389 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
390 &socket_file_ops);
391 SOCK_INODE(sock)->i_fop = &socket_file_ops;
392 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
393 file->f_pos = 0;
394 file->private_data = sock;
396 return 0;
399 int sock_map_fd(struct socket *sock, int flags)
401 struct file *newfile;
402 int fd = sock_alloc_fd(&newfile, flags);
404 if (likely(fd >= 0)) {
405 int err = sock_attach_fd(sock, newfile, flags);
407 if (unlikely(err < 0)) {
408 put_filp(newfile);
409 put_unused_fd(fd);
410 return err;
412 fd_install(fd, newfile);
414 return fd;
417 static struct socket *sock_from_file(struct file *file, int *err)
419 if (file->f_op == &socket_file_ops)
420 return file->private_data; /* set in sock_map_fd */
422 *err = -ENOTSOCK;
423 return NULL;
427 * sockfd_lookup - Go from a file number to its socket slot
428 * @fd: file handle
429 * @err: pointer to an error code return
431 * The file handle passed in is locked and the socket it is bound
432 * too is returned. If an error occurs the err pointer is overwritten
433 * with a negative errno code and NULL is returned. The function checks
434 * for both invalid handles and passing a handle which is not a socket.
436 * On a success the socket object pointer is returned.
439 struct socket *sockfd_lookup(int fd, int *err)
441 struct file *file;
442 struct socket *sock;
444 file = fget(fd);
445 if (!file) {
446 *err = -EBADF;
447 return NULL;
450 sock = sock_from_file(file, err);
451 if (!sock)
452 fput(file);
453 return sock;
456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
458 struct file *file;
459 struct socket *sock;
461 *err = -EBADF;
462 file = fget_light(fd, fput_needed);
463 if (file) {
464 sock = sock_from_file(file, err);
465 if (sock)
466 return sock;
467 fput_light(file, *fput_needed);
469 return NULL;
473 * sock_alloc - allocate a socket
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
477 * NULL is returned.
480 static struct socket *sock_alloc(void)
482 struct inode *inode;
483 struct socket *sock;
485 inode = new_inode(sock_mnt->mnt_sb);
486 if (!inode)
487 return NULL;
489 sock = SOCKET_I(inode);
491 kmemcheck_annotate_bitfield(sock, type);
492 inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 inode->i_uid = current_fsuid();
494 inode->i_gid = current_fsgid();
496 percpu_add(sockets_in_use, 1);
497 return sock;
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
508 return -ENXIO;
511 const struct file_operations bad_sock_fops = {
512 .owner = THIS_MODULE,
513 .open = sock_no_open,
517 * sock_release - close a socket
518 * @sock: socket to close
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
525 void sock_release(struct socket *sock)
527 if (sock->ops) {
528 struct module *owner = sock->ops->owner;
530 sock->ops->release(sock);
531 sock->ops = NULL;
532 module_put(owner);
535 if (sock->fasync_list)
536 printk(KERN_ERR "sock_release: fasync list not empty!\n");
538 percpu_sub(sockets_in_use, 1);
539 if (!sock->file) {
540 iput(SOCK_INODE(sock));
541 return;
543 sock->file = NULL;
546 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
547 union skb_shared_tx *shtx)
549 shtx->flags = 0;
550 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
551 shtx->hardware = 1;
552 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
553 shtx->software = 1;
554 return 0;
556 EXPORT_SYMBOL(sock_tx_timestamp);
558 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
559 struct msghdr *msg, size_t size)
561 struct sock_iocb *si = kiocb_to_siocb(iocb);
562 int err;
564 si->sock = sock;
565 si->scm = NULL;
566 si->msg = msg;
567 si->size = size;
569 err = security_socket_sendmsg(sock, msg, size);
570 if (err)
571 return err;
573 return sock->ops->sendmsg(iocb, sock, msg, size);
576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
578 struct kiocb iocb;
579 struct sock_iocb siocb;
580 int ret;
582 init_sync_kiocb(&iocb, NULL);
583 iocb.private = &siocb;
584 ret = __sock_sendmsg(&iocb, sock, msg, size);
585 if (-EIOCBQUEUED == ret)
586 ret = wait_on_sync_kiocb(&iocb);
587 return ret;
590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
591 struct kvec *vec, size_t num, size_t size)
593 mm_segment_t oldfs = get_fs();
594 int result;
596 set_fs(KERNEL_DS);
598 * the following is safe, since for compiler definitions of kvec and
599 * iovec are identical, yielding the same in-core layout and alignment
601 msg->msg_iov = (struct iovec *)vec;
602 msg->msg_iovlen = num;
603 result = sock_sendmsg(sock, msg, size);
604 set_fs(oldfs);
605 return result;
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
610 if (kt.tv64) {
611 *ts = ktime_to_timespec(kt);
612 return 1;
613 } else {
614 return 0;
619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 struct sk_buff *skb)
624 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 struct timespec ts[3];
626 int empty = 1;
627 struct skb_shared_hwtstamps *shhwtstamps =
628 skb_hwtstamps(skb);
630 /* Race occurred between timestamp enabling and packet
631 receiving. Fill in the current time for now. */
632 if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 __net_timestamp(skb);
635 if (need_software_tstamp) {
636 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 struct timeval tv;
638 skb_get_timestamp(skb, &tv);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 sizeof(tv), &tv);
641 } else {
642 struct timespec ts;
643 skb_get_timestampns(skb, &ts);
644 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
645 sizeof(ts), &ts);
650 memset(ts, 0, sizeof(ts));
651 if (skb->tstamp.tv64 &&
652 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
653 skb_get_timestampns(skb, ts + 0);
654 empty = 0;
656 if (shhwtstamps) {
657 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
658 ktime2ts(shhwtstamps->syststamp, ts + 1))
659 empty = 0;
660 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
661 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
662 empty = 0;
664 if (!empty)
665 put_cmsg(msg, SOL_SOCKET,
666 SCM_TIMESTAMPING, sizeof(ts), &ts);
669 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
671 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
673 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
674 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
675 sizeof(__u32), &skb->dropcount);
678 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
679 struct sk_buff *skb)
681 sock_recv_timestamp(msg, sk, skb);
682 sock_recv_drops(msg, sk, skb);
684 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
686 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
687 struct msghdr *msg, size_t size, int flags)
689 int err;
690 struct sock_iocb *si = kiocb_to_siocb(iocb);
692 si->sock = sock;
693 si->scm = NULL;
694 si->msg = msg;
695 si->size = size;
696 si->flags = flags;
698 err = security_socket_recvmsg(sock, msg, size, flags);
699 if (err)
700 return err;
702 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
705 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
706 size_t size, int flags)
708 struct kiocb iocb;
709 struct sock_iocb siocb;
710 int ret;
712 init_sync_kiocb(&iocb, NULL);
713 iocb.private = &siocb;
714 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
715 if (-EIOCBQUEUED == ret)
716 ret = wait_on_sync_kiocb(&iocb);
717 return ret;
720 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
721 struct kvec *vec, size_t num, size_t size, int flags)
723 mm_segment_t oldfs = get_fs();
724 int result;
726 set_fs(KERNEL_DS);
728 * the following is safe, since for compiler definitions of kvec and
729 * iovec are identical, yielding the same in-core layout and alignment
731 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
732 result = sock_recvmsg(sock, msg, size, flags);
733 set_fs(oldfs);
734 return result;
737 static void sock_aio_dtor(struct kiocb *iocb)
739 kfree(iocb->private);
742 static ssize_t sock_sendpage(struct file *file, struct page *page,
743 int offset, size_t size, loff_t *ppos, int more)
745 struct socket *sock;
746 int flags;
748 sock = file->private_data;
750 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
751 if (more)
752 flags |= MSG_MORE;
754 return kernel_sendpage(sock, page, offset, size, flags);
757 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
758 struct pipe_inode_info *pipe, size_t len,
759 unsigned int flags)
761 struct socket *sock = file->private_data;
763 if (unlikely(!sock->ops->splice_read))
764 return -EINVAL;
766 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
769 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
770 struct sock_iocb *siocb)
772 if (!is_sync_kiocb(iocb)) {
773 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
774 if (!siocb)
775 return NULL;
776 iocb->ki_dtor = sock_aio_dtor;
779 siocb->kiocb = iocb;
780 iocb->private = siocb;
781 return siocb;
784 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
785 struct file *file, const struct iovec *iov,
786 unsigned long nr_segs)
788 struct socket *sock = file->private_data;
789 size_t size = 0;
790 int i;
792 for (i = 0; i < nr_segs; i++)
793 size += iov[i].iov_len;
795 msg->msg_name = NULL;
796 msg->msg_namelen = 0;
797 msg->msg_control = NULL;
798 msg->msg_controllen = 0;
799 msg->msg_iov = (struct iovec *)iov;
800 msg->msg_iovlen = nr_segs;
801 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
803 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
806 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
807 unsigned long nr_segs, loff_t pos)
809 struct sock_iocb siocb, *x;
811 if (pos != 0)
812 return -ESPIPE;
814 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
815 return 0;
818 x = alloc_sock_iocb(iocb, &siocb);
819 if (!x)
820 return -ENOMEM;
821 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
824 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
825 struct file *file, const struct iovec *iov,
826 unsigned long nr_segs)
828 struct socket *sock = file->private_data;
829 size_t size = 0;
830 int i;
832 for (i = 0; i < nr_segs; i++)
833 size += iov[i].iov_len;
835 msg->msg_name = NULL;
836 msg->msg_namelen = 0;
837 msg->msg_control = NULL;
838 msg->msg_controllen = 0;
839 msg->msg_iov = (struct iovec *)iov;
840 msg->msg_iovlen = nr_segs;
841 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
842 if (sock->type == SOCK_SEQPACKET)
843 msg->msg_flags |= MSG_EOR;
845 return __sock_sendmsg(iocb, sock, msg, size);
848 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
849 unsigned long nr_segs, loff_t pos)
851 struct sock_iocb siocb, *x;
853 if (pos != 0)
854 return -ESPIPE;
856 x = alloc_sock_iocb(iocb, &siocb);
857 if (!x)
858 return -ENOMEM;
860 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
864 * Atomic setting of ioctl hooks to avoid race
865 * with module unload.
868 static DEFINE_MUTEX(br_ioctl_mutex);
869 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
871 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
873 mutex_lock(&br_ioctl_mutex);
874 br_ioctl_hook = hook;
875 mutex_unlock(&br_ioctl_mutex);
878 EXPORT_SYMBOL(brioctl_set);
880 static DEFINE_MUTEX(vlan_ioctl_mutex);
881 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
883 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
885 mutex_lock(&vlan_ioctl_mutex);
886 vlan_ioctl_hook = hook;
887 mutex_unlock(&vlan_ioctl_mutex);
890 EXPORT_SYMBOL(vlan_ioctl_set);
892 static DEFINE_MUTEX(dlci_ioctl_mutex);
893 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
895 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
897 mutex_lock(&dlci_ioctl_mutex);
898 dlci_ioctl_hook = hook;
899 mutex_unlock(&dlci_ioctl_mutex);
902 EXPORT_SYMBOL(dlci_ioctl_set);
905 * With an ioctl, arg may well be a user mode pointer, but we don't know
906 * what to do with it - that's up to the protocol still.
909 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
911 struct socket *sock;
912 struct sock *sk;
913 void __user *argp = (void __user *)arg;
914 int pid, err;
915 struct net *net;
917 sock = file->private_data;
918 sk = sock->sk;
919 net = sock_net(sk);
920 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
921 err = dev_ioctl(net, cmd, argp);
922 } else
923 #ifdef CONFIG_WEXT_CORE
924 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
925 err = dev_ioctl(net, cmd, argp);
926 } else
927 #endif
928 switch (cmd) {
929 case FIOSETOWN:
930 case SIOCSPGRP:
931 err = -EFAULT;
932 if (get_user(pid, (int __user *)argp))
933 break;
934 err = f_setown(sock->file, pid, 1);
935 break;
936 case FIOGETOWN:
937 case SIOCGPGRP:
938 err = put_user(f_getown(sock->file),
939 (int __user *)argp);
940 break;
941 case SIOCGIFBR:
942 case SIOCSIFBR:
943 case SIOCBRADDBR:
944 case SIOCBRDELBR:
945 err = -ENOPKG;
946 if (!br_ioctl_hook)
947 request_module("bridge");
949 mutex_lock(&br_ioctl_mutex);
950 if (br_ioctl_hook)
951 err = br_ioctl_hook(net, cmd, argp);
952 mutex_unlock(&br_ioctl_mutex);
953 break;
954 case SIOCGIFVLAN:
955 case SIOCSIFVLAN:
956 err = -ENOPKG;
957 if (!vlan_ioctl_hook)
958 request_module("8021q");
960 mutex_lock(&vlan_ioctl_mutex);
961 if (vlan_ioctl_hook)
962 err = vlan_ioctl_hook(net, argp);
963 mutex_unlock(&vlan_ioctl_mutex);
964 break;
965 case SIOCADDDLCI:
966 case SIOCDELDLCI:
967 err = -ENOPKG;
968 if (!dlci_ioctl_hook)
969 request_module("dlci");
971 mutex_lock(&dlci_ioctl_mutex);
972 if (dlci_ioctl_hook)
973 err = dlci_ioctl_hook(cmd, argp);
974 mutex_unlock(&dlci_ioctl_mutex);
975 break;
976 default:
977 err = sock->ops->ioctl(sock, cmd, arg);
980 * If this ioctl is unknown try to hand it down
981 * to the NIC driver.
983 if (err == -ENOIOCTLCMD)
984 err = dev_ioctl(net, cmd, argp);
985 break;
987 return err;
990 int sock_create_lite(int family, int type, int protocol, struct socket **res)
992 int err;
993 struct socket *sock = NULL;
995 err = security_socket_create(family, type, protocol, 1);
996 if (err)
997 goto out;
999 sock = sock_alloc();
1000 if (!sock) {
1001 err = -ENOMEM;
1002 goto out;
1005 sock->type = type;
1006 err = security_socket_post_create(sock, family, type, protocol, 1);
1007 if (err)
1008 goto out_release;
1010 out:
1011 *res = sock;
1012 return err;
1013 out_release:
1014 sock_release(sock);
1015 sock = NULL;
1016 goto out;
1019 /* No kernel lock held - perfect */
1020 static unsigned int sock_poll(struct file *file, poll_table *wait)
1022 struct socket *sock;
1025 * We can't return errors to poll, so it's either yes or no.
1027 sock = file->private_data;
1028 return sock->ops->poll(file, sock, wait);
1031 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1033 struct socket *sock = file->private_data;
1035 return sock->ops->mmap(file, sock, vma);
1038 static int sock_close(struct inode *inode, struct file *filp)
1041 * It was possible the inode is NULL we were
1042 * closing an unfinished socket.
1045 if (!inode) {
1046 printk(KERN_DEBUG "sock_close: NULL inode\n");
1047 return 0;
1049 sock_release(SOCKET_I(inode));
1050 return 0;
1054 * Update the socket async list
1056 * Fasync_list locking strategy.
1058 * 1. fasync_list is modified only under process context socket lock
1059 * i.e. under semaphore.
1060 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1061 * or under socket lock.
1062 * 3. fasync_list can be used from softirq context, so that
1063 * modification under socket lock have to be enhanced with
1064 * write_lock_bh(&sk->sk_callback_lock).
1065 * --ANK (990710)
1068 static int sock_fasync(int fd, struct file *filp, int on)
1070 struct fasync_struct *fa, *fna = NULL, **prev;
1071 struct socket *sock;
1072 struct sock *sk;
1074 if (on) {
1075 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1076 if (fna == NULL)
1077 return -ENOMEM;
1080 sock = filp->private_data;
1082 sk = sock->sk;
1083 if (sk == NULL) {
1084 kfree(fna);
1085 return -EINVAL;
1088 lock_sock(sk);
1090 spin_lock(&filp->f_lock);
1091 if (on)
1092 filp->f_flags |= FASYNC;
1093 else
1094 filp->f_flags &= ~FASYNC;
1095 spin_unlock(&filp->f_lock);
1097 prev = &(sock->fasync_list);
1099 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1100 if (fa->fa_file == filp)
1101 break;
1103 if (on) {
1104 if (fa != NULL) {
1105 write_lock_bh(&sk->sk_callback_lock);
1106 fa->fa_fd = fd;
1107 write_unlock_bh(&sk->sk_callback_lock);
1109 kfree(fna);
1110 goto out;
1112 fna->fa_file = filp;
1113 fna->fa_fd = fd;
1114 fna->magic = FASYNC_MAGIC;
1115 fna->fa_next = sock->fasync_list;
1116 write_lock_bh(&sk->sk_callback_lock);
1117 sock->fasync_list = fna;
1118 sock_set_flag(sk, SOCK_FASYNC);
1119 write_unlock_bh(&sk->sk_callback_lock);
1120 } else {
1121 if (fa != NULL) {
1122 write_lock_bh(&sk->sk_callback_lock);
1123 *prev = fa->fa_next;
1124 if (!sock->fasync_list)
1125 sock_reset_flag(sk, SOCK_FASYNC);
1126 write_unlock_bh(&sk->sk_callback_lock);
1127 kfree(fa);
1131 out:
1132 release_sock(sock->sk);
1133 return 0;
1136 /* This function may be called only under socket lock or callback_lock */
1138 int sock_wake_async(struct socket *sock, int how, int band)
1140 if (!sock || !sock->fasync_list)
1141 return -1;
1142 switch (how) {
1143 case SOCK_WAKE_WAITD:
1144 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1145 break;
1146 goto call_kill;
1147 case SOCK_WAKE_SPACE:
1148 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1149 break;
1150 /* fall through */
1151 case SOCK_WAKE_IO:
1152 call_kill:
1153 __kill_fasync(sock->fasync_list, SIGIO, band);
1154 break;
1155 case SOCK_WAKE_URG:
1156 __kill_fasync(sock->fasync_list, SIGURG, band);
1158 return 0;
1161 static int __sock_create(struct net *net, int family, int type, int protocol,
1162 struct socket **res, int kern)
1164 int err;
1165 struct socket *sock;
1166 const struct net_proto_family *pf;
1169 * Check protocol is in range
1171 if (family < 0 || family >= NPROTO)
1172 return -EAFNOSUPPORT;
1173 if (type < 0 || type >= SOCK_MAX)
1174 return -EINVAL;
1176 /* Compatibility.
1178 This uglymoron is moved from INET layer to here to avoid
1179 deadlock in module load.
1181 if (family == PF_INET && type == SOCK_PACKET) {
1182 static int warned;
1183 if (!warned) {
1184 warned = 1;
1185 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1186 current->comm);
1188 family = PF_PACKET;
1191 err = security_socket_create(family, type, protocol, kern);
1192 if (err)
1193 return err;
1196 * Allocate the socket and allow the family to set things up. if
1197 * the protocol is 0, the family is instructed to select an appropriate
1198 * default.
1200 sock = sock_alloc();
1201 if (!sock) {
1202 if (net_ratelimit())
1203 printk(KERN_WARNING "socket: no more sockets\n");
1204 return -ENFILE; /* Not exactly a match, but its the
1205 closest posix thing */
1208 sock->type = type;
1210 #ifdef CONFIG_MODULES
1211 /* Attempt to load a protocol module if the find failed.
1213 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1214 * requested real, full-featured networking support upon configuration.
1215 * Otherwise module support will break!
1217 if (net_families[family] == NULL)
1218 request_module("net-pf-%d", family);
1219 #endif
1221 rcu_read_lock();
1222 pf = rcu_dereference(net_families[family]);
1223 err = -EAFNOSUPPORT;
1224 if (!pf)
1225 goto out_release;
1228 * We will call the ->create function, that possibly is in a loadable
1229 * module, so we have to bump that loadable module refcnt first.
1231 if (!try_module_get(pf->owner))
1232 goto out_release;
1234 /* Now protected by module ref count */
1235 rcu_read_unlock();
1237 err = pf->create(net, sock, protocol);
1238 if (err < 0)
1239 goto out_module_put;
1242 * Now to bump the refcnt of the [loadable] module that owns this
1243 * socket at sock_release time we decrement its refcnt.
1245 if (!try_module_get(sock->ops->owner))
1246 goto out_module_busy;
1249 * Now that we're done with the ->create function, the [loadable]
1250 * module can have its refcnt decremented
1252 module_put(pf->owner);
1253 err = security_socket_post_create(sock, family, type, protocol, kern);
1254 if (err)
1255 goto out_sock_release;
1256 *res = sock;
1258 return 0;
1260 out_module_busy:
1261 err = -EAFNOSUPPORT;
1262 out_module_put:
1263 sock->ops = NULL;
1264 module_put(pf->owner);
1265 out_sock_release:
1266 sock_release(sock);
1267 return err;
1269 out_release:
1270 rcu_read_unlock();
1271 goto out_sock_release;
1274 int sock_create(int family, int type, int protocol, struct socket **res)
1276 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1279 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1281 return __sock_create(&init_net, family, type, protocol, res, 1);
1284 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1286 int retval;
1287 struct socket *sock;
1288 int flags;
1290 /* Check the SOCK_* constants for consistency. */
1291 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1292 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1293 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1294 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1296 flags = type & ~SOCK_TYPE_MASK;
1297 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1298 return -EINVAL;
1299 type &= SOCK_TYPE_MASK;
1301 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1302 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1304 retval = sock_create(family, type, protocol, &sock);
1305 if (retval < 0)
1306 goto out;
1308 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1309 if (retval < 0)
1310 goto out_release;
1312 out:
1313 /* It may be already another descriptor 8) Not kernel problem. */
1314 return retval;
1316 out_release:
1317 sock_release(sock);
1318 return retval;
1322 * Create a pair of connected sockets.
1325 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1326 int __user *, usockvec)
1328 struct socket *sock1, *sock2;
1329 int fd1, fd2, err;
1330 struct file *newfile1, *newfile2;
1331 int flags;
1333 flags = type & ~SOCK_TYPE_MASK;
1334 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1335 return -EINVAL;
1336 type &= SOCK_TYPE_MASK;
1338 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1339 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1342 * Obtain the first socket and check if the underlying protocol
1343 * supports the socketpair call.
1346 err = sock_create(family, type, protocol, &sock1);
1347 if (err < 0)
1348 goto out;
1350 err = sock_create(family, type, protocol, &sock2);
1351 if (err < 0)
1352 goto out_release_1;
1354 err = sock1->ops->socketpair(sock1, sock2);
1355 if (err < 0)
1356 goto out_release_both;
1358 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1359 if (unlikely(fd1 < 0)) {
1360 err = fd1;
1361 goto out_release_both;
1364 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1365 if (unlikely(fd2 < 0)) {
1366 err = fd2;
1367 put_filp(newfile1);
1368 put_unused_fd(fd1);
1369 goto out_release_both;
1372 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1373 if (unlikely(err < 0)) {
1374 goto out_fd2;
1377 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1378 if (unlikely(err < 0)) {
1379 fput(newfile1);
1380 goto out_fd1;
1383 audit_fd_pair(fd1, fd2);
1384 fd_install(fd1, newfile1);
1385 fd_install(fd2, newfile2);
1386 /* fd1 and fd2 may be already another descriptors.
1387 * Not kernel problem.
1390 err = put_user(fd1, &usockvec[0]);
1391 if (!err)
1392 err = put_user(fd2, &usockvec[1]);
1393 if (!err)
1394 return 0;
1396 sys_close(fd2);
1397 sys_close(fd1);
1398 return err;
1400 out_release_both:
1401 sock_release(sock2);
1402 out_release_1:
1403 sock_release(sock1);
1404 out:
1405 return err;
1407 out_fd2:
1408 put_filp(newfile1);
1409 sock_release(sock1);
1410 out_fd1:
1411 put_filp(newfile2);
1412 sock_release(sock2);
1413 put_unused_fd(fd1);
1414 put_unused_fd(fd2);
1415 goto out;
1419 * Bind a name to a socket. Nothing much to do here since it's
1420 * the protocol's responsibility to handle the local address.
1422 * We move the socket address to kernel space before we call
1423 * the protocol layer (having also checked the address is ok).
1426 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1428 struct socket *sock;
1429 struct sockaddr_storage address;
1430 int err, fput_needed;
1432 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1433 if (sock) {
1434 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1435 if (err >= 0) {
1436 err = security_socket_bind(sock,
1437 (struct sockaddr *)&address,
1438 addrlen);
1439 if (!err)
1440 err = sock->ops->bind(sock,
1441 (struct sockaddr *)
1442 &address, addrlen);
1444 fput_light(sock->file, fput_needed);
1446 return err;
1450 * Perform a listen. Basically, we allow the protocol to do anything
1451 * necessary for a listen, and if that works, we mark the socket as
1452 * ready for listening.
1455 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1457 struct socket *sock;
1458 int err, fput_needed;
1459 int somaxconn;
1461 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1462 if (sock) {
1463 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1464 if ((unsigned)backlog > somaxconn)
1465 backlog = somaxconn;
1467 err = security_socket_listen(sock, backlog);
1468 if (!err)
1469 err = sock->ops->listen(sock, backlog);
1471 fput_light(sock->file, fput_needed);
1473 return err;
1477 * For accept, we attempt to create a new socket, set up the link
1478 * with the client, wake up the client, then return the new
1479 * connected fd. We collect the address of the connector in kernel
1480 * space and move it to user at the very end. This is unclean because
1481 * we open the socket then return an error.
1483 * 1003.1g adds the ability to recvmsg() to query connection pending
1484 * status to recvmsg. We need to add that support in a way thats
1485 * clean when we restucture accept also.
1488 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1489 int __user *, upeer_addrlen, int, flags)
1491 struct socket *sock, *newsock;
1492 struct file *newfile;
1493 int err, len, newfd, fput_needed;
1494 struct sockaddr_storage address;
1496 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1497 return -EINVAL;
1499 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1500 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1502 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1503 if (!sock)
1504 goto out;
1506 err = -ENFILE;
1507 if (!(newsock = sock_alloc()))
1508 goto out_put;
1510 newsock->type = sock->type;
1511 newsock->ops = sock->ops;
1514 * We don't need try_module_get here, as the listening socket (sock)
1515 * has the protocol module (sock->ops->owner) held.
1517 __module_get(newsock->ops->owner);
1519 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1520 if (unlikely(newfd < 0)) {
1521 err = newfd;
1522 sock_release(newsock);
1523 goto out_put;
1526 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1527 if (err < 0)
1528 goto out_fd_simple;
1530 err = security_socket_accept(sock, newsock);
1531 if (err)
1532 goto out_fd;
1534 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1535 if (err < 0)
1536 goto out_fd;
1538 if (upeer_sockaddr) {
1539 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1540 &len, 2) < 0) {
1541 err = -ECONNABORTED;
1542 goto out_fd;
1544 err = move_addr_to_user((struct sockaddr *)&address,
1545 len, upeer_sockaddr, upeer_addrlen);
1546 if (err < 0)
1547 goto out_fd;
1550 /* File flags are not inherited via accept() unlike another OSes. */
1552 fd_install(newfd, newfile);
1553 err = newfd;
1555 out_put:
1556 fput_light(sock->file, fput_needed);
1557 out:
1558 return err;
1559 out_fd_simple:
1560 sock_release(newsock);
1561 put_filp(newfile);
1562 put_unused_fd(newfd);
1563 goto out_put;
1564 out_fd:
1565 fput(newfile);
1566 put_unused_fd(newfd);
1567 goto out_put;
1570 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1571 int __user *, upeer_addrlen)
1573 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1577 * Attempt to connect to a socket with the server address. The address
1578 * is in user space so we verify it is OK and move it to kernel space.
1580 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1581 * break bindings
1583 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1584 * other SEQPACKET protocols that take time to connect() as it doesn't
1585 * include the -EINPROGRESS status for such sockets.
1588 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1589 int, addrlen)
1591 struct socket *sock;
1592 struct sockaddr_storage address;
1593 int err, fput_needed;
1595 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596 if (!sock)
1597 goto out;
1598 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1599 if (err < 0)
1600 goto out_put;
1602 err =
1603 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1604 if (err)
1605 goto out_put;
1607 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1608 sock->file->f_flags);
1609 out_put:
1610 fput_light(sock->file, fput_needed);
1611 out:
1612 return err;
1616 * Get the local address ('name') of a socket object. Move the obtained
1617 * name to user space.
1620 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1621 int __user *, usockaddr_len)
1623 struct socket *sock;
1624 struct sockaddr_storage address;
1625 int len, err, fput_needed;
1627 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628 if (!sock)
1629 goto out;
1631 err = security_socket_getsockname(sock);
1632 if (err)
1633 goto out_put;
1635 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1636 if (err)
1637 goto out_put;
1638 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1640 out_put:
1641 fput_light(sock->file, fput_needed);
1642 out:
1643 return err;
1647 * Get the remote address ('name') of a socket object. Move the obtained
1648 * name to user space.
1651 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1652 int __user *, usockaddr_len)
1654 struct socket *sock;
1655 struct sockaddr_storage address;
1656 int len, err, fput_needed;
1658 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1659 if (sock != NULL) {
1660 err = security_socket_getpeername(sock);
1661 if (err) {
1662 fput_light(sock->file, fput_needed);
1663 return err;
1666 err =
1667 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1669 if (!err)
1670 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1671 usockaddr_len);
1672 fput_light(sock->file, fput_needed);
1674 return err;
1678 * Send a datagram to a given address. We move the address into kernel
1679 * space and check the user space data area is readable before invoking
1680 * the protocol.
1683 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1684 unsigned, flags, struct sockaddr __user *, addr,
1685 int, addr_len)
1687 struct socket *sock;
1688 struct sockaddr_storage address;
1689 int err;
1690 struct msghdr msg;
1691 struct iovec iov;
1692 int fput_needed;
1694 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 if (!sock)
1696 goto out;
1698 iov.iov_base = buff;
1699 iov.iov_len = len;
1700 msg.msg_name = NULL;
1701 msg.msg_iov = &iov;
1702 msg.msg_iovlen = 1;
1703 msg.msg_control = NULL;
1704 msg.msg_controllen = 0;
1705 msg.msg_namelen = 0;
1706 if (addr) {
1707 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1708 if (err < 0)
1709 goto out_put;
1710 msg.msg_name = (struct sockaddr *)&address;
1711 msg.msg_namelen = addr_len;
1713 if (sock->file->f_flags & O_NONBLOCK)
1714 flags |= MSG_DONTWAIT;
1715 msg.msg_flags = flags;
1716 err = sock_sendmsg(sock, &msg, len);
1718 out_put:
1719 fput_light(sock->file, fput_needed);
1720 out:
1721 return err;
1725 * Send a datagram down a socket.
1728 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1729 unsigned, flags)
1731 return sys_sendto(fd, buff, len, flags, NULL, 0);
1735 * Receive a frame from the socket and optionally record the address of the
1736 * sender. We verify the buffers are writable and if needed move the
1737 * sender address from kernel to user space.
1740 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1741 unsigned, flags, struct sockaddr __user *, addr,
1742 int __user *, addr_len)
1744 struct socket *sock;
1745 struct iovec iov;
1746 struct msghdr msg;
1747 struct sockaddr_storage address;
1748 int err, err2;
1749 int fput_needed;
1751 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1752 if (!sock)
1753 goto out;
1755 msg.msg_control = NULL;
1756 msg.msg_controllen = 0;
1757 msg.msg_iovlen = 1;
1758 msg.msg_iov = &iov;
1759 iov.iov_len = size;
1760 iov.iov_base = ubuf;
1761 msg.msg_name = (struct sockaddr *)&address;
1762 msg.msg_namelen = sizeof(address);
1763 if (sock->file->f_flags & O_NONBLOCK)
1764 flags |= MSG_DONTWAIT;
1765 err = sock_recvmsg(sock, &msg, size, flags);
1767 if (err >= 0 && addr != NULL) {
1768 err2 = move_addr_to_user((struct sockaddr *)&address,
1769 msg.msg_namelen, addr, addr_len);
1770 if (err2 < 0)
1771 err = err2;
1774 fput_light(sock->file, fput_needed);
1775 out:
1776 return err;
1780 * Receive a datagram from a socket.
1783 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1784 unsigned flags)
1786 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1790 * Set a socket option. Because we don't know the option lengths we have
1791 * to pass the user mode parameter for the protocols to sort out.
1794 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1795 char __user *, optval, int, optlen)
1797 int err, fput_needed;
1798 struct socket *sock;
1800 if (optlen < 0)
1801 return -EINVAL;
1803 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1804 if (sock != NULL) {
1805 err = security_socket_setsockopt(sock, level, optname);
1806 if (err)
1807 goto out_put;
1809 if (level == SOL_SOCKET)
1810 err =
1811 sock_setsockopt(sock, level, optname, optval,
1812 optlen);
1813 else
1814 err =
1815 sock->ops->setsockopt(sock, level, optname, optval,
1816 optlen);
1817 out_put:
1818 fput_light(sock->file, fput_needed);
1820 return err;
1824 * Get a socket option. Because we don't know the option lengths we have
1825 * to pass a user mode parameter for the protocols to sort out.
1828 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1829 char __user *, optval, int __user *, optlen)
1831 int err, fput_needed;
1832 struct socket *sock;
1834 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835 if (sock != NULL) {
1836 err = security_socket_getsockopt(sock, level, optname);
1837 if (err)
1838 goto out_put;
1840 if (level == SOL_SOCKET)
1841 err =
1842 sock_getsockopt(sock, level, optname, optval,
1843 optlen);
1844 else
1845 err =
1846 sock->ops->getsockopt(sock, level, optname, optval,
1847 optlen);
1848 out_put:
1849 fput_light(sock->file, fput_needed);
1851 return err;
1855 * Shutdown a socket.
1858 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1860 int err, fput_needed;
1861 struct socket *sock;
1863 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1864 if (sock != NULL) {
1865 err = security_socket_shutdown(sock, how);
1866 if (!err)
1867 err = sock->ops->shutdown(sock, how);
1868 fput_light(sock->file, fput_needed);
1870 return err;
1873 /* A couple of helpful macros for getting the address of the 32/64 bit
1874 * fields which are the same type (int / unsigned) on our platforms.
1876 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1877 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1878 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1881 * BSD sendmsg interface
1884 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1886 struct compat_msghdr __user *msg_compat =
1887 (struct compat_msghdr __user *)msg;
1888 struct socket *sock;
1889 struct sockaddr_storage address;
1890 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1891 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1892 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1893 /* 20 is size of ipv6_pktinfo */
1894 unsigned char *ctl_buf = ctl;
1895 struct msghdr msg_sys;
1896 int err, ctl_len, iov_size, total_len;
1897 int fput_needed;
1899 err = -EFAULT;
1900 if (MSG_CMSG_COMPAT & flags) {
1901 if (get_compat_msghdr(&msg_sys, msg_compat))
1902 return -EFAULT;
1904 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1905 return -EFAULT;
1907 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908 if (!sock)
1909 goto out;
1911 /* do not move before msg_sys is valid */
1912 err = -EMSGSIZE;
1913 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1914 goto out_put;
1916 /* Check whether to allocate the iovec area */
1917 err = -ENOMEM;
1918 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1919 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1920 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1921 if (!iov)
1922 goto out_put;
1925 /* This will also move the address data into kernel space */
1926 if (MSG_CMSG_COMPAT & flags) {
1927 err = verify_compat_iovec(&msg_sys, iov,
1928 (struct sockaddr *)&address,
1929 VERIFY_READ);
1930 } else
1931 err = verify_iovec(&msg_sys, iov,
1932 (struct sockaddr *)&address,
1933 VERIFY_READ);
1934 if (err < 0)
1935 goto out_freeiov;
1936 total_len = err;
1938 err = -ENOBUFS;
1940 if (msg_sys.msg_controllen > INT_MAX)
1941 goto out_freeiov;
1942 ctl_len = msg_sys.msg_controllen;
1943 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1944 err =
1945 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1946 sizeof(ctl));
1947 if (err)
1948 goto out_freeiov;
1949 ctl_buf = msg_sys.msg_control;
1950 ctl_len = msg_sys.msg_controllen;
1951 } else if (ctl_len) {
1952 if (ctl_len > sizeof(ctl)) {
1953 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1954 if (ctl_buf == NULL)
1955 goto out_freeiov;
1957 err = -EFAULT;
1959 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1960 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1961 * checking falls down on this.
1963 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1964 ctl_len))
1965 goto out_freectl;
1966 msg_sys.msg_control = ctl_buf;
1968 msg_sys.msg_flags = flags;
1970 if (sock->file->f_flags & O_NONBLOCK)
1971 msg_sys.msg_flags |= MSG_DONTWAIT;
1972 err = sock_sendmsg(sock, &msg_sys, total_len);
1974 out_freectl:
1975 if (ctl_buf != ctl)
1976 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1977 out_freeiov:
1978 if (iov != iovstack)
1979 sock_kfree_s(sock->sk, iov, iov_size);
1980 out_put:
1981 fput_light(sock->file, fput_needed);
1982 out:
1983 return err;
1987 * BSD recvmsg interface
1990 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1991 unsigned int, flags)
1993 struct compat_msghdr __user *msg_compat =
1994 (struct compat_msghdr __user *)msg;
1995 struct socket *sock;
1996 struct iovec iovstack[UIO_FASTIOV];
1997 struct iovec *iov = iovstack;
1998 struct msghdr msg_sys;
1999 unsigned long cmsg_ptr;
2000 int err, iov_size, total_len, len;
2001 int fput_needed;
2003 /* kernel mode address */
2004 struct sockaddr_storage addr;
2006 /* user mode address pointers */
2007 struct sockaddr __user *uaddr;
2008 int __user *uaddr_len;
2010 if (MSG_CMSG_COMPAT & flags) {
2011 if (get_compat_msghdr(&msg_sys, msg_compat))
2012 return -EFAULT;
2014 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
2015 return -EFAULT;
2017 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2018 if (!sock)
2019 goto out;
2021 err = -EMSGSIZE;
2022 if (msg_sys.msg_iovlen > UIO_MAXIOV)
2023 goto out_put;
2025 /* Check whether to allocate the iovec area */
2026 err = -ENOMEM;
2027 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2028 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2029 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2030 if (!iov)
2031 goto out_put;
2035 * Save the user-mode address (verify_iovec will change the
2036 * kernel msghdr to use the kernel address space)
2039 uaddr = (__force void __user *)msg_sys.msg_name;
2040 uaddr_len = COMPAT_NAMELEN(msg);
2041 if (MSG_CMSG_COMPAT & flags) {
2042 err = verify_compat_iovec(&msg_sys, iov,
2043 (struct sockaddr *)&addr,
2044 VERIFY_WRITE);
2045 } else
2046 err = verify_iovec(&msg_sys, iov,
2047 (struct sockaddr *)&addr,
2048 VERIFY_WRITE);
2049 if (err < 0)
2050 goto out_freeiov;
2051 total_len = err;
2053 cmsg_ptr = (unsigned long)msg_sys.msg_control;
2054 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2056 if (sock->file->f_flags & O_NONBLOCK)
2057 flags |= MSG_DONTWAIT;
2058 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2059 if (err < 0)
2060 goto out_freeiov;
2061 len = err;
2063 if (uaddr != NULL) {
2064 err = move_addr_to_user((struct sockaddr *)&addr,
2065 msg_sys.msg_namelen, uaddr,
2066 uaddr_len);
2067 if (err < 0)
2068 goto out_freeiov;
2070 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2071 COMPAT_FLAGS(msg));
2072 if (err)
2073 goto out_freeiov;
2074 if (MSG_CMSG_COMPAT & flags)
2075 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2076 &msg_compat->msg_controllen);
2077 else
2078 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2079 &msg->msg_controllen);
2080 if (err)
2081 goto out_freeiov;
2082 err = len;
2084 out_freeiov:
2085 if (iov != iovstack)
2086 sock_kfree_s(sock->sk, iov, iov_size);
2087 out_put:
2088 fput_light(sock->file, fput_needed);
2089 out:
2090 return err;
2093 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2095 /* Argument list sizes for sys_socketcall */
2096 #define AL(x) ((x) * sizeof(unsigned long))
2097 static const unsigned char nargs[19]={
2098 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2099 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2100 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2101 AL(4)
2104 #undef AL
2107 * System call vectors.
2109 * Argument checking cleaned up. Saved 20% in size.
2110 * This function doesn't need to set the kernel lock because
2111 * it is set by the callees.
2114 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2116 unsigned long a[6];
2117 unsigned long a0, a1;
2118 int err;
2119 unsigned int len;
2121 if (call < 1 || call > SYS_ACCEPT4)
2122 return -EINVAL;
2124 len = nargs[call];
2125 if (len > sizeof(a))
2126 return -EINVAL;
2128 /* copy_from_user should be SMP safe. */
2129 if (copy_from_user(a, args, len))
2130 return -EFAULT;
2132 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2134 a0 = a[0];
2135 a1 = a[1];
2137 switch (call) {
2138 case SYS_SOCKET:
2139 err = sys_socket(a0, a1, a[2]);
2140 break;
2141 case SYS_BIND:
2142 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2143 break;
2144 case SYS_CONNECT:
2145 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2146 break;
2147 case SYS_LISTEN:
2148 err = sys_listen(a0, a1);
2149 break;
2150 case SYS_ACCEPT:
2151 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2152 (int __user *)a[2], 0);
2153 break;
2154 case SYS_GETSOCKNAME:
2155 err =
2156 sys_getsockname(a0, (struct sockaddr __user *)a1,
2157 (int __user *)a[2]);
2158 break;
2159 case SYS_GETPEERNAME:
2160 err =
2161 sys_getpeername(a0, (struct sockaddr __user *)a1,
2162 (int __user *)a[2]);
2163 break;
2164 case SYS_SOCKETPAIR:
2165 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2166 break;
2167 case SYS_SEND:
2168 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2169 break;
2170 case SYS_SENDTO:
2171 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2172 (struct sockaddr __user *)a[4], a[5]);
2173 break;
2174 case SYS_RECV:
2175 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2176 break;
2177 case SYS_RECVFROM:
2178 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2179 (struct sockaddr __user *)a[4],
2180 (int __user *)a[5]);
2181 break;
2182 case SYS_SHUTDOWN:
2183 err = sys_shutdown(a0, a1);
2184 break;
2185 case SYS_SETSOCKOPT:
2186 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2187 break;
2188 case SYS_GETSOCKOPT:
2189 err =
2190 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2191 (int __user *)a[4]);
2192 break;
2193 case SYS_SENDMSG:
2194 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2195 break;
2196 case SYS_RECVMSG:
2197 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2198 break;
2199 case SYS_ACCEPT4:
2200 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2201 (int __user *)a[2], a[3]);
2202 break;
2203 default:
2204 err = -EINVAL;
2205 break;
2207 return err;
2210 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2213 * sock_register - add a socket protocol handler
2214 * @ops: description of protocol
2216 * This function is called by a protocol handler that wants to
2217 * advertise its address family, and have it linked into the
2218 * socket interface. The value ops->family coresponds to the
2219 * socket system call protocol family.
2221 int sock_register(const struct net_proto_family *ops)
2223 int err;
2225 if (ops->family >= NPROTO) {
2226 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2227 NPROTO);
2228 return -ENOBUFS;
2231 spin_lock(&net_family_lock);
2232 if (net_families[ops->family])
2233 err = -EEXIST;
2234 else {
2235 net_families[ops->family] = ops;
2236 err = 0;
2238 spin_unlock(&net_family_lock);
2240 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2241 return err;
2245 * sock_unregister - remove a protocol handler
2246 * @family: protocol family to remove
2248 * This function is called by a protocol handler that wants to
2249 * remove its address family, and have it unlinked from the
2250 * new socket creation.
2252 * If protocol handler is a module, then it can use module reference
2253 * counts to protect against new references. If protocol handler is not
2254 * a module then it needs to provide its own protection in
2255 * the ops->create routine.
2257 void sock_unregister(int family)
2259 BUG_ON(family < 0 || family >= NPROTO);
2261 spin_lock(&net_family_lock);
2262 net_families[family] = NULL;
2263 spin_unlock(&net_family_lock);
2265 synchronize_rcu();
2267 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2270 static int __init sock_init(void)
2273 * Initialize sock SLAB cache.
2276 sk_init();
2279 * Initialize skbuff SLAB cache
2281 skb_init();
2284 * Initialize the protocols module.
2287 init_inodecache();
2288 register_filesystem(&sock_fs_type);
2289 sock_mnt = kern_mount(&sock_fs_type);
2291 /* The real protocol initialization is performed in later initcalls.
2294 #ifdef CONFIG_NETFILTER
2295 netfilter_init();
2296 #endif
2298 return 0;
2301 core_initcall(sock_init); /* early initcall */
2303 #ifdef CONFIG_PROC_FS
2304 void socket_seq_show(struct seq_file *seq)
2306 int cpu;
2307 int counter = 0;
2309 for_each_possible_cpu(cpu)
2310 counter += per_cpu(sockets_in_use, cpu);
2312 /* It can be negative, by the way. 8) */
2313 if (counter < 0)
2314 counter = 0;
2316 seq_printf(seq, "sockets: used %d\n", counter);
2318 #endif /* CONFIG_PROC_FS */
2320 #ifdef CONFIG_COMPAT
2321 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2322 unsigned long arg)
2324 struct socket *sock = file->private_data;
2325 int ret = -ENOIOCTLCMD;
2326 struct sock *sk;
2327 struct net *net;
2329 sk = sock->sk;
2330 net = sock_net(sk);
2332 if (sock->ops->compat_ioctl)
2333 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2335 if (ret == -ENOIOCTLCMD &&
2336 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2337 ret = compat_wext_handle_ioctl(net, cmd, arg);
2339 return ret;
2341 #endif
2343 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2345 return sock->ops->bind(sock, addr, addrlen);
2348 int kernel_listen(struct socket *sock, int backlog)
2350 return sock->ops->listen(sock, backlog);
2353 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2355 struct sock *sk = sock->sk;
2356 int err;
2358 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2359 newsock);
2360 if (err < 0)
2361 goto done;
2363 err = sock->ops->accept(sock, *newsock, flags);
2364 if (err < 0) {
2365 sock_release(*newsock);
2366 *newsock = NULL;
2367 goto done;
2370 (*newsock)->ops = sock->ops;
2371 __module_get((*newsock)->ops->owner);
2373 done:
2374 return err;
2377 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2378 int flags)
2380 return sock->ops->connect(sock, addr, addrlen, flags);
2383 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2384 int *addrlen)
2386 return sock->ops->getname(sock, addr, addrlen, 0);
2389 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2390 int *addrlen)
2392 return sock->ops->getname(sock, addr, addrlen, 1);
2395 int kernel_getsockopt(struct socket *sock, int level, int optname,
2396 char *optval, int *optlen)
2398 mm_segment_t oldfs = get_fs();
2399 int err;
2401 set_fs(KERNEL_DS);
2402 if (level == SOL_SOCKET)
2403 err = sock_getsockopt(sock, level, optname, optval, optlen);
2404 else
2405 err = sock->ops->getsockopt(sock, level, optname, optval,
2406 optlen);
2407 set_fs(oldfs);
2408 return err;
2411 int kernel_setsockopt(struct socket *sock, int level, int optname,
2412 char *optval, unsigned int optlen)
2414 mm_segment_t oldfs = get_fs();
2415 int err;
2417 set_fs(KERNEL_DS);
2418 if (level == SOL_SOCKET)
2419 err = sock_setsockopt(sock, level, optname, optval, optlen);
2420 else
2421 err = sock->ops->setsockopt(sock, level, optname, optval,
2422 optlen);
2423 set_fs(oldfs);
2424 return err;
2427 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2428 size_t size, int flags)
2430 if (sock->ops->sendpage)
2431 return sock->ops->sendpage(sock, page, offset, size, flags);
2433 return sock_no_sendpage(sock, page, offset, size, flags);
2436 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2438 mm_segment_t oldfs = get_fs();
2439 int err;
2441 set_fs(KERNEL_DS);
2442 err = sock->ops->ioctl(sock, cmd, arg);
2443 set_fs(oldfs);
2445 return err;
2448 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2450 return sock->ops->shutdown(sock, how);
2453 EXPORT_SYMBOL(sock_create);
2454 EXPORT_SYMBOL(sock_create_kern);
2455 EXPORT_SYMBOL(sock_create_lite);
2456 EXPORT_SYMBOL(sock_map_fd);
2457 EXPORT_SYMBOL(sock_recvmsg);
2458 EXPORT_SYMBOL(sock_register);
2459 EXPORT_SYMBOL(sock_release);
2460 EXPORT_SYMBOL(sock_sendmsg);
2461 EXPORT_SYMBOL(sock_unregister);
2462 EXPORT_SYMBOL(sock_wake_async);
2463 EXPORT_SYMBOL(sockfd_lookup);
2464 EXPORT_SYMBOL(kernel_sendmsg);
2465 EXPORT_SYMBOL(kernel_recvmsg);
2466 EXPORT_SYMBOL(kernel_bind);
2467 EXPORT_SYMBOL(kernel_listen);
2468 EXPORT_SYMBOL(kernel_accept);
2469 EXPORT_SYMBOL(kernel_connect);
2470 EXPORT_SYMBOL(kernel_getsockname);
2471 EXPORT_SYMBOL(kernel_getpeername);
2472 EXPORT_SYMBOL(kernel_getsockopt);
2473 EXPORT_SYMBOL(kernel_setsockopt);
2474 EXPORT_SYMBOL(kernel_sendpage);
2475 EXPORT_SYMBOL(kernel_sock_ioctl);
2476 EXPORT_SYMBOL(kernel_sock_shutdown);