Staging: comedi: range.c: properly mark up __user pointers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / lguest / page_tables.c
blob04b22128a47421cac65a6dd73480ee56c87ded1d
1 /*P:700
2 * The pagetable code, on the other hand, still shows the scars of
3 * previous encounters. It's functional, and as neat as it can be in the
4 * circumstances, but be wary, for these things are subtle and break easily.
5 * The Guest provides a virtual to physical mapping, but we can neither trust
6 * it nor use it: we verify and convert it here then point the CPU to the
7 * converted Guest pages when running the Guest.
8 :*/
10 /* Copyright (C) Rusty Russell IBM Corporation 2006.
11 * GPL v2 and any later version */
12 #include <linux/mm.h>
13 #include <linux/gfp.h>
14 #include <linux/types.h>
15 #include <linux/spinlock.h>
16 #include <linux/random.h>
17 #include <linux/percpu.h>
18 #include <asm/tlbflush.h>
19 #include <asm/uaccess.h>
20 #include <asm/bootparam.h>
21 #include "lg.h"
23 /*M:008
24 * We hold reference to pages, which prevents them from being swapped.
25 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
26 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
27 * could probably consider launching Guests as non-root.
28 :*/
30 /*H:300
31 * The Page Table Code
33 * We use two-level page tables for the Guest, or three-level with PAE. If
34 * you're not entirely comfortable with virtual addresses, physical addresses
35 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
36 * Table Handling" (with diagrams!).
38 * The Guest keeps page tables, but we maintain the actual ones here: these are
39 * called "shadow" page tables. Which is a very Guest-centric name: these are
40 * the real page tables the CPU uses, although we keep them up to date to
41 * reflect the Guest's. (See what I mean about weird naming? Since when do
42 * shadows reflect anything?)
44 * Anyway, this is the most complicated part of the Host code. There are seven
45 * parts to this:
46 * (i) Looking up a page table entry when the Guest faults,
47 * (ii) Making sure the Guest stack is mapped,
48 * (iii) Setting up a page table entry when the Guest tells us one has changed,
49 * (iv) Switching page tables,
50 * (v) Flushing (throwing away) page tables,
51 * (vi) Mapping the Switcher when the Guest is about to run,
52 * (vii) Setting up the page tables initially.
53 :*/
56 * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
57 * or 512 PTE entries with PAE (2MB).
59 #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
62 * For PAE we need the PMD index as well. We use the last 2MB, so we
63 * will need the last pmd entry of the last pmd page.
65 #ifdef CONFIG_X86_PAE
66 #define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
67 #define RESERVE_MEM 2U
68 #define CHECK_GPGD_MASK _PAGE_PRESENT
69 #else
70 #define RESERVE_MEM 4U
71 #define CHECK_GPGD_MASK _PAGE_TABLE
72 #endif
75 * We actually need a separate PTE page for each CPU. Remember that after the
76 * Switcher code itself comes two pages for each CPU, and we don't want this
77 * CPU's guest to see the pages of any other CPU.
79 static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
80 #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
82 /*H:320
83 * The page table code is curly enough to need helper functions to keep it
84 * clear and clean. The kernel itself provides many of them; one advantage
85 * of insisting that the Guest and Host use the same CONFIG_PAE setting.
87 * There are two functions which return pointers to the shadow (aka "real")
88 * page tables.
90 * spgd_addr() takes the virtual address and returns a pointer to the top-level
91 * page directory entry (PGD) for that address. Since we keep track of several
92 * page tables, the "i" argument tells us which one we're interested in (it's
93 * usually the current one).
95 static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
97 unsigned int index = pgd_index(vaddr);
99 #ifndef CONFIG_X86_PAE
100 /* We kill any Guest trying to touch the Switcher addresses. */
101 if (index >= SWITCHER_PGD_INDEX) {
102 kill_guest(cpu, "attempt to access switcher pages");
103 index = 0;
105 #endif
106 /* Return a pointer index'th pgd entry for the i'th page table. */
107 return &cpu->lg->pgdirs[i].pgdir[index];
110 #ifdef CONFIG_X86_PAE
112 * This routine then takes the PGD entry given above, which contains the
113 * address of the PMD page. It then returns a pointer to the PMD entry for the
114 * given address.
116 static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
118 unsigned int index = pmd_index(vaddr);
119 pmd_t *page;
121 /* We kill any Guest trying to touch the Switcher addresses. */
122 if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
123 index >= SWITCHER_PMD_INDEX) {
124 kill_guest(cpu, "attempt to access switcher pages");
125 index = 0;
128 /* You should never call this if the PGD entry wasn't valid */
129 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
130 page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
132 return &page[index];
134 #endif
137 * This routine then takes the page directory entry returned above, which
138 * contains the address of the page table entry (PTE) page. It then returns a
139 * pointer to the PTE entry for the given address.
141 static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
143 #ifdef CONFIG_X86_PAE
144 pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
145 pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
147 /* You should never call this if the PMD entry wasn't valid */
148 BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
149 #else
150 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
151 /* You should never call this if the PGD entry wasn't valid */
152 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
153 #endif
155 return &page[pte_index(vaddr)];
159 * These functions are just like the above two, except they access the Guest
160 * page tables. Hence they return a Guest address.
162 static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
164 unsigned int index = vaddr >> (PGDIR_SHIFT);
165 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
168 #ifdef CONFIG_X86_PAE
169 /* Follow the PGD to the PMD. */
170 static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
172 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
173 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
174 return gpage + pmd_index(vaddr) * sizeof(pmd_t);
177 /* Follow the PMD to the PTE. */
178 static unsigned long gpte_addr(struct lg_cpu *cpu,
179 pmd_t gpmd, unsigned long vaddr)
181 unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
183 BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
184 return gpage + pte_index(vaddr) * sizeof(pte_t);
186 #else
187 /* Follow the PGD to the PTE (no mid-level for !PAE). */
188 static unsigned long gpte_addr(struct lg_cpu *cpu,
189 pgd_t gpgd, unsigned long vaddr)
191 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
193 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
194 return gpage + pte_index(vaddr) * sizeof(pte_t);
196 #endif
197 /*:*/
199 /*M:014
200 * get_pfn is slow: we could probably try to grab batches of pages here as
201 * an optimization (ie. pre-faulting).
204 /*H:350
205 * This routine takes a page number given by the Guest and converts it to
206 * an actual, physical page number. It can fail for several reasons: the
207 * virtual address might not be mapped by the Launcher, the write flag is set
208 * and the page is read-only, or the write flag was set and the page was
209 * shared so had to be copied, but we ran out of memory.
211 * This holds a reference to the page, so release_pte() is careful to put that
212 * back.
214 static unsigned long get_pfn(unsigned long virtpfn, int write)
216 struct page *page;
218 /* gup me one page at this address please! */
219 if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
220 return page_to_pfn(page);
222 /* This value indicates failure. */
223 return -1UL;
226 /*H:340
227 * Converting a Guest page table entry to a shadow (ie. real) page table
228 * entry can be a little tricky. The flags are (almost) the same, but the
229 * Guest PTE contains a virtual page number: the CPU needs the real page
230 * number.
232 static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
234 unsigned long pfn, base, flags;
237 * The Guest sets the global flag, because it thinks that it is using
238 * PGE. We only told it to use PGE so it would tell us whether it was
239 * flushing a kernel mapping or a userspace mapping. We don't actually
240 * use the global bit, so throw it away.
242 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
244 /* The Guest's pages are offset inside the Launcher. */
245 base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
248 * We need a temporary "unsigned long" variable to hold the answer from
249 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
250 * fit in spte.pfn. get_pfn() finds the real physical number of the
251 * page, given the virtual number.
253 pfn = get_pfn(base + pte_pfn(gpte), write);
254 if (pfn == -1UL) {
255 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
257 * When we destroy the Guest, we'll go through the shadow page
258 * tables and release_pte() them. Make sure we don't think
259 * this one is valid!
261 flags = 0;
263 /* Now we assemble our shadow PTE from the page number and flags. */
264 return pfn_pte(pfn, __pgprot(flags));
267 /*H:460 And to complete the chain, release_pte() looks like this: */
268 static void release_pte(pte_t pte)
271 * Remember that get_user_pages_fast() took a reference to the page, in
272 * get_pfn()? We have to put it back now.
274 if (pte_flags(pte) & _PAGE_PRESENT)
275 put_page(pte_page(pte));
277 /*:*/
279 static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
281 if ((pte_flags(gpte) & _PAGE_PSE) ||
282 pte_pfn(gpte) >= cpu->lg->pfn_limit)
283 kill_guest(cpu, "bad page table entry");
286 static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
288 if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
289 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
290 kill_guest(cpu, "bad page directory entry");
293 #ifdef CONFIG_X86_PAE
294 static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
296 if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
297 (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
298 kill_guest(cpu, "bad page middle directory entry");
300 #endif
302 /*H:330
303 * (i) Looking up a page table entry when the Guest faults.
305 * We saw this call in run_guest(): when we see a page fault in the Guest, we
306 * come here. That's because we only set up the shadow page tables lazily as
307 * they're needed, so we get page faults all the time and quietly fix them up
308 * and return to the Guest without it knowing.
310 * If we fixed up the fault (ie. we mapped the address), this routine returns
311 * true. Otherwise, it was a real fault and we need to tell the Guest.
313 bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
315 pgd_t gpgd;
316 pgd_t *spgd;
317 unsigned long gpte_ptr;
318 pte_t gpte;
319 pte_t *spte;
321 /* Mid level for PAE. */
322 #ifdef CONFIG_X86_PAE
323 pmd_t *spmd;
324 pmd_t gpmd;
325 #endif
327 /* First step: get the top-level Guest page table entry. */
328 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
329 /* Toplevel not present? We can't map it in. */
330 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
331 return false;
333 /* Now look at the matching shadow entry. */
334 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
335 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
336 /* No shadow entry: allocate a new shadow PTE page. */
337 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
339 * This is not really the Guest's fault, but killing it is
340 * simple for this corner case.
342 if (!ptepage) {
343 kill_guest(cpu, "out of memory allocating pte page");
344 return false;
346 /* We check that the Guest pgd is OK. */
347 check_gpgd(cpu, gpgd);
349 * And we copy the flags to the shadow PGD entry. The page
350 * number in the shadow PGD is the page we just allocated.
352 set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
355 #ifdef CONFIG_X86_PAE
356 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
357 /* Middle level not present? We can't map it in. */
358 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
359 return false;
361 /* Now look at the matching shadow entry. */
362 spmd = spmd_addr(cpu, *spgd, vaddr);
364 if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
365 /* No shadow entry: allocate a new shadow PTE page. */
366 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
369 * This is not really the Guest's fault, but killing it is
370 * simple for this corner case.
372 if (!ptepage) {
373 kill_guest(cpu, "out of memory allocating pte page");
374 return false;
377 /* We check that the Guest pmd is OK. */
378 check_gpmd(cpu, gpmd);
381 * And we copy the flags to the shadow PMD entry. The page
382 * number in the shadow PMD is the page we just allocated.
384 set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
388 * OK, now we look at the lower level in the Guest page table: keep its
389 * address, because we might update it later.
391 gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
392 #else
394 * OK, now we look at the lower level in the Guest page table: keep its
395 * address, because we might update it later.
397 gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
398 #endif
400 /* Read the actual PTE value. */
401 gpte = lgread(cpu, gpte_ptr, pte_t);
403 /* If this page isn't in the Guest page tables, we can't page it in. */
404 if (!(pte_flags(gpte) & _PAGE_PRESENT))
405 return false;
408 * Check they're not trying to write to a page the Guest wants
409 * read-only (bit 2 of errcode == write).
411 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
412 return false;
414 /* User access to a kernel-only page? (bit 3 == user access) */
415 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
416 return false;
419 * Check that the Guest PTE flags are OK, and the page number is below
420 * the pfn_limit (ie. not mapping the Launcher binary).
422 check_gpte(cpu, gpte);
424 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
425 gpte = pte_mkyoung(gpte);
426 if (errcode & 2)
427 gpte = pte_mkdirty(gpte);
429 /* Get the pointer to the shadow PTE entry we're going to set. */
430 spte = spte_addr(cpu, *spgd, vaddr);
433 * If there was a valid shadow PTE entry here before, we release it.
434 * This can happen with a write to a previously read-only entry.
436 release_pte(*spte);
439 * If this is a write, we insist that the Guest page is writable (the
440 * final arg to gpte_to_spte()).
442 if (pte_dirty(gpte))
443 *spte = gpte_to_spte(cpu, gpte, 1);
444 else
446 * If this is a read, don't set the "writable" bit in the page
447 * table entry, even if the Guest says it's writable. That way
448 * we will come back here when a write does actually occur, so
449 * we can update the Guest's _PAGE_DIRTY flag.
451 set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
454 * Finally, we write the Guest PTE entry back: we've set the
455 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
457 lgwrite(cpu, gpte_ptr, pte_t, gpte);
460 * The fault is fixed, the page table is populated, the mapping
461 * manipulated, the result returned and the code complete. A small
462 * delay and a trace of alliteration are the only indications the Guest
463 * has that a page fault occurred at all.
465 return true;
468 /*H:360
469 * (ii) Making sure the Guest stack is mapped.
471 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
472 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
473 * we've seen that logic is quite long, and usually the stack pages are already
474 * mapped, so it's overkill.
476 * This is a quick version which answers the question: is this virtual address
477 * mapped by the shadow page tables, and is it writable?
479 static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
481 pgd_t *spgd;
482 unsigned long flags;
484 #ifdef CONFIG_X86_PAE
485 pmd_t *spmd;
486 #endif
487 /* Look at the current top level entry: is it present? */
488 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
489 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
490 return false;
492 #ifdef CONFIG_X86_PAE
493 spmd = spmd_addr(cpu, *spgd, vaddr);
494 if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
495 return false;
496 #endif
499 * Check the flags on the pte entry itself: it must be present and
500 * writable.
502 flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
504 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
508 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
509 * in the page tables, and if not, we call demand_page() with error code 2
510 * (meaning "write").
512 void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
514 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
515 kill_guest(cpu, "bad stack page %#lx", vaddr);
517 /*:*/
519 #ifdef CONFIG_X86_PAE
520 static void release_pmd(pmd_t *spmd)
522 /* If the entry's not present, there's nothing to release. */
523 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
524 unsigned int i;
525 pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
526 /* For each entry in the page, we might need to release it. */
527 for (i = 0; i < PTRS_PER_PTE; i++)
528 release_pte(ptepage[i]);
529 /* Now we can free the page of PTEs */
530 free_page((long)ptepage);
531 /* And zero out the PMD entry so we never release it twice. */
532 set_pmd(spmd, __pmd(0));
536 static void release_pgd(pgd_t *spgd)
538 /* If the entry's not present, there's nothing to release. */
539 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
540 unsigned int i;
541 pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
543 for (i = 0; i < PTRS_PER_PMD; i++)
544 release_pmd(&pmdpage[i]);
546 /* Now we can free the page of PMDs */
547 free_page((long)pmdpage);
548 /* And zero out the PGD entry so we never release it twice. */
549 set_pgd(spgd, __pgd(0));
553 #else /* !CONFIG_X86_PAE */
554 /*H:450
555 * If we chase down the release_pgd() code, the non-PAE version looks like
556 * this. The PAE version is almost identical, but instead of calling
557 * release_pte it calls release_pmd(), which looks much like this.
559 static void release_pgd(pgd_t *spgd)
561 /* If the entry's not present, there's nothing to release. */
562 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
563 unsigned int i;
565 * Converting the pfn to find the actual PTE page is easy: turn
566 * the page number into a physical address, then convert to a
567 * virtual address (easy for kernel pages like this one).
569 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
570 /* For each entry in the page, we might need to release it. */
571 for (i = 0; i < PTRS_PER_PTE; i++)
572 release_pte(ptepage[i]);
573 /* Now we can free the page of PTEs */
574 free_page((long)ptepage);
575 /* And zero out the PGD entry so we never release it twice. */
576 *spgd = __pgd(0);
579 #endif
581 /*H:445
582 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
583 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
584 * It simply releases every PTE page from 0 up to the Guest's kernel address.
586 static void flush_user_mappings(struct lguest *lg, int idx)
588 unsigned int i;
589 /* Release every pgd entry up to the kernel's address. */
590 for (i = 0; i < pgd_index(lg->kernel_address); i++)
591 release_pgd(lg->pgdirs[idx].pgdir + i);
594 /*H:440
595 * (v) Flushing (throwing away) page tables,
597 * The Guest has a hypercall to throw away the page tables: it's used when a
598 * large number of mappings have been changed.
600 void guest_pagetable_flush_user(struct lg_cpu *cpu)
602 /* Drop the userspace part of the current page table. */
603 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
605 /*:*/
607 /* We walk down the guest page tables to get a guest-physical address */
608 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
610 pgd_t gpgd;
611 pte_t gpte;
612 #ifdef CONFIG_X86_PAE
613 pmd_t gpmd;
614 #endif
615 /* First step: get the top-level Guest page table entry. */
616 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
617 /* Toplevel not present? We can't map it in. */
618 if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
619 kill_guest(cpu, "Bad address %#lx", vaddr);
620 return -1UL;
623 #ifdef CONFIG_X86_PAE
624 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
625 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
626 kill_guest(cpu, "Bad address %#lx", vaddr);
627 gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
628 #else
629 gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
630 #endif
631 if (!(pte_flags(gpte) & _PAGE_PRESENT))
632 kill_guest(cpu, "Bad address %#lx", vaddr);
634 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
638 * We keep several page tables. This is a simple routine to find the page
639 * table (if any) corresponding to this top-level address the Guest has given
640 * us.
642 static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
644 unsigned int i;
645 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
646 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
647 break;
648 return i;
651 /*H:435
652 * And this is us, creating the new page directory. If we really do
653 * allocate a new one (and so the kernel parts are not there), we set
654 * blank_pgdir.
656 static unsigned int new_pgdir(struct lg_cpu *cpu,
657 unsigned long gpgdir,
658 int *blank_pgdir)
660 unsigned int next;
661 #ifdef CONFIG_X86_PAE
662 pmd_t *pmd_table;
663 #endif
666 * We pick one entry at random to throw out. Choosing the Least
667 * Recently Used might be better, but this is easy.
669 next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
670 /* If it's never been allocated at all before, try now. */
671 if (!cpu->lg->pgdirs[next].pgdir) {
672 cpu->lg->pgdirs[next].pgdir =
673 (pgd_t *)get_zeroed_page(GFP_KERNEL);
674 /* If the allocation fails, just keep using the one we have */
675 if (!cpu->lg->pgdirs[next].pgdir)
676 next = cpu->cpu_pgd;
677 else {
678 #ifdef CONFIG_X86_PAE
680 * In PAE mode, allocate a pmd page and populate the
681 * last pgd entry.
683 pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
684 if (!pmd_table) {
685 free_page((long)cpu->lg->pgdirs[next].pgdir);
686 set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
687 next = cpu->cpu_pgd;
688 } else {
689 set_pgd(cpu->lg->pgdirs[next].pgdir +
690 SWITCHER_PGD_INDEX,
691 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
693 * This is a blank page, so there are no kernel
694 * mappings: caller must map the stack!
696 *blank_pgdir = 1;
698 #else
699 *blank_pgdir = 1;
700 #endif
703 /* Record which Guest toplevel this shadows. */
704 cpu->lg->pgdirs[next].gpgdir = gpgdir;
705 /* Release all the non-kernel mappings. */
706 flush_user_mappings(cpu->lg, next);
708 return next;
711 /*H:430
712 * (iv) Switching page tables
714 * Now we've seen all the page table setting and manipulation, let's see
715 * what happens when the Guest changes page tables (ie. changes the top-level
716 * pgdir). This occurs on almost every context switch.
718 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
720 int newpgdir, repin = 0;
722 /* Look to see if we have this one already. */
723 newpgdir = find_pgdir(cpu->lg, pgtable);
725 * If not, we allocate or mug an existing one: if it's a fresh one,
726 * repin gets set to 1.
728 if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
729 newpgdir = new_pgdir(cpu, pgtable, &repin);
730 /* Change the current pgd index to the new one. */
731 cpu->cpu_pgd = newpgdir;
732 /* If it was completely blank, we map in the Guest kernel stack */
733 if (repin)
734 pin_stack_pages(cpu);
737 /*H:470
738 * Finally, a routine which throws away everything: all PGD entries in all
739 * the shadow page tables, including the Guest's kernel mappings. This is used
740 * when we destroy the Guest.
742 static void release_all_pagetables(struct lguest *lg)
744 unsigned int i, j;
746 /* Every shadow pagetable this Guest has */
747 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
748 if (lg->pgdirs[i].pgdir) {
749 #ifdef CONFIG_X86_PAE
750 pgd_t *spgd;
751 pmd_t *pmdpage;
752 unsigned int k;
754 /* Get the last pmd page. */
755 spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
756 pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
759 * And release the pmd entries of that pmd page,
760 * except for the switcher pmd.
762 for (k = 0; k < SWITCHER_PMD_INDEX; k++)
763 release_pmd(&pmdpage[k]);
764 #endif
765 /* Every PGD entry except the Switcher at the top */
766 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
767 release_pgd(lg->pgdirs[i].pgdir + j);
772 * We also throw away everything when a Guest tells us it's changed a kernel
773 * mapping. Since kernel mappings are in every page table, it's easiest to
774 * throw them all away. This traps the Guest in amber for a while as
775 * everything faults back in, but it's rare.
777 void guest_pagetable_clear_all(struct lg_cpu *cpu)
779 release_all_pagetables(cpu->lg);
780 /* We need the Guest kernel stack mapped again. */
781 pin_stack_pages(cpu);
783 /*:*/
785 /*M:009
786 * Since we throw away all mappings when a kernel mapping changes, our
787 * performance sucks for guests using highmem. In fact, a guest with
788 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
789 * usually slower than a Guest with less memory.
791 * This, of course, cannot be fixed. It would take some kind of... well, I
792 * don't know, but the term "puissant code-fu" comes to mind.
795 /*H:420
796 * This is the routine which actually sets the page table entry for then
797 * "idx"'th shadow page table.
799 * Normally, we can just throw out the old entry and replace it with 0: if they
800 * use it demand_page() will put the new entry in. We need to do this anyway:
801 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
802 * is read from, and _PAGE_DIRTY when it's written to.
804 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
805 * these bits on PTEs immediately anyway. This is done to save the CPU from
806 * having to update them, but it helps us the same way: if they set
807 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
808 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
810 static void do_set_pte(struct lg_cpu *cpu, int idx,
811 unsigned long vaddr, pte_t gpte)
813 /* Look up the matching shadow page directory entry. */
814 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
815 #ifdef CONFIG_X86_PAE
816 pmd_t *spmd;
817 #endif
819 /* If the top level isn't present, there's no entry to update. */
820 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
821 #ifdef CONFIG_X86_PAE
822 spmd = spmd_addr(cpu, *spgd, vaddr);
823 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
824 #endif
825 /* Otherwise, start by releasing the existing entry. */
826 pte_t *spte = spte_addr(cpu, *spgd, vaddr);
827 release_pte(*spte);
830 * If they're setting this entry as dirty or accessed,
831 * we might as well put that entry they've given us in
832 * now. This shaves 10% off a copy-on-write
833 * micro-benchmark.
835 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
836 check_gpte(cpu, gpte);
837 set_pte(spte,
838 gpte_to_spte(cpu, gpte,
839 pte_flags(gpte) & _PAGE_DIRTY));
840 } else {
842 * Otherwise kill it and we can demand_page()
843 * it in later.
845 set_pte(spte, __pte(0));
847 #ifdef CONFIG_X86_PAE
849 #endif
853 /*H:410
854 * Updating a PTE entry is a little trickier.
856 * We keep track of several different page tables (the Guest uses one for each
857 * process, so it makes sense to cache at least a few). Each of these have
858 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
859 * all processes. So when the page table above that address changes, we update
860 * all the page tables, not just the current one. This is rare.
862 * The benefit is that when we have to track a new page table, we can keep all
863 * the kernel mappings. This speeds up context switch immensely.
865 void guest_set_pte(struct lg_cpu *cpu,
866 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
869 * Kernel mappings must be changed on all top levels. Slow, but doesn't
870 * happen often.
872 if (vaddr >= cpu->lg->kernel_address) {
873 unsigned int i;
874 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
875 if (cpu->lg->pgdirs[i].pgdir)
876 do_set_pte(cpu, i, vaddr, gpte);
877 } else {
878 /* Is this page table one we have a shadow for? */
879 int pgdir = find_pgdir(cpu->lg, gpgdir);
880 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
881 /* If so, do the update. */
882 do_set_pte(cpu, pgdir, vaddr, gpte);
886 /*H:400
887 * (iii) Setting up a page table entry when the Guest tells us one has changed.
889 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
890 * with the other side of page tables while we're here: what happens when the
891 * Guest asks for a page table to be updated?
893 * We already saw that demand_page() will fill in the shadow page tables when
894 * needed, so we can simply remove shadow page table entries whenever the Guest
895 * tells us they've changed. When the Guest tries to use the new entry it will
896 * fault and demand_page() will fix it up.
898 * So with that in mind here's our code to update a (top-level) PGD entry:
900 void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
902 int pgdir;
904 if (idx >= SWITCHER_PGD_INDEX)
905 return;
907 /* If they're talking about a page table we have a shadow for... */
908 pgdir = find_pgdir(lg, gpgdir);
909 if (pgdir < ARRAY_SIZE(lg->pgdirs))
910 /* ... throw it away. */
911 release_pgd(lg->pgdirs[pgdir].pgdir + idx);
914 #ifdef CONFIG_X86_PAE
915 /* For setting a mid-level, we just throw everything away. It's easy. */
916 void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
918 guest_pagetable_clear_all(&lg->cpus[0]);
920 #endif
922 /*H:505
923 * To get through boot, we construct simple identity page mappings (which
924 * set virtual == physical) and linear mappings which will get the Guest far
925 * enough into the boot to create its own. The linear mapping means we
926 * simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET,
927 * as you'll see.
929 * We lay them out of the way, just below the initrd (which is why we need to
930 * know its size here).
932 static unsigned long setup_pagetables(struct lguest *lg,
933 unsigned long mem,
934 unsigned long initrd_size)
936 pgd_t __user *pgdir;
937 pte_t __user *linear;
938 unsigned long mem_base = (unsigned long)lg->mem_base;
939 unsigned int mapped_pages, i, linear_pages;
940 #ifdef CONFIG_X86_PAE
941 pmd_t __user *pmds;
942 unsigned int j;
943 pgd_t pgd;
944 pmd_t pmd;
945 #else
946 unsigned int phys_linear;
947 #endif
950 * We have mapped_pages frames to map, so we need linear_pages page
951 * tables to map them.
953 mapped_pages = mem / PAGE_SIZE;
954 linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
956 /* We put the toplevel page directory page at the top of memory. */
957 pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
959 /* Now we use the next linear_pages pages as pte pages */
960 linear = (void *)pgdir - linear_pages * PAGE_SIZE;
962 #ifdef CONFIG_X86_PAE
964 * And the single mid page goes below that. We only use one, but
965 * that's enough to map 1G, which definitely gets us through boot.
967 pmds = (void *)linear - PAGE_SIZE;
968 #endif
970 * Linear mapping is easy: put every page's address into the
971 * mapping in order.
973 for (i = 0; i < mapped_pages; i++) {
974 pte_t pte;
975 pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
976 if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
977 return -EFAULT;
980 #ifdef CONFIG_X86_PAE
982 * Make the Guest PMD entries point to the corresponding place in the
983 * linear mapping (up to one page worth of PMD).
985 for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
986 i += PTRS_PER_PTE, j++) {
987 pmd = pfn_pmd(((unsigned long)&linear[i] - mem_base)/PAGE_SIZE,
988 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
990 if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
991 return -EFAULT;
994 /* One PGD entry, pointing to that PMD page. */
995 pgd = __pgd(((unsigned long)pmds - mem_base) | _PAGE_PRESENT);
996 /* Copy it in as the first PGD entry (ie. addresses 0-1G). */
997 if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
998 return -EFAULT;
1000 * And the other PGD entry to make the linear mapping at PAGE_OFFSET
1002 if (copy_to_user(&pgdir[KERNEL_PGD_BOUNDARY], &pgd, sizeof(pgd)))
1003 return -EFAULT;
1004 #else
1006 * The top level points to the linear page table pages above.
1007 * We setup the identity and linear mappings here.
1009 phys_linear = (unsigned long)linear - mem_base;
1010 for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
1011 pgd_t pgd;
1013 * Create a PGD entry which points to the right part of the
1014 * linear PTE pages.
1016 pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
1017 (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
1020 * Copy it into the PGD page at 0 and PAGE_OFFSET.
1022 if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
1023 || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
1024 + i / PTRS_PER_PTE],
1025 &pgd, sizeof(pgd)))
1026 return -EFAULT;
1028 #endif
1031 * We return the top level (guest-physical) address: we remember where
1032 * this is to write it into lguest_data when the Guest initializes.
1034 return (unsigned long)pgdir - mem_base;
1037 /*H:500
1038 * (vii) Setting up the page tables initially.
1040 * When a Guest is first created, the Launcher tells us where the toplevel of
1041 * its first page table is. We set some things up here:
1043 int init_guest_pagetable(struct lguest *lg)
1045 u64 mem;
1046 u32 initrd_size;
1047 struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
1048 #ifdef CONFIG_X86_PAE
1049 pgd_t *pgd;
1050 pmd_t *pmd_table;
1051 #endif
1053 * Get the Guest memory size and the ramdisk size from the boot header
1054 * located at lg->mem_base (Guest address 0).
1056 if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
1057 || get_user(initrd_size, &boot->hdr.ramdisk_size))
1058 return -EFAULT;
1061 * We start on the first shadow page table, and give it a blank PGD
1062 * page.
1064 lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
1065 if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
1066 return lg->pgdirs[0].gpgdir;
1067 lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
1068 if (!lg->pgdirs[0].pgdir)
1069 return -ENOMEM;
1071 #ifdef CONFIG_X86_PAE
1072 /* For PAE, we also create the initial mid-level. */
1073 pgd = lg->pgdirs[0].pgdir;
1074 pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
1075 if (!pmd_table)
1076 return -ENOMEM;
1078 set_pgd(pgd + SWITCHER_PGD_INDEX,
1079 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
1080 #endif
1082 /* This is the current page table. */
1083 lg->cpus[0].cpu_pgd = 0;
1084 return 0;
1087 /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
1088 void page_table_guest_data_init(struct lg_cpu *cpu)
1090 /* We get the kernel address: above this is all kernel memory. */
1091 if (get_user(cpu->lg->kernel_address,
1092 &cpu->lg->lguest_data->kernel_address)
1094 * We tell the Guest that it can't use the top 2 or 4 MB
1095 * of virtual addresses used by the Switcher.
1097 || put_user(RESERVE_MEM * 1024 * 1024,
1098 &cpu->lg->lguest_data->reserve_mem)
1099 || put_user(cpu->lg->pgdirs[0].gpgdir,
1100 &cpu->lg->lguest_data->pgdir))
1101 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
1104 * In flush_user_mappings() we loop from 0 to
1105 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
1106 * Switcher mappings, so check that now.
1108 #ifdef CONFIG_X86_PAE
1109 if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
1110 pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
1111 #else
1112 if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
1113 #endif
1114 kill_guest(cpu, "bad kernel address %#lx",
1115 cpu->lg->kernel_address);
1118 /* When a Guest dies, our cleanup is fairly simple. */
1119 void free_guest_pagetable(struct lguest *lg)
1121 unsigned int i;
1123 /* Throw away all page table pages. */
1124 release_all_pagetables(lg);
1125 /* Now free the top levels: free_page() can handle 0 just fine. */
1126 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1127 free_page((long)lg->pgdirs[i].pgdir);
1130 /*H:480
1131 * (vi) Mapping the Switcher when the Guest is about to run.
1133 * The Switcher and the two pages for this CPU need to be visible in the
1134 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
1135 * for each CPU already set up, we just need to hook them in now we know which
1136 * Guest is about to run on this CPU.
1138 void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1140 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
1141 pte_t regs_pte;
1143 #ifdef CONFIG_X86_PAE
1144 pmd_t switcher_pmd;
1145 pmd_t *pmd_table;
1147 switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1148 PAGE_KERNEL_EXEC);
1150 /* Figure out where the pmd page is, by reading the PGD, and converting
1151 * it to a virtual address. */
1152 pmd_table = __va(pgd_pfn(cpu->lg->
1153 pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1154 << PAGE_SHIFT);
1155 /* Now write it into the shadow page table. */
1156 set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
1157 #else
1158 pgd_t switcher_pgd;
1161 * Make the last PGD entry for this Guest point to the Switcher's PTE
1162 * page for this CPU (with appropriate flags).
1164 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
1166 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
1168 #endif
1170 * We also change the Switcher PTE page. When we're running the Guest,
1171 * we want the Guest's "regs" page to appear where the first Switcher
1172 * page for this CPU is. This is an optimization: when the Switcher
1173 * saves the Guest registers, it saves them into the first page of this
1174 * CPU's "struct lguest_pages": if we make sure the Guest's register
1175 * page is already mapped there, we don't have to copy them out
1176 * again.
1178 regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1179 set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
1181 /*:*/
1183 static void free_switcher_pte_pages(void)
1185 unsigned int i;
1187 for_each_possible_cpu(i)
1188 free_page((long)switcher_pte_page(i));
1191 /*H:520
1192 * Setting up the Switcher PTE page for given CPU is fairly easy, given
1193 * the CPU number and the "struct page"s for the Switcher code itself.
1195 * Currently the Switcher is less than a page long, so "pages" is always 1.
1197 static __init void populate_switcher_pte_page(unsigned int cpu,
1198 struct page *switcher_page[],
1199 unsigned int pages)
1201 unsigned int i;
1202 pte_t *pte = switcher_pte_page(cpu);
1204 /* The first entries are easy: they map the Switcher code. */
1205 for (i = 0; i < pages; i++) {
1206 set_pte(&pte[i], mk_pte(switcher_page[i],
1207 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1210 /* The only other thing we map is this CPU's pair of pages. */
1211 i = pages + cpu*2;
1213 /* First page (Guest registers) is writable from the Guest */
1214 set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
1215 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
1218 * The second page contains the "struct lguest_ro_state", and is
1219 * read-only.
1221 set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
1222 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1226 * We've made it through the page table code. Perhaps our tired brains are
1227 * still processing the details, or perhaps we're simply glad it's over.
1229 * If nothing else, note that all this complexity in juggling shadow page tables
1230 * in sync with the Guest's page tables is for one reason: for most Guests this
1231 * page table dance determines how bad performance will be. This is why Xen
1232 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1233 * have implemented shadow page table support directly into hardware.
1235 * There is just one file remaining in the Host.
1238 /*H:510
1239 * At boot or module load time, init_pagetables() allocates and populates
1240 * the Switcher PTE page for each CPU.
1242 __init int init_pagetables(struct page **switcher_page, unsigned int pages)
1244 unsigned int i;
1246 for_each_possible_cpu(i) {
1247 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
1248 if (!switcher_pte_page(i)) {
1249 free_switcher_pte_pages();
1250 return -ENOMEM;
1252 populate_switcher_pte_page(i, switcher_page, pages);
1254 return 0;
1256 /*:*/
1258 /* Cleaning up simply involves freeing the PTE page for each CPU. */
1259 void free_pagetables(void)
1261 free_switcher_pte_pages();