1 Linux Phonet protocol family
2 ============================
7 Phonet is a packet protocol used by Nokia cellular modems for both IPC
8 and RPC. With the Linux Phonet socket family, Linux host processes can
9 receive and send messages from/to the modem, or any other external
10 device attached to the modem. The modem takes care of routing.
12 Phonet packets can be exchanged through various hardware connections
13 depending on the device, such as:
14 - USB with the CDC Phonet interface,
17 - an RS232 serial port (with a dedicated "FBUS" line discipline),
18 - the SSI bus with some TI OMAP processors.
24 Phonet packets have a common header as follows:
27 uint8_t pn_media; /* Media type (link-layer identifier) */
28 uint8_t pn_rdev; /* Receiver device ID */
29 uint8_t pn_sdev; /* Sender device ID */
30 uint8_t pn_res; /* Resource ID or function */
31 uint16_t pn_length; /* Big-endian message byte length (minus 6) */
32 uint8_t pn_robj; /* Receiver object ID */
33 uint8_t pn_sobj; /* Sender object ID */
36 On Linux, the link-layer header includes the pn_media byte (see below).
37 The next 7 bytes are part of the network-layer header.
39 The device ID is split: the 6 higher-order bits constitute the device
40 address, while the 2 lower-order bits are used for multiplexing, as are
41 the 8-bit object identifiers. As such, Phonet can be considered as a
42 network layer with 6 bits of address space and 10 bits for transport
43 protocol (much like port numbers in IP world).
45 The modem always has address number zero. All other device have a their
52 Phonet links are always point-to-point links. The link layer header
53 consists of a single Phonet media type byte. It uniquely identifies the
54 link through which the packet is transmitted, from the modem's
55 perspective. Each Phonet network device shall prepend and set the media
56 type byte as appropriate. For convenience, a common phonet_header_ops
57 link-layer header operations structure is provided. It sets the
58 media type according to the network device hardware address.
60 Linux Phonet network interfaces support a dedicated link layer packets
61 type (ETH_P_PHONET) which is out of the Ethernet type range. They can
62 only send and receive Phonet packets.
64 The virtual TUN tunnel device driver can also be used for Phonet. This
65 requires IFF_TUN mode, _without_ the IFF_NO_PI flag. In this case,
66 there is no link-layer header, so there is no Phonet media type byte.
68 Note that Phonet interfaces are not allowed to re-order packets, so
69 only the (default) Linux FIFO qdisc should be used with them.
75 The Phonet socket address family maps the Phonet packet header:
78 sa_family_t spn_family; /* AF_PHONET */
79 uint8_t spn_obj; /* Object ID */
80 uint8_t spn_dev; /* Device ID */
81 uint8_t spn_resource; /* Resource or function */
82 uint8_t spn_zero[...]; /* Padding */
85 The resource field is only used when sending and receiving;
86 It is ignored by bind() and getsockname().
89 Low-level datagram protocol
90 ---------------------------
92 Applications can send Phonet messages using the Phonet datagram socket
93 protocol from the PF_PHONET family. Each socket is bound to one of the
94 2^10 object IDs available, and can send and receive packets with any
97 struct sockaddr_pn addr = { .spn_family = AF_PHONET, };
99 socklen_t addrlen = sizeof(addr);
102 fd = socket(PF_PHONET, SOCK_DGRAM, 0);
103 bind(fd, (struct sockaddr *)&addr, sizeof(addr));
106 sendto(fd, msg, msglen, 0, (struct sockaddr *)&addr, sizeof(addr));
107 len = recvfrom(fd, buf, sizeof(buf), 0,
108 (struct sockaddr *)&addr, &addrlen);
110 This protocol follows the SOCK_DGRAM connection-less semantics.
111 However, connect() and getpeername() are not supported, as they did
112 not seem useful with Phonet usages (could be added easily).
115 Resource subscription
116 ---------------------
118 A Phonet datagram socket can be subscribed to any number of 8-bits
119 Phonet resources, as follow:
122 ioctl(fd, SIOCPNADDRESOURCE, &res);
124 Subscription is similarly cancelled using the SIOCPNDELRESOURCE I/O
125 control request, or when the socket is closed.
127 Note that no more than one socket can be subcribed to any given
128 resource at a time. If not, ioctl() will return EBUSY.
134 The Phonet Pipe protocol is a simple sequenced packets protocol
135 with end-to-end congestion control. It uses the passive listening
136 socket paradigm. The listening socket is bound to an unique free object
137 ID. Each listening socket can handle up to 255 simultaneous
138 connections, one per accept()'d socket.
142 lfd = socket(PF_PHONET, SOCK_SEQPACKET, PN_PROTO_PIPE);
143 listen (lfd, INT_MAX);
146 cfd = accept(lfd, NULL, NULL);
150 ssize_t len = read(cfd, buf, sizeof(buf));
154 write(cfd, msg, msglen);
157 Connections are established between two endpoints by a "third party"
158 application. This means that both endpoints are passive; so connect()
162 When polling a connected pipe socket for writability, there is an
163 intrinsic race condition whereby writability might be lost between the
164 polling and the writing system calls. In this case, the socket will
165 block until write becomes possible again, unless non-blocking mode
169 The pipe protocol provides two socket options at the SOL_PNPIPE level:
171 PNPIPE_ENCAP accepts one integer value (int) of:
173 PNPIPE_ENCAP_NONE: The socket operates normally (default).
175 PNPIPE_ENCAP_IP: The socket is used as a backend for a virtual IP
176 interface. This requires CAP_NET_ADMIN capability. GPRS data
177 support on Nokia modems can use this. Note that the socket cannot
178 be reliably poll()'d or read() from while in this mode.
180 PNPIPE_IFINDEX is a read-only integer value. It contains the
181 interface index of the network interface created by PNPIPE_ENCAP,
182 or zero if encapsulation is off.
185 Phonet Pipe-controller Implementation
186 -------------------------------------
188 Phonet Pipe-controller is enabled by selecting the CONFIG_PHONET_PIPECTRLR Kconfig
189 option. It is useful when communicating with those Nokia Modems which do not
190 implement Pipe controller in them e.g. Nokia Slim Modem used in ST-Ericsson
193 The implementation is based on the Data Connection Establishment Sequence
194 depicted in 'Nokia Wireless Modem API - Wireless_modem_user_guide.pdf'
197 It allows a phonet sequenced socket (host-pep) to initiate a Pipe connection
198 between itself and a remote pipe-end point (e.g. modem).
200 The implementation adds socket options at SOL_PNPIPE level:
203 It accepts an integer argument for setting value of pipe handle.
205 PNPIPE_ENABLE accepts one integer value (int). If set to zero, the pipe
206 is disabled. If the value is non-zero, the pipe is enabled. If the pipe
207 is not (yet) connected, ENOTCONN is error is returned.
209 The implementation also adds socket 'connect'. On calling the 'connect', pipe
210 will be created between the source socket and the destination, and the pipe
211 state will be set to PIPE_DISABLED.
213 After a pipe has been created and enabled successfully, the Pipe data can be
214 exchanged between the host-pep and remote-pep (modem).
216 User-space would typically follow below sequence with Pipe controller:-
219 -setsockopt for PNPIPE_PIPE_HANDLE
221 -setsockopt for PNPIPE_ENCAP_IP
222 -setsockopt for PNPIPE_ENABLE
228 Linux Phonet was initially written by Sakari Ailus.
229 Other contributors include Mikä Liljeberg, Andras Domokos,
230 Carlos Chinea and Rémi Denis-Courmont.
231 Copyright (C) 2008 Nokia Corporation.