4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* This context's GFP mask */
60 /* Can pages be swapped as part of reclaim? */
63 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
64 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
65 * In this context, it doesn't matter that we scan the
66 * whole list at once. */
71 int all_unreclaimable
;
75 /* Which cgroup do we reclaim from */
76 struct mem_cgroup
*mem_cgroup
;
78 /* Pluggable isolate pages callback */
79 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
80 unsigned long *scanned
, int order
, int mode
,
81 struct zone
*z
, struct mem_cgroup
*mem_cont
,
82 int active
, int file
);
85 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
87 #ifdef ARCH_HAS_PREFETCH
88 #define prefetch_prev_lru_page(_page, _base, _field) \
90 if ((_page)->lru.prev != _base) { \
93 prev = lru_to_page(&(_page->lru)); \
94 prefetch(&prev->_field); \
98 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
101 #ifdef ARCH_HAS_PREFETCHW
102 #define prefetchw_prev_lru_page(_page, _base, _field) \
104 if ((_page)->lru.prev != _base) { \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetchw(&prev->_field); \
112 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 * From 0 .. 100. Higher means more swappy.
118 int vm_swappiness
= 60;
119 long vm_total_pages
; /* The total number of pages which the VM controls */
121 static LIST_HEAD(shrinker_list
);
122 static DECLARE_RWSEM(shrinker_rwsem
);
124 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
125 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
127 #define scan_global_lru(sc) (1)
131 * Add a shrinker callback to be called from the vm
133 void register_shrinker(struct shrinker
*shrinker
)
136 down_write(&shrinker_rwsem
);
137 list_add_tail(&shrinker
->list
, &shrinker_list
);
138 up_write(&shrinker_rwsem
);
140 EXPORT_SYMBOL(register_shrinker
);
145 void unregister_shrinker(struct shrinker
*shrinker
)
147 down_write(&shrinker_rwsem
);
148 list_del(&shrinker
->list
);
149 up_write(&shrinker_rwsem
);
151 EXPORT_SYMBOL(unregister_shrinker
);
153 #define SHRINK_BATCH 128
155 * Call the shrink functions to age shrinkable caches
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
162 * If the vm encountered mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
171 * Returns the number of slab objects which we shrunk.
173 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
174 unsigned long lru_pages
)
176 struct shrinker
*shrinker
;
177 unsigned long ret
= 0;
180 scanned
= SWAP_CLUSTER_MAX
;
182 if (!down_read_trylock(&shrinker_rwsem
))
183 return 1; /* Assume we'll be able to shrink next time */
185 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
186 unsigned long long delta
;
187 unsigned long total_scan
;
188 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
190 delta
= (4 * scanned
) / shrinker
->seeks
;
192 do_div(delta
, lru_pages
+ 1);
193 shrinker
->nr
+= delta
;
194 if (shrinker
->nr
< 0) {
195 printk(KERN_ERR
"%s: nr=%ld\n",
196 __func__
, shrinker
->nr
);
197 shrinker
->nr
= max_pass
;
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
205 if (shrinker
->nr
> max_pass
* 2)
206 shrinker
->nr
= max_pass
* 2;
208 total_scan
= shrinker
->nr
;
211 while (total_scan
>= SHRINK_BATCH
) {
212 long this_scan
= SHRINK_BATCH
;
216 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
217 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
218 if (shrink_ret
== -1)
220 if (shrink_ret
< nr_before
)
221 ret
+= nr_before
- shrink_ret
;
222 count_vm_events(SLABS_SCANNED
, this_scan
);
223 total_scan
-= this_scan
;
228 shrinker
->nr
+= total_scan
;
230 up_read(&shrinker_rwsem
);
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page
*page
)
237 struct address_space
*mapping
;
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page
))
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page
))
247 mapping
= page_mapping(page
);
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping
);
255 static inline int is_page_cache_freeable(struct page
*page
)
257 return page_count(page
) - !!PagePrivate(page
) == 2;
260 static int may_write_to_queue(struct backing_dev_info
*bdi
)
262 if (current
->flags
& PF_SWAPWRITE
)
264 if (!bdi_write_congested(bdi
))
266 if (bdi
== current
->backing_dev_info
)
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
280 * We're allowed to run sleeping lock_page() here because we know the caller has
283 static void handle_write_error(struct address_space
*mapping
,
284 struct page
*page
, int error
)
287 if (page_mapping(page
) == mapping
)
288 mapping_set_error(mapping
, error
);
292 /* Request for sync pageout. */
298 /* possible outcome of pageout() */
300 /* failed to write page out, page is locked */
302 /* move page to the active list, page is locked */
304 /* page has been sent to the disk successfully, page is unlocked */
306 /* page is clean and locked */
311 * pageout is called by shrink_page_list() for each dirty page.
312 * Calls ->writepage().
314 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
315 enum pageout_io sync_writeback
)
318 * If the page is dirty, only perform writeback if that write
319 * will be non-blocking. To prevent this allocation from being
320 * stalled by pagecache activity. But note that there may be
321 * stalls if we need to run get_block(). We could test
322 * PagePrivate for that.
324 * If this process is currently in generic_file_write() against
325 * this page's queue, we can perform writeback even if that
328 * If the page is swapcache, write it back even if that would
329 * block, for some throttling. This happens by accident, because
330 * swap_backing_dev_info is bust: it doesn't reflect the
331 * congestion state of the swapdevs. Easy to fix, if needed.
332 * See swapfile.c:page_queue_congested().
334 if (!is_page_cache_freeable(page
))
338 * Some data journaling orphaned pages can have
339 * page->mapping == NULL while being dirty with clean buffers.
341 if (PagePrivate(page
)) {
342 if (try_to_free_buffers(page
)) {
343 ClearPageDirty(page
);
344 printk("%s: orphaned page\n", __func__
);
350 if (mapping
->a_ops
->writepage
== NULL
)
351 return PAGE_ACTIVATE
;
352 if (!may_write_to_queue(mapping
->backing_dev_info
))
355 if (clear_page_dirty_for_io(page
)) {
357 struct writeback_control wbc
= {
358 .sync_mode
= WB_SYNC_NONE
,
359 .nr_to_write
= SWAP_CLUSTER_MAX
,
361 .range_end
= LLONG_MAX
,
366 SetPageReclaim(page
);
367 res
= mapping
->a_ops
->writepage(page
, &wbc
);
369 handle_write_error(mapping
, page
, res
);
370 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
371 ClearPageReclaim(page
);
372 return PAGE_ACTIVATE
;
376 * Wait on writeback if requested to. This happens when
377 * direct reclaiming a large contiguous area and the
378 * first attempt to free a range of pages fails.
380 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
381 wait_on_page_writeback(page
);
383 if (!PageWriteback(page
)) {
384 /* synchronous write or broken a_ops? */
385 ClearPageReclaim(page
);
387 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
395 * Same as remove_mapping, but if the page is removed from the mapping, it
396 * gets returned with a refcount of 0.
398 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
400 BUG_ON(!PageLocked(page
));
401 BUG_ON(mapping
!= page_mapping(page
));
403 spin_lock_irq(&mapping
->tree_lock
);
405 * The non racy check for a busy page.
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
412 * get_user_pages(&page);
413 * [user mapping goes away]
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
418 * !page_count(page) [good, discard it]
420 * [oops, our write_to data is lost]
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
429 if (!page_freeze_refs(page
, 2))
431 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
432 if (unlikely(PageDirty(page
))) {
433 page_unfreeze_refs(page
, 2);
437 if (PageSwapCache(page
)) {
438 swp_entry_t swap
= { .val
= page_private(page
) };
439 __delete_from_swap_cache(page
);
440 spin_unlock_irq(&mapping
->tree_lock
);
443 __remove_from_page_cache(page
);
444 spin_unlock_irq(&mapping
->tree_lock
);
450 spin_unlock_irq(&mapping
->tree_lock
);
455 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
456 * someone else has a ref on the page, abort and return 0. If it was
457 * successfully detached, return 1. Assumes the caller has a single ref on
460 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
462 if (__remove_mapping(mapping
, page
)) {
464 * Unfreezing the refcount with 1 rather than 2 effectively
465 * drops the pagecache ref for us without requiring another
468 page_unfreeze_refs(page
, 1);
475 * putback_lru_page - put previously isolated page onto appropriate LRU list
476 * @page: page to be put back to appropriate lru list
478 * Add previously isolated @page to appropriate LRU list.
479 * Page may still be unevictable for other reasons.
481 * lru_lock must not be held, interrupts must be enabled.
483 #ifdef CONFIG_UNEVICTABLE_LRU
484 void putback_lru_page(struct page
*page
)
487 int active
= !!TestClearPageActive(page
);
488 int was_unevictable
= PageUnevictable(page
);
490 VM_BUG_ON(PageLRU(page
));
493 ClearPageUnevictable(page
);
495 if (page_evictable(page
, NULL
)) {
497 * For evictable pages, we can use the cache.
498 * In event of a race, worst case is we end up with an
499 * unevictable page on [in]active list.
500 * We know how to handle that.
502 lru
= active
+ page_is_file_cache(page
);
503 lru_cache_add_lru(page
, lru
);
506 * Put unevictable pages directly on zone's unevictable
509 lru
= LRU_UNEVICTABLE
;
510 add_page_to_unevictable_list(page
);
512 mem_cgroup_move_lists(page
, lru
);
515 * page's status can change while we move it among lru. If an evictable
516 * page is on unevictable list, it never be freed. To avoid that,
517 * check after we added it to the list, again.
519 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
520 if (!isolate_lru_page(page
)) {
524 /* This means someone else dropped this page from LRU
525 * So, it will be freed or putback to LRU again. There is
526 * nothing to do here.
530 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
531 count_vm_event(UNEVICTABLE_PGRESCUED
);
532 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
533 count_vm_event(UNEVICTABLE_PGCULLED
);
535 put_page(page
); /* drop ref from isolate */
538 #else /* CONFIG_UNEVICTABLE_LRU */
540 void putback_lru_page(struct page
*page
)
543 VM_BUG_ON(PageLRU(page
));
545 lru
= !!TestClearPageActive(page
) + page_is_file_cache(page
);
546 lru_cache_add_lru(page
, lru
);
547 mem_cgroup_move_lists(page
, lru
);
550 #endif /* CONFIG_UNEVICTABLE_LRU */
554 * shrink_page_list() returns the number of reclaimed pages
556 static unsigned long shrink_page_list(struct list_head
*page_list
,
557 struct scan_control
*sc
,
558 enum pageout_io sync_writeback
)
560 LIST_HEAD(ret_pages
);
561 struct pagevec freed_pvec
;
563 unsigned long nr_reclaimed
= 0;
567 pagevec_init(&freed_pvec
, 1);
568 while (!list_empty(page_list
)) {
569 struct address_space
*mapping
;
576 page
= lru_to_page(page_list
);
577 list_del(&page
->lru
);
579 if (!trylock_page(page
))
582 VM_BUG_ON(PageActive(page
));
586 if (unlikely(!page_evictable(page
, NULL
)))
589 if (!sc
->may_swap
&& page_mapped(page
))
592 /* Double the slab pressure for mapped and swapcache pages */
593 if (page_mapped(page
) || PageSwapCache(page
))
596 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
597 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
599 if (PageWriteback(page
)) {
601 * Synchronous reclaim is performed in two passes,
602 * first an asynchronous pass over the list to
603 * start parallel writeback, and a second synchronous
604 * pass to wait for the IO to complete. Wait here
605 * for any page for which writeback has already
608 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
609 wait_on_page_writeback(page
);
614 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
615 /* In active use or really unfreeable? Activate it. */
616 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
617 referenced
&& page_mapping_inuse(page
))
618 goto activate_locked
;
622 * Anonymous process memory has backing store?
623 * Try to allocate it some swap space here.
625 if (PageAnon(page
) && !PageSwapCache(page
)) {
626 switch (try_to_munlock(page
)) {
627 case SWAP_FAIL
: /* shouldn't happen */
633 ; /* fall thru'; add to swap cache */
635 if (!add_to_swap(page
, GFP_ATOMIC
))
636 goto activate_locked
;
638 #endif /* CONFIG_SWAP */
640 mapping
= page_mapping(page
);
643 * The page is mapped into the page tables of one or more
644 * processes. Try to unmap it here.
646 if (page_mapped(page
) && mapping
) {
647 switch (try_to_unmap(page
, 0)) {
649 goto activate_locked
;
655 ; /* try to free the page below */
659 if (PageDirty(page
)) {
660 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
664 if (!sc
->may_writepage
)
667 /* Page is dirty, try to write it out here */
668 switch (pageout(page
, mapping
, sync_writeback
)) {
672 goto activate_locked
;
674 if (PageWriteback(page
) || PageDirty(page
))
677 * A synchronous write - probably a ramdisk. Go
678 * ahead and try to reclaim the page.
680 if (!trylock_page(page
))
682 if (PageDirty(page
) || PageWriteback(page
))
684 mapping
= page_mapping(page
);
686 ; /* try to free the page below */
691 * If the page has buffers, try to free the buffer mappings
692 * associated with this page. If we succeed we try to free
695 * We do this even if the page is PageDirty().
696 * try_to_release_page() does not perform I/O, but it is
697 * possible for a page to have PageDirty set, but it is actually
698 * clean (all its buffers are clean). This happens if the
699 * buffers were written out directly, with submit_bh(). ext3
700 * will do this, as well as the blockdev mapping.
701 * try_to_release_page() will discover that cleanness and will
702 * drop the buffers and mark the page clean - it can be freed.
704 * Rarely, pages can have buffers and no ->mapping. These are
705 * the pages which were not successfully invalidated in
706 * truncate_complete_page(). We try to drop those buffers here
707 * and if that worked, and the page is no longer mapped into
708 * process address space (page_count == 1) it can be freed.
709 * Otherwise, leave the page on the LRU so it is swappable.
711 if (PagePrivate(page
)) {
712 if (!try_to_release_page(page
, sc
->gfp_mask
))
713 goto activate_locked
;
714 if (!mapping
&& page_count(page
) == 1) {
716 if (put_page_testzero(page
))
720 * rare race with speculative reference.
721 * the speculative reference will free
722 * this page shortly, so we may
723 * increment nr_reclaimed here (and
724 * leave it off the LRU).
732 if (!mapping
|| !__remove_mapping(mapping
, page
))
736 * At this point, we have no other references and there is
737 * no way to pick any more up (removed from LRU, removed
738 * from pagecache). Can use non-atomic bitops now (and
739 * we obviously don't have to worry about waking up a process
740 * waiting on the page lock, because there are no references.
742 __clear_page_locked(page
);
745 if (!pagevec_add(&freed_pvec
, page
)) {
746 __pagevec_free(&freed_pvec
);
747 pagevec_reinit(&freed_pvec
);
753 putback_lru_page(page
);
757 /* Not a candidate for swapping, so reclaim swap space. */
758 if (PageSwapCache(page
) && vm_swap_full())
759 remove_exclusive_swap_page_ref(page
);
760 VM_BUG_ON(PageActive(page
));
766 list_add(&page
->lru
, &ret_pages
);
767 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
769 list_splice(&ret_pages
, page_list
);
770 if (pagevec_count(&freed_pvec
))
771 __pagevec_free(&freed_pvec
);
772 count_vm_events(PGACTIVATE
, pgactivate
);
776 /* LRU Isolation modes. */
777 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
778 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
779 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
782 * Attempt to remove the specified page from its LRU. Only take this page
783 * if it is of the appropriate PageActive status. Pages which are being
784 * freed elsewhere are also ignored.
786 * page: page to consider
787 * mode: one of the LRU isolation modes defined above
789 * returns 0 on success, -ve errno on failure.
791 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
795 /* Only take pages on the LRU. */
800 * When checking the active state, we need to be sure we are
801 * dealing with comparible boolean values. Take the logical not
804 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
807 if (mode
!= ISOLATE_BOTH
&& (!page_is_file_cache(page
) != !file
))
811 * When this function is being called for lumpy reclaim, we
812 * initially look into all LRU pages, active, inactive and
813 * unevictable; only give shrink_page_list evictable pages.
815 if (PageUnevictable(page
))
819 if (likely(get_page_unless_zero(page
))) {
821 * Be careful not to clear PageLRU until after we're
822 * sure the page is not being freed elsewhere -- the
823 * page release code relies on it.
833 * zone->lru_lock is heavily contended. Some of the functions that
834 * shrink the lists perform better by taking out a batch of pages
835 * and working on them outside the LRU lock.
837 * For pagecache intensive workloads, this function is the hottest
838 * spot in the kernel (apart from copy_*_user functions).
840 * Appropriate locks must be held before calling this function.
842 * @nr_to_scan: The number of pages to look through on the list.
843 * @src: The LRU list to pull pages off.
844 * @dst: The temp list to put pages on to.
845 * @scanned: The number of pages that were scanned.
846 * @order: The caller's attempted allocation order
847 * @mode: One of the LRU isolation modes
848 * @file: True [1] if isolating file [!anon] pages
850 * returns how many pages were moved onto *@dst.
852 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
853 struct list_head
*src
, struct list_head
*dst
,
854 unsigned long *scanned
, int order
, int mode
, int file
)
856 unsigned long nr_taken
= 0;
859 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
862 unsigned long end_pfn
;
863 unsigned long page_pfn
;
866 page
= lru_to_page(src
);
867 prefetchw_prev_lru_page(page
, src
, flags
);
869 VM_BUG_ON(!PageLRU(page
));
871 switch (__isolate_lru_page(page
, mode
, file
)) {
873 list_move(&page
->lru
, dst
);
878 /* else it is being freed elsewhere */
879 list_move(&page
->lru
, src
);
890 * Attempt to take all pages in the order aligned region
891 * surrounding the tag page. Only take those pages of
892 * the same active state as that tag page. We may safely
893 * round the target page pfn down to the requested order
894 * as the mem_map is guarenteed valid out to MAX_ORDER,
895 * where that page is in a different zone we will detect
896 * it from its zone id and abort this block scan.
898 zone_id
= page_zone_id(page
);
899 page_pfn
= page_to_pfn(page
);
900 pfn
= page_pfn
& ~((1 << order
) - 1);
901 end_pfn
= pfn
+ (1 << order
);
902 for (; pfn
< end_pfn
; pfn
++) {
903 struct page
*cursor_page
;
905 /* The target page is in the block, ignore it. */
906 if (unlikely(pfn
== page_pfn
))
909 /* Avoid holes within the zone. */
910 if (unlikely(!pfn_valid_within(pfn
)))
913 cursor_page
= pfn_to_page(pfn
);
915 /* Check that we have not crossed a zone boundary. */
916 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
918 switch (__isolate_lru_page(cursor_page
, mode
, file
)) {
920 list_move(&cursor_page
->lru
, dst
);
926 /* else it is being freed elsewhere */
927 list_move(&cursor_page
->lru
, src
);
929 break; /* ! on LRU or wrong list */
938 static unsigned long isolate_pages_global(unsigned long nr
,
939 struct list_head
*dst
,
940 unsigned long *scanned
, int order
,
941 int mode
, struct zone
*z
,
942 struct mem_cgroup
*mem_cont
,
943 int active
, int file
)
950 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
955 * clear_active_flags() is a helper for shrink_active_list(), clearing
956 * any active bits from the pages in the list.
958 static unsigned long clear_active_flags(struct list_head
*page_list
,
965 list_for_each_entry(page
, page_list
, lru
) {
966 lru
= page_is_file_cache(page
);
967 if (PageActive(page
)) {
969 ClearPageActive(page
);
979 * isolate_lru_page - tries to isolate a page from its LRU list
980 * @page: page to isolate from its LRU list
982 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
983 * vmstat statistic corresponding to whatever LRU list the page was on.
985 * Returns 0 if the page was removed from an LRU list.
986 * Returns -EBUSY if the page was not on an LRU list.
988 * The returned page will have PageLRU() cleared. If it was found on
989 * the active list, it will have PageActive set. If it was found on
990 * the unevictable list, it will have the PageUnevictable bit set. That flag
991 * may need to be cleared by the caller before letting the page go.
993 * The vmstat statistic corresponding to the list on which the page was
994 * found will be decremented.
997 * (1) Must be called with an elevated refcount on the page. This is a
998 * fundamentnal difference from isolate_lru_pages (which is called
999 * without a stable reference).
1000 * (2) the lru_lock must not be held.
1001 * (3) interrupts must be enabled.
1003 int isolate_lru_page(struct page
*page
)
1007 if (PageLRU(page
)) {
1008 struct zone
*zone
= page_zone(page
);
1010 spin_lock_irq(&zone
->lru_lock
);
1011 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1012 int lru
= page_lru(page
);
1016 del_page_from_lru_list(zone
, page
, lru
);
1018 spin_unlock_irq(&zone
->lru_lock
);
1024 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1025 * of reclaimed pages
1027 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1028 struct zone
*zone
, struct scan_control
*sc
,
1029 int priority
, int file
)
1031 LIST_HEAD(page_list
);
1032 struct pagevec pvec
;
1033 unsigned long nr_scanned
= 0;
1034 unsigned long nr_reclaimed
= 0;
1036 pagevec_init(&pvec
, 1);
1039 spin_lock_irq(&zone
->lru_lock
);
1042 unsigned long nr_taken
;
1043 unsigned long nr_scan
;
1044 unsigned long nr_freed
;
1045 unsigned long nr_active
;
1046 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1047 int mode
= ISOLATE_INACTIVE
;
1050 * If we need a large contiguous chunk of memory, or have
1051 * trouble getting a small set of contiguous pages, we
1052 * will reclaim both active and inactive pages.
1054 * We use the same threshold as pageout congestion_wait below.
1056 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1057 mode
= ISOLATE_BOTH
;
1058 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1059 mode
= ISOLATE_BOTH
;
1061 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
1062 &page_list
, &nr_scan
, sc
->order
, mode
,
1063 zone
, sc
->mem_cgroup
, 0, file
);
1064 nr_active
= clear_active_flags(&page_list
, count
);
1065 __count_vm_events(PGDEACTIVATE
, nr_active
);
1067 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1068 -count
[LRU_ACTIVE_FILE
]);
1069 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1070 -count
[LRU_INACTIVE_FILE
]);
1071 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1072 -count
[LRU_ACTIVE_ANON
]);
1073 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1074 -count
[LRU_INACTIVE_ANON
]);
1076 if (scan_global_lru(sc
)) {
1077 zone
->pages_scanned
+= nr_scan
;
1078 zone
->recent_scanned
[0] += count
[LRU_INACTIVE_ANON
];
1079 zone
->recent_scanned
[0] += count
[LRU_ACTIVE_ANON
];
1080 zone
->recent_scanned
[1] += count
[LRU_INACTIVE_FILE
];
1081 zone
->recent_scanned
[1] += count
[LRU_ACTIVE_FILE
];
1083 spin_unlock_irq(&zone
->lru_lock
);
1085 nr_scanned
+= nr_scan
;
1086 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1089 * If we are direct reclaiming for contiguous pages and we do
1090 * not reclaim everything in the list, try again and wait
1091 * for IO to complete. This will stall high-order allocations
1092 * but that should be acceptable to the caller
1094 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1095 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
1096 congestion_wait(WRITE
, HZ
/10);
1099 * The attempt at page out may have made some
1100 * of the pages active, mark them inactive again.
1102 nr_active
= clear_active_flags(&page_list
, count
);
1103 count_vm_events(PGDEACTIVATE
, nr_active
);
1105 nr_freed
+= shrink_page_list(&page_list
, sc
,
1109 nr_reclaimed
+= nr_freed
;
1110 local_irq_disable();
1111 if (current_is_kswapd()) {
1112 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
1113 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1114 } else if (scan_global_lru(sc
))
1115 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
1117 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1122 spin_lock(&zone
->lru_lock
);
1124 * Put back any unfreeable pages.
1126 while (!list_empty(&page_list
)) {
1128 page
= lru_to_page(&page_list
);
1129 VM_BUG_ON(PageLRU(page
));
1130 list_del(&page
->lru
);
1131 if (unlikely(!page_evictable(page
, NULL
))) {
1132 spin_unlock_irq(&zone
->lru_lock
);
1133 putback_lru_page(page
);
1134 spin_lock_irq(&zone
->lru_lock
);
1138 lru
= page_lru(page
);
1139 add_page_to_lru_list(zone
, page
, lru
);
1140 mem_cgroup_move_lists(page
, lru
);
1141 if (PageActive(page
) && scan_global_lru(sc
)) {
1142 int file
= !!page_is_file_cache(page
);
1143 zone
->recent_rotated
[file
]++;
1145 if (!pagevec_add(&pvec
, page
)) {
1146 spin_unlock_irq(&zone
->lru_lock
);
1147 __pagevec_release(&pvec
);
1148 spin_lock_irq(&zone
->lru_lock
);
1151 } while (nr_scanned
< max_scan
);
1152 spin_unlock(&zone
->lru_lock
);
1155 pagevec_release(&pvec
);
1156 return nr_reclaimed
;
1160 * We are about to scan this zone at a certain priority level. If that priority
1161 * level is smaller (ie: more urgent) than the previous priority, then note
1162 * that priority level within the zone. This is done so that when the next
1163 * process comes in to scan this zone, it will immediately start out at this
1164 * priority level rather than having to build up its own scanning priority.
1165 * Here, this priority affects only the reclaim-mapped threshold.
1167 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1169 if (priority
< zone
->prev_priority
)
1170 zone
->prev_priority
= priority
;
1173 static inline int zone_is_near_oom(struct zone
*zone
)
1175 return zone
->pages_scanned
>= (zone_lru_pages(zone
) * 3);
1179 * This moves pages from the active list to the inactive list.
1181 * We move them the other way if the page is referenced by one or more
1182 * processes, from rmap.
1184 * If the pages are mostly unmapped, the processing is fast and it is
1185 * appropriate to hold zone->lru_lock across the whole operation. But if
1186 * the pages are mapped, the processing is slow (page_referenced()) so we
1187 * should drop zone->lru_lock around each page. It's impossible to balance
1188 * this, so instead we remove the pages from the LRU while processing them.
1189 * It is safe to rely on PG_active against the non-LRU pages in here because
1190 * nobody will play with that bit on a non-LRU page.
1192 * The downside is that we have to touch page->_count against each page.
1193 * But we had to alter page->flags anyway.
1197 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1198 struct scan_control
*sc
, int priority
, int file
)
1200 unsigned long pgmoved
;
1201 int pgdeactivate
= 0;
1202 unsigned long pgscanned
;
1203 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1204 LIST_HEAD(l_inactive
);
1206 struct pagevec pvec
;
1210 spin_lock_irq(&zone
->lru_lock
);
1211 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1212 ISOLATE_ACTIVE
, zone
,
1213 sc
->mem_cgroup
, 1, file
);
1215 * zone->pages_scanned is used for detect zone's oom
1216 * mem_cgroup remembers nr_scan by itself.
1218 if (scan_global_lru(sc
)) {
1219 zone
->pages_scanned
+= pgscanned
;
1220 zone
->recent_scanned
[!!file
] += pgmoved
;
1224 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -pgmoved
);
1226 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -pgmoved
);
1227 spin_unlock_irq(&zone
->lru_lock
);
1230 while (!list_empty(&l_hold
)) {
1232 page
= lru_to_page(&l_hold
);
1233 list_del(&page
->lru
);
1235 if (unlikely(!page_evictable(page
, NULL
))) {
1236 putback_lru_page(page
);
1240 /* page_referenced clears PageReferenced */
1241 if (page_mapping_inuse(page
) &&
1242 page_referenced(page
, 0, sc
->mem_cgroup
))
1245 list_add(&page
->lru
, &l_inactive
);
1249 * Count referenced pages from currently used mappings as
1250 * rotated, even though they are moved to the inactive list.
1251 * This helps balance scan pressure between file and anonymous
1252 * pages in get_scan_ratio.
1254 zone
->recent_rotated
[!!file
] += pgmoved
;
1257 * Move the pages to the [file or anon] inactive list.
1259 pagevec_init(&pvec
, 1);
1262 lru
= LRU_BASE
+ file
* LRU_FILE
;
1263 spin_lock_irq(&zone
->lru_lock
);
1264 while (!list_empty(&l_inactive
)) {
1265 page
= lru_to_page(&l_inactive
);
1266 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1267 VM_BUG_ON(PageLRU(page
));
1269 VM_BUG_ON(!PageActive(page
));
1270 ClearPageActive(page
);
1272 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1273 mem_cgroup_move_lists(page
, lru
);
1275 if (!pagevec_add(&pvec
, page
)) {
1276 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1277 spin_unlock_irq(&zone
->lru_lock
);
1278 pgdeactivate
+= pgmoved
;
1280 if (buffer_heads_over_limit
)
1281 pagevec_strip(&pvec
);
1282 __pagevec_release(&pvec
);
1283 spin_lock_irq(&zone
->lru_lock
);
1286 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1287 pgdeactivate
+= pgmoved
;
1288 if (buffer_heads_over_limit
) {
1289 spin_unlock_irq(&zone
->lru_lock
);
1290 pagevec_strip(&pvec
);
1291 spin_lock_irq(&zone
->lru_lock
);
1293 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1294 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1295 spin_unlock_irq(&zone
->lru_lock
);
1297 pagevec_swap_free(&pvec
);
1299 pagevec_release(&pvec
);
1302 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1303 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1305 int file
= is_file_lru(lru
);
1307 if (lru
== LRU_ACTIVE_FILE
) {
1308 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1312 if (lru
== LRU_ACTIVE_ANON
&&
1313 (!scan_global_lru(sc
) || inactive_anon_is_low(zone
))) {
1314 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1317 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1321 * Determine how aggressively the anon and file LRU lists should be
1322 * scanned. The relative value of each set of LRU lists is determined
1323 * by looking at the fraction of the pages scanned we did rotate back
1324 * onto the active list instead of evict.
1326 * percent[0] specifies how much pressure to put on ram/swap backed
1327 * memory, while percent[1] determines pressure on the file LRUs.
1329 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1330 unsigned long *percent
)
1332 unsigned long anon
, file
, free
;
1333 unsigned long anon_prio
, file_prio
;
1334 unsigned long ap
, fp
;
1336 anon
= zone_page_state(zone
, NR_ACTIVE_ANON
) +
1337 zone_page_state(zone
, NR_INACTIVE_ANON
);
1338 file
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
1339 zone_page_state(zone
, NR_INACTIVE_FILE
);
1340 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1342 /* If we have no swap space, do not bother scanning anon pages. */
1343 if (nr_swap_pages
<= 0) {
1349 /* If we have very few page cache pages, force-scan anon pages. */
1350 if (unlikely(file
+ free
<= zone
->pages_high
)) {
1357 * OK, so we have swap space and a fair amount of page cache
1358 * pages. We use the recently rotated / recently scanned
1359 * ratios to determine how valuable each cache is.
1361 * Because workloads change over time (and to avoid overflow)
1362 * we keep these statistics as a floating average, which ends
1363 * up weighing recent references more than old ones.
1365 * anon in [0], file in [1]
1367 if (unlikely(zone
->recent_scanned
[0] > anon
/ 4)) {
1368 spin_lock_irq(&zone
->lru_lock
);
1369 zone
->recent_scanned
[0] /= 2;
1370 zone
->recent_rotated
[0] /= 2;
1371 spin_unlock_irq(&zone
->lru_lock
);
1374 if (unlikely(zone
->recent_scanned
[1] > file
/ 4)) {
1375 spin_lock_irq(&zone
->lru_lock
);
1376 zone
->recent_scanned
[1] /= 2;
1377 zone
->recent_rotated
[1] /= 2;
1378 spin_unlock_irq(&zone
->lru_lock
);
1382 * With swappiness at 100, anonymous and file have the same priority.
1383 * This scanning priority is essentially the inverse of IO cost.
1385 anon_prio
= sc
->swappiness
;
1386 file_prio
= 200 - sc
->swappiness
;
1389 * anon recent_rotated[0]
1390 * %anon = 100 * ----------- / ----------------- * IO cost
1391 * anon + file rotate_sum
1393 ap
= (anon_prio
+ 1) * (zone
->recent_scanned
[0] + 1);
1394 ap
/= zone
->recent_rotated
[0] + 1;
1396 fp
= (file_prio
+ 1) * (zone
->recent_scanned
[1] + 1);
1397 fp
/= zone
->recent_rotated
[1] + 1;
1399 /* Normalize to percentages */
1400 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1401 percent
[1] = 100 - percent
[0];
1406 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1408 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
1409 struct scan_control
*sc
)
1411 unsigned long nr
[NR_LRU_LISTS
];
1412 unsigned long nr_to_scan
;
1413 unsigned long nr_reclaimed
= 0;
1414 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1417 get_scan_ratio(zone
, sc
, percent
);
1419 for_each_evictable_lru(l
) {
1420 if (scan_global_lru(sc
)) {
1421 int file
= is_file_lru(l
);
1424 scan
= zone_page_state(zone
, NR_LRU_BASE
+ l
);
1427 scan
= (scan
* percent
[file
]) / 100;
1429 zone
->lru
[l
].nr_scan
+= scan
;
1430 nr
[l
] = zone
->lru
[l
].nr_scan
;
1431 if (nr
[l
] >= sc
->swap_cluster_max
)
1432 zone
->lru
[l
].nr_scan
= 0;
1437 * This reclaim occurs not because zone memory shortage
1438 * but because memory controller hits its limit.
1439 * Don't modify zone reclaim related data.
1441 nr
[l
] = mem_cgroup_calc_reclaim(sc
->mem_cgroup
, zone
,
1446 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1447 nr
[LRU_INACTIVE_FILE
]) {
1448 for_each_evictable_lru(l
) {
1450 nr_to_scan
= min(nr
[l
],
1451 (unsigned long)sc
->swap_cluster_max
);
1452 nr
[l
] -= nr_to_scan
;
1454 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1455 zone
, sc
, priority
);
1461 * Even if we did not try to evict anon pages at all, we want to
1462 * rebalance the anon lru active/inactive ratio.
1464 if (!scan_global_lru(sc
) || inactive_anon_is_low(zone
))
1465 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1466 else if (!scan_global_lru(sc
))
1467 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1469 throttle_vm_writeout(sc
->gfp_mask
);
1470 return nr_reclaimed
;
1474 * This is the direct reclaim path, for page-allocating processes. We only
1475 * try to reclaim pages from zones which will satisfy the caller's allocation
1478 * We reclaim from a zone even if that zone is over pages_high. Because:
1479 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1481 * b) The zones may be over pages_high but they must go *over* pages_high to
1482 * satisfy the `incremental min' zone defense algorithm.
1484 * Returns the number of reclaimed pages.
1486 * If a zone is deemed to be full of pinned pages then just give it a light
1487 * scan then give up on it.
1489 static unsigned long shrink_zones(int priority
, struct zonelist
*zonelist
,
1490 struct scan_control
*sc
)
1492 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1493 unsigned long nr_reclaimed
= 0;
1497 sc
->all_unreclaimable
= 1;
1498 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1499 if (!populated_zone(zone
))
1502 * Take care memory controller reclaiming has small influence
1505 if (scan_global_lru(sc
)) {
1506 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1508 note_zone_scanning_priority(zone
, priority
);
1510 if (zone_is_all_unreclaimable(zone
) &&
1511 priority
!= DEF_PRIORITY
)
1512 continue; /* Let kswapd poll it */
1513 sc
->all_unreclaimable
= 0;
1516 * Ignore cpuset limitation here. We just want to reduce
1517 * # of used pages by us regardless of memory shortage.
1519 sc
->all_unreclaimable
= 0;
1520 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1524 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1527 return nr_reclaimed
;
1531 * This is the main entry point to direct page reclaim.
1533 * If a full scan of the inactive list fails to free enough memory then we
1534 * are "out of memory" and something needs to be killed.
1536 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1537 * high - the zone may be full of dirty or under-writeback pages, which this
1538 * caller can't do much about. We kick pdflush and take explicit naps in the
1539 * hope that some of these pages can be written. But if the allocating task
1540 * holds filesystem locks which prevent writeout this might not work, and the
1541 * allocation attempt will fail.
1543 * returns: 0, if no pages reclaimed
1544 * else, the number of pages reclaimed
1546 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1547 struct scan_control
*sc
)
1550 unsigned long ret
= 0;
1551 unsigned long total_scanned
= 0;
1552 unsigned long nr_reclaimed
= 0;
1553 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1554 unsigned long lru_pages
= 0;
1557 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1559 delayacct_freepages_start();
1561 if (scan_global_lru(sc
))
1562 count_vm_event(ALLOCSTALL
);
1564 * mem_cgroup will not do shrink_slab.
1566 if (scan_global_lru(sc
)) {
1567 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1569 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1572 lru_pages
+= zone_lru_pages(zone
);
1576 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1579 disable_swap_token();
1580 nr_reclaimed
+= shrink_zones(priority
, zonelist
, sc
);
1582 * Don't shrink slabs when reclaiming memory from
1583 * over limit cgroups
1585 if (scan_global_lru(sc
)) {
1586 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1587 if (reclaim_state
) {
1588 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1589 reclaim_state
->reclaimed_slab
= 0;
1592 total_scanned
+= sc
->nr_scanned
;
1593 if (nr_reclaimed
>= sc
->swap_cluster_max
) {
1599 * Try to write back as many pages as we just scanned. This
1600 * tends to cause slow streaming writers to write data to the
1601 * disk smoothly, at the dirtying rate, which is nice. But
1602 * that's undesirable in laptop mode, where we *want* lumpy
1603 * writeout. So in laptop mode, write out the whole world.
1605 if (total_scanned
> sc
->swap_cluster_max
+
1606 sc
->swap_cluster_max
/ 2) {
1607 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1608 sc
->may_writepage
= 1;
1611 /* Take a nap, wait for some writeback to complete */
1612 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1613 congestion_wait(WRITE
, HZ
/10);
1615 /* top priority shrink_zones still had more to do? don't OOM, then */
1616 if (!sc
->all_unreclaimable
&& scan_global_lru(sc
))
1620 * Now that we've scanned all the zones at this priority level, note
1621 * that level within the zone so that the next thread which performs
1622 * scanning of this zone will immediately start out at this priority
1623 * level. This affects only the decision whether or not to bring
1624 * mapped pages onto the inactive list.
1629 if (scan_global_lru(sc
)) {
1630 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1632 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1635 zone
->prev_priority
= priority
;
1638 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1640 delayacct_freepages_end();
1645 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1648 struct scan_control sc
= {
1649 .gfp_mask
= gfp_mask
,
1650 .may_writepage
= !laptop_mode
,
1651 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1653 .swappiness
= vm_swappiness
,
1656 .isolate_pages
= isolate_pages_global
,
1659 return do_try_to_free_pages(zonelist
, &sc
);
1662 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1664 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1667 struct scan_control sc
= {
1668 .may_writepage
= !laptop_mode
,
1670 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1671 .swappiness
= vm_swappiness
,
1673 .mem_cgroup
= mem_cont
,
1674 .isolate_pages
= mem_cgroup_isolate_pages
,
1676 struct zonelist
*zonelist
;
1678 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1679 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1680 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1681 return do_try_to_free_pages(zonelist
, &sc
);
1686 * For kswapd, balance_pgdat() will work across all this node's zones until
1687 * they are all at pages_high.
1689 * Returns the number of pages which were actually freed.
1691 * There is special handling here for zones which are full of pinned pages.
1692 * This can happen if the pages are all mlocked, or if they are all used by
1693 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1694 * What we do is to detect the case where all pages in the zone have been
1695 * scanned twice and there has been zero successful reclaim. Mark the zone as
1696 * dead and from now on, only perform a short scan. Basically we're polling
1697 * the zone for when the problem goes away.
1699 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1700 * zones which have free_pages > pages_high, but once a zone is found to have
1701 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1702 * of the number of free pages in the lower zones. This interoperates with
1703 * the page allocator fallback scheme to ensure that aging of pages is balanced
1706 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1711 unsigned long total_scanned
;
1712 unsigned long nr_reclaimed
;
1713 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1714 struct scan_control sc
= {
1715 .gfp_mask
= GFP_KERNEL
,
1717 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1718 .swappiness
= vm_swappiness
,
1721 .isolate_pages
= isolate_pages_global
,
1724 * temp_priority is used to remember the scanning priority at which
1725 * this zone was successfully refilled to free_pages == pages_high.
1727 int temp_priority
[MAX_NR_ZONES
];
1732 sc
.may_writepage
= !laptop_mode
;
1733 count_vm_event(PAGEOUTRUN
);
1735 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1736 temp_priority
[i
] = DEF_PRIORITY
;
1738 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1739 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1740 unsigned long lru_pages
= 0;
1742 /* The swap token gets in the way of swapout... */
1744 disable_swap_token();
1749 * Scan in the highmem->dma direction for the highest
1750 * zone which needs scanning
1752 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1753 struct zone
*zone
= pgdat
->node_zones
+ i
;
1755 if (!populated_zone(zone
))
1758 if (zone_is_all_unreclaimable(zone
) &&
1759 priority
!= DEF_PRIORITY
)
1763 * Do some background aging of the anon list, to give
1764 * pages a chance to be referenced before reclaiming.
1766 if (inactive_anon_is_low(zone
))
1767 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
1770 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1779 for (i
= 0; i
<= end_zone
; i
++) {
1780 struct zone
*zone
= pgdat
->node_zones
+ i
;
1782 lru_pages
+= zone_lru_pages(zone
);
1786 * Now scan the zone in the dma->highmem direction, stopping
1787 * at the last zone which needs scanning.
1789 * We do this because the page allocator works in the opposite
1790 * direction. This prevents the page allocator from allocating
1791 * pages behind kswapd's direction of progress, which would
1792 * cause too much scanning of the lower zones.
1794 for (i
= 0; i
<= end_zone
; i
++) {
1795 struct zone
*zone
= pgdat
->node_zones
+ i
;
1798 if (!populated_zone(zone
))
1801 if (zone_is_all_unreclaimable(zone
) &&
1802 priority
!= DEF_PRIORITY
)
1805 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1808 temp_priority
[i
] = priority
;
1810 note_zone_scanning_priority(zone
, priority
);
1812 * We put equal pressure on every zone, unless one
1813 * zone has way too many pages free already.
1815 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1817 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1818 reclaim_state
->reclaimed_slab
= 0;
1819 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1821 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1822 total_scanned
+= sc
.nr_scanned
;
1823 if (zone_is_all_unreclaimable(zone
))
1825 if (nr_slab
== 0 && zone
->pages_scanned
>=
1826 (zone_lru_pages(zone
) * 6))
1828 ZONE_ALL_UNRECLAIMABLE
);
1830 * If we've done a decent amount of scanning and
1831 * the reclaim ratio is low, start doing writepage
1832 * even in laptop mode
1834 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1835 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1836 sc
.may_writepage
= 1;
1839 break; /* kswapd: all done */
1841 * OK, kswapd is getting into trouble. Take a nap, then take
1842 * another pass across the zones.
1844 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1845 congestion_wait(WRITE
, HZ
/10);
1848 * We do this so kswapd doesn't build up large priorities for
1849 * example when it is freeing in parallel with allocators. It
1850 * matches the direct reclaim path behaviour in terms of impact
1851 * on zone->*_priority.
1853 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1858 * Note within each zone the priority level at which this zone was
1859 * brought into a happy state. So that the next thread which scans this
1860 * zone will start out at that priority level.
1862 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1863 struct zone
*zone
= pgdat
->node_zones
+ i
;
1865 zone
->prev_priority
= temp_priority
[i
];
1867 if (!all_zones_ok
) {
1875 return nr_reclaimed
;
1879 * The background pageout daemon, started as a kernel thread
1880 * from the init process.
1882 * This basically trickles out pages so that we have _some_
1883 * free memory available even if there is no other activity
1884 * that frees anything up. This is needed for things like routing
1885 * etc, where we otherwise might have all activity going on in
1886 * asynchronous contexts that cannot page things out.
1888 * If there are applications that are active memory-allocators
1889 * (most normal use), this basically shouldn't matter.
1891 static int kswapd(void *p
)
1893 unsigned long order
;
1894 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1895 struct task_struct
*tsk
= current
;
1897 struct reclaim_state reclaim_state
= {
1898 .reclaimed_slab
= 0,
1900 node_to_cpumask_ptr(cpumask
, pgdat
->node_id
);
1902 if (!cpus_empty(*cpumask
))
1903 set_cpus_allowed_ptr(tsk
, cpumask
);
1904 current
->reclaim_state
= &reclaim_state
;
1907 * Tell the memory management that we're a "memory allocator",
1908 * and that if we need more memory we should get access to it
1909 * regardless (see "__alloc_pages()"). "kswapd" should
1910 * never get caught in the normal page freeing logic.
1912 * (Kswapd normally doesn't need memory anyway, but sometimes
1913 * you need a small amount of memory in order to be able to
1914 * page out something else, and this flag essentially protects
1915 * us from recursively trying to free more memory as we're
1916 * trying to free the first piece of memory in the first place).
1918 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1923 unsigned long new_order
;
1925 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1926 new_order
= pgdat
->kswapd_max_order
;
1927 pgdat
->kswapd_max_order
= 0;
1928 if (order
< new_order
) {
1930 * Don't sleep if someone wants a larger 'order'
1935 if (!freezing(current
))
1938 order
= pgdat
->kswapd_max_order
;
1940 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1942 if (!try_to_freeze()) {
1943 /* We can speed up thawing tasks if we don't call
1944 * balance_pgdat after returning from the refrigerator
1946 balance_pgdat(pgdat
, order
);
1953 * A zone is low on free memory, so wake its kswapd task to service it.
1955 void wakeup_kswapd(struct zone
*zone
, int order
)
1959 if (!populated_zone(zone
))
1962 pgdat
= zone
->zone_pgdat
;
1963 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1965 if (pgdat
->kswapd_max_order
< order
)
1966 pgdat
->kswapd_max_order
= order
;
1967 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1969 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1971 wake_up_interruptible(&pgdat
->kswapd_wait
);
1974 unsigned long global_lru_pages(void)
1976 return global_page_state(NR_ACTIVE_ANON
)
1977 + global_page_state(NR_ACTIVE_FILE
)
1978 + global_page_state(NR_INACTIVE_ANON
)
1979 + global_page_state(NR_INACTIVE_FILE
);
1984 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1985 * from LRU lists system-wide, for given pass and priority, and returns the
1986 * number of reclaimed pages
1988 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1990 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1991 int pass
, struct scan_control
*sc
)
1994 unsigned long nr_to_scan
, ret
= 0;
1997 for_each_zone(zone
) {
1999 if (!populated_zone(zone
))
2002 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
2005 for_each_evictable_lru(l
) {
2006 /* For pass = 0, we don't shrink the active list */
2008 (l
== LRU_ACTIVE
|| l
== LRU_ACTIVE_FILE
))
2011 zone
->lru
[l
].nr_scan
+=
2012 (zone_page_state(zone
, NR_LRU_BASE
+ l
)
2014 if (zone
->lru
[l
].nr_scan
>= nr_pages
|| pass
> 3) {
2015 zone
->lru
[l
].nr_scan
= 0;
2016 nr_to_scan
= min(nr_pages
,
2017 zone_page_state(zone
,
2019 ret
+= shrink_list(l
, nr_to_scan
, zone
,
2021 if (ret
>= nr_pages
)
2031 * Try to free `nr_pages' of memory, system-wide, and return the number of
2034 * Rather than trying to age LRUs the aim is to preserve the overall
2035 * LRU order by reclaiming preferentially
2036 * inactive > active > active referenced > active mapped
2038 unsigned long shrink_all_memory(unsigned long nr_pages
)
2040 unsigned long lru_pages
, nr_slab
;
2041 unsigned long ret
= 0;
2043 struct reclaim_state reclaim_state
;
2044 struct scan_control sc
= {
2045 .gfp_mask
= GFP_KERNEL
,
2047 .swap_cluster_max
= nr_pages
,
2049 .swappiness
= vm_swappiness
,
2050 .isolate_pages
= isolate_pages_global
,
2053 current
->reclaim_state
= &reclaim_state
;
2055 lru_pages
= global_lru_pages();
2056 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
2057 /* If slab caches are huge, it's better to hit them first */
2058 while (nr_slab
>= lru_pages
) {
2059 reclaim_state
.reclaimed_slab
= 0;
2060 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
2061 if (!reclaim_state
.reclaimed_slab
)
2064 ret
+= reclaim_state
.reclaimed_slab
;
2065 if (ret
>= nr_pages
)
2068 nr_slab
-= reclaim_state
.reclaimed_slab
;
2072 * We try to shrink LRUs in 5 passes:
2073 * 0 = Reclaim from inactive_list only
2074 * 1 = Reclaim from active list but don't reclaim mapped
2075 * 2 = 2nd pass of type 1
2076 * 3 = Reclaim mapped (normal reclaim)
2077 * 4 = 2nd pass of type 3
2079 for (pass
= 0; pass
< 5; pass
++) {
2082 /* Force reclaiming mapped pages in the passes #3 and #4 */
2085 sc
.swappiness
= 100;
2088 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
2089 unsigned long nr_to_scan
= nr_pages
- ret
;
2092 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
2093 if (ret
>= nr_pages
)
2096 reclaim_state
.reclaimed_slab
= 0;
2097 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
2098 global_lru_pages());
2099 ret
+= reclaim_state
.reclaimed_slab
;
2100 if (ret
>= nr_pages
)
2103 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
2104 congestion_wait(WRITE
, HZ
/ 10);
2109 * If ret = 0, we could not shrink LRUs, but there may be something
2114 reclaim_state
.reclaimed_slab
= 0;
2115 shrink_slab(nr_pages
, sc
.gfp_mask
, global_lru_pages());
2116 ret
+= reclaim_state
.reclaimed_slab
;
2117 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
2121 current
->reclaim_state
= NULL
;
2127 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2128 not required for correctness. So if the last cpu in a node goes
2129 away, we get changed to run anywhere: as the first one comes back,
2130 restore their cpu bindings. */
2131 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2132 unsigned long action
, void *hcpu
)
2136 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2137 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2138 pg_data_t
*pgdat
= NODE_DATA(nid
);
2139 node_to_cpumask_ptr(mask
, pgdat
->node_id
);
2141 if (any_online_cpu(*mask
) < nr_cpu_ids
)
2142 /* One of our CPUs online: restore mask */
2143 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2150 * This kswapd start function will be called by init and node-hot-add.
2151 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2153 int kswapd_run(int nid
)
2155 pg_data_t
*pgdat
= NODE_DATA(nid
);
2161 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2162 if (IS_ERR(pgdat
->kswapd
)) {
2163 /* failure at boot is fatal */
2164 BUG_ON(system_state
== SYSTEM_BOOTING
);
2165 printk("Failed to start kswapd on node %d\n",nid
);
2171 static int __init
kswapd_init(void)
2176 for_each_node_state(nid
, N_HIGH_MEMORY
)
2178 hotcpu_notifier(cpu_callback
, 0);
2182 module_init(kswapd_init
)
2188 * If non-zero call zone_reclaim when the number of free pages falls below
2191 int zone_reclaim_mode __read_mostly
;
2193 #define RECLAIM_OFF 0
2194 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2195 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2196 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2199 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2200 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2203 #define ZONE_RECLAIM_PRIORITY 4
2206 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2209 int sysctl_min_unmapped_ratio
= 1;
2212 * If the number of slab pages in a zone grows beyond this percentage then
2213 * slab reclaim needs to occur.
2215 int sysctl_min_slab_ratio
= 5;
2218 * Try to free up some pages from this zone through reclaim.
2220 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2222 /* Minimum pages needed in order to stay on node */
2223 const unsigned long nr_pages
= 1 << order
;
2224 struct task_struct
*p
= current
;
2225 struct reclaim_state reclaim_state
;
2227 unsigned long nr_reclaimed
= 0;
2228 struct scan_control sc
= {
2229 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2230 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2231 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2233 .gfp_mask
= gfp_mask
,
2234 .swappiness
= vm_swappiness
,
2235 .isolate_pages
= isolate_pages_global
,
2237 unsigned long slab_reclaimable
;
2239 disable_swap_token();
2242 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2243 * and we also need to be able to write out pages for RECLAIM_WRITE
2246 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2247 reclaim_state
.reclaimed_slab
= 0;
2248 p
->reclaim_state
= &reclaim_state
;
2250 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2251 zone_page_state(zone
, NR_FILE_MAPPED
) >
2252 zone
->min_unmapped_pages
) {
2254 * Free memory by calling shrink zone with increasing
2255 * priorities until we have enough memory freed.
2257 priority
= ZONE_RECLAIM_PRIORITY
;
2259 note_zone_scanning_priority(zone
, priority
);
2260 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
2262 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
2265 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2266 if (slab_reclaimable
> zone
->min_slab_pages
) {
2268 * shrink_slab() does not currently allow us to determine how
2269 * many pages were freed in this zone. So we take the current
2270 * number of slab pages and shake the slab until it is reduced
2271 * by the same nr_pages that we used for reclaiming unmapped
2274 * Note that shrink_slab will free memory on all zones and may
2277 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2278 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2279 slab_reclaimable
- nr_pages
)
2283 * Update nr_reclaimed by the number of slab pages we
2284 * reclaimed from this zone.
2286 nr_reclaimed
+= slab_reclaimable
-
2287 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2290 p
->reclaim_state
= NULL
;
2291 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2292 return nr_reclaimed
>= nr_pages
;
2295 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2301 * Zone reclaim reclaims unmapped file backed pages and
2302 * slab pages if we are over the defined limits.
2304 * A small portion of unmapped file backed pages is needed for
2305 * file I/O otherwise pages read by file I/O will be immediately
2306 * thrown out if the zone is overallocated. So we do not reclaim
2307 * if less than a specified percentage of the zone is used by
2308 * unmapped file backed pages.
2310 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2311 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2312 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2313 <= zone
->min_slab_pages
)
2316 if (zone_is_all_unreclaimable(zone
))
2320 * Do not scan if the allocation should not be delayed.
2322 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2326 * Only run zone reclaim on the local zone or on zones that do not
2327 * have associated processors. This will favor the local processor
2328 * over remote processors and spread off node memory allocations
2329 * as wide as possible.
2331 node_id
= zone_to_nid(zone
);
2332 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2335 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2337 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2338 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2344 #ifdef CONFIG_UNEVICTABLE_LRU
2346 * page_evictable - test whether a page is evictable
2347 * @page: the page to test
2348 * @vma: the VMA in which the page is or will be mapped, may be NULL
2350 * Test whether page is evictable--i.e., should be placed on active/inactive
2351 * lists vs unevictable list. The vma argument is !NULL when called from the
2352 * fault path to determine how to instantate a new page.
2354 * Reasons page might not be evictable:
2355 * (1) page's mapping marked unevictable
2356 * (2) page is part of an mlocked VMA
2359 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2362 if (mapping_unevictable(page_mapping(page
)))
2365 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2371 static void show_page_path(struct page
*page
)
2374 if (page_is_file_cache(page
)) {
2375 struct address_space
*mapping
= page
->mapping
;
2376 struct dentry
*dentry
;
2377 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
2379 spin_lock(&mapping
->i_mmap_lock
);
2380 dentry
= d_find_alias(mapping
->host
);
2381 printk(KERN_INFO
"rescued: %s %lu\n",
2382 dentry_path(dentry
, buf
, 256), pgoff
);
2383 spin_unlock(&mapping
->i_mmap_lock
);
2385 #if defined(CONFIG_MM_OWNER) && defined(CONFIG_MMU)
2386 struct anon_vma
*anon_vma
;
2387 struct vm_area_struct
*vma
;
2389 anon_vma
= page_lock_anon_vma(page
);
2393 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
2394 printk(KERN_INFO
"rescued: anon %s\n",
2395 vma
->vm_mm
->owner
->comm
);
2398 page_unlock_anon_vma(anon_vma
);
2405 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2406 * @page: page to check evictability and move to appropriate lru list
2407 * @zone: zone page is in
2409 * Checks a page for evictability and moves the page to the appropriate
2412 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2413 * have PageUnevictable set.
2415 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2417 VM_BUG_ON(PageActive(page
));
2420 ClearPageUnevictable(page
);
2421 if (page_evictable(page
, NULL
)) {
2422 enum lru_list l
= LRU_INACTIVE_ANON
+ page_is_file_cache(page
);
2424 show_page_path(page
);
2426 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2427 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2428 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2429 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2432 * rotate unevictable list
2434 SetPageUnevictable(page
);
2435 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2436 if (page_evictable(page
, NULL
))
2442 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2443 * @mapping: struct address_space to scan for evictable pages
2445 * Scan all pages in mapping. Check unevictable pages for
2446 * evictability and move them to the appropriate zone lru list.
2448 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2451 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2454 struct pagevec pvec
;
2456 if (mapping
->nrpages
== 0)
2459 pagevec_init(&pvec
, 0);
2460 while (next
< end
&&
2461 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2467 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2468 struct page
*page
= pvec
.pages
[i
];
2469 pgoff_t page_index
= page
->index
;
2470 struct zone
*pagezone
= page_zone(page
);
2473 if (page_index
> next
)
2477 if (pagezone
!= zone
) {
2479 spin_unlock_irq(&zone
->lru_lock
);
2481 spin_lock_irq(&zone
->lru_lock
);
2484 if (PageLRU(page
) && PageUnevictable(page
))
2485 check_move_unevictable_page(page
, zone
);
2488 spin_unlock_irq(&zone
->lru_lock
);
2489 pagevec_release(&pvec
);
2491 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2497 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2498 * @zone - zone of which to scan the unevictable list
2500 * Scan @zone's unevictable LRU lists to check for pages that have become
2501 * evictable. Move those that have to @zone's inactive list where they
2502 * become candidates for reclaim, unless shrink_inactive_zone() decides
2503 * to reactivate them. Pages that are still unevictable are rotated
2504 * back onto @zone's unevictable list.
2506 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2507 void scan_zone_unevictable_pages(struct zone
*zone
)
2509 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2511 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2513 while (nr_to_scan
> 0) {
2514 unsigned long batch_size
= min(nr_to_scan
,
2515 SCAN_UNEVICTABLE_BATCH_SIZE
);
2517 spin_lock_irq(&zone
->lru_lock
);
2518 for (scan
= 0; scan
< batch_size
; scan
++) {
2519 struct page
*page
= lru_to_page(l_unevictable
);
2521 if (!trylock_page(page
))
2524 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2526 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2527 check_move_unevictable_page(page
, zone
);
2531 spin_unlock_irq(&zone
->lru_lock
);
2533 nr_to_scan
-= batch_size
;
2539 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2541 * A really big hammer: scan all zones' unevictable LRU lists to check for
2542 * pages that have become evictable. Move those back to the zones'
2543 * inactive list where they become candidates for reclaim.
2544 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2545 * and we add swap to the system. As such, it runs in the context of a task
2546 * that has possibly/probably made some previously unevictable pages
2549 void scan_all_zones_unevictable_pages(void)
2553 for_each_zone(zone
) {
2554 scan_zone_unevictable_pages(zone
);
2559 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2560 * all nodes' unevictable lists for evictable pages
2562 unsigned long scan_unevictable_pages
;
2564 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2565 struct file
*file
, void __user
*buffer
,
2566 size_t *length
, loff_t
*ppos
)
2568 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2570 if (write
&& *(unsigned long *)table
->data
)
2571 scan_all_zones_unevictable_pages();
2573 scan_unevictable_pages
= 0;
2578 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2579 * a specified node's per zone unevictable lists for evictable pages.
2582 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2583 struct sysdev_attribute
*attr
,
2586 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2589 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2590 struct sysdev_attribute
*attr
,
2591 const char *buf
, size_t count
)
2593 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2596 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2599 return 1; /* zero is no-op */
2601 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2602 if (!populated_zone(zone
))
2604 scan_zone_unevictable_pages(zone
);
2610 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2611 read_scan_unevictable_node
,
2612 write_scan_unevictable_node
);
2614 int scan_unevictable_register_node(struct node
*node
)
2616 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2619 void scan_unevictable_unregister_node(struct node
*node
)
2621 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);