USB: ehci saves some memory in ISO transfer descriptors
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / mips / kernel / setup.c
blob269c252d956f42c1d74ec85162af510c3e986141
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/bugs.h>
28 #include <asm/cache.h>
29 #include <asm/cpu.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/smp-ops.h>
33 #include <asm/system.h>
35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
37 EXPORT_SYMBOL(cpu_data);
39 #ifdef CONFIG_VT
40 struct screen_info screen_info;
41 #endif
44 * Despite it's name this variable is even if we don't have PCI
46 unsigned int PCI_DMA_BUS_IS_PHYS;
48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
51 * Setup information
53 * These are initialized so they are in the .data section
55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
57 EXPORT_SYMBOL(mips_machtype);
59 struct boot_mem_map boot_mem_map;
61 static char command_line[CL_SIZE];
62 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
65 * mips_io_port_base is the begin of the address space to which x86 style
66 * I/O ports are mapped.
68 const unsigned long mips_io_port_base __read_mostly = -1;
69 EXPORT_SYMBOL(mips_io_port_base);
72 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
73 * for the processor.
75 unsigned long isa_slot_offset;
76 EXPORT_SYMBOL(isa_slot_offset);
78 static struct resource code_resource = { .name = "Kernel code", };
79 static struct resource data_resource = { .name = "Kernel data", };
81 void __init add_memory_region(phys_t start, phys_t size, long type)
83 int x = boot_mem_map.nr_map;
84 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
86 /* Sanity check */
87 if (start + size < start) {
88 printk("Trying to add an invalid memory region, skipped\n");
89 return;
93 * Try to merge with previous entry if any. This is far less than
94 * perfect but is sufficient for most real world cases.
96 if (x && prev->addr + prev->size == start && prev->type == type) {
97 prev->size += size;
98 return;
101 if (x == BOOT_MEM_MAP_MAX) {
102 printk("Ooops! Too many entries in the memory map!\n");
103 return;
106 boot_mem_map.map[x].addr = start;
107 boot_mem_map.map[x].size = size;
108 boot_mem_map.map[x].type = type;
109 boot_mem_map.nr_map++;
112 static void __init print_memory_map(void)
114 int i;
115 const int field = 2 * sizeof(unsigned long);
117 for (i = 0; i < boot_mem_map.nr_map; i++) {
118 printk(" memory: %0*Lx @ %0*Lx ",
119 field, (unsigned long long) boot_mem_map.map[i].size,
120 field, (unsigned long long) boot_mem_map.map[i].addr);
122 switch (boot_mem_map.map[i].type) {
123 case BOOT_MEM_RAM:
124 printk("(usable)\n");
125 break;
126 case BOOT_MEM_ROM_DATA:
127 printk("(ROM data)\n");
128 break;
129 case BOOT_MEM_RESERVED:
130 printk("(reserved)\n");
131 break;
132 default:
133 printk("type %lu\n", boot_mem_map.map[i].type);
134 break;
140 * Manage initrd
142 #ifdef CONFIG_BLK_DEV_INITRD
144 static int __init rd_start_early(char *p)
146 unsigned long start = memparse(p, &p);
148 #ifdef CONFIG_64BIT
149 /* Guess if the sign extension was forgotten by bootloader */
150 if (start < XKPHYS)
151 start = (int)start;
152 #endif
153 initrd_start = start;
154 initrd_end += start;
155 return 0;
157 early_param("rd_start", rd_start_early);
159 static int __init rd_size_early(char *p)
161 initrd_end += memparse(p, &p);
162 return 0;
164 early_param("rd_size", rd_size_early);
166 /* it returns the next free pfn after initrd */
167 static unsigned long __init init_initrd(void)
169 unsigned long end;
170 u32 *initrd_header;
173 * Board specific code or command line parser should have
174 * already set up initrd_start and initrd_end. In these cases
175 * perfom sanity checks and use them if all looks good.
177 if (initrd_start && initrd_end > initrd_start)
178 goto sanitize;
181 * See if initrd has been added to the kernel image by
182 * arch/mips/boot/addinitrd.c. In that case a header is
183 * prepended to initrd and is made up by 8 bytes. The fisrt
184 * word is a magic number and the second one is the size of
185 * initrd. Initrd start must be page aligned in any cases.
187 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
188 if (initrd_header[0] != 0x494E5244)
189 goto disable;
190 initrd_start = (unsigned long)(initrd_header + 2);
191 initrd_end = initrd_start + initrd_header[1];
193 sanitize:
194 if (initrd_start & ~PAGE_MASK) {
195 printk(KERN_ERR "initrd start must be page aligned\n");
196 goto disable;
198 if (initrd_start < PAGE_OFFSET) {
199 printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
200 goto disable;
204 * Sanitize initrd addresses. For example firmware
205 * can't guess if they need to pass them through
206 * 64-bits values if the kernel has been built in pure
207 * 32-bit. We need also to switch from KSEG0 to XKPHYS
208 * addresses now, so the code can now safely use __pa().
210 end = __pa(initrd_end);
211 initrd_end = (unsigned long)__va(end);
212 initrd_start = (unsigned long)__va(__pa(initrd_start));
214 ROOT_DEV = Root_RAM0;
215 return PFN_UP(end);
216 disable:
217 initrd_start = 0;
218 initrd_end = 0;
219 return 0;
222 static void __init finalize_initrd(void)
224 unsigned long size = initrd_end - initrd_start;
226 if (size == 0) {
227 printk(KERN_INFO "Initrd not found or empty");
228 goto disable;
230 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
231 printk("Initrd extends beyond end of memory");
232 goto disable;
235 reserve_bootmem(__pa(initrd_start), size);
236 initrd_below_start_ok = 1;
238 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
239 initrd_start, size);
240 return;
241 disable:
242 printk(" - disabling initrd\n");
243 initrd_start = 0;
244 initrd_end = 0;
247 #else /* !CONFIG_BLK_DEV_INITRD */
249 static unsigned long __init init_initrd(void)
251 return 0;
254 #define finalize_initrd() do {} while (0)
256 #endif
259 * Initialize the bootmem allocator. It also setup initrd related data
260 * if needed.
262 #ifdef CONFIG_SGI_IP27
264 static void __init bootmem_init(void)
266 init_initrd();
267 finalize_initrd();
270 #else /* !CONFIG_SGI_IP27 */
272 static void __init bootmem_init(void)
274 unsigned long reserved_end;
275 unsigned long mapstart = ~0UL;
276 unsigned long bootmap_size;
277 int i;
280 * Init any data related to initrd. It's a nop if INITRD is
281 * not selected. Once that done we can determine the low bound
282 * of usable memory.
284 reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
287 * max_low_pfn is not a number of pages. The number of pages
288 * of the system is given by 'max_low_pfn - min_low_pfn'.
290 min_low_pfn = ~0UL;
291 max_low_pfn = 0;
294 * Find the highest page frame number we have available.
296 for (i = 0; i < boot_mem_map.nr_map; i++) {
297 unsigned long start, end;
299 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
300 continue;
302 start = PFN_UP(boot_mem_map.map[i].addr);
303 end = PFN_DOWN(boot_mem_map.map[i].addr
304 + boot_mem_map.map[i].size);
306 if (end > max_low_pfn)
307 max_low_pfn = end;
308 if (start < min_low_pfn)
309 min_low_pfn = start;
310 if (end <= reserved_end)
311 continue;
312 if (start >= mapstart)
313 continue;
314 mapstart = max(reserved_end, start);
317 if (min_low_pfn >= max_low_pfn)
318 panic("Incorrect memory mapping !!!");
319 if (min_low_pfn > ARCH_PFN_OFFSET) {
320 printk(KERN_INFO
321 "Wasting %lu bytes for tracking %lu unused pages\n",
322 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
323 min_low_pfn - ARCH_PFN_OFFSET);
324 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
325 printk(KERN_INFO
326 "%lu free pages won't be used\n",
327 ARCH_PFN_OFFSET - min_low_pfn);
329 min_low_pfn = ARCH_PFN_OFFSET;
332 * Determine low and high memory ranges
334 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
335 #ifdef CONFIG_HIGHMEM
336 highstart_pfn = PFN_DOWN(HIGHMEM_START);
337 highend_pfn = max_low_pfn;
338 #endif
339 max_low_pfn = PFN_DOWN(HIGHMEM_START);
343 * Initialize the boot-time allocator with low memory only.
345 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
346 min_low_pfn, max_low_pfn);
349 for (i = 0; i < boot_mem_map.nr_map; i++) {
350 unsigned long start, end;
352 start = PFN_UP(boot_mem_map.map[i].addr);
353 end = PFN_DOWN(boot_mem_map.map[i].addr
354 + boot_mem_map.map[i].size);
356 if (start <= min_low_pfn)
357 start = min_low_pfn;
358 if (start >= end)
359 continue;
361 #ifndef CONFIG_HIGHMEM
362 if (end > max_low_pfn)
363 end = max_low_pfn;
366 * ... finally, is the area going away?
368 if (end <= start)
369 continue;
370 #endif
372 add_active_range(0, start, end);
376 * Register fully available low RAM pages with the bootmem allocator.
378 for (i = 0; i < boot_mem_map.nr_map; i++) {
379 unsigned long start, end, size;
382 * Reserve usable memory.
384 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
385 continue;
387 start = PFN_UP(boot_mem_map.map[i].addr);
388 end = PFN_DOWN(boot_mem_map.map[i].addr
389 + boot_mem_map.map[i].size);
391 * We are rounding up the start address of usable memory
392 * and at the end of the usable range downwards.
394 if (start >= max_low_pfn)
395 continue;
396 if (start < reserved_end)
397 start = reserved_end;
398 if (end > max_low_pfn)
399 end = max_low_pfn;
402 * ... finally, is the area going away?
404 if (end <= start)
405 continue;
406 size = end - start;
408 /* Register lowmem ranges */
409 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
410 memory_present(0, start, end);
414 * Reserve the bootmap memory.
416 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
419 * Reserve initrd memory if needed.
421 finalize_initrd();
424 #endif /* CONFIG_SGI_IP27 */
427 * arch_mem_init - initialize memory managment subsystem
429 * o plat_mem_setup() detects the memory configuration and will record detected
430 * memory areas using add_memory_region.
432 * At this stage the memory configuration of the system is known to the
433 * kernel but generic memory managment system is still entirely uninitialized.
435 * o bootmem_init()
436 * o sparse_init()
437 * o paging_init()
439 * At this stage the bootmem allocator is ready to use.
441 * NOTE: historically plat_mem_setup did the entire platform initialization.
442 * This was rather impractical because it meant plat_mem_setup had to
443 * get away without any kind of memory allocator. To keep old code from
444 * breaking plat_setup was just renamed to plat_setup and a second platform
445 * initialization hook for anything else was introduced.
448 static int usermem __initdata = 0;
450 static int __init early_parse_mem(char *p)
452 unsigned long start, size;
455 * If a user specifies memory size, we
456 * blow away any automatically generated
457 * size.
459 if (usermem == 0) {
460 boot_mem_map.nr_map = 0;
461 usermem = 1;
463 start = 0;
464 size = memparse(p, &p);
465 if (*p == '@')
466 start = memparse(p + 1, &p);
468 add_memory_region(start, size, BOOT_MEM_RAM);
469 return 0;
471 early_param("mem", early_parse_mem);
473 static void __init arch_mem_init(char **cmdline_p)
475 extern void plat_mem_setup(void);
477 /* call board setup routine */
478 plat_mem_setup();
480 printk("Determined physical RAM map:\n");
481 print_memory_map();
483 strlcpy(command_line, arcs_cmdline, sizeof(command_line));
484 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
486 *cmdline_p = command_line;
488 parse_early_param();
490 if (usermem) {
491 printk("User-defined physical RAM map:\n");
492 print_memory_map();
495 bootmem_init();
496 sparse_init();
497 paging_init();
500 static void __init resource_init(void)
502 int i;
504 if (UNCAC_BASE != IO_BASE)
505 return;
507 code_resource.start = __pa_symbol(&_text);
508 code_resource.end = __pa_symbol(&_etext) - 1;
509 data_resource.start = __pa_symbol(&_etext);
510 data_resource.end = __pa_symbol(&_edata) - 1;
513 * Request address space for all standard RAM.
515 for (i = 0; i < boot_mem_map.nr_map; i++) {
516 struct resource *res;
517 unsigned long start, end;
519 start = boot_mem_map.map[i].addr;
520 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
521 if (start >= HIGHMEM_START)
522 continue;
523 if (end >= HIGHMEM_START)
524 end = HIGHMEM_START - 1;
526 res = alloc_bootmem(sizeof(struct resource));
527 switch (boot_mem_map.map[i].type) {
528 case BOOT_MEM_RAM:
529 case BOOT_MEM_ROM_DATA:
530 res->name = "System RAM";
531 break;
532 case BOOT_MEM_RESERVED:
533 default:
534 res->name = "reserved";
537 res->start = start;
538 res->end = end;
540 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
541 request_resource(&iomem_resource, res);
544 * We don't know which RAM region contains kernel data,
545 * so we try it repeatedly and let the resource manager
546 * test it.
548 request_resource(res, &code_resource);
549 request_resource(res, &data_resource);
553 void __init setup_arch(char **cmdline_p)
555 cpu_probe();
556 prom_init();
558 #ifdef CONFIG_EARLY_PRINTK
560 extern void setup_early_printk(void);
562 setup_early_printk();
564 #endif
565 cpu_report();
566 check_bugs_early();
568 #if defined(CONFIG_VT)
569 #if defined(CONFIG_VGA_CONSOLE)
570 conswitchp = &vga_con;
571 #elif defined(CONFIG_DUMMY_CONSOLE)
572 conswitchp = &dummy_con;
573 #endif
574 #endif
576 arch_mem_init(cmdline_p);
578 resource_init();
579 plat_smp_setup();
582 static int __init fpu_disable(char *s)
584 int i;
586 for (i = 0; i < NR_CPUS; i++)
587 cpu_data[i].options &= ~MIPS_CPU_FPU;
589 return 1;
592 __setup("nofpu", fpu_disable);
594 static int __init dsp_disable(char *s)
596 cpu_data[0].ases &= ~MIPS_ASE_DSP;
598 return 1;
601 __setup("nodsp", dsp_disable);
603 unsigned long kernelsp[NR_CPUS];
604 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
606 #ifdef CONFIG_DEBUG_FS
607 struct dentry *mips_debugfs_dir;
608 static int __init debugfs_mips(void)
610 struct dentry *d;
612 d = debugfs_create_dir("mips", NULL);
613 if (IS_ERR(d))
614 return PTR_ERR(d);
615 mips_debugfs_dir = d;
616 return 0;
618 arch_initcall(debugfs_mips);
619 #endif