Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / firewire / fw-ohci.c
blob1180d0be0bb4c0536cd7917cbd68910518f67450
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
34 #include <asm/page.h>
35 #include <asm/system.h>
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
44 #define DESCRIPTOR_OUTPUT_MORE 0
45 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST (3 << 12)
48 #define DESCRIPTOR_STATUS (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
50 #define DESCRIPTOR_PING (1 << 7)
51 #define DESCRIPTOR_YY (1 << 6)
52 #define DESCRIPTOR_NO_IRQ (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
56 #define DESCRIPTOR_WAIT (3 << 0)
58 struct descriptor {
59 __le16 req_count;
60 __le16 control;
61 __le32 data_address;
62 __le32 branch_address;
63 __le16 res_count;
64 __le16 transfer_status;
65 } __attribute__((aligned(16)));
67 struct db_descriptor {
68 __le16 first_size;
69 __le16 control;
70 __le16 second_req_count;
71 __le16 first_req_count;
72 __le32 branch_address;
73 __le16 second_res_count;
74 __le16 first_res_count;
75 __le32 reserved0;
76 __le32 first_buffer;
77 __le32 second_buffer;
78 __le32 reserved1;
79 } __attribute__((aligned(16)));
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
86 struct ar_buffer {
87 struct descriptor descriptor;
88 struct ar_buffer *next;
89 __le32 data[0];
92 struct ar_context {
93 struct fw_ohci *ohci;
94 struct ar_buffer *current_buffer;
95 struct ar_buffer *last_buffer;
96 void *pointer;
97 u32 regs;
98 struct tasklet_struct tasklet;
101 struct context;
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104 struct descriptor *d,
105 struct descriptor *last);
108 * A buffer that contains a block of DMA-able coherent memory used for
109 * storing a portion of a DMA descriptor program.
111 struct descriptor_buffer {
112 struct list_head list;
113 dma_addr_t buffer_bus;
114 size_t buffer_size;
115 size_t used;
116 struct descriptor buffer[0];
119 struct context {
120 struct fw_ohci *ohci;
121 u32 regs;
122 int total_allocation;
125 * List of page-sized buffers for storing DMA descriptors.
126 * Head of list contains buffers in use and tail of list contains
127 * free buffers.
129 struct list_head buffer_list;
132 * Pointer to a buffer inside buffer_list that contains the tail
133 * end of the current DMA program.
135 struct descriptor_buffer *buffer_tail;
138 * The descriptor containing the branch address of the first
139 * descriptor that has not yet been filled by the device.
141 struct descriptor *last;
144 * The last descriptor in the DMA program. It contains the branch
145 * address that must be updated upon appending a new descriptor.
147 struct descriptor *prev;
149 descriptor_callback_t callback;
151 struct tasklet_struct tasklet;
154 #define IT_HEADER_SY(v) ((v) << 0)
155 #define IT_HEADER_TCODE(v) ((v) << 4)
156 #define IT_HEADER_CHANNEL(v) ((v) << 8)
157 #define IT_HEADER_TAG(v) ((v) << 14)
158 #define IT_HEADER_SPEED(v) ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
161 struct iso_context {
162 struct fw_iso_context base;
163 struct context context;
164 int excess_bytes;
165 void *header;
166 size_t header_length;
169 #define CONFIG_ROM_SIZE 1024
171 struct fw_ohci {
172 struct fw_card card;
174 __iomem char *registers;
175 dma_addr_t self_id_bus;
176 __le32 *self_id_cpu;
177 struct tasklet_struct bus_reset_tasklet;
178 int node_id;
179 int generation;
180 int request_generation; /* for timestamping incoming requests */
181 u32 bus_seconds;
183 bool use_dualbuffer;
184 bool old_uninorth;
185 bool bus_reset_packet_quirk;
188 * Spinlock for accessing fw_ohci data. Never call out of
189 * this driver with this lock held.
191 spinlock_t lock;
192 u32 self_id_buffer[512];
194 /* Config rom buffers */
195 __be32 *config_rom;
196 dma_addr_t config_rom_bus;
197 __be32 *next_config_rom;
198 dma_addr_t next_config_rom_bus;
199 u32 next_header;
201 struct ar_context ar_request_ctx;
202 struct ar_context ar_response_ctx;
203 struct context at_request_ctx;
204 struct context at_response_ctx;
206 u32 it_context_mask;
207 struct iso_context *it_context_list;
208 u64 ir_context_channels;
209 u32 ir_context_mask;
210 struct iso_context *ir_context_list;
213 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
215 return container_of(card, struct fw_ohci, card);
218 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
219 #define IR_CONTEXT_BUFFER_FILL 0x80000000
220 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
221 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
222 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
223 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
225 #define CONTEXT_RUN 0x8000
226 #define CONTEXT_WAKE 0x1000
227 #define CONTEXT_DEAD 0x0800
228 #define CONTEXT_ACTIVE 0x0400
230 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
231 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
232 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
234 #define FW_OHCI_MAJOR 240
235 #define OHCI1394_REGISTER_SIZE 0x800
236 #define OHCI_LOOP_COUNT 500
237 #define OHCI1394_PCI_HCI_Control 0x40
238 #define SELF_ID_BUF_SIZE 0x800
239 #define OHCI_TCODE_PHY_PACKET 0x0e
240 #define OHCI_VERSION_1_1 0x010010
242 static char ohci_driver_name[] = KBUILD_MODNAME;
244 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
246 #define OHCI_PARAM_DEBUG_AT_AR 1
247 #define OHCI_PARAM_DEBUG_SELFIDS 2
248 #define OHCI_PARAM_DEBUG_IRQS 4
249 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
251 static int param_debug;
252 module_param_named(debug, param_debug, int, 0644);
253 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
254 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
255 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
256 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
257 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
258 ", or a combination, or all = -1)");
260 static void log_irqs(u32 evt)
262 if (likely(!(param_debug &
263 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
264 return;
266 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
267 !(evt & OHCI1394_busReset))
268 return;
270 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
271 evt & OHCI1394_selfIDComplete ? " selfID" : "",
272 evt & OHCI1394_RQPkt ? " AR_req" : "",
273 evt & OHCI1394_RSPkt ? " AR_resp" : "",
274 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
275 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
276 evt & OHCI1394_isochRx ? " IR" : "",
277 evt & OHCI1394_isochTx ? " IT" : "",
278 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
279 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
280 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
281 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
282 evt & OHCI1394_busReset ? " busReset" : "",
283 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
284 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
285 OHCI1394_respTxComplete | OHCI1394_isochRx |
286 OHCI1394_isochTx | OHCI1394_postedWriteErr |
287 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
288 OHCI1394_regAccessFail | OHCI1394_busReset)
289 ? " ?" : "");
292 static const char *speed[] = {
293 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
295 static const char *power[] = {
296 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
297 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
299 static const char port[] = { '.', '-', 'p', 'c', };
301 static char _p(u32 *s, int shift)
303 return port[*s >> shift & 3];
306 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
308 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
309 return;
311 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
312 self_id_count, generation, node_id);
314 for (; self_id_count--; ++s)
315 if ((*s & 1 << 23) == 0)
316 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
317 "%s gc=%d %s %s%s%s\n",
318 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
319 speed[*s >> 14 & 3], *s >> 16 & 63,
320 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
321 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
322 else
323 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
324 *s, *s >> 24 & 63,
325 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
326 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
329 static const char *evts[] = {
330 [0x00] = "evt_no_status", [0x01] = "-reserved-",
331 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
332 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
333 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
334 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
335 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
336 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
337 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
338 [0x10] = "-reserved-", [0x11] = "ack_complete",
339 [0x12] = "ack_pending ", [0x13] = "-reserved-",
340 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
341 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
342 [0x18] = "-reserved-", [0x19] = "-reserved-",
343 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
344 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
345 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
346 [0x20] = "pending/cancelled",
348 static const char *tcodes[] = {
349 [0x0] = "QW req", [0x1] = "BW req",
350 [0x2] = "W resp", [0x3] = "-reserved-",
351 [0x4] = "QR req", [0x5] = "BR req",
352 [0x6] = "QR resp", [0x7] = "BR resp",
353 [0x8] = "cycle start", [0x9] = "Lk req",
354 [0xa] = "async stream packet", [0xb] = "Lk resp",
355 [0xc] = "-reserved-", [0xd] = "-reserved-",
356 [0xe] = "link internal", [0xf] = "-reserved-",
358 static const char *phys[] = {
359 [0x0] = "phy config packet", [0x1] = "link-on packet",
360 [0x2] = "self-id packet", [0x3] = "-reserved-",
363 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
365 int tcode = header[0] >> 4 & 0xf;
366 char specific[12];
368 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
369 return;
371 if (unlikely(evt >= ARRAY_SIZE(evts)))
372 evt = 0x1f;
374 if (evt == OHCI1394_evt_bus_reset) {
375 fw_notify("A%c evt_bus_reset, generation %d\n",
376 dir, (header[2] >> 16) & 0xff);
377 return;
380 if (header[0] == ~header[1]) {
381 fw_notify("A%c %s, %s, %08x\n",
382 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
383 return;
386 switch (tcode) {
387 case 0x0: case 0x6: case 0x8:
388 snprintf(specific, sizeof(specific), " = %08x",
389 be32_to_cpu((__force __be32)header[3]));
390 break;
391 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
392 snprintf(specific, sizeof(specific), " %x,%x",
393 header[3] >> 16, header[3] & 0xffff);
394 break;
395 default:
396 specific[0] = '\0';
399 switch (tcode) {
400 case 0xe: case 0xa:
401 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
402 break;
403 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
404 fw_notify("A%c spd %x tl %02x, "
405 "%04x -> %04x, %s, "
406 "%s, %04x%08x%s\n",
407 dir, speed, header[0] >> 10 & 0x3f,
408 header[1] >> 16, header[0] >> 16, evts[evt],
409 tcodes[tcode], header[1] & 0xffff, header[2], specific);
410 break;
411 default:
412 fw_notify("A%c spd %x tl %02x, "
413 "%04x -> %04x, %s, "
414 "%s%s\n",
415 dir, speed, header[0] >> 10 & 0x3f,
416 header[1] >> 16, header[0] >> 16, evts[evt],
417 tcodes[tcode], specific);
421 #else
423 #define log_irqs(evt)
424 #define log_selfids(node_id, generation, self_id_count, sid)
425 #define log_ar_at_event(dir, speed, header, evt)
427 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
429 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
431 writel(data, ohci->registers + offset);
434 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
436 return readl(ohci->registers + offset);
439 static inline void flush_writes(const struct fw_ohci *ohci)
441 /* Do a dummy read to flush writes. */
442 reg_read(ohci, OHCI1394_Version);
445 static int ohci_update_phy_reg(struct fw_card *card, int addr,
446 int clear_bits, int set_bits)
448 struct fw_ohci *ohci = fw_ohci(card);
449 u32 val, old;
451 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
452 flush_writes(ohci);
453 msleep(2);
454 val = reg_read(ohci, OHCI1394_PhyControl);
455 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
456 fw_error("failed to set phy reg bits.\n");
457 return -EBUSY;
460 old = OHCI1394_PhyControl_ReadData(val);
461 old = (old & ~clear_bits) | set_bits;
462 reg_write(ohci, OHCI1394_PhyControl,
463 OHCI1394_PhyControl_Write(addr, old));
465 return 0;
468 static int ar_context_add_page(struct ar_context *ctx)
470 struct device *dev = ctx->ohci->card.device;
471 struct ar_buffer *ab;
472 dma_addr_t uninitialized_var(ab_bus);
473 size_t offset;
475 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
476 if (ab == NULL)
477 return -ENOMEM;
479 ab->next = NULL;
480 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
481 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
482 DESCRIPTOR_STATUS |
483 DESCRIPTOR_BRANCH_ALWAYS);
484 offset = offsetof(struct ar_buffer, data);
485 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
486 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
487 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
488 ab->descriptor.branch_address = 0;
490 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
491 ctx->last_buffer->next = ab;
492 ctx->last_buffer = ab;
494 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
495 flush_writes(ctx->ohci);
497 return 0;
500 static void ar_context_release(struct ar_context *ctx)
502 struct ar_buffer *ab, *ab_next;
503 size_t offset;
504 dma_addr_t ab_bus;
506 for (ab = ctx->current_buffer; ab; ab = ab_next) {
507 ab_next = ab->next;
508 offset = offsetof(struct ar_buffer, data);
509 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
510 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
511 ab, ab_bus);
515 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
516 #define cond_le32_to_cpu(v) \
517 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
518 #else
519 #define cond_le32_to_cpu(v) le32_to_cpu(v)
520 #endif
522 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
524 struct fw_ohci *ohci = ctx->ohci;
525 struct fw_packet p;
526 u32 status, length, tcode;
527 int evt;
529 p.header[0] = cond_le32_to_cpu(buffer[0]);
530 p.header[1] = cond_le32_to_cpu(buffer[1]);
531 p.header[2] = cond_le32_to_cpu(buffer[2]);
533 tcode = (p.header[0] >> 4) & 0x0f;
534 switch (tcode) {
535 case TCODE_WRITE_QUADLET_REQUEST:
536 case TCODE_READ_QUADLET_RESPONSE:
537 p.header[3] = (__force __u32) buffer[3];
538 p.header_length = 16;
539 p.payload_length = 0;
540 break;
542 case TCODE_READ_BLOCK_REQUEST :
543 p.header[3] = cond_le32_to_cpu(buffer[3]);
544 p.header_length = 16;
545 p.payload_length = 0;
546 break;
548 case TCODE_WRITE_BLOCK_REQUEST:
549 case TCODE_READ_BLOCK_RESPONSE:
550 case TCODE_LOCK_REQUEST:
551 case TCODE_LOCK_RESPONSE:
552 p.header[3] = cond_le32_to_cpu(buffer[3]);
553 p.header_length = 16;
554 p.payload_length = p.header[3] >> 16;
555 break;
557 case TCODE_WRITE_RESPONSE:
558 case TCODE_READ_QUADLET_REQUEST:
559 case OHCI_TCODE_PHY_PACKET:
560 p.header_length = 12;
561 p.payload_length = 0;
562 break;
564 default:
565 /* FIXME: Stop context, discard everything, and restart? */
566 p.header_length = 0;
567 p.payload_length = 0;
570 p.payload = (void *) buffer + p.header_length;
572 /* FIXME: What to do about evt_* errors? */
573 length = (p.header_length + p.payload_length + 3) / 4;
574 status = cond_le32_to_cpu(buffer[length]);
575 evt = (status >> 16) & 0x1f;
577 p.ack = evt - 16;
578 p.speed = (status >> 21) & 0x7;
579 p.timestamp = status & 0xffff;
580 p.generation = ohci->request_generation;
582 log_ar_at_event('R', p.speed, p.header, evt);
585 * The OHCI bus reset handler synthesizes a phy packet with
586 * the new generation number when a bus reset happens (see
587 * section 8.4.2.3). This helps us determine when a request
588 * was received and make sure we send the response in the same
589 * generation. We only need this for requests; for responses
590 * we use the unique tlabel for finding the matching
591 * request.
593 * Alas some chips sometimes emit bus reset packets with a
594 * wrong generation. We set the correct generation for these
595 * at a slightly incorrect time (in bus_reset_tasklet).
597 if (evt == OHCI1394_evt_bus_reset) {
598 if (!ohci->bus_reset_packet_quirk)
599 ohci->request_generation = (p.header[2] >> 16) & 0xff;
600 } else if (ctx == &ohci->ar_request_ctx) {
601 fw_core_handle_request(&ohci->card, &p);
602 } else {
603 fw_core_handle_response(&ohci->card, &p);
606 return buffer + length + 1;
609 static void ar_context_tasklet(unsigned long data)
611 struct ar_context *ctx = (struct ar_context *)data;
612 struct fw_ohci *ohci = ctx->ohci;
613 struct ar_buffer *ab;
614 struct descriptor *d;
615 void *buffer, *end;
617 ab = ctx->current_buffer;
618 d = &ab->descriptor;
620 if (d->res_count == 0) {
621 size_t size, rest, offset;
622 dma_addr_t start_bus;
623 void *start;
626 * This descriptor is finished and we may have a
627 * packet split across this and the next buffer. We
628 * reuse the page for reassembling the split packet.
631 offset = offsetof(struct ar_buffer, data);
632 start = buffer = ab;
633 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
635 ab = ab->next;
636 d = &ab->descriptor;
637 size = buffer + PAGE_SIZE - ctx->pointer;
638 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
639 memmove(buffer, ctx->pointer, size);
640 memcpy(buffer + size, ab->data, rest);
641 ctx->current_buffer = ab;
642 ctx->pointer = (void *) ab->data + rest;
643 end = buffer + size + rest;
645 while (buffer < end)
646 buffer = handle_ar_packet(ctx, buffer);
648 dma_free_coherent(ohci->card.device, PAGE_SIZE,
649 start, start_bus);
650 ar_context_add_page(ctx);
651 } else {
652 buffer = ctx->pointer;
653 ctx->pointer = end =
654 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
656 while (buffer < end)
657 buffer = handle_ar_packet(ctx, buffer);
661 static int ar_context_init(struct ar_context *ctx,
662 struct fw_ohci *ohci, u32 regs)
664 struct ar_buffer ab;
666 ctx->regs = regs;
667 ctx->ohci = ohci;
668 ctx->last_buffer = &ab;
669 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
671 ar_context_add_page(ctx);
672 ar_context_add_page(ctx);
673 ctx->current_buffer = ab.next;
674 ctx->pointer = ctx->current_buffer->data;
676 return 0;
679 static void ar_context_run(struct ar_context *ctx)
681 struct ar_buffer *ab = ctx->current_buffer;
682 dma_addr_t ab_bus;
683 size_t offset;
685 offset = offsetof(struct ar_buffer, data);
686 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
688 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
689 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
690 flush_writes(ctx->ohci);
693 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
695 int b, key;
697 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
698 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
700 /* figure out which descriptor the branch address goes in */
701 if (z == 2 && (b == 3 || key == 2))
702 return d;
703 else
704 return d + z - 1;
707 static void context_tasklet(unsigned long data)
709 struct context *ctx = (struct context *) data;
710 struct descriptor *d, *last;
711 u32 address;
712 int z;
713 struct descriptor_buffer *desc;
715 desc = list_entry(ctx->buffer_list.next,
716 struct descriptor_buffer, list);
717 last = ctx->last;
718 while (last->branch_address != 0) {
719 struct descriptor_buffer *old_desc = desc;
720 address = le32_to_cpu(last->branch_address);
721 z = address & 0xf;
722 address &= ~0xf;
724 /* If the branch address points to a buffer outside of the
725 * current buffer, advance to the next buffer. */
726 if (address < desc->buffer_bus ||
727 address >= desc->buffer_bus + desc->used)
728 desc = list_entry(desc->list.next,
729 struct descriptor_buffer, list);
730 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
731 last = find_branch_descriptor(d, z);
733 if (!ctx->callback(ctx, d, last))
734 break;
736 if (old_desc != desc) {
737 /* If we've advanced to the next buffer, move the
738 * previous buffer to the free list. */
739 unsigned long flags;
740 old_desc->used = 0;
741 spin_lock_irqsave(&ctx->ohci->lock, flags);
742 list_move_tail(&old_desc->list, &ctx->buffer_list);
743 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
745 ctx->last = last;
750 * Allocate a new buffer and add it to the list of free buffers for this
751 * context. Must be called with ohci->lock held.
753 static int context_add_buffer(struct context *ctx)
755 struct descriptor_buffer *desc;
756 dma_addr_t uninitialized_var(bus_addr);
757 int offset;
760 * 16MB of descriptors should be far more than enough for any DMA
761 * program. This will catch run-away userspace or DoS attacks.
763 if (ctx->total_allocation >= 16*1024*1024)
764 return -ENOMEM;
766 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
767 &bus_addr, GFP_ATOMIC);
768 if (!desc)
769 return -ENOMEM;
771 offset = (void *)&desc->buffer - (void *)desc;
772 desc->buffer_size = PAGE_SIZE - offset;
773 desc->buffer_bus = bus_addr + offset;
774 desc->used = 0;
776 list_add_tail(&desc->list, &ctx->buffer_list);
777 ctx->total_allocation += PAGE_SIZE;
779 return 0;
782 static int context_init(struct context *ctx, struct fw_ohci *ohci,
783 u32 regs, descriptor_callback_t callback)
785 ctx->ohci = ohci;
786 ctx->regs = regs;
787 ctx->total_allocation = 0;
789 INIT_LIST_HEAD(&ctx->buffer_list);
790 if (context_add_buffer(ctx) < 0)
791 return -ENOMEM;
793 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
794 struct descriptor_buffer, list);
796 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
797 ctx->callback = callback;
800 * We put a dummy descriptor in the buffer that has a NULL
801 * branch address and looks like it's been sent. That way we
802 * have a descriptor to append DMA programs to.
804 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
805 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
806 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
807 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
808 ctx->last = ctx->buffer_tail->buffer;
809 ctx->prev = ctx->buffer_tail->buffer;
811 return 0;
814 static void context_release(struct context *ctx)
816 struct fw_card *card = &ctx->ohci->card;
817 struct descriptor_buffer *desc, *tmp;
819 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
820 dma_free_coherent(card->device, PAGE_SIZE, desc,
821 desc->buffer_bus -
822 ((void *)&desc->buffer - (void *)desc));
825 /* Must be called with ohci->lock held */
826 static struct descriptor *context_get_descriptors(struct context *ctx,
827 int z, dma_addr_t *d_bus)
829 struct descriptor *d = NULL;
830 struct descriptor_buffer *desc = ctx->buffer_tail;
832 if (z * sizeof(*d) > desc->buffer_size)
833 return NULL;
835 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
836 /* No room for the descriptor in this buffer, so advance to the
837 * next one. */
839 if (desc->list.next == &ctx->buffer_list) {
840 /* If there is no free buffer next in the list,
841 * allocate one. */
842 if (context_add_buffer(ctx) < 0)
843 return NULL;
845 desc = list_entry(desc->list.next,
846 struct descriptor_buffer, list);
847 ctx->buffer_tail = desc;
850 d = desc->buffer + desc->used / sizeof(*d);
851 memset(d, 0, z * sizeof(*d));
852 *d_bus = desc->buffer_bus + desc->used;
854 return d;
857 static void context_run(struct context *ctx, u32 extra)
859 struct fw_ohci *ohci = ctx->ohci;
861 reg_write(ohci, COMMAND_PTR(ctx->regs),
862 le32_to_cpu(ctx->last->branch_address));
863 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
864 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
865 flush_writes(ohci);
868 static void context_append(struct context *ctx,
869 struct descriptor *d, int z, int extra)
871 dma_addr_t d_bus;
872 struct descriptor_buffer *desc = ctx->buffer_tail;
874 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
876 desc->used += (z + extra) * sizeof(*d);
877 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
878 ctx->prev = find_branch_descriptor(d, z);
880 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
881 flush_writes(ctx->ohci);
884 static void context_stop(struct context *ctx)
886 u32 reg;
887 int i;
889 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
890 flush_writes(ctx->ohci);
892 for (i = 0; i < 10; i++) {
893 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
894 if ((reg & CONTEXT_ACTIVE) == 0)
895 return;
897 mdelay(1);
899 fw_error("Error: DMA context still active (0x%08x)\n", reg);
902 struct driver_data {
903 struct fw_packet *packet;
907 * This function apppends a packet to the DMA queue for transmission.
908 * Must always be called with the ochi->lock held to ensure proper
909 * generation handling and locking around packet queue manipulation.
911 static int at_context_queue_packet(struct context *ctx,
912 struct fw_packet *packet)
914 struct fw_ohci *ohci = ctx->ohci;
915 dma_addr_t d_bus, uninitialized_var(payload_bus);
916 struct driver_data *driver_data;
917 struct descriptor *d, *last;
918 __le32 *header;
919 int z, tcode;
920 u32 reg;
922 d = context_get_descriptors(ctx, 4, &d_bus);
923 if (d == NULL) {
924 packet->ack = RCODE_SEND_ERROR;
925 return -1;
928 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
929 d[0].res_count = cpu_to_le16(packet->timestamp);
932 * The DMA format for asyncronous link packets is different
933 * from the IEEE1394 layout, so shift the fields around
934 * accordingly. If header_length is 8, it's a PHY packet, to
935 * which we need to prepend an extra quadlet.
938 header = (__le32 *) &d[1];
939 switch (packet->header_length) {
940 case 16:
941 case 12:
942 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
943 (packet->speed << 16));
944 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
945 (packet->header[0] & 0xffff0000));
946 header[2] = cpu_to_le32(packet->header[2]);
948 tcode = (packet->header[0] >> 4) & 0x0f;
949 if (TCODE_IS_BLOCK_PACKET(tcode))
950 header[3] = cpu_to_le32(packet->header[3]);
951 else
952 header[3] = (__force __le32) packet->header[3];
954 d[0].req_count = cpu_to_le16(packet->header_length);
955 break;
957 case 8:
958 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
959 (packet->speed << 16));
960 header[1] = cpu_to_le32(packet->header[0]);
961 header[2] = cpu_to_le32(packet->header[1]);
962 d[0].req_count = cpu_to_le16(12);
963 break;
965 case 4:
966 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
967 (packet->speed << 16));
968 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
969 d[0].req_count = cpu_to_le16(8);
970 break;
972 default:
973 /* BUG(); */
974 packet->ack = RCODE_SEND_ERROR;
975 return -1;
978 driver_data = (struct driver_data *) &d[3];
979 driver_data->packet = packet;
980 packet->driver_data = driver_data;
982 if (packet->payload_length > 0) {
983 payload_bus =
984 dma_map_single(ohci->card.device, packet->payload,
985 packet->payload_length, DMA_TO_DEVICE);
986 if (dma_mapping_error(ohci->card.device, payload_bus)) {
987 packet->ack = RCODE_SEND_ERROR;
988 return -1;
990 packet->payload_bus = payload_bus;
992 d[2].req_count = cpu_to_le16(packet->payload_length);
993 d[2].data_address = cpu_to_le32(payload_bus);
994 last = &d[2];
995 z = 3;
996 } else {
997 last = &d[0];
998 z = 2;
1001 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1002 DESCRIPTOR_IRQ_ALWAYS |
1003 DESCRIPTOR_BRANCH_ALWAYS);
1006 * If the controller and packet generations don't match, we need to
1007 * bail out and try again. If IntEvent.busReset is set, the AT context
1008 * is halted, so appending to the context and trying to run it is
1009 * futile. Most controllers do the right thing and just flush the AT
1010 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1011 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1012 * up stalling out. So we just bail out in software and try again
1013 * later, and everyone is happy.
1014 * FIXME: Document how the locking works.
1016 if (ohci->generation != packet->generation ||
1017 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1018 if (packet->payload_length > 0)
1019 dma_unmap_single(ohci->card.device, payload_bus,
1020 packet->payload_length, DMA_TO_DEVICE);
1021 packet->ack = RCODE_GENERATION;
1022 return -1;
1025 context_append(ctx, d, z, 4 - z);
1027 /* If the context isn't already running, start it up. */
1028 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1029 if ((reg & CONTEXT_RUN) == 0)
1030 context_run(ctx, 0);
1032 return 0;
1035 static int handle_at_packet(struct context *context,
1036 struct descriptor *d,
1037 struct descriptor *last)
1039 struct driver_data *driver_data;
1040 struct fw_packet *packet;
1041 struct fw_ohci *ohci = context->ohci;
1042 int evt;
1044 if (last->transfer_status == 0)
1045 /* This descriptor isn't done yet, stop iteration. */
1046 return 0;
1048 driver_data = (struct driver_data *) &d[3];
1049 packet = driver_data->packet;
1050 if (packet == NULL)
1051 /* This packet was cancelled, just continue. */
1052 return 1;
1054 if (packet->payload_bus)
1055 dma_unmap_single(ohci->card.device, packet->payload_bus,
1056 packet->payload_length, DMA_TO_DEVICE);
1058 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1059 packet->timestamp = le16_to_cpu(last->res_count);
1061 log_ar_at_event('T', packet->speed, packet->header, evt);
1063 switch (evt) {
1064 case OHCI1394_evt_timeout:
1065 /* Async response transmit timed out. */
1066 packet->ack = RCODE_CANCELLED;
1067 break;
1069 case OHCI1394_evt_flushed:
1071 * The packet was flushed should give same error as
1072 * when we try to use a stale generation count.
1074 packet->ack = RCODE_GENERATION;
1075 break;
1077 case OHCI1394_evt_missing_ack:
1079 * Using a valid (current) generation count, but the
1080 * node is not on the bus or not sending acks.
1082 packet->ack = RCODE_NO_ACK;
1083 break;
1085 case ACK_COMPLETE + 0x10:
1086 case ACK_PENDING + 0x10:
1087 case ACK_BUSY_X + 0x10:
1088 case ACK_BUSY_A + 0x10:
1089 case ACK_BUSY_B + 0x10:
1090 case ACK_DATA_ERROR + 0x10:
1091 case ACK_TYPE_ERROR + 0x10:
1092 packet->ack = evt - 0x10;
1093 break;
1095 default:
1096 packet->ack = RCODE_SEND_ERROR;
1097 break;
1100 packet->callback(packet, &ohci->card, packet->ack);
1102 return 1;
1105 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1106 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1107 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1108 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1109 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1111 static void handle_local_rom(struct fw_ohci *ohci,
1112 struct fw_packet *packet, u32 csr)
1114 struct fw_packet response;
1115 int tcode, length, i;
1117 tcode = HEADER_GET_TCODE(packet->header[0]);
1118 if (TCODE_IS_BLOCK_PACKET(tcode))
1119 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1120 else
1121 length = 4;
1123 i = csr - CSR_CONFIG_ROM;
1124 if (i + length > CONFIG_ROM_SIZE) {
1125 fw_fill_response(&response, packet->header,
1126 RCODE_ADDRESS_ERROR, NULL, 0);
1127 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1128 fw_fill_response(&response, packet->header,
1129 RCODE_TYPE_ERROR, NULL, 0);
1130 } else {
1131 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1132 (void *) ohci->config_rom + i, length);
1135 fw_core_handle_response(&ohci->card, &response);
1138 static void handle_local_lock(struct fw_ohci *ohci,
1139 struct fw_packet *packet, u32 csr)
1141 struct fw_packet response;
1142 int tcode, length, ext_tcode, sel;
1143 __be32 *payload, lock_old;
1144 u32 lock_arg, lock_data;
1146 tcode = HEADER_GET_TCODE(packet->header[0]);
1147 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1148 payload = packet->payload;
1149 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1151 if (tcode == TCODE_LOCK_REQUEST &&
1152 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1153 lock_arg = be32_to_cpu(payload[0]);
1154 lock_data = be32_to_cpu(payload[1]);
1155 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1156 lock_arg = 0;
1157 lock_data = 0;
1158 } else {
1159 fw_fill_response(&response, packet->header,
1160 RCODE_TYPE_ERROR, NULL, 0);
1161 goto out;
1164 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1165 reg_write(ohci, OHCI1394_CSRData, lock_data);
1166 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1167 reg_write(ohci, OHCI1394_CSRControl, sel);
1169 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1170 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1171 else
1172 fw_notify("swap not done yet\n");
1174 fw_fill_response(&response, packet->header,
1175 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1176 out:
1177 fw_core_handle_response(&ohci->card, &response);
1180 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1182 u64 offset;
1183 u32 csr;
1185 if (ctx == &ctx->ohci->at_request_ctx) {
1186 packet->ack = ACK_PENDING;
1187 packet->callback(packet, &ctx->ohci->card, packet->ack);
1190 offset =
1191 ((unsigned long long)
1192 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1193 packet->header[2];
1194 csr = offset - CSR_REGISTER_BASE;
1196 /* Handle config rom reads. */
1197 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1198 handle_local_rom(ctx->ohci, packet, csr);
1199 else switch (csr) {
1200 case CSR_BUS_MANAGER_ID:
1201 case CSR_BANDWIDTH_AVAILABLE:
1202 case CSR_CHANNELS_AVAILABLE_HI:
1203 case CSR_CHANNELS_AVAILABLE_LO:
1204 handle_local_lock(ctx->ohci, packet, csr);
1205 break;
1206 default:
1207 if (ctx == &ctx->ohci->at_request_ctx)
1208 fw_core_handle_request(&ctx->ohci->card, packet);
1209 else
1210 fw_core_handle_response(&ctx->ohci->card, packet);
1211 break;
1214 if (ctx == &ctx->ohci->at_response_ctx) {
1215 packet->ack = ACK_COMPLETE;
1216 packet->callback(packet, &ctx->ohci->card, packet->ack);
1220 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1222 unsigned long flags;
1223 int ret;
1225 spin_lock_irqsave(&ctx->ohci->lock, flags);
1227 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1228 ctx->ohci->generation == packet->generation) {
1229 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1230 handle_local_request(ctx, packet);
1231 return;
1234 ret = at_context_queue_packet(ctx, packet);
1235 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1237 if (ret < 0)
1238 packet->callback(packet, &ctx->ohci->card, packet->ack);
1242 static void bus_reset_tasklet(unsigned long data)
1244 struct fw_ohci *ohci = (struct fw_ohci *)data;
1245 int self_id_count, i, j, reg;
1246 int generation, new_generation;
1247 unsigned long flags;
1248 void *free_rom = NULL;
1249 dma_addr_t free_rom_bus = 0;
1251 reg = reg_read(ohci, OHCI1394_NodeID);
1252 if (!(reg & OHCI1394_NodeID_idValid)) {
1253 fw_notify("node ID not valid, new bus reset in progress\n");
1254 return;
1256 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1257 fw_notify("malconfigured bus\n");
1258 return;
1260 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1261 OHCI1394_NodeID_nodeNumber);
1263 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1264 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1265 fw_notify("inconsistent self IDs\n");
1266 return;
1269 * The count in the SelfIDCount register is the number of
1270 * bytes in the self ID receive buffer. Since we also receive
1271 * the inverted quadlets and a header quadlet, we shift one
1272 * bit extra to get the actual number of self IDs.
1274 self_id_count = (reg >> 3) & 0x3ff;
1275 if (self_id_count == 0) {
1276 fw_notify("inconsistent self IDs\n");
1277 return;
1279 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1280 rmb();
1282 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1283 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1284 fw_notify("inconsistent self IDs\n");
1285 return;
1287 ohci->self_id_buffer[j] =
1288 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1290 rmb();
1293 * Check the consistency of the self IDs we just read. The
1294 * problem we face is that a new bus reset can start while we
1295 * read out the self IDs from the DMA buffer. If this happens,
1296 * the DMA buffer will be overwritten with new self IDs and we
1297 * will read out inconsistent data. The OHCI specification
1298 * (section 11.2) recommends a technique similar to
1299 * linux/seqlock.h, where we remember the generation of the
1300 * self IDs in the buffer before reading them out and compare
1301 * it to the current generation after reading them out. If
1302 * the two generations match we know we have a consistent set
1303 * of self IDs.
1306 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1307 if (new_generation != generation) {
1308 fw_notify("recursive bus reset detected, "
1309 "discarding self ids\n");
1310 return;
1313 /* FIXME: Document how the locking works. */
1314 spin_lock_irqsave(&ohci->lock, flags);
1316 ohci->generation = generation;
1317 context_stop(&ohci->at_request_ctx);
1318 context_stop(&ohci->at_response_ctx);
1319 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1321 if (ohci->bus_reset_packet_quirk)
1322 ohci->request_generation = generation;
1325 * This next bit is unrelated to the AT context stuff but we
1326 * have to do it under the spinlock also. If a new config rom
1327 * was set up before this reset, the old one is now no longer
1328 * in use and we can free it. Update the config rom pointers
1329 * to point to the current config rom and clear the
1330 * next_config_rom pointer so a new udpate can take place.
1333 if (ohci->next_config_rom != NULL) {
1334 if (ohci->next_config_rom != ohci->config_rom) {
1335 free_rom = ohci->config_rom;
1336 free_rom_bus = ohci->config_rom_bus;
1338 ohci->config_rom = ohci->next_config_rom;
1339 ohci->config_rom_bus = ohci->next_config_rom_bus;
1340 ohci->next_config_rom = NULL;
1343 * Restore config_rom image and manually update
1344 * config_rom registers. Writing the header quadlet
1345 * will indicate that the config rom is ready, so we
1346 * do that last.
1348 reg_write(ohci, OHCI1394_BusOptions,
1349 be32_to_cpu(ohci->config_rom[2]));
1350 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1351 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1354 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1355 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1356 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1357 #endif
1359 spin_unlock_irqrestore(&ohci->lock, flags);
1361 if (free_rom)
1362 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1363 free_rom, free_rom_bus);
1365 log_selfids(ohci->node_id, generation,
1366 self_id_count, ohci->self_id_buffer);
1368 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1369 self_id_count, ohci->self_id_buffer);
1372 static irqreturn_t irq_handler(int irq, void *data)
1374 struct fw_ohci *ohci = data;
1375 u32 event, iso_event, cycle_time;
1376 int i;
1378 event = reg_read(ohci, OHCI1394_IntEventClear);
1380 if (!event || !~event)
1381 return IRQ_NONE;
1383 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1384 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1385 log_irqs(event);
1387 if (event & OHCI1394_selfIDComplete)
1388 tasklet_schedule(&ohci->bus_reset_tasklet);
1390 if (event & OHCI1394_RQPkt)
1391 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1393 if (event & OHCI1394_RSPkt)
1394 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1396 if (event & OHCI1394_reqTxComplete)
1397 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1399 if (event & OHCI1394_respTxComplete)
1400 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1402 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1403 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1405 while (iso_event) {
1406 i = ffs(iso_event) - 1;
1407 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1408 iso_event &= ~(1 << i);
1411 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1412 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1414 while (iso_event) {
1415 i = ffs(iso_event) - 1;
1416 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1417 iso_event &= ~(1 << i);
1420 if (unlikely(event & OHCI1394_regAccessFail))
1421 fw_error("Register access failure - "
1422 "please notify linux1394-devel@lists.sf.net\n");
1424 if (unlikely(event & OHCI1394_postedWriteErr))
1425 fw_error("PCI posted write error\n");
1427 if (unlikely(event & OHCI1394_cycleTooLong)) {
1428 if (printk_ratelimit())
1429 fw_notify("isochronous cycle too long\n");
1430 reg_write(ohci, OHCI1394_LinkControlSet,
1431 OHCI1394_LinkControl_cycleMaster);
1434 if (event & OHCI1394_cycle64Seconds) {
1435 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1436 if ((cycle_time & 0x80000000) == 0)
1437 ohci->bus_seconds++;
1440 return IRQ_HANDLED;
1443 static int software_reset(struct fw_ohci *ohci)
1445 int i;
1447 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1449 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1450 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1451 OHCI1394_HCControl_softReset) == 0)
1452 return 0;
1453 msleep(1);
1456 return -EBUSY;
1459 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1461 struct fw_ohci *ohci = fw_ohci(card);
1462 struct pci_dev *dev = to_pci_dev(card->device);
1463 u32 lps;
1464 int i;
1466 if (software_reset(ohci)) {
1467 fw_error("Failed to reset ohci card.\n");
1468 return -EBUSY;
1472 * Now enable LPS, which we need in order to start accessing
1473 * most of the registers. In fact, on some cards (ALI M5251),
1474 * accessing registers in the SClk domain without LPS enabled
1475 * will lock up the machine. Wait 50msec to make sure we have
1476 * full link enabled. However, with some cards (well, at least
1477 * a JMicron PCIe card), we have to try again sometimes.
1479 reg_write(ohci, OHCI1394_HCControlSet,
1480 OHCI1394_HCControl_LPS |
1481 OHCI1394_HCControl_postedWriteEnable);
1482 flush_writes(ohci);
1484 for (lps = 0, i = 0; !lps && i < 3; i++) {
1485 msleep(50);
1486 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1487 OHCI1394_HCControl_LPS;
1490 if (!lps) {
1491 fw_error("Failed to set Link Power Status\n");
1492 return -EIO;
1495 reg_write(ohci, OHCI1394_HCControlClear,
1496 OHCI1394_HCControl_noByteSwapData);
1498 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1499 reg_write(ohci, OHCI1394_LinkControlClear,
1500 OHCI1394_LinkControl_rcvPhyPkt);
1501 reg_write(ohci, OHCI1394_LinkControlSet,
1502 OHCI1394_LinkControl_rcvSelfID |
1503 OHCI1394_LinkControl_cycleTimerEnable |
1504 OHCI1394_LinkControl_cycleMaster);
1506 reg_write(ohci, OHCI1394_ATRetries,
1507 OHCI1394_MAX_AT_REQ_RETRIES |
1508 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1509 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1511 ar_context_run(&ohci->ar_request_ctx);
1512 ar_context_run(&ohci->ar_response_ctx);
1514 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1515 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1516 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1517 reg_write(ohci, OHCI1394_IntMaskSet,
1518 OHCI1394_selfIDComplete |
1519 OHCI1394_RQPkt | OHCI1394_RSPkt |
1520 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1521 OHCI1394_isochRx | OHCI1394_isochTx |
1522 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1523 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1524 OHCI1394_masterIntEnable);
1525 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1526 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1528 /* Activate link_on bit and contender bit in our self ID packets.*/
1529 if (ohci_update_phy_reg(card, 4, 0,
1530 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1531 return -EIO;
1534 * When the link is not yet enabled, the atomic config rom
1535 * update mechanism described below in ohci_set_config_rom()
1536 * is not active. We have to update ConfigRomHeader and
1537 * BusOptions manually, and the write to ConfigROMmap takes
1538 * effect immediately. We tie this to the enabling of the
1539 * link, so we have a valid config rom before enabling - the
1540 * OHCI requires that ConfigROMhdr and BusOptions have valid
1541 * values before enabling.
1543 * However, when the ConfigROMmap is written, some controllers
1544 * always read back quadlets 0 and 2 from the config rom to
1545 * the ConfigRomHeader and BusOptions registers on bus reset.
1546 * They shouldn't do that in this initial case where the link
1547 * isn't enabled. This means we have to use the same
1548 * workaround here, setting the bus header to 0 and then write
1549 * the right values in the bus reset tasklet.
1552 if (config_rom) {
1553 ohci->next_config_rom =
1554 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1555 &ohci->next_config_rom_bus,
1556 GFP_KERNEL);
1557 if (ohci->next_config_rom == NULL)
1558 return -ENOMEM;
1560 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1561 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1562 } else {
1564 * In the suspend case, config_rom is NULL, which
1565 * means that we just reuse the old config rom.
1567 ohci->next_config_rom = ohci->config_rom;
1568 ohci->next_config_rom_bus = ohci->config_rom_bus;
1571 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1572 ohci->next_config_rom[0] = 0;
1573 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1574 reg_write(ohci, OHCI1394_BusOptions,
1575 be32_to_cpu(ohci->next_config_rom[2]));
1576 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1578 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1580 if (request_irq(dev->irq, irq_handler,
1581 IRQF_SHARED, ohci_driver_name, ohci)) {
1582 fw_error("Failed to allocate shared interrupt %d.\n",
1583 dev->irq);
1584 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1585 ohci->config_rom, ohci->config_rom_bus);
1586 return -EIO;
1589 reg_write(ohci, OHCI1394_HCControlSet,
1590 OHCI1394_HCControl_linkEnable |
1591 OHCI1394_HCControl_BIBimageValid);
1592 flush_writes(ohci);
1595 * We are ready to go, initiate bus reset to finish the
1596 * initialization.
1599 fw_core_initiate_bus_reset(&ohci->card, 1);
1601 return 0;
1604 static int ohci_set_config_rom(struct fw_card *card,
1605 u32 *config_rom, size_t length)
1607 struct fw_ohci *ohci;
1608 unsigned long flags;
1609 int ret = -EBUSY;
1610 __be32 *next_config_rom;
1611 dma_addr_t uninitialized_var(next_config_rom_bus);
1613 ohci = fw_ohci(card);
1616 * When the OHCI controller is enabled, the config rom update
1617 * mechanism is a bit tricky, but easy enough to use. See
1618 * section 5.5.6 in the OHCI specification.
1620 * The OHCI controller caches the new config rom address in a
1621 * shadow register (ConfigROMmapNext) and needs a bus reset
1622 * for the changes to take place. When the bus reset is
1623 * detected, the controller loads the new values for the
1624 * ConfigRomHeader and BusOptions registers from the specified
1625 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1626 * shadow register. All automatically and atomically.
1628 * Now, there's a twist to this story. The automatic load of
1629 * ConfigRomHeader and BusOptions doesn't honor the
1630 * noByteSwapData bit, so with a be32 config rom, the
1631 * controller will load be32 values in to these registers
1632 * during the atomic update, even on litte endian
1633 * architectures. The workaround we use is to put a 0 in the
1634 * header quadlet; 0 is endian agnostic and means that the
1635 * config rom isn't ready yet. In the bus reset tasklet we
1636 * then set up the real values for the two registers.
1638 * We use ohci->lock to avoid racing with the code that sets
1639 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1642 next_config_rom =
1643 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1644 &next_config_rom_bus, GFP_KERNEL);
1645 if (next_config_rom == NULL)
1646 return -ENOMEM;
1648 spin_lock_irqsave(&ohci->lock, flags);
1650 if (ohci->next_config_rom == NULL) {
1651 ohci->next_config_rom = next_config_rom;
1652 ohci->next_config_rom_bus = next_config_rom_bus;
1654 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1655 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1656 length * 4);
1658 ohci->next_header = config_rom[0];
1659 ohci->next_config_rom[0] = 0;
1661 reg_write(ohci, OHCI1394_ConfigROMmap,
1662 ohci->next_config_rom_bus);
1663 ret = 0;
1666 spin_unlock_irqrestore(&ohci->lock, flags);
1669 * Now initiate a bus reset to have the changes take
1670 * effect. We clean up the old config rom memory and DMA
1671 * mappings in the bus reset tasklet, since the OHCI
1672 * controller could need to access it before the bus reset
1673 * takes effect.
1675 if (ret == 0)
1676 fw_core_initiate_bus_reset(&ohci->card, 1);
1677 else
1678 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1679 next_config_rom, next_config_rom_bus);
1681 return ret;
1684 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1686 struct fw_ohci *ohci = fw_ohci(card);
1688 at_context_transmit(&ohci->at_request_ctx, packet);
1691 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1693 struct fw_ohci *ohci = fw_ohci(card);
1695 at_context_transmit(&ohci->at_response_ctx, packet);
1698 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1700 struct fw_ohci *ohci = fw_ohci(card);
1701 struct context *ctx = &ohci->at_request_ctx;
1702 struct driver_data *driver_data = packet->driver_data;
1703 int ret = -ENOENT;
1705 tasklet_disable(&ctx->tasklet);
1707 if (packet->ack != 0)
1708 goto out;
1710 if (packet->payload_bus)
1711 dma_unmap_single(ohci->card.device, packet->payload_bus,
1712 packet->payload_length, DMA_TO_DEVICE);
1714 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1715 driver_data->packet = NULL;
1716 packet->ack = RCODE_CANCELLED;
1717 packet->callback(packet, &ohci->card, packet->ack);
1718 ret = 0;
1719 out:
1720 tasklet_enable(&ctx->tasklet);
1722 return ret;
1725 static int ohci_enable_phys_dma(struct fw_card *card,
1726 int node_id, int generation)
1728 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1729 return 0;
1730 #else
1731 struct fw_ohci *ohci = fw_ohci(card);
1732 unsigned long flags;
1733 int n, ret = 0;
1736 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1737 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1740 spin_lock_irqsave(&ohci->lock, flags);
1742 if (ohci->generation != generation) {
1743 ret = -ESTALE;
1744 goto out;
1748 * Note, if the node ID contains a non-local bus ID, physical DMA is
1749 * enabled for _all_ nodes on remote buses.
1752 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1753 if (n < 32)
1754 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1755 else
1756 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1758 flush_writes(ohci);
1759 out:
1760 spin_unlock_irqrestore(&ohci->lock, flags);
1762 return ret;
1763 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1766 static u64 ohci_get_bus_time(struct fw_card *card)
1768 struct fw_ohci *ohci = fw_ohci(card);
1769 u32 cycle_time;
1770 u64 bus_time;
1772 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1773 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1775 return bus_time;
1778 static void copy_iso_headers(struct iso_context *ctx, void *p)
1780 int i = ctx->header_length;
1782 if (i + ctx->base.header_size > PAGE_SIZE)
1783 return;
1786 * The iso header is byteswapped to little endian by
1787 * the controller, but the remaining header quadlets
1788 * are big endian. We want to present all the headers
1789 * as big endian, so we have to swap the first quadlet.
1791 if (ctx->base.header_size > 0)
1792 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1793 if (ctx->base.header_size > 4)
1794 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1795 if (ctx->base.header_size > 8)
1796 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1797 ctx->header_length += ctx->base.header_size;
1800 static int handle_ir_dualbuffer_packet(struct context *context,
1801 struct descriptor *d,
1802 struct descriptor *last)
1804 struct iso_context *ctx =
1805 container_of(context, struct iso_context, context);
1806 struct db_descriptor *db = (struct db_descriptor *) d;
1807 __le32 *ir_header;
1808 size_t header_length;
1809 void *p, *end;
1811 if (db->first_res_count != 0 && db->second_res_count != 0) {
1812 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1813 /* This descriptor isn't done yet, stop iteration. */
1814 return 0;
1816 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1819 header_length = le16_to_cpu(db->first_req_count) -
1820 le16_to_cpu(db->first_res_count);
1822 p = db + 1;
1823 end = p + header_length;
1824 while (p < end) {
1825 copy_iso_headers(ctx, p);
1826 ctx->excess_bytes +=
1827 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1828 p += max(ctx->base.header_size, (size_t)8);
1831 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1832 le16_to_cpu(db->second_res_count);
1834 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1835 ir_header = (__le32 *) (db + 1);
1836 ctx->base.callback(&ctx->base,
1837 le32_to_cpu(ir_header[0]) & 0xffff,
1838 ctx->header_length, ctx->header,
1839 ctx->base.callback_data);
1840 ctx->header_length = 0;
1843 return 1;
1846 static int handle_ir_packet_per_buffer(struct context *context,
1847 struct descriptor *d,
1848 struct descriptor *last)
1850 struct iso_context *ctx =
1851 container_of(context, struct iso_context, context);
1852 struct descriptor *pd;
1853 __le32 *ir_header;
1854 void *p;
1856 for (pd = d; pd <= last; pd++) {
1857 if (pd->transfer_status)
1858 break;
1860 if (pd > last)
1861 /* Descriptor(s) not done yet, stop iteration */
1862 return 0;
1864 p = last + 1;
1865 copy_iso_headers(ctx, p);
1867 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1868 ir_header = (__le32 *) p;
1869 ctx->base.callback(&ctx->base,
1870 le32_to_cpu(ir_header[0]) & 0xffff,
1871 ctx->header_length, ctx->header,
1872 ctx->base.callback_data);
1873 ctx->header_length = 0;
1876 return 1;
1879 static int handle_it_packet(struct context *context,
1880 struct descriptor *d,
1881 struct descriptor *last)
1883 struct iso_context *ctx =
1884 container_of(context, struct iso_context, context);
1886 if (last->transfer_status == 0)
1887 /* This descriptor isn't done yet, stop iteration. */
1888 return 0;
1890 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1891 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1892 0, NULL, ctx->base.callback_data);
1894 return 1;
1897 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1898 int type, int channel, size_t header_size)
1900 struct fw_ohci *ohci = fw_ohci(card);
1901 struct iso_context *ctx, *list;
1902 descriptor_callback_t callback;
1903 u64 *channels, dont_care = ~0ULL;
1904 u32 *mask, regs;
1905 unsigned long flags;
1906 int index, ret = -ENOMEM;
1908 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1909 channels = &dont_care;
1910 mask = &ohci->it_context_mask;
1911 list = ohci->it_context_list;
1912 callback = handle_it_packet;
1913 } else {
1914 channels = &ohci->ir_context_channels;
1915 mask = &ohci->ir_context_mask;
1916 list = ohci->ir_context_list;
1917 if (ohci->use_dualbuffer)
1918 callback = handle_ir_dualbuffer_packet;
1919 else
1920 callback = handle_ir_packet_per_buffer;
1923 spin_lock_irqsave(&ohci->lock, flags);
1924 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1925 if (index >= 0) {
1926 *channels &= ~(1ULL << channel);
1927 *mask &= ~(1 << index);
1929 spin_unlock_irqrestore(&ohci->lock, flags);
1931 if (index < 0)
1932 return ERR_PTR(-EBUSY);
1934 if (type == FW_ISO_CONTEXT_TRANSMIT)
1935 regs = OHCI1394_IsoXmitContextBase(index);
1936 else
1937 regs = OHCI1394_IsoRcvContextBase(index);
1939 ctx = &list[index];
1940 memset(ctx, 0, sizeof(*ctx));
1941 ctx->header_length = 0;
1942 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1943 if (ctx->header == NULL)
1944 goto out;
1946 ret = context_init(&ctx->context, ohci, regs, callback);
1947 if (ret < 0)
1948 goto out_with_header;
1950 return &ctx->base;
1952 out_with_header:
1953 free_page((unsigned long)ctx->header);
1954 out:
1955 spin_lock_irqsave(&ohci->lock, flags);
1956 *mask |= 1 << index;
1957 spin_unlock_irqrestore(&ohci->lock, flags);
1959 return ERR_PTR(ret);
1962 static int ohci_start_iso(struct fw_iso_context *base,
1963 s32 cycle, u32 sync, u32 tags)
1965 struct iso_context *ctx = container_of(base, struct iso_context, base);
1966 struct fw_ohci *ohci = ctx->context.ohci;
1967 u32 control, match;
1968 int index;
1970 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1971 index = ctx - ohci->it_context_list;
1972 match = 0;
1973 if (cycle >= 0)
1974 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1975 (cycle & 0x7fff) << 16;
1977 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1978 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1979 context_run(&ctx->context, match);
1980 } else {
1981 index = ctx - ohci->ir_context_list;
1982 control = IR_CONTEXT_ISOCH_HEADER;
1983 if (ohci->use_dualbuffer)
1984 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1985 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1986 if (cycle >= 0) {
1987 match |= (cycle & 0x07fff) << 12;
1988 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1991 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1992 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1993 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1994 context_run(&ctx->context, control);
1997 return 0;
2000 static int ohci_stop_iso(struct fw_iso_context *base)
2002 struct fw_ohci *ohci = fw_ohci(base->card);
2003 struct iso_context *ctx = container_of(base, struct iso_context, base);
2004 int index;
2006 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2007 index = ctx - ohci->it_context_list;
2008 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2009 } else {
2010 index = ctx - ohci->ir_context_list;
2011 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2013 flush_writes(ohci);
2014 context_stop(&ctx->context);
2016 return 0;
2019 static void ohci_free_iso_context(struct fw_iso_context *base)
2021 struct fw_ohci *ohci = fw_ohci(base->card);
2022 struct iso_context *ctx = container_of(base, struct iso_context, base);
2023 unsigned long flags;
2024 int index;
2026 ohci_stop_iso(base);
2027 context_release(&ctx->context);
2028 free_page((unsigned long)ctx->header);
2030 spin_lock_irqsave(&ohci->lock, flags);
2032 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2033 index = ctx - ohci->it_context_list;
2034 ohci->it_context_mask |= 1 << index;
2035 } else {
2036 index = ctx - ohci->ir_context_list;
2037 ohci->ir_context_mask |= 1 << index;
2038 ohci->ir_context_channels |= 1ULL << base->channel;
2041 spin_unlock_irqrestore(&ohci->lock, flags);
2044 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2045 struct fw_iso_packet *packet,
2046 struct fw_iso_buffer *buffer,
2047 unsigned long payload)
2049 struct iso_context *ctx = container_of(base, struct iso_context, base);
2050 struct descriptor *d, *last, *pd;
2051 struct fw_iso_packet *p;
2052 __le32 *header;
2053 dma_addr_t d_bus, page_bus;
2054 u32 z, header_z, payload_z, irq;
2055 u32 payload_index, payload_end_index, next_page_index;
2056 int page, end_page, i, length, offset;
2059 * FIXME: Cycle lost behavior should be configurable: lose
2060 * packet, retransmit or terminate..
2063 p = packet;
2064 payload_index = payload;
2066 if (p->skip)
2067 z = 1;
2068 else
2069 z = 2;
2070 if (p->header_length > 0)
2071 z++;
2073 /* Determine the first page the payload isn't contained in. */
2074 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2075 if (p->payload_length > 0)
2076 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2077 else
2078 payload_z = 0;
2080 z += payload_z;
2082 /* Get header size in number of descriptors. */
2083 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2085 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2086 if (d == NULL)
2087 return -ENOMEM;
2089 if (!p->skip) {
2090 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2091 d[0].req_count = cpu_to_le16(8);
2093 header = (__le32 *) &d[1];
2094 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2095 IT_HEADER_TAG(p->tag) |
2096 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2097 IT_HEADER_CHANNEL(ctx->base.channel) |
2098 IT_HEADER_SPEED(ctx->base.speed));
2099 header[1] =
2100 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2101 p->payload_length));
2104 if (p->header_length > 0) {
2105 d[2].req_count = cpu_to_le16(p->header_length);
2106 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2107 memcpy(&d[z], p->header, p->header_length);
2110 pd = d + z - payload_z;
2111 payload_end_index = payload_index + p->payload_length;
2112 for (i = 0; i < payload_z; i++) {
2113 page = payload_index >> PAGE_SHIFT;
2114 offset = payload_index & ~PAGE_MASK;
2115 next_page_index = (page + 1) << PAGE_SHIFT;
2116 length =
2117 min(next_page_index, payload_end_index) - payload_index;
2118 pd[i].req_count = cpu_to_le16(length);
2120 page_bus = page_private(buffer->pages[page]);
2121 pd[i].data_address = cpu_to_le32(page_bus + offset);
2123 payload_index += length;
2126 if (p->interrupt)
2127 irq = DESCRIPTOR_IRQ_ALWAYS;
2128 else
2129 irq = DESCRIPTOR_NO_IRQ;
2131 last = z == 2 ? d : d + z - 1;
2132 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2133 DESCRIPTOR_STATUS |
2134 DESCRIPTOR_BRANCH_ALWAYS |
2135 irq);
2137 context_append(&ctx->context, d, z, header_z);
2139 return 0;
2142 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2143 struct fw_iso_packet *packet,
2144 struct fw_iso_buffer *buffer,
2145 unsigned long payload)
2147 struct iso_context *ctx = container_of(base, struct iso_context, base);
2148 struct db_descriptor *db = NULL;
2149 struct descriptor *d;
2150 struct fw_iso_packet *p;
2151 dma_addr_t d_bus, page_bus;
2152 u32 z, header_z, length, rest;
2153 int page, offset, packet_count, header_size;
2156 * FIXME: Cycle lost behavior should be configurable: lose
2157 * packet, retransmit or terminate..
2160 p = packet;
2161 z = 2;
2164 * The OHCI controller puts the isochronous header and trailer in the
2165 * buffer, so we need at least 8 bytes.
2167 packet_count = p->header_length / ctx->base.header_size;
2168 header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2170 /* Get header size in number of descriptors. */
2171 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2172 page = payload >> PAGE_SHIFT;
2173 offset = payload & ~PAGE_MASK;
2174 rest = p->payload_length;
2176 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2177 while (rest > 0) {
2178 d = context_get_descriptors(&ctx->context,
2179 z + header_z, &d_bus);
2180 if (d == NULL)
2181 return -ENOMEM;
2183 db = (struct db_descriptor *) d;
2184 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2185 DESCRIPTOR_BRANCH_ALWAYS);
2186 db->first_size =
2187 cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2188 if (p->skip && rest == p->payload_length) {
2189 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2190 db->first_req_count = db->first_size;
2191 } else {
2192 db->first_req_count = cpu_to_le16(header_size);
2194 db->first_res_count = db->first_req_count;
2195 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2197 if (p->skip && rest == p->payload_length)
2198 length = 4;
2199 else if (offset + rest < PAGE_SIZE)
2200 length = rest;
2201 else
2202 length = PAGE_SIZE - offset;
2204 db->second_req_count = cpu_to_le16(length);
2205 db->second_res_count = db->second_req_count;
2206 page_bus = page_private(buffer->pages[page]);
2207 db->second_buffer = cpu_to_le32(page_bus + offset);
2209 if (p->interrupt && length == rest)
2210 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2212 context_append(&ctx->context, d, z, header_z);
2213 offset = (offset + length) & ~PAGE_MASK;
2214 rest -= length;
2215 if (offset == 0)
2216 page++;
2219 return 0;
2222 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2223 struct fw_iso_packet *packet,
2224 struct fw_iso_buffer *buffer,
2225 unsigned long payload)
2227 struct iso_context *ctx = container_of(base, struct iso_context, base);
2228 struct descriptor *d = NULL, *pd = NULL;
2229 struct fw_iso_packet *p = packet;
2230 dma_addr_t d_bus, page_bus;
2231 u32 z, header_z, rest;
2232 int i, j, length;
2233 int page, offset, packet_count, header_size, payload_per_buffer;
2236 * The OHCI controller puts the isochronous header and trailer in the
2237 * buffer, so we need at least 8 bytes.
2239 packet_count = p->header_length / ctx->base.header_size;
2240 header_size = max(ctx->base.header_size, (size_t)8);
2242 /* Get header size in number of descriptors. */
2243 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2244 page = payload >> PAGE_SHIFT;
2245 offset = payload & ~PAGE_MASK;
2246 payload_per_buffer = p->payload_length / packet_count;
2248 for (i = 0; i < packet_count; i++) {
2249 /* d points to the header descriptor */
2250 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2251 d = context_get_descriptors(&ctx->context,
2252 z + header_z, &d_bus);
2253 if (d == NULL)
2254 return -ENOMEM;
2256 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2257 DESCRIPTOR_INPUT_MORE);
2258 if (p->skip && i == 0)
2259 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2260 d->req_count = cpu_to_le16(header_size);
2261 d->res_count = d->req_count;
2262 d->transfer_status = 0;
2263 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2265 rest = payload_per_buffer;
2266 for (j = 1; j < z; j++) {
2267 pd = d + j;
2268 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2269 DESCRIPTOR_INPUT_MORE);
2271 if (offset + rest < PAGE_SIZE)
2272 length = rest;
2273 else
2274 length = PAGE_SIZE - offset;
2275 pd->req_count = cpu_to_le16(length);
2276 pd->res_count = pd->req_count;
2277 pd->transfer_status = 0;
2279 page_bus = page_private(buffer->pages[page]);
2280 pd->data_address = cpu_to_le32(page_bus + offset);
2282 offset = (offset + length) & ~PAGE_MASK;
2283 rest -= length;
2284 if (offset == 0)
2285 page++;
2287 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2288 DESCRIPTOR_INPUT_LAST |
2289 DESCRIPTOR_BRANCH_ALWAYS);
2290 if (p->interrupt && i == packet_count - 1)
2291 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2293 context_append(&ctx->context, d, z, header_z);
2296 return 0;
2299 static int ohci_queue_iso(struct fw_iso_context *base,
2300 struct fw_iso_packet *packet,
2301 struct fw_iso_buffer *buffer,
2302 unsigned long payload)
2304 struct iso_context *ctx = container_of(base, struct iso_context, base);
2305 unsigned long flags;
2306 int ret;
2308 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2309 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2310 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2311 else if (ctx->context.ohci->use_dualbuffer)
2312 ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2313 buffer, payload);
2314 else
2315 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2316 buffer, payload);
2317 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2319 return ret;
2322 static const struct fw_card_driver ohci_driver = {
2323 .enable = ohci_enable,
2324 .update_phy_reg = ohci_update_phy_reg,
2325 .set_config_rom = ohci_set_config_rom,
2326 .send_request = ohci_send_request,
2327 .send_response = ohci_send_response,
2328 .cancel_packet = ohci_cancel_packet,
2329 .enable_phys_dma = ohci_enable_phys_dma,
2330 .get_bus_time = ohci_get_bus_time,
2332 .allocate_iso_context = ohci_allocate_iso_context,
2333 .free_iso_context = ohci_free_iso_context,
2334 .queue_iso = ohci_queue_iso,
2335 .start_iso = ohci_start_iso,
2336 .stop_iso = ohci_stop_iso,
2339 #ifdef CONFIG_PPC_PMAC
2340 static void ohci_pmac_on(struct pci_dev *dev)
2342 if (machine_is(powermac)) {
2343 struct device_node *ofn = pci_device_to_OF_node(dev);
2345 if (ofn) {
2346 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2347 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2352 static void ohci_pmac_off(struct pci_dev *dev)
2354 if (machine_is(powermac)) {
2355 struct device_node *ofn = pci_device_to_OF_node(dev);
2357 if (ofn) {
2358 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2359 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2363 #else
2364 #define ohci_pmac_on(dev)
2365 #define ohci_pmac_off(dev)
2366 #endif /* CONFIG_PPC_PMAC */
2368 static int __devinit pci_probe(struct pci_dev *dev,
2369 const struct pci_device_id *ent)
2371 struct fw_ohci *ohci;
2372 u32 bus_options, max_receive, link_speed, version;
2373 u64 guid;
2374 int err;
2375 size_t size;
2377 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2378 if (ohci == NULL) {
2379 err = -ENOMEM;
2380 goto fail;
2383 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2385 ohci_pmac_on(dev);
2387 err = pci_enable_device(dev);
2388 if (err) {
2389 fw_error("Failed to enable OHCI hardware\n");
2390 goto fail_free;
2393 pci_set_master(dev);
2394 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2395 pci_set_drvdata(dev, ohci);
2397 spin_lock_init(&ohci->lock);
2399 tasklet_init(&ohci->bus_reset_tasklet,
2400 bus_reset_tasklet, (unsigned long)ohci);
2402 err = pci_request_region(dev, 0, ohci_driver_name);
2403 if (err) {
2404 fw_error("MMIO resource unavailable\n");
2405 goto fail_disable;
2408 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2409 if (ohci->registers == NULL) {
2410 fw_error("Failed to remap registers\n");
2411 err = -ENXIO;
2412 goto fail_iomem;
2415 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2416 ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2418 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2419 #if !defined(CONFIG_X86_32)
2420 /* dual-buffer mode is broken with descriptor addresses above 2G */
2421 if (dev->vendor == PCI_VENDOR_ID_TI &&
2422 dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2423 ohci->use_dualbuffer = false;
2424 #endif
2426 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2427 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2428 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2429 #endif
2430 ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2432 ar_context_init(&ohci->ar_request_ctx, ohci,
2433 OHCI1394_AsReqRcvContextControlSet);
2435 ar_context_init(&ohci->ar_response_ctx, ohci,
2436 OHCI1394_AsRspRcvContextControlSet);
2438 context_init(&ohci->at_request_ctx, ohci,
2439 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2441 context_init(&ohci->at_response_ctx, ohci,
2442 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2444 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2445 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2446 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2447 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2448 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2450 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2451 ohci->ir_context_channels = ~0ULL;
2452 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2453 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2454 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2455 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2457 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2458 err = -ENOMEM;
2459 goto fail_contexts;
2462 /* self-id dma buffer allocation */
2463 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2464 SELF_ID_BUF_SIZE,
2465 &ohci->self_id_bus,
2466 GFP_KERNEL);
2467 if (ohci->self_id_cpu == NULL) {
2468 err = -ENOMEM;
2469 goto fail_contexts;
2472 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2473 max_receive = (bus_options >> 12) & 0xf;
2474 link_speed = bus_options & 0x7;
2475 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2476 reg_read(ohci, OHCI1394_GUIDLo);
2478 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2479 if (err)
2480 goto fail_self_id;
2482 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2483 dev_name(&dev->dev), version >> 16, version & 0xff);
2485 return 0;
2487 fail_self_id:
2488 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2489 ohci->self_id_cpu, ohci->self_id_bus);
2490 fail_contexts:
2491 kfree(ohci->ir_context_list);
2492 kfree(ohci->it_context_list);
2493 context_release(&ohci->at_response_ctx);
2494 context_release(&ohci->at_request_ctx);
2495 ar_context_release(&ohci->ar_response_ctx);
2496 ar_context_release(&ohci->ar_request_ctx);
2497 pci_iounmap(dev, ohci->registers);
2498 fail_iomem:
2499 pci_release_region(dev, 0);
2500 fail_disable:
2501 pci_disable_device(dev);
2502 fail_free:
2503 kfree(&ohci->card);
2504 ohci_pmac_off(dev);
2505 fail:
2506 if (err == -ENOMEM)
2507 fw_error("Out of memory\n");
2509 return err;
2512 static void pci_remove(struct pci_dev *dev)
2514 struct fw_ohci *ohci;
2516 ohci = pci_get_drvdata(dev);
2517 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2518 flush_writes(ohci);
2519 fw_core_remove_card(&ohci->card);
2522 * FIXME: Fail all pending packets here, now that the upper
2523 * layers can't queue any more.
2526 software_reset(ohci);
2527 free_irq(dev->irq, ohci);
2529 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2530 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2531 ohci->next_config_rom, ohci->next_config_rom_bus);
2532 if (ohci->config_rom)
2533 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2534 ohci->config_rom, ohci->config_rom_bus);
2535 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2536 ohci->self_id_cpu, ohci->self_id_bus);
2537 ar_context_release(&ohci->ar_request_ctx);
2538 ar_context_release(&ohci->ar_response_ctx);
2539 context_release(&ohci->at_request_ctx);
2540 context_release(&ohci->at_response_ctx);
2541 kfree(ohci->it_context_list);
2542 kfree(ohci->ir_context_list);
2543 pci_iounmap(dev, ohci->registers);
2544 pci_release_region(dev, 0);
2545 pci_disable_device(dev);
2546 kfree(&ohci->card);
2547 ohci_pmac_off(dev);
2549 fw_notify("Removed fw-ohci device.\n");
2552 #ifdef CONFIG_PM
2553 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2555 struct fw_ohci *ohci = pci_get_drvdata(dev);
2556 int err;
2558 software_reset(ohci);
2559 free_irq(dev->irq, ohci);
2560 err = pci_save_state(dev);
2561 if (err) {
2562 fw_error("pci_save_state failed\n");
2563 return err;
2565 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2566 if (err)
2567 fw_error("pci_set_power_state failed with %d\n", err);
2568 ohci_pmac_off(dev);
2570 return 0;
2573 static int pci_resume(struct pci_dev *dev)
2575 struct fw_ohci *ohci = pci_get_drvdata(dev);
2576 int err;
2578 ohci_pmac_on(dev);
2579 pci_set_power_state(dev, PCI_D0);
2580 pci_restore_state(dev);
2581 err = pci_enable_device(dev);
2582 if (err) {
2583 fw_error("pci_enable_device failed\n");
2584 return err;
2587 return ohci_enable(&ohci->card, NULL, 0);
2589 #endif
2591 static struct pci_device_id pci_table[] = {
2592 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2596 MODULE_DEVICE_TABLE(pci, pci_table);
2598 static struct pci_driver fw_ohci_pci_driver = {
2599 .name = ohci_driver_name,
2600 .id_table = pci_table,
2601 .probe = pci_probe,
2602 .remove = pci_remove,
2603 #ifdef CONFIG_PM
2604 .resume = pci_resume,
2605 .suspend = pci_suspend,
2606 #endif
2609 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2610 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2611 MODULE_LICENSE("GPL");
2613 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2614 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2615 MODULE_ALIAS("ohci1394");
2616 #endif
2618 static int __init fw_ohci_init(void)
2620 return pci_register_driver(&fw_ohci_pci_driver);
2623 static void __exit fw_ohci_cleanup(void)
2625 pci_unregister_driver(&fw_ohci_pci_driver);
2628 module_init(fw_ohci_init);
2629 module_exit(fw_ohci_cleanup);