xen/swiotlb: Use page alignment for early buffer allocation.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / wireless / reg.c
blobca76d8b55c4a9c0264f3f2e7fb306e8d3addd535
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 do { \
54 printk(KERN_DEBUG pr_fmt(format), ##args); \
55 } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
60 static struct regulatory_request core_request_world = {
61 .initiator = NL80211_REGDOM_SET_BY_CORE,
62 .alpha2[0] = '0',
63 .alpha2[1] = '0',
64 .intersect = false,
65 .processed = true,
66 .country_ie_env = ENVIRON_ANY,
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
75 static struct device_type reg_device_type = {
76 .uevent = reg_device_uevent,
80 * Central wireless core regulatory domains, we only need two,
81 * the current one and a world regulatory domain in case we have no
82 * information to give us an alpha2
84 const struct ieee80211_regdomain *cfg80211_regdomain;
87 * Protects static reg.c components:
88 * - cfg80211_world_regdom
89 * - cfg80211_regdom
90 * - last_request
92 static DEFINE_MUTEX(reg_mutex);
94 static inline void assert_reg_lock(void)
96 lockdep_assert_held(&reg_mutex);
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
110 struct reg_beacon {
111 struct list_head list;
112 struct ieee80211_channel chan;
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123 .n_reg_rules = 5,
124 .alpha2 = "00",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128 /* IEEE 802.11b/g, channels 12..13. No HT40
129 * channel fits here. */
130 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131 NL80211_RRF_PASSIVE_SCAN |
132 NL80211_RRF_NO_IBSS),
133 /* IEEE 802.11 channel 14 - Only JP enables
134 * this and for 802.11b only */
135 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136 NL80211_RRF_PASSIVE_SCAN |
137 NL80211_RRF_NO_IBSS |
138 NL80211_RRF_NO_OFDM),
139 /* IEEE 802.11a, channel 36..48 */
140 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141 NL80211_RRF_PASSIVE_SCAN |
142 NL80211_RRF_NO_IBSS),
144 /* NB: 5260 MHz - 5700 MHz requies DFS */
146 /* IEEE 802.11a, channel 149..165 */
147 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148 NL80211_RRF_PASSIVE_SCAN |
149 NL80211_RRF_NO_IBSS),
153 static const struct ieee80211_regdomain *cfg80211_world_regdom =
154 &world_regdom;
156 static char *ieee80211_regdom = "00";
157 static char user_alpha2[2];
159 module_param(ieee80211_regdom, charp, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
162 static void reset_regdomains(bool full_reset)
164 /* avoid freeing static information or freeing something twice */
165 if (cfg80211_regdomain == cfg80211_world_regdom)
166 cfg80211_regdomain = NULL;
167 if (cfg80211_world_regdom == &world_regdom)
168 cfg80211_world_regdom = NULL;
169 if (cfg80211_regdomain == &world_regdom)
170 cfg80211_regdomain = NULL;
172 kfree(cfg80211_regdomain);
173 kfree(cfg80211_world_regdom);
175 cfg80211_world_regdom = &world_regdom;
176 cfg80211_regdomain = NULL;
178 if (!full_reset)
179 return;
181 if (last_request != &core_request_world)
182 kfree(last_request);
183 last_request = &core_request_world;
187 * Dynamic world regulatory domain requested by the wireless
188 * core upon initialization
190 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
192 BUG_ON(!last_request);
194 reset_regdomains(false);
196 cfg80211_world_regdom = rd;
197 cfg80211_regdomain = rd;
200 bool is_world_regdom(const char *alpha2)
202 if (!alpha2)
203 return false;
204 if (alpha2[0] == '0' && alpha2[1] == '0')
205 return true;
206 return false;
209 static bool is_alpha2_set(const char *alpha2)
211 if (!alpha2)
212 return false;
213 if (alpha2[0] != 0 && alpha2[1] != 0)
214 return true;
215 return false;
218 static bool is_unknown_alpha2(const char *alpha2)
220 if (!alpha2)
221 return false;
223 * Special case where regulatory domain was built by driver
224 * but a specific alpha2 cannot be determined
226 if (alpha2[0] == '9' && alpha2[1] == '9')
227 return true;
228 return false;
231 static bool is_intersected_alpha2(const char *alpha2)
233 if (!alpha2)
234 return false;
236 * Special case where regulatory domain is the
237 * result of an intersection between two regulatory domain
238 * structures
240 if (alpha2[0] == '9' && alpha2[1] == '8')
241 return true;
242 return false;
245 static bool is_an_alpha2(const char *alpha2)
247 if (!alpha2)
248 return false;
249 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250 return true;
251 return false;
254 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
256 if (!alpha2_x || !alpha2_y)
257 return false;
258 if (alpha2_x[0] == alpha2_y[0] &&
259 alpha2_x[1] == alpha2_y[1])
260 return true;
261 return false;
264 static bool regdom_changes(const char *alpha2)
266 assert_cfg80211_lock();
268 if (!cfg80211_regdomain)
269 return true;
270 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
271 return false;
272 return true;
276 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278 * has ever been issued.
280 static bool is_user_regdom_saved(void)
282 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
283 return false;
285 /* This would indicate a mistake on the design */
286 if (WARN((!is_world_regdom(user_alpha2) &&
287 !is_an_alpha2(user_alpha2)),
288 "Unexpected user alpha2: %c%c\n",
289 user_alpha2[0],
290 user_alpha2[1]))
291 return false;
293 return true;
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297 const struct ieee80211_regdomain *src_regd)
299 struct ieee80211_regdomain *regd;
300 int size_of_regd = 0;
301 unsigned int i;
303 size_of_regd = sizeof(struct ieee80211_regdomain) +
304 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
306 regd = kzalloc(size_of_regd, GFP_KERNEL);
307 if (!regd)
308 return -ENOMEM;
310 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
312 for (i = 0; i < src_regd->n_reg_rules; i++)
313 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314 sizeof(struct ieee80211_reg_rule));
316 *dst_regd = regd;
317 return 0;
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322 char alpha2[2];
323 struct list_head list;
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_MUTEX(reg_regdb_search_mutex);
329 static void reg_regdb_search(struct work_struct *work)
331 struct reg_regdb_search_request *request;
332 const struct ieee80211_regdomain *curdom, *regdom;
333 int i, r;
335 mutex_lock(&reg_regdb_search_mutex);
336 while (!list_empty(&reg_regdb_search_list)) {
337 request = list_first_entry(&reg_regdb_search_list,
338 struct reg_regdb_search_request,
339 list);
340 list_del(&request->list);
342 for (i=0; i<reg_regdb_size; i++) {
343 curdom = reg_regdb[i];
345 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346 r = reg_copy_regd(&regdom, curdom);
347 if (r)
348 break;
349 mutex_lock(&cfg80211_mutex);
350 set_regdom(regdom);
351 mutex_unlock(&cfg80211_mutex);
352 break;
356 kfree(request);
358 mutex_unlock(&reg_regdb_search_mutex);
361 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
363 static void reg_regdb_query(const char *alpha2)
365 struct reg_regdb_search_request *request;
367 if (!alpha2)
368 return;
370 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
371 if (!request)
372 return;
374 memcpy(request->alpha2, alpha2, 2);
376 mutex_lock(&reg_regdb_search_mutex);
377 list_add_tail(&request->list, &reg_regdb_search_list);
378 mutex_unlock(&reg_regdb_search_mutex);
380 schedule_work(&reg_regdb_work);
382 #else
383 static inline void reg_regdb_query(const char *alpha2) {}
384 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
387 * This lets us keep regulatory code which is updated on a regulatory
388 * basis in userspace. Country information is filled in by
389 * reg_device_uevent
391 static int call_crda(const char *alpha2)
393 if (!is_world_regdom((char *) alpha2))
394 pr_info("Calling CRDA for country: %c%c\n",
395 alpha2[0], alpha2[1]);
396 else
397 pr_info("Calling CRDA to update world regulatory domain\n");
399 /* query internal regulatory database (if it exists) */
400 reg_regdb_query(alpha2);
402 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
405 /* Used by nl80211 before kmalloc'ing our regulatory domain */
406 bool reg_is_valid_request(const char *alpha2)
408 assert_cfg80211_lock();
410 if (!last_request)
411 return false;
413 return alpha2_equal(last_request->alpha2, alpha2);
416 /* Sanity check on a regulatory rule */
417 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
419 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
420 u32 freq_diff;
422 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
423 return false;
425 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
426 return false;
428 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
430 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
431 freq_range->max_bandwidth_khz > freq_diff)
432 return false;
434 return true;
437 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
439 const struct ieee80211_reg_rule *reg_rule = NULL;
440 unsigned int i;
442 if (!rd->n_reg_rules)
443 return false;
445 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
446 return false;
448 for (i = 0; i < rd->n_reg_rules; i++) {
449 reg_rule = &rd->reg_rules[i];
450 if (!is_valid_reg_rule(reg_rule))
451 return false;
454 return true;
457 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
458 u32 center_freq_khz,
459 u32 bw_khz)
461 u32 start_freq_khz, end_freq_khz;
463 start_freq_khz = center_freq_khz - (bw_khz/2);
464 end_freq_khz = center_freq_khz + (bw_khz/2);
466 if (start_freq_khz >= freq_range->start_freq_khz &&
467 end_freq_khz <= freq_range->end_freq_khz)
468 return true;
470 return false;
474 * freq_in_rule_band - tells us if a frequency is in a frequency band
475 * @freq_range: frequency rule we want to query
476 * @freq_khz: frequency we are inquiring about
478 * This lets us know if a specific frequency rule is or is not relevant to
479 * a specific frequency's band. Bands are device specific and artificial
480 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
481 * safe for now to assume that a frequency rule should not be part of a
482 * frequency's band if the start freq or end freq are off by more than 2 GHz.
483 * This resolution can be lowered and should be considered as we add
484 * regulatory rule support for other "bands".
486 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
487 u32 freq_khz)
489 #define ONE_GHZ_IN_KHZ 1000000
490 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
491 return true;
492 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
493 return true;
494 return false;
495 #undef ONE_GHZ_IN_KHZ
499 * Helper for regdom_intersect(), this does the real
500 * mathematical intersection fun
502 static int reg_rules_intersect(
503 const struct ieee80211_reg_rule *rule1,
504 const struct ieee80211_reg_rule *rule2,
505 struct ieee80211_reg_rule *intersected_rule)
507 const struct ieee80211_freq_range *freq_range1, *freq_range2;
508 struct ieee80211_freq_range *freq_range;
509 const struct ieee80211_power_rule *power_rule1, *power_rule2;
510 struct ieee80211_power_rule *power_rule;
511 u32 freq_diff;
513 freq_range1 = &rule1->freq_range;
514 freq_range2 = &rule2->freq_range;
515 freq_range = &intersected_rule->freq_range;
517 power_rule1 = &rule1->power_rule;
518 power_rule2 = &rule2->power_rule;
519 power_rule = &intersected_rule->power_rule;
521 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
522 freq_range2->start_freq_khz);
523 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
524 freq_range2->end_freq_khz);
525 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
526 freq_range2->max_bandwidth_khz);
528 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
529 if (freq_range->max_bandwidth_khz > freq_diff)
530 freq_range->max_bandwidth_khz = freq_diff;
532 power_rule->max_eirp = min(power_rule1->max_eirp,
533 power_rule2->max_eirp);
534 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
535 power_rule2->max_antenna_gain);
537 intersected_rule->flags = (rule1->flags | rule2->flags);
539 if (!is_valid_reg_rule(intersected_rule))
540 return -EINVAL;
542 return 0;
546 * regdom_intersect - do the intersection between two regulatory domains
547 * @rd1: first regulatory domain
548 * @rd2: second regulatory domain
550 * Use this function to get the intersection between two regulatory domains.
551 * Once completed we will mark the alpha2 for the rd as intersected, "98",
552 * as no one single alpha2 can represent this regulatory domain.
554 * Returns a pointer to the regulatory domain structure which will hold the
555 * resulting intersection of rules between rd1 and rd2. We will
556 * kzalloc() this structure for you.
558 static struct ieee80211_regdomain *regdom_intersect(
559 const struct ieee80211_regdomain *rd1,
560 const struct ieee80211_regdomain *rd2)
562 int r, size_of_regd;
563 unsigned int x, y;
564 unsigned int num_rules = 0, rule_idx = 0;
565 const struct ieee80211_reg_rule *rule1, *rule2;
566 struct ieee80211_reg_rule *intersected_rule;
567 struct ieee80211_regdomain *rd;
568 /* This is just a dummy holder to help us count */
569 struct ieee80211_reg_rule irule;
571 /* Uses the stack temporarily for counter arithmetic */
572 intersected_rule = &irule;
574 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
576 if (!rd1 || !rd2)
577 return NULL;
580 * First we get a count of the rules we'll need, then we actually
581 * build them. This is to so we can malloc() and free() a
582 * regdomain once. The reason we use reg_rules_intersect() here
583 * is it will return -EINVAL if the rule computed makes no sense.
584 * All rules that do check out OK are valid.
587 for (x = 0; x < rd1->n_reg_rules; x++) {
588 rule1 = &rd1->reg_rules[x];
589 for (y = 0; y < rd2->n_reg_rules; y++) {
590 rule2 = &rd2->reg_rules[y];
591 if (!reg_rules_intersect(rule1, rule2,
592 intersected_rule))
593 num_rules++;
594 memset(intersected_rule, 0,
595 sizeof(struct ieee80211_reg_rule));
599 if (!num_rules)
600 return NULL;
602 size_of_regd = sizeof(struct ieee80211_regdomain) +
603 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
605 rd = kzalloc(size_of_regd, GFP_KERNEL);
606 if (!rd)
607 return NULL;
609 for (x = 0; x < rd1->n_reg_rules; x++) {
610 rule1 = &rd1->reg_rules[x];
611 for (y = 0; y < rd2->n_reg_rules; y++) {
612 rule2 = &rd2->reg_rules[y];
614 * This time around instead of using the stack lets
615 * write to the target rule directly saving ourselves
616 * a memcpy()
618 intersected_rule = &rd->reg_rules[rule_idx];
619 r = reg_rules_intersect(rule1, rule2,
620 intersected_rule);
622 * No need to memset here the intersected rule here as
623 * we're not using the stack anymore
625 if (r)
626 continue;
627 rule_idx++;
631 if (rule_idx != num_rules) {
632 kfree(rd);
633 return NULL;
636 rd->n_reg_rules = num_rules;
637 rd->alpha2[0] = '9';
638 rd->alpha2[1] = '8';
640 return rd;
644 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
645 * want to just have the channel structure use these
647 static u32 map_regdom_flags(u32 rd_flags)
649 u32 channel_flags = 0;
650 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
651 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
652 if (rd_flags & NL80211_RRF_NO_IBSS)
653 channel_flags |= IEEE80211_CHAN_NO_IBSS;
654 if (rd_flags & NL80211_RRF_DFS)
655 channel_flags |= IEEE80211_CHAN_RADAR;
656 return channel_flags;
659 static int freq_reg_info_regd(struct wiphy *wiphy,
660 u32 center_freq,
661 u32 desired_bw_khz,
662 const struct ieee80211_reg_rule **reg_rule,
663 const struct ieee80211_regdomain *custom_regd)
665 int i;
666 bool band_rule_found = false;
667 const struct ieee80211_regdomain *regd;
668 bool bw_fits = false;
670 if (!desired_bw_khz)
671 desired_bw_khz = MHZ_TO_KHZ(20);
673 regd = custom_regd ? custom_regd : cfg80211_regdomain;
676 * Follow the driver's regulatory domain, if present, unless a country
677 * IE has been processed or a user wants to help complaince further
679 if (!custom_regd &&
680 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
681 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
682 wiphy->regd)
683 regd = wiphy->regd;
685 if (!regd)
686 return -EINVAL;
688 for (i = 0; i < regd->n_reg_rules; i++) {
689 const struct ieee80211_reg_rule *rr;
690 const struct ieee80211_freq_range *fr = NULL;
692 rr = &regd->reg_rules[i];
693 fr = &rr->freq_range;
696 * We only need to know if one frequency rule was
697 * was in center_freq's band, that's enough, so lets
698 * not overwrite it once found
700 if (!band_rule_found)
701 band_rule_found = freq_in_rule_band(fr, center_freq);
703 bw_fits = reg_does_bw_fit(fr,
704 center_freq,
705 desired_bw_khz);
707 if (band_rule_found && bw_fits) {
708 *reg_rule = rr;
709 return 0;
713 if (!band_rule_found)
714 return -ERANGE;
716 return -EINVAL;
719 int freq_reg_info(struct wiphy *wiphy,
720 u32 center_freq,
721 u32 desired_bw_khz,
722 const struct ieee80211_reg_rule **reg_rule)
724 assert_cfg80211_lock();
725 return freq_reg_info_regd(wiphy,
726 center_freq,
727 desired_bw_khz,
728 reg_rule,
729 NULL);
731 EXPORT_SYMBOL(freq_reg_info);
733 #ifdef CONFIG_CFG80211_REG_DEBUG
734 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
736 switch (initiator) {
737 case NL80211_REGDOM_SET_BY_CORE:
738 return "Set by core";
739 case NL80211_REGDOM_SET_BY_USER:
740 return "Set by user";
741 case NL80211_REGDOM_SET_BY_DRIVER:
742 return "Set by driver";
743 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
744 return "Set by country IE";
745 default:
746 WARN_ON(1);
747 return "Set by bug";
751 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
752 u32 desired_bw_khz,
753 const struct ieee80211_reg_rule *reg_rule)
755 const struct ieee80211_power_rule *power_rule;
756 const struct ieee80211_freq_range *freq_range;
757 char max_antenna_gain[32];
759 power_rule = &reg_rule->power_rule;
760 freq_range = &reg_rule->freq_range;
762 if (!power_rule->max_antenna_gain)
763 snprintf(max_antenna_gain, 32, "N/A");
764 else
765 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
767 REG_DBG_PRINT("Updating information on frequency %d MHz "
768 "for a %d MHz width channel with regulatory rule:\n",
769 chan->center_freq,
770 KHZ_TO_MHZ(desired_bw_khz));
772 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
773 freq_range->start_freq_khz,
774 freq_range->end_freq_khz,
775 max_antenna_gain,
776 power_rule->max_eirp);
778 #else
779 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
780 u32 desired_bw_khz,
781 const struct ieee80211_reg_rule *reg_rule)
783 return;
785 #endif
788 * Note that right now we assume the desired channel bandwidth
789 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
790 * per channel, the primary and the extension channel). To support
791 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
792 * new ieee80211_channel.target_bw and re run the regulatory check
793 * on the wiphy with the target_bw specified. Then we can simply use
794 * that below for the desired_bw_khz below.
796 static void handle_channel(struct wiphy *wiphy,
797 enum nl80211_reg_initiator initiator,
798 enum ieee80211_band band,
799 unsigned int chan_idx)
801 int r;
802 u32 flags, bw_flags = 0;
803 u32 desired_bw_khz = MHZ_TO_KHZ(20);
804 const struct ieee80211_reg_rule *reg_rule = NULL;
805 const struct ieee80211_power_rule *power_rule = NULL;
806 const struct ieee80211_freq_range *freq_range = NULL;
807 struct ieee80211_supported_band *sband;
808 struct ieee80211_channel *chan;
809 struct wiphy *request_wiphy = NULL;
811 assert_cfg80211_lock();
813 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
815 sband = wiphy->bands[band];
816 BUG_ON(chan_idx >= sband->n_channels);
817 chan = &sband->channels[chan_idx];
819 flags = chan->orig_flags;
821 r = freq_reg_info(wiphy,
822 MHZ_TO_KHZ(chan->center_freq),
823 desired_bw_khz,
824 &reg_rule);
826 if (r) {
828 * We will disable all channels that do not match our
829 * received regulatory rule unless the hint is coming
830 * from a Country IE and the Country IE had no information
831 * about a band. The IEEE 802.11 spec allows for an AP
832 * to send only a subset of the regulatory rules allowed,
833 * so an AP in the US that only supports 2.4 GHz may only send
834 * a country IE with information for the 2.4 GHz band
835 * while 5 GHz is still supported.
837 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
838 r == -ERANGE)
839 return;
841 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
842 chan->flags = IEEE80211_CHAN_DISABLED;
843 return;
846 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
848 power_rule = &reg_rule->power_rule;
849 freq_range = &reg_rule->freq_range;
851 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
852 bw_flags = IEEE80211_CHAN_NO_HT40;
854 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
855 request_wiphy && request_wiphy == wiphy &&
856 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
858 * This guarantees the driver's requested regulatory domain
859 * will always be used as a base for further regulatory
860 * settings
862 chan->flags = chan->orig_flags =
863 map_regdom_flags(reg_rule->flags) | bw_flags;
864 chan->max_antenna_gain = chan->orig_mag =
865 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
866 chan->max_power = chan->orig_mpwr =
867 (int) MBM_TO_DBM(power_rule->max_eirp);
868 return;
871 chan->beacon_found = false;
872 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
873 chan->max_antenna_gain = min(chan->orig_mag,
874 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
875 if (chan->orig_mpwr)
876 chan->max_power = min(chan->orig_mpwr,
877 (int) MBM_TO_DBM(power_rule->max_eirp));
878 else
879 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
882 static void handle_band(struct wiphy *wiphy,
883 enum ieee80211_band band,
884 enum nl80211_reg_initiator initiator)
886 unsigned int i;
887 struct ieee80211_supported_band *sband;
889 BUG_ON(!wiphy->bands[band]);
890 sband = wiphy->bands[band];
892 for (i = 0; i < sband->n_channels; i++)
893 handle_channel(wiphy, initiator, band, i);
896 static bool ignore_reg_update(struct wiphy *wiphy,
897 enum nl80211_reg_initiator initiator)
899 if (!last_request) {
900 REG_DBG_PRINT("Ignoring regulatory request %s since "
901 "last_request is not set\n",
902 reg_initiator_name(initiator));
903 return true;
906 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
907 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
908 REG_DBG_PRINT("Ignoring regulatory request %s "
909 "since the driver uses its own custom "
910 "regulatory domain ",
911 reg_initiator_name(initiator));
912 return true;
916 * wiphy->regd will be set once the device has its own
917 * desired regulatory domain set
919 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
920 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
921 !is_world_regdom(last_request->alpha2)) {
922 REG_DBG_PRINT("Ignoring regulatory request %s "
923 "since the driver requires its own regulaotry "
924 "domain to be set first",
925 reg_initiator_name(initiator));
926 return true;
929 return false;
932 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
934 struct cfg80211_registered_device *rdev;
936 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
937 wiphy_update_regulatory(&rdev->wiphy, initiator);
940 static void handle_reg_beacon(struct wiphy *wiphy,
941 unsigned int chan_idx,
942 struct reg_beacon *reg_beacon)
944 struct ieee80211_supported_band *sband;
945 struct ieee80211_channel *chan;
946 bool channel_changed = false;
947 struct ieee80211_channel chan_before;
949 assert_cfg80211_lock();
951 sband = wiphy->bands[reg_beacon->chan.band];
952 chan = &sband->channels[chan_idx];
954 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
955 return;
957 if (chan->beacon_found)
958 return;
960 chan->beacon_found = true;
962 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
963 return;
965 chan_before.center_freq = chan->center_freq;
966 chan_before.flags = chan->flags;
968 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
969 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
970 channel_changed = true;
973 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
974 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
975 channel_changed = true;
978 if (channel_changed)
979 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
983 * Called when a scan on a wiphy finds a beacon on
984 * new channel
986 static void wiphy_update_new_beacon(struct wiphy *wiphy,
987 struct reg_beacon *reg_beacon)
989 unsigned int i;
990 struct ieee80211_supported_band *sband;
992 assert_cfg80211_lock();
994 if (!wiphy->bands[reg_beacon->chan.band])
995 return;
997 sband = wiphy->bands[reg_beacon->chan.band];
999 for (i = 0; i < sband->n_channels; i++)
1000 handle_reg_beacon(wiphy, i, reg_beacon);
1004 * Called upon reg changes or a new wiphy is added
1006 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1008 unsigned int i;
1009 struct ieee80211_supported_band *sband;
1010 struct reg_beacon *reg_beacon;
1012 assert_cfg80211_lock();
1014 if (list_empty(&reg_beacon_list))
1015 return;
1017 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1018 if (!wiphy->bands[reg_beacon->chan.band])
1019 continue;
1020 sband = wiphy->bands[reg_beacon->chan.band];
1021 for (i = 0; i < sband->n_channels; i++)
1022 handle_reg_beacon(wiphy, i, reg_beacon);
1026 static bool reg_is_world_roaming(struct wiphy *wiphy)
1028 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1029 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1030 return true;
1031 if (last_request &&
1032 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1033 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1034 return true;
1035 return false;
1038 /* Reap the advantages of previously found beacons */
1039 static void reg_process_beacons(struct wiphy *wiphy)
1042 * Means we are just firing up cfg80211, so no beacons would
1043 * have been processed yet.
1045 if (!last_request)
1046 return;
1047 if (!reg_is_world_roaming(wiphy))
1048 return;
1049 wiphy_update_beacon_reg(wiphy);
1052 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1054 if (!chan)
1055 return true;
1056 if (chan->flags & IEEE80211_CHAN_DISABLED)
1057 return true;
1058 /* This would happen when regulatory rules disallow HT40 completely */
1059 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1060 return true;
1061 return false;
1064 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1065 enum ieee80211_band band,
1066 unsigned int chan_idx)
1068 struct ieee80211_supported_band *sband;
1069 struct ieee80211_channel *channel;
1070 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1071 unsigned int i;
1073 assert_cfg80211_lock();
1075 sband = wiphy->bands[band];
1076 BUG_ON(chan_idx >= sband->n_channels);
1077 channel = &sband->channels[chan_idx];
1079 if (is_ht40_not_allowed(channel)) {
1080 channel->flags |= IEEE80211_CHAN_NO_HT40;
1081 return;
1085 * We need to ensure the extension channels exist to
1086 * be able to use HT40- or HT40+, this finds them (or not)
1088 for (i = 0; i < sband->n_channels; i++) {
1089 struct ieee80211_channel *c = &sband->channels[i];
1090 if (c->center_freq == (channel->center_freq - 20))
1091 channel_before = c;
1092 if (c->center_freq == (channel->center_freq + 20))
1093 channel_after = c;
1097 * Please note that this assumes target bandwidth is 20 MHz,
1098 * if that ever changes we also need to change the below logic
1099 * to include that as well.
1101 if (is_ht40_not_allowed(channel_before))
1102 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1103 else
1104 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1106 if (is_ht40_not_allowed(channel_after))
1107 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1108 else
1109 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1112 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1113 enum ieee80211_band band)
1115 unsigned int i;
1116 struct ieee80211_supported_band *sband;
1118 BUG_ON(!wiphy->bands[band]);
1119 sband = wiphy->bands[band];
1121 for (i = 0; i < sband->n_channels; i++)
1122 reg_process_ht_flags_channel(wiphy, band, i);
1125 static void reg_process_ht_flags(struct wiphy *wiphy)
1127 enum ieee80211_band band;
1129 if (!wiphy)
1130 return;
1132 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1133 if (wiphy->bands[band])
1134 reg_process_ht_flags_band(wiphy, band);
1139 void wiphy_update_regulatory(struct wiphy *wiphy,
1140 enum nl80211_reg_initiator initiator)
1142 enum ieee80211_band band;
1144 if (ignore_reg_update(wiphy, initiator))
1145 return;
1147 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1148 if (wiphy->bands[band])
1149 handle_band(wiphy, band, initiator);
1152 reg_process_beacons(wiphy);
1153 reg_process_ht_flags(wiphy);
1154 if (wiphy->reg_notifier)
1155 wiphy->reg_notifier(wiphy, last_request);
1158 static void handle_channel_custom(struct wiphy *wiphy,
1159 enum ieee80211_band band,
1160 unsigned int chan_idx,
1161 const struct ieee80211_regdomain *regd)
1163 int r;
1164 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1165 u32 bw_flags = 0;
1166 const struct ieee80211_reg_rule *reg_rule = NULL;
1167 const struct ieee80211_power_rule *power_rule = NULL;
1168 const struct ieee80211_freq_range *freq_range = NULL;
1169 struct ieee80211_supported_band *sband;
1170 struct ieee80211_channel *chan;
1172 assert_reg_lock();
1174 sband = wiphy->bands[band];
1175 BUG_ON(chan_idx >= sband->n_channels);
1176 chan = &sband->channels[chan_idx];
1178 r = freq_reg_info_regd(wiphy,
1179 MHZ_TO_KHZ(chan->center_freq),
1180 desired_bw_khz,
1181 &reg_rule,
1182 regd);
1184 if (r) {
1185 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1186 "regd has no rule that fits a %d MHz "
1187 "wide channel\n",
1188 chan->center_freq,
1189 KHZ_TO_MHZ(desired_bw_khz));
1190 chan->flags = IEEE80211_CHAN_DISABLED;
1191 return;
1194 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1196 power_rule = &reg_rule->power_rule;
1197 freq_range = &reg_rule->freq_range;
1199 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1200 bw_flags = IEEE80211_CHAN_NO_HT40;
1202 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1203 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1204 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1207 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1208 const struct ieee80211_regdomain *regd)
1210 unsigned int i;
1211 struct ieee80211_supported_band *sband;
1213 BUG_ON(!wiphy->bands[band]);
1214 sband = wiphy->bands[band];
1216 for (i = 0; i < sband->n_channels; i++)
1217 handle_channel_custom(wiphy, band, i, regd);
1220 /* Used by drivers prior to wiphy registration */
1221 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1222 const struct ieee80211_regdomain *regd)
1224 enum ieee80211_band band;
1225 unsigned int bands_set = 0;
1227 mutex_lock(&reg_mutex);
1228 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1229 if (!wiphy->bands[band])
1230 continue;
1231 handle_band_custom(wiphy, band, regd);
1232 bands_set++;
1234 mutex_unlock(&reg_mutex);
1237 * no point in calling this if it won't have any effect
1238 * on your device's supportd bands.
1240 WARN_ON(!bands_set);
1242 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1245 * Return value which can be used by ignore_request() to indicate
1246 * it has been determined we should intersect two regulatory domains
1248 #define REG_INTERSECT 1
1250 /* This has the logic which determines when a new request
1251 * should be ignored. */
1252 static int ignore_request(struct wiphy *wiphy,
1253 struct regulatory_request *pending_request)
1255 struct wiphy *last_wiphy = NULL;
1257 assert_cfg80211_lock();
1259 /* All initial requests are respected */
1260 if (!last_request)
1261 return 0;
1263 switch (pending_request->initiator) {
1264 case NL80211_REGDOM_SET_BY_CORE:
1265 return 0;
1266 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1268 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1270 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1271 return -EINVAL;
1272 if (last_request->initiator ==
1273 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1274 if (last_wiphy != wiphy) {
1276 * Two cards with two APs claiming different
1277 * Country IE alpha2s. We could
1278 * intersect them, but that seems unlikely
1279 * to be correct. Reject second one for now.
1281 if (regdom_changes(pending_request->alpha2))
1282 return -EOPNOTSUPP;
1283 return -EALREADY;
1286 * Two consecutive Country IE hints on the same wiphy.
1287 * This should be picked up early by the driver/stack
1289 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1290 return 0;
1291 return -EALREADY;
1293 return 0;
1294 case NL80211_REGDOM_SET_BY_DRIVER:
1295 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1296 if (regdom_changes(pending_request->alpha2))
1297 return 0;
1298 return -EALREADY;
1302 * This would happen if you unplug and plug your card
1303 * back in or if you add a new device for which the previously
1304 * loaded card also agrees on the regulatory domain.
1306 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1307 !regdom_changes(pending_request->alpha2))
1308 return -EALREADY;
1310 return REG_INTERSECT;
1311 case NL80211_REGDOM_SET_BY_USER:
1312 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1313 return REG_INTERSECT;
1315 * If the user knows better the user should set the regdom
1316 * to their country before the IE is picked up
1318 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1319 last_request->intersect)
1320 return -EOPNOTSUPP;
1322 * Process user requests only after previous user/driver/core
1323 * requests have been processed
1325 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1326 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1327 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1328 if (regdom_changes(last_request->alpha2))
1329 return -EAGAIN;
1332 if (!regdom_changes(pending_request->alpha2))
1333 return -EALREADY;
1335 return 0;
1338 return -EINVAL;
1341 static void reg_set_request_processed(void)
1343 bool need_more_processing = false;
1345 last_request->processed = true;
1347 spin_lock(&reg_requests_lock);
1348 if (!list_empty(&reg_requests_list))
1349 need_more_processing = true;
1350 spin_unlock(&reg_requests_lock);
1352 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1353 cancel_delayed_work_sync(&reg_timeout);
1355 if (need_more_processing)
1356 schedule_work(&reg_work);
1360 * __regulatory_hint - hint to the wireless core a regulatory domain
1361 * @wiphy: if the hint comes from country information from an AP, this
1362 * is required to be set to the wiphy that received the information
1363 * @pending_request: the regulatory request currently being processed
1365 * The Wireless subsystem can use this function to hint to the wireless core
1366 * what it believes should be the current regulatory domain.
1368 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1369 * already been set or other standard error codes.
1371 * Caller must hold &cfg80211_mutex and &reg_mutex
1373 static int __regulatory_hint(struct wiphy *wiphy,
1374 struct regulatory_request *pending_request)
1376 bool intersect = false;
1377 int r = 0;
1379 assert_cfg80211_lock();
1381 r = ignore_request(wiphy, pending_request);
1383 if (r == REG_INTERSECT) {
1384 if (pending_request->initiator ==
1385 NL80211_REGDOM_SET_BY_DRIVER) {
1386 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1387 if (r) {
1388 kfree(pending_request);
1389 return r;
1392 intersect = true;
1393 } else if (r) {
1395 * If the regulatory domain being requested by the
1396 * driver has already been set just copy it to the
1397 * wiphy
1399 if (r == -EALREADY &&
1400 pending_request->initiator ==
1401 NL80211_REGDOM_SET_BY_DRIVER) {
1402 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1403 if (r) {
1404 kfree(pending_request);
1405 return r;
1407 r = -EALREADY;
1408 goto new_request;
1410 kfree(pending_request);
1411 return r;
1414 new_request:
1415 if (last_request != &core_request_world)
1416 kfree(last_request);
1418 last_request = pending_request;
1419 last_request->intersect = intersect;
1421 pending_request = NULL;
1423 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1424 user_alpha2[0] = last_request->alpha2[0];
1425 user_alpha2[1] = last_request->alpha2[1];
1428 /* When r == REG_INTERSECT we do need to call CRDA */
1429 if (r < 0) {
1431 * Since CRDA will not be called in this case as we already
1432 * have applied the requested regulatory domain before we just
1433 * inform userspace we have processed the request
1435 if (r == -EALREADY) {
1436 nl80211_send_reg_change_event(last_request);
1437 reg_set_request_processed();
1439 return r;
1442 return call_crda(last_request->alpha2);
1445 /* This processes *all* regulatory hints */
1446 static void reg_process_hint(struct regulatory_request *reg_request)
1448 int r = 0;
1449 struct wiphy *wiphy = NULL;
1450 enum nl80211_reg_initiator initiator = reg_request->initiator;
1452 BUG_ON(!reg_request->alpha2);
1454 if (wiphy_idx_valid(reg_request->wiphy_idx))
1455 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1457 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1458 !wiphy) {
1459 kfree(reg_request);
1460 return;
1463 r = __regulatory_hint(wiphy, reg_request);
1464 /* This is required so that the orig_* parameters are saved */
1465 if (r == -EALREADY && wiphy &&
1466 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1467 wiphy_update_regulatory(wiphy, initiator);
1468 return;
1472 * We only time out user hints, given that they should be the only
1473 * source of bogus requests.
1475 if (r != -EALREADY &&
1476 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1477 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1481 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1482 * Regulatory hints come on a first come first serve basis and we
1483 * must process each one atomically.
1485 static void reg_process_pending_hints(void)
1487 struct regulatory_request *reg_request;
1489 mutex_lock(&cfg80211_mutex);
1490 mutex_lock(&reg_mutex);
1492 /* When last_request->processed becomes true this will be rescheduled */
1493 if (last_request && !last_request->processed) {
1494 REG_DBG_PRINT("Pending regulatory request, waiting "
1495 "for it to be processed...");
1496 goto out;
1499 spin_lock(&reg_requests_lock);
1501 if (list_empty(&reg_requests_list)) {
1502 spin_unlock(&reg_requests_lock);
1503 goto out;
1506 reg_request = list_first_entry(&reg_requests_list,
1507 struct regulatory_request,
1508 list);
1509 list_del_init(&reg_request->list);
1511 spin_unlock(&reg_requests_lock);
1513 reg_process_hint(reg_request);
1515 out:
1516 mutex_unlock(&reg_mutex);
1517 mutex_unlock(&cfg80211_mutex);
1520 /* Processes beacon hints -- this has nothing to do with country IEs */
1521 static void reg_process_pending_beacon_hints(void)
1523 struct cfg80211_registered_device *rdev;
1524 struct reg_beacon *pending_beacon, *tmp;
1527 * No need to hold the reg_mutex here as we just touch wiphys
1528 * and do not read or access regulatory variables.
1530 mutex_lock(&cfg80211_mutex);
1532 /* This goes through the _pending_ beacon list */
1533 spin_lock_bh(&reg_pending_beacons_lock);
1535 if (list_empty(&reg_pending_beacons)) {
1536 spin_unlock_bh(&reg_pending_beacons_lock);
1537 goto out;
1540 list_for_each_entry_safe(pending_beacon, tmp,
1541 &reg_pending_beacons, list) {
1543 list_del_init(&pending_beacon->list);
1545 /* Applies the beacon hint to current wiphys */
1546 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1547 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1549 /* Remembers the beacon hint for new wiphys or reg changes */
1550 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1553 spin_unlock_bh(&reg_pending_beacons_lock);
1554 out:
1555 mutex_unlock(&cfg80211_mutex);
1558 static void reg_todo(struct work_struct *work)
1560 reg_process_pending_hints();
1561 reg_process_pending_beacon_hints();
1564 static void queue_regulatory_request(struct regulatory_request *request)
1566 if (isalpha(request->alpha2[0]))
1567 request->alpha2[0] = toupper(request->alpha2[0]);
1568 if (isalpha(request->alpha2[1]))
1569 request->alpha2[1] = toupper(request->alpha2[1]);
1571 spin_lock(&reg_requests_lock);
1572 list_add_tail(&request->list, &reg_requests_list);
1573 spin_unlock(&reg_requests_lock);
1575 schedule_work(&reg_work);
1579 * Core regulatory hint -- happens during cfg80211_init()
1580 * and when we restore regulatory settings.
1582 static int regulatory_hint_core(const char *alpha2)
1584 struct regulatory_request *request;
1586 request = kzalloc(sizeof(struct regulatory_request),
1587 GFP_KERNEL);
1588 if (!request)
1589 return -ENOMEM;
1591 request->alpha2[0] = alpha2[0];
1592 request->alpha2[1] = alpha2[1];
1593 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1595 queue_regulatory_request(request);
1597 return 0;
1600 /* User hints */
1601 int regulatory_hint_user(const char *alpha2)
1603 struct regulatory_request *request;
1605 BUG_ON(!alpha2);
1607 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1608 if (!request)
1609 return -ENOMEM;
1611 request->wiphy_idx = WIPHY_IDX_STALE;
1612 request->alpha2[0] = alpha2[0];
1613 request->alpha2[1] = alpha2[1];
1614 request->initiator = NL80211_REGDOM_SET_BY_USER;
1616 queue_regulatory_request(request);
1618 return 0;
1621 /* Driver hints */
1622 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1624 struct regulatory_request *request;
1626 BUG_ON(!alpha2);
1627 BUG_ON(!wiphy);
1629 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1630 if (!request)
1631 return -ENOMEM;
1633 request->wiphy_idx = get_wiphy_idx(wiphy);
1635 /* Must have registered wiphy first */
1636 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1638 request->alpha2[0] = alpha2[0];
1639 request->alpha2[1] = alpha2[1];
1640 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1642 queue_regulatory_request(request);
1644 return 0;
1646 EXPORT_SYMBOL(regulatory_hint);
1649 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1650 * therefore cannot iterate over the rdev list here.
1652 void regulatory_hint_11d(struct wiphy *wiphy,
1653 enum ieee80211_band band,
1654 u8 *country_ie,
1655 u8 country_ie_len)
1657 char alpha2[2];
1658 enum environment_cap env = ENVIRON_ANY;
1659 struct regulatory_request *request;
1661 mutex_lock(&reg_mutex);
1663 if (unlikely(!last_request))
1664 goto out;
1666 /* IE len must be evenly divisible by 2 */
1667 if (country_ie_len & 0x01)
1668 goto out;
1670 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1671 goto out;
1673 alpha2[0] = country_ie[0];
1674 alpha2[1] = country_ie[1];
1676 if (country_ie[2] == 'I')
1677 env = ENVIRON_INDOOR;
1678 else if (country_ie[2] == 'O')
1679 env = ENVIRON_OUTDOOR;
1682 * We will run this only upon a successful connection on cfg80211.
1683 * We leave conflict resolution to the workqueue, where can hold
1684 * cfg80211_mutex.
1686 if (likely(last_request->initiator ==
1687 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1688 wiphy_idx_valid(last_request->wiphy_idx)))
1689 goto out;
1691 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1692 if (!request)
1693 goto out;
1695 request->wiphy_idx = get_wiphy_idx(wiphy);
1696 request->alpha2[0] = alpha2[0];
1697 request->alpha2[1] = alpha2[1];
1698 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1699 request->country_ie_env = env;
1701 mutex_unlock(&reg_mutex);
1703 queue_regulatory_request(request);
1705 return;
1707 out:
1708 mutex_unlock(&reg_mutex);
1711 static void restore_alpha2(char *alpha2, bool reset_user)
1713 /* indicates there is no alpha2 to consider for restoration */
1714 alpha2[0] = '9';
1715 alpha2[1] = '7';
1717 /* The user setting has precedence over the module parameter */
1718 if (is_user_regdom_saved()) {
1719 /* Unless we're asked to ignore it and reset it */
1720 if (reset_user) {
1721 REG_DBG_PRINT("Restoring regulatory settings "
1722 "including user preference\n");
1723 user_alpha2[0] = '9';
1724 user_alpha2[1] = '7';
1727 * If we're ignoring user settings, we still need to
1728 * check the module parameter to ensure we put things
1729 * back as they were for a full restore.
1731 if (!is_world_regdom(ieee80211_regdom)) {
1732 REG_DBG_PRINT("Keeping preference on "
1733 "module parameter ieee80211_regdom: %c%c\n",
1734 ieee80211_regdom[0],
1735 ieee80211_regdom[1]);
1736 alpha2[0] = ieee80211_regdom[0];
1737 alpha2[1] = ieee80211_regdom[1];
1739 } else {
1740 REG_DBG_PRINT("Restoring regulatory settings "
1741 "while preserving user preference for: %c%c\n",
1742 user_alpha2[0],
1743 user_alpha2[1]);
1744 alpha2[0] = user_alpha2[0];
1745 alpha2[1] = user_alpha2[1];
1747 } else if (!is_world_regdom(ieee80211_regdom)) {
1748 REG_DBG_PRINT("Keeping preference on "
1749 "module parameter ieee80211_regdom: %c%c\n",
1750 ieee80211_regdom[0],
1751 ieee80211_regdom[1]);
1752 alpha2[0] = ieee80211_regdom[0];
1753 alpha2[1] = ieee80211_regdom[1];
1754 } else
1755 REG_DBG_PRINT("Restoring regulatory settings\n");
1759 * Restoring regulatory settings involves ingoring any
1760 * possibly stale country IE information and user regulatory
1761 * settings if so desired, this includes any beacon hints
1762 * learned as we could have traveled outside to another country
1763 * after disconnection. To restore regulatory settings we do
1764 * exactly what we did at bootup:
1766 * - send a core regulatory hint
1767 * - send a user regulatory hint if applicable
1769 * Device drivers that send a regulatory hint for a specific country
1770 * keep their own regulatory domain on wiphy->regd so that does does
1771 * not need to be remembered.
1773 static void restore_regulatory_settings(bool reset_user)
1775 char alpha2[2];
1776 struct reg_beacon *reg_beacon, *btmp;
1777 struct regulatory_request *reg_request, *tmp;
1778 LIST_HEAD(tmp_reg_req_list);
1780 mutex_lock(&cfg80211_mutex);
1781 mutex_lock(&reg_mutex);
1783 reset_regdomains(true);
1784 restore_alpha2(alpha2, reset_user);
1787 * If there's any pending requests we simply
1788 * stash them to a temporary pending queue and
1789 * add then after we've restored regulatory
1790 * settings.
1792 spin_lock(&reg_requests_lock);
1793 if (!list_empty(&reg_requests_list)) {
1794 list_for_each_entry_safe(reg_request, tmp,
1795 &reg_requests_list, list) {
1796 if (reg_request->initiator !=
1797 NL80211_REGDOM_SET_BY_USER)
1798 continue;
1799 list_del(&reg_request->list);
1800 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1803 spin_unlock(&reg_requests_lock);
1805 /* Clear beacon hints */
1806 spin_lock_bh(&reg_pending_beacons_lock);
1807 if (!list_empty(&reg_pending_beacons)) {
1808 list_for_each_entry_safe(reg_beacon, btmp,
1809 &reg_pending_beacons, list) {
1810 list_del(&reg_beacon->list);
1811 kfree(reg_beacon);
1814 spin_unlock_bh(&reg_pending_beacons_lock);
1816 if (!list_empty(&reg_beacon_list)) {
1817 list_for_each_entry_safe(reg_beacon, btmp,
1818 &reg_beacon_list, list) {
1819 list_del(&reg_beacon->list);
1820 kfree(reg_beacon);
1824 /* First restore to the basic regulatory settings */
1825 cfg80211_regdomain = cfg80211_world_regdom;
1827 mutex_unlock(&reg_mutex);
1828 mutex_unlock(&cfg80211_mutex);
1830 regulatory_hint_core(cfg80211_regdomain->alpha2);
1833 * This restores the ieee80211_regdom module parameter
1834 * preference or the last user requested regulatory
1835 * settings, user regulatory settings takes precedence.
1837 if (is_an_alpha2(alpha2))
1838 regulatory_hint_user(user_alpha2);
1840 if (list_empty(&tmp_reg_req_list))
1841 return;
1843 mutex_lock(&cfg80211_mutex);
1844 mutex_lock(&reg_mutex);
1846 spin_lock(&reg_requests_lock);
1847 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1848 REG_DBG_PRINT("Adding request for country %c%c back "
1849 "into the queue\n",
1850 reg_request->alpha2[0],
1851 reg_request->alpha2[1]);
1852 list_del(&reg_request->list);
1853 list_add_tail(&reg_request->list, &reg_requests_list);
1855 spin_unlock(&reg_requests_lock);
1857 mutex_unlock(&reg_mutex);
1858 mutex_unlock(&cfg80211_mutex);
1860 REG_DBG_PRINT("Kicking the queue\n");
1862 schedule_work(&reg_work);
1865 void regulatory_hint_disconnect(void)
1867 REG_DBG_PRINT("All devices are disconnected, going to "
1868 "restore regulatory settings\n");
1869 restore_regulatory_settings(false);
1872 static bool freq_is_chan_12_13_14(u16 freq)
1874 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1875 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1876 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1877 return true;
1878 return false;
1881 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1882 struct ieee80211_channel *beacon_chan,
1883 gfp_t gfp)
1885 struct reg_beacon *reg_beacon;
1887 if (likely((beacon_chan->beacon_found ||
1888 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1889 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1890 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1891 return 0;
1893 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1894 if (!reg_beacon)
1895 return -ENOMEM;
1897 REG_DBG_PRINT("Found new beacon on "
1898 "frequency: %d MHz (Ch %d) on %s\n",
1899 beacon_chan->center_freq,
1900 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1901 wiphy_name(wiphy));
1903 memcpy(&reg_beacon->chan, beacon_chan,
1904 sizeof(struct ieee80211_channel));
1908 * Since we can be called from BH or and non-BH context
1909 * we must use spin_lock_bh()
1911 spin_lock_bh(&reg_pending_beacons_lock);
1912 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1913 spin_unlock_bh(&reg_pending_beacons_lock);
1915 schedule_work(&reg_work);
1917 return 0;
1920 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1922 unsigned int i;
1923 const struct ieee80211_reg_rule *reg_rule = NULL;
1924 const struct ieee80211_freq_range *freq_range = NULL;
1925 const struct ieee80211_power_rule *power_rule = NULL;
1927 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1929 for (i = 0; i < rd->n_reg_rules; i++) {
1930 reg_rule = &rd->reg_rules[i];
1931 freq_range = &reg_rule->freq_range;
1932 power_rule = &reg_rule->power_rule;
1935 * There may not be documentation for max antenna gain
1936 * in certain regions
1938 if (power_rule->max_antenna_gain)
1939 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1940 freq_range->start_freq_khz,
1941 freq_range->end_freq_khz,
1942 freq_range->max_bandwidth_khz,
1943 power_rule->max_antenna_gain,
1944 power_rule->max_eirp);
1945 else
1946 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1947 freq_range->start_freq_khz,
1948 freq_range->end_freq_khz,
1949 freq_range->max_bandwidth_khz,
1950 power_rule->max_eirp);
1954 static void print_regdomain(const struct ieee80211_regdomain *rd)
1957 if (is_intersected_alpha2(rd->alpha2)) {
1959 if (last_request->initiator ==
1960 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1961 struct cfg80211_registered_device *rdev;
1962 rdev = cfg80211_rdev_by_wiphy_idx(
1963 last_request->wiphy_idx);
1964 if (rdev) {
1965 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1966 rdev->country_ie_alpha2[0],
1967 rdev->country_ie_alpha2[1]);
1968 } else
1969 pr_info("Current regulatory domain intersected:\n");
1970 } else
1971 pr_info("Current regulatory domain intersected:\n");
1972 } else if (is_world_regdom(rd->alpha2))
1973 pr_info("World regulatory domain updated:\n");
1974 else {
1975 if (is_unknown_alpha2(rd->alpha2))
1976 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1977 else
1978 pr_info("Regulatory domain changed to country: %c%c\n",
1979 rd->alpha2[0], rd->alpha2[1]);
1981 print_rd_rules(rd);
1984 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1986 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1987 print_rd_rules(rd);
1990 /* Takes ownership of rd only if it doesn't fail */
1991 static int __set_regdom(const struct ieee80211_regdomain *rd)
1993 const struct ieee80211_regdomain *intersected_rd = NULL;
1994 struct cfg80211_registered_device *rdev = NULL;
1995 struct wiphy *request_wiphy;
1996 /* Some basic sanity checks first */
1998 if (is_world_regdom(rd->alpha2)) {
1999 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2000 return -EINVAL;
2001 update_world_regdomain(rd);
2002 return 0;
2005 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2006 !is_unknown_alpha2(rd->alpha2))
2007 return -EINVAL;
2009 if (!last_request)
2010 return -EINVAL;
2013 * Lets only bother proceeding on the same alpha2 if the current
2014 * rd is non static (it means CRDA was present and was used last)
2015 * and the pending request came in from a country IE
2017 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2019 * If someone else asked us to change the rd lets only bother
2020 * checking if the alpha2 changes if CRDA was already called
2022 if (!regdom_changes(rd->alpha2))
2023 return -EINVAL;
2027 * Now lets set the regulatory domain, update all driver channels
2028 * and finally inform them of what we have done, in case they want
2029 * to review or adjust their own settings based on their own
2030 * internal EEPROM data
2033 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2034 return -EINVAL;
2036 if (!is_valid_rd(rd)) {
2037 pr_err("Invalid regulatory domain detected:\n");
2038 print_regdomain_info(rd);
2039 return -EINVAL;
2042 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2043 if (!request_wiphy &&
2044 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2045 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2046 schedule_delayed_work(&reg_timeout, 0);
2047 return -ENODEV;
2050 if (!last_request->intersect) {
2051 int r;
2053 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2054 reset_regdomains(false);
2055 cfg80211_regdomain = rd;
2056 return 0;
2060 * For a driver hint, lets copy the regulatory domain the
2061 * driver wanted to the wiphy to deal with conflicts
2065 * Userspace could have sent two replies with only
2066 * one kernel request.
2068 if (request_wiphy->regd)
2069 return -EALREADY;
2071 r = reg_copy_regd(&request_wiphy->regd, rd);
2072 if (r)
2073 return r;
2075 reset_regdomains(false);
2076 cfg80211_regdomain = rd;
2077 return 0;
2080 /* Intersection requires a bit more work */
2082 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2084 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2085 if (!intersected_rd)
2086 return -EINVAL;
2089 * We can trash what CRDA provided now.
2090 * However if a driver requested this specific regulatory
2091 * domain we keep it for its private use
2093 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2094 request_wiphy->regd = rd;
2095 else
2096 kfree(rd);
2098 rd = NULL;
2100 reset_regdomains(false);
2101 cfg80211_regdomain = intersected_rd;
2103 return 0;
2106 if (!intersected_rd)
2107 return -EINVAL;
2109 rdev = wiphy_to_dev(request_wiphy);
2111 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2112 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2113 rdev->env = last_request->country_ie_env;
2115 BUG_ON(intersected_rd == rd);
2117 kfree(rd);
2118 rd = NULL;
2120 reset_regdomains(false);
2121 cfg80211_regdomain = intersected_rd;
2123 return 0;
2128 * Use this call to set the current regulatory domain. Conflicts with
2129 * multiple drivers can be ironed out later. Caller must've already
2130 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2132 int set_regdom(const struct ieee80211_regdomain *rd)
2134 int r;
2136 assert_cfg80211_lock();
2138 mutex_lock(&reg_mutex);
2140 /* Note that this doesn't update the wiphys, this is done below */
2141 r = __set_regdom(rd);
2142 if (r) {
2143 kfree(rd);
2144 mutex_unlock(&reg_mutex);
2145 return r;
2148 /* This would make this whole thing pointless */
2149 if (!last_request->intersect)
2150 BUG_ON(rd != cfg80211_regdomain);
2152 /* update all wiphys now with the new established regulatory domain */
2153 update_all_wiphy_regulatory(last_request->initiator);
2155 print_regdomain(cfg80211_regdomain);
2157 nl80211_send_reg_change_event(last_request);
2159 reg_set_request_processed();
2161 mutex_unlock(&reg_mutex);
2163 return r;
2166 #ifdef CONFIG_HOTPLUG
2167 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2169 if (last_request && !last_request->processed) {
2170 if (add_uevent_var(env, "COUNTRY=%c%c",
2171 last_request->alpha2[0],
2172 last_request->alpha2[1]))
2173 return -ENOMEM;
2176 return 0;
2178 #else
2179 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2181 return -ENODEV;
2183 #endif /* CONFIG_HOTPLUG */
2185 /* Caller must hold cfg80211_mutex */
2186 void reg_device_remove(struct wiphy *wiphy)
2188 struct wiphy *request_wiphy = NULL;
2190 assert_cfg80211_lock();
2192 mutex_lock(&reg_mutex);
2194 kfree(wiphy->regd);
2196 if (last_request)
2197 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2199 if (!request_wiphy || request_wiphy != wiphy)
2200 goto out;
2202 last_request->wiphy_idx = WIPHY_IDX_STALE;
2203 last_request->country_ie_env = ENVIRON_ANY;
2204 out:
2205 mutex_unlock(&reg_mutex);
2208 static void reg_timeout_work(struct work_struct *work)
2210 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2211 "restoring regulatory settings");
2212 restore_regulatory_settings(true);
2215 int __init regulatory_init(void)
2217 int err = 0;
2219 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2220 if (IS_ERR(reg_pdev))
2221 return PTR_ERR(reg_pdev);
2223 reg_pdev->dev.type = &reg_device_type;
2225 spin_lock_init(&reg_requests_lock);
2226 spin_lock_init(&reg_pending_beacons_lock);
2228 cfg80211_regdomain = cfg80211_world_regdom;
2230 user_alpha2[0] = '9';
2231 user_alpha2[1] = '7';
2233 /* We always try to get an update for the static regdomain */
2234 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2235 if (err) {
2236 if (err == -ENOMEM)
2237 return err;
2239 * N.B. kobject_uevent_env() can fail mainly for when we're out
2240 * memory which is handled and propagated appropriately above
2241 * but it can also fail during a netlink_broadcast() or during
2242 * early boot for call_usermodehelper(). For now treat these
2243 * errors as non-fatal.
2245 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2246 #ifdef CONFIG_CFG80211_REG_DEBUG
2247 /* We want to find out exactly why when debugging */
2248 WARN_ON(err);
2249 #endif
2253 * Finally, if the user set the module parameter treat it
2254 * as a user hint.
2256 if (!is_world_regdom(ieee80211_regdom))
2257 regulatory_hint_user(ieee80211_regdom);
2259 return 0;
2262 void /* __init_or_exit */ regulatory_exit(void)
2264 struct regulatory_request *reg_request, *tmp;
2265 struct reg_beacon *reg_beacon, *btmp;
2267 cancel_work_sync(&reg_work);
2268 cancel_delayed_work_sync(&reg_timeout);
2270 mutex_lock(&cfg80211_mutex);
2271 mutex_lock(&reg_mutex);
2273 reset_regdomains(true);
2275 dev_set_uevent_suppress(&reg_pdev->dev, true);
2277 platform_device_unregister(reg_pdev);
2279 spin_lock_bh(&reg_pending_beacons_lock);
2280 if (!list_empty(&reg_pending_beacons)) {
2281 list_for_each_entry_safe(reg_beacon, btmp,
2282 &reg_pending_beacons, list) {
2283 list_del(&reg_beacon->list);
2284 kfree(reg_beacon);
2287 spin_unlock_bh(&reg_pending_beacons_lock);
2289 if (!list_empty(&reg_beacon_list)) {
2290 list_for_each_entry_safe(reg_beacon, btmp,
2291 &reg_beacon_list, list) {
2292 list_del(&reg_beacon->list);
2293 kfree(reg_beacon);
2297 spin_lock(&reg_requests_lock);
2298 if (!list_empty(&reg_requests_list)) {
2299 list_for_each_entry_safe(reg_request, tmp,
2300 &reg_requests_list, list) {
2301 list_del(&reg_request->list);
2302 kfree(reg_request);
2305 spin_unlock(&reg_requests_lock);
2307 mutex_unlock(&reg_mutex);
2308 mutex_unlock(&cfg80211_mutex);