xen/swiotlb: Use page alignment for early buffer allocation.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / mm / discontig.c
blobc641333cd997635f1c885d12d895459111168e4a
1 /*
2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <linux/slab.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/meminit.h>
29 #include <asm/numa.h>
30 #include <asm/sections.h>
33 * Track per-node information needed to setup the boot memory allocator, the
34 * per-node areas, and the real VM.
36 struct early_node_data {
37 struct ia64_node_data *node_data;
38 unsigned long pernode_addr;
39 unsigned long pernode_size;
40 unsigned long num_physpages;
41 #ifdef CONFIG_ZONE_DMA
42 unsigned long num_dma_physpages;
43 #endif
44 unsigned long min_pfn;
45 unsigned long max_pfn;
48 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
49 static nodemask_t memory_less_mask __initdata;
51 pg_data_t *pgdat_list[MAX_NUMNODES];
54 * To prevent cache aliasing effects, align per-node structures so that they
55 * start at addresses that are strided by node number.
57 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
58 #define NODEDATA_ALIGN(addr, node) \
59 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
60 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
62 /**
63 * build_node_maps - callback to setup bootmem structs for each node
64 * @start: physical start of range
65 * @len: length of range
66 * @node: node where this range resides
68 * We allocate a struct bootmem_data for each piece of memory that we wish to
69 * treat as a virtually contiguous block (i.e. each node). Each such block
70 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
71 * if necessary. Any non-existent pages will simply be part of the virtual
72 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
73 * memory ranges from the caller.
75 static int __init build_node_maps(unsigned long start, unsigned long len,
76 int node)
78 unsigned long spfn, epfn, end = start + len;
79 struct bootmem_data *bdp = &bootmem_node_data[node];
81 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
82 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
84 if (!bdp->node_low_pfn) {
85 bdp->node_min_pfn = spfn;
86 bdp->node_low_pfn = epfn;
87 } else {
88 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
89 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
92 return 0;
95 /**
96 * early_nr_cpus_node - return number of cpus on a given node
97 * @node: node to check
99 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
100 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
101 * called yet. Note that node 0 will also count all non-existent cpus.
103 static int __meminit early_nr_cpus_node(int node)
105 int cpu, n = 0;
107 for_each_possible_early_cpu(cpu)
108 if (node == node_cpuid[cpu].nid)
109 n++;
111 return n;
115 * compute_pernodesize - compute size of pernode data
116 * @node: the node id.
118 static unsigned long __meminit compute_pernodesize(int node)
120 unsigned long pernodesize = 0, cpus;
122 cpus = early_nr_cpus_node(node);
123 pernodesize += PERCPU_PAGE_SIZE * cpus;
124 pernodesize += node * L1_CACHE_BYTES;
125 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
126 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
127 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
128 pernodesize = PAGE_ALIGN(pernodesize);
129 return pernodesize;
133 * per_cpu_node_setup - setup per-cpu areas on each node
134 * @cpu_data: per-cpu area on this node
135 * @node: node to setup
137 * Copy the static per-cpu data into the region we just set aside and then
138 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
139 * the end of the area.
141 static void *per_cpu_node_setup(void *cpu_data, int node)
143 #ifdef CONFIG_SMP
144 int cpu;
146 for_each_possible_early_cpu(cpu) {
147 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
149 if (node != node_cpuid[cpu].nid)
150 continue;
152 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
153 __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
154 __per_cpu_start;
157 * percpu area for cpu0 is moved from the __init area
158 * which is setup by head.S and used till this point.
159 * Update ar.k3. This move is ensures that percpu
160 * area for cpu0 is on the correct node and its
161 * virtual address isn't insanely far from other
162 * percpu areas which is important for congruent
163 * percpu allocator.
165 if (cpu == 0)
166 ia64_set_kr(IA64_KR_PER_CPU_DATA,
167 (unsigned long)cpu_data -
168 (unsigned long)__per_cpu_start);
170 cpu_data += PERCPU_PAGE_SIZE;
172 #endif
173 return cpu_data;
176 #ifdef CONFIG_SMP
178 * setup_per_cpu_areas - setup percpu areas
180 * Arch code has already allocated and initialized percpu areas. All
181 * this function has to do is to teach the determined layout to the
182 * dynamic percpu allocator, which happens to be more complex than
183 * creating whole new ones using helpers.
185 void __init setup_per_cpu_areas(void)
187 struct pcpu_alloc_info *ai;
188 struct pcpu_group_info *uninitialized_var(gi);
189 unsigned int *cpu_map;
190 void *base;
191 unsigned long base_offset;
192 unsigned int cpu;
193 ssize_t static_size, reserved_size, dyn_size;
194 int node, prev_node, unit, nr_units, rc;
196 ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
197 if (!ai)
198 panic("failed to allocate pcpu_alloc_info");
199 cpu_map = ai->groups[0].cpu_map;
201 /* determine base */
202 base = (void *)ULONG_MAX;
203 for_each_possible_cpu(cpu)
204 base = min(base,
205 (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
206 base_offset = (void *)__per_cpu_start - base;
208 /* build cpu_map, units are grouped by node */
209 unit = 0;
210 for_each_node(node)
211 for_each_possible_cpu(cpu)
212 if (node == node_cpuid[cpu].nid)
213 cpu_map[unit++] = cpu;
214 nr_units = unit;
216 /* set basic parameters */
217 static_size = __per_cpu_end - __per_cpu_start;
218 reserved_size = PERCPU_MODULE_RESERVE;
219 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
220 if (dyn_size < 0)
221 panic("percpu area overflow static=%zd reserved=%zd\n",
222 static_size, reserved_size);
224 ai->static_size = static_size;
225 ai->reserved_size = reserved_size;
226 ai->dyn_size = dyn_size;
227 ai->unit_size = PERCPU_PAGE_SIZE;
228 ai->atom_size = PAGE_SIZE;
229 ai->alloc_size = PERCPU_PAGE_SIZE;
232 * CPUs are put into groups according to node. Walk cpu_map
233 * and create new groups at node boundaries.
235 prev_node = -1;
236 ai->nr_groups = 0;
237 for (unit = 0; unit < nr_units; unit++) {
238 cpu = cpu_map[unit];
239 node = node_cpuid[cpu].nid;
241 if (node == prev_node) {
242 gi->nr_units++;
243 continue;
245 prev_node = node;
247 gi = &ai->groups[ai->nr_groups++];
248 gi->nr_units = 1;
249 gi->base_offset = __per_cpu_offset[cpu] + base_offset;
250 gi->cpu_map = &cpu_map[unit];
253 rc = pcpu_setup_first_chunk(ai, base);
254 if (rc)
255 panic("failed to setup percpu area (err=%d)", rc);
257 pcpu_free_alloc_info(ai);
259 #endif
262 * fill_pernode - initialize pernode data.
263 * @node: the node id.
264 * @pernode: physical address of pernode data
265 * @pernodesize: size of the pernode data
267 static void __init fill_pernode(int node, unsigned long pernode,
268 unsigned long pernodesize)
270 void *cpu_data;
271 int cpus = early_nr_cpus_node(node);
272 struct bootmem_data *bdp = &bootmem_node_data[node];
274 mem_data[node].pernode_addr = pernode;
275 mem_data[node].pernode_size = pernodesize;
276 memset(__va(pernode), 0, pernodesize);
278 cpu_data = (void *)pernode;
279 pernode += PERCPU_PAGE_SIZE * cpus;
280 pernode += node * L1_CACHE_BYTES;
282 pgdat_list[node] = __va(pernode);
283 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
285 mem_data[node].node_data = __va(pernode);
286 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
288 pgdat_list[node]->bdata = bdp;
289 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
291 cpu_data = per_cpu_node_setup(cpu_data, node);
293 return;
297 * find_pernode_space - allocate memory for memory map and per-node structures
298 * @start: physical start of range
299 * @len: length of range
300 * @node: node where this range resides
302 * This routine reserves space for the per-cpu data struct, the list of
303 * pg_data_ts and the per-node data struct. Each node will have something like
304 * the following in the first chunk of addr. space large enough to hold it.
306 * ________________________
307 * | |
308 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
309 * | PERCPU_PAGE_SIZE * | start and length big enough
310 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
311 * |------------------------|
312 * | local pg_data_t * |
313 * |------------------------|
314 * | local ia64_node_data |
315 * |------------------------|
316 * | ??? |
317 * |________________________|
319 * Once this space has been set aside, the bootmem maps are initialized. We
320 * could probably move the allocation of the per-cpu and ia64_node_data space
321 * outside of this function and use alloc_bootmem_node(), but doing it here
322 * is straightforward and we get the alignments we want so...
324 static int __init find_pernode_space(unsigned long start, unsigned long len,
325 int node)
327 unsigned long spfn, epfn;
328 unsigned long pernodesize = 0, pernode, pages, mapsize;
329 struct bootmem_data *bdp = &bootmem_node_data[node];
331 spfn = start >> PAGE_SHIFT;
332 epfn = (start + len) >> PAGE_SHIFT;
334 pages = bdp->node_low_pfn - bdp->node_min_pfn;
335 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
338 * Make sure this memory falls within this node's usable memory
339 * since we may have thrown some away in build_maps().
341 if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
342 return 0;
344 /* Don't setup this node's local space twice... */
345 if (mem_data[node].pernode_addr)
346 return 0;
349 * Calculate total size needed, incl. what's necessary
350 * for good alignment and alias prevention.
352 pernodesize = compute_pernodesize(node);
353 pernode = NODEDATA_ALIGN(start, node);
355 /* Is this range big enough for what we want to store here? */
356 if (start + len > (pernode + pernodesize + mapsize))
357 fill_pernode(node, pernode, pernodesize);
359 return 0;
363 * free_node_bootmem - free bootmem allocator memory for use
364 * @start: physical start of range
365 * @len: length of range
366 * @node: node where this range resides
368 * Simply calls the bootmem allocator to free the specified ranged from
369 * the given pg_data_t's bdata struct. After this function has been called
370 * for all the entries in the EFI memory map, the bootmem allocator will
371 * be ready to service allocation requests.
373 static int __init free_node_bootmem(unsigned long start, unsigned long len,
374 int node)
376 free_bootmem_node(pgdat_list[node], start, len);
378 return 0;
382 * reserve_pernode_space - reserve memory for per-node space
384 * Reserve the space used by the bootmem maps & per-node space in the boot
385 * allocator so that when we actually create the real mem maps we don't
386 * use their memory.
388 static void __init reserve_pernode_space(void)
390 unsigned long base, size, pages;
391 struct bootmem_data *bdp;
392 int node;
394 for_each_online_node(node) {
395 pg_data_t *pdp = pgdat_list[node];
397 if (node_isset(node, memory_less_mask))
398 continue;
400 bdp = pdp->bdata;
402 /* First the bootmem_map itself */
403 pages = bdp->node_low_pfn - bdp->node_min_pfn;
404 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
405 base = __pa(bdp->node_bootmem_map);
406 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
408 /* Now the per-node space */
409 size = mem_data[node].pernode_size;
410 base = __pa(mem_data[node].pernode_addr);
411 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
415 static void __meminit scatter_node_data(void)
417 pg_data_t **dst;
418 int node;
421 * for_each_online_node() can't be used at here.
422 * node_online_map is not set for hot-added nodes at this time,
423 * because we are halfway through initialization of the new node's
424 * structures. If for_each_online_node() is used, a new node's
425 * pg_data_ptrs will be not initialized. Instead of using it,
426 * pgdat_list[] is checked.
428 for_each_node(node) {
429 if (pgdat_list[node]) {
430 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
431 memcpy(dst, pgdat_list, sizeof(pgdat_list));
437 * initialize_pernode_data - fixup per-cpu & per-node pointers
439 * Each node's per-node area has a copy of the global pg_data_t list, so
440 * we copy that to each node here, as well as setting the per-cpu pointer
441 * to the local node data structure. The active_cpus field of the per-node
442 * structure gets setup by the platform_cpu_init() function later.
444 static void __init initialize_pernode_data(void)
446 int cpu, node;
448 scatter_node_data();
450 #ifdef CONFIG_SMP
451 /* Set the node_data pointer for each per-cpu struct */
452 for_each_possible_early_cpu(cpu) {
453 node = node_cpuid[cpu].nid;
454 per_cpu(ia64_cpu_info, cpu).node_data =
455 mem_data[node].node_data;
457 #else
459 struct cpuinfo_ia64 *cpu0_cpu_info;
460 cpu = 0;
461 node = node_cpuid[cpu].nid;
462 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
463 ((char *)&ia64_cpu_info - __per_cpu_start));
464 cpu0_cpu_info->node_data = mem_data[node].node_data;
466 #endif /* CONFIG_SMP */
470 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
471 * node but fall back to any other node when __alloc_bootmem_node fails
472 * for best.
473 * @nid: node id
474 * @pernodesize: size of this node's pernode data
476 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
478 void *ptr = NULL;
479 u8 best = 0xff;
480 int bestnode = -1, node, anynode = 0;
482 for_each_online_node(node) {
483 if (node_isset(node, memory_less_mask))
484 continue;
485 else if (node_distance(nid, node) < best) {
486 best = node_distance(nid, node);
487 bestnode = node;
489 anynode = node;
492 if (bestnode == -1)
493 bestnode = anynode;
495 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
496 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
498 return ptr;
502 * memory_less_nodes - allocate and initialize CPU only nodes pernode
503 * information.
505 static void __init memory_less_nodes(void)
507 unsigned long pernodesize;
508 void *pernode;
509 int node;
511 for_each_node_mask(node, memory_less_mask) {
512 pernodesize = compute_pernodesize(node);
513 pernode = memory_less_node_alloc(node, pernodesize);
514 fill_pernode(node, __pa(pernode), pernodesize);
517 return;
521 * find_memory - walk the EFI memory map and setup the bootmem allocator
523 * Called early in boot to setup the bootmem allocator, and to
524 * allocate the per-cpu and per-node structures.
526 void __init find_memory(void)
528 int node;
530 reserve_memory();
532 if (num_online_nodes() == 0) {
533 printk(KERN_ERR "node info missing!\n");
534 node_set_online(0);
537 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
538 min_low_pfn = -1;
539 max_low_pfn = 0;
541 /* These actually end up getting called by call_pernode_memory() */
542 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
543 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
544 efi_memmap_walk(find_max_min_low_pfn, NULL);
546 for_each_online_node(node)
547 if (bootmem_node_data[node].node_low_pfn) {
548 node_clear(node, memory_less_mask);
549 mem_data[node].min_pfn = ~0UL;
552 efi_memmap_walk(filter_memory, register_active_ranges);
555 * Initialize the boot memory maps in reverse order since that's
556 * what the bootmem allocator expects
558 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
559 unsigned long pernode, pernodesize, map;
560 struct bootmem_data *bdp;
562 if (!node_online(node))
563 continue;
564 else if (node_isset(node, memory_less_mask))
565 continue;
567 bdp = &bootmem_node_data[node];
568 pernode = mem_data[node].pernode_addr;
569 pernodesize = mem_data[node].pernode_size;
570 map = pernode + pernodesize;
572 init_bootmem_node(pgdat_list[node],
573 map>>PAGE_SHIFT,
574 bdp->node_min_pfn,
575 bdp->node_low_pfn);
578 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
580 reserve_pernode_space();
581 memory_less_nodes();
582 initialize_pernode_data();
584 max_pfn = max_low_pfn;
586 find_initrd();
589 #ifdef CONFIG_SMP
591 * per_cpu_init - setup per-cpu variables
593 * find_pernode_space() does most of this already, we just need to set
594 * local_per_cpu_offset
596 void __cpuinit *per_cpu_init(void)
598 int cpu;
599 static int first_time = 1;
601 if (first_time) {
602 first_time = 0;
603 for_each_possible_early_cpu(cpu)
604 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
607 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
609 #endif /* CONFIG_SMP */
612 * show_mem - give short summary of memory stats
614 * Shows a simple page count of reserved and used pages in the system.
615 * For discontig machines, it does this on a per-pgdat basis.
617 void show_mem(unsigned int filter)
619 int i, total_reserved = 0;
620 int total_shared = 0, total_cached = 0;
621 unsigned long total_present = 0;
622 pg_data_t *pgdat;
624 printk(KERN_INFO "Mem-info:\n");
625 show_free_areas(filter);
626 printk(KERN_INFO "Node memory in pages:\n");
627 for_each_online_pgdat(pgdat) {
628 unsigned long present;
629 unsigned long flags;
630 int shared = 0, cached = 0, reserved = 0;
631 int nid = pgdat->node_id;
633 if (skip_free_areas_node(filter, nid))
634 continue;
635 pgdat_resize_lock(pgdat, &flags);
636 present = pgdat->node_present_pages;
637 for(i = 0; i < pgdat->node_spanned_pages; i++) {
638 struct page *page;
639 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
640 touch_nmi_watchdog();
641 if (pfn_valid(pgdat->node_start_pfn + i))
642 page = pfn_to_page(pgdat->node_start_pfn + i);
643 else {
644 i = vmemmap_find_next_valid_pfn(nid, i) - 1;
645 continue;
647 if (PageReserved(page))
648 reserved++;
649 else if (PageSwapCache(page))
650 cached++;
651 else if (page_count(page))
652 shared += page_count(page)-1;
654 pgdat_resize_unlock(pgdat, &flags);
655 total_present += present;
656 total_reserved += reserved;
657 total_cached += cached;
658 total_shared += shared;
659 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
660 "shrd: %10d, swpd: %10d\n", nid,
661 present, reserved, shared, cached);
663 printk(KERN_INFO "%ld pages of RAM\n", total_present);
664 printk(KERN_INFO "%d reserved pages\n", total_reserved);
665 printk(KERN_INFO "%d pages shared\n", total_shared);
666 printk(KERN_INFO "%d pages swap cached\n", total_cached);
667 printk(KERN_INFO "Total of %ld pages in page table cache\n",
668 quicklist_total_size());
669 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
673 * call_pernode_memory - use SRAT to call callback functions with node info
674 * @start: physical start of range
675 * @len: length of range
676 * @arg: function to call for each range
678 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
679 * out to which node a block of memory belongs. Ignore memory that we cannot
680 * identify, and split blocks that run across multiple nodes.
682 * Take this opportunity to round the start address up and the end address
683 * down to page boundaries.
685 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
687 unsigned long rs, re, end = start + len;
688 void (*func)(unsigned long, unsigned long, int);
689 int i;
691 start = PAGE_ALIGN(start);
692 end &= PAGE_MASK;
693 if (start >= end)
694 return;
696 func = arg;
698 if (!num_node_memblks) {
699 /* No SRAT table, so assume one node (node 0) */
700 if (start < end)
701 (*func)(start, end - start, 0);
702 return;
705 for (i = 0; i < num_node_memblks; i++) {
706 rs = max(start, node_memblk[i].start_paddr);
707 re = min(end, node_memblk[i].start_paddr +
708 node_memblk[i].size);
710 if (rs < re)
711 (*func)(rs, re - rs, node_memblk[i].nid);
713 if (re == end)
714 break;
719 * count_node_pages - callback to build per-node memory info structures
720 * @start: physical start of range
721 * @len: length of range
722 * @node: node where this range resides
724 * Each node has it's own number of physical pages, DMAable pages, start, and
725 * end page frame number. This routine will be called by call_pernode_memory()
726 * for each piece of usable memory and will setup these values for each node.
727 * Very similar to build_maps().
729 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
731 unsigned long end = start + len;
733 mem_data[node].num_physpages += len >> PAGE_SHIFT;
734 #ifdef CONFIG_ZONE_DMA
735 if (start <= __pa(MAX_DMA_ADDRESS))
736 mem_data[node].num_dma_physpages +=
737 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
738 #endif
739 start = GRANULEROUNDDOWN(start);
740 end = GRANULEROUNDUP(end);
741 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
742 end >> PAGE_SHIFT);
743 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
744 start >> PAGE_SHIFT);
746 return 0;
750 * paging_init - setup page tables
752 * paging_init() sets up the page tables for each node of the system and frees
753 * the bootmem allocator memory for general use.
755 void __init paging_init(void)
757 unsigned long max_dma;
758 unsigned long pfn_offset = 0;
759 unsigned long max_pfn = 0;
760 int node;
761 unsigned long max_zone_pfns[MAX_NR_ZONES];
763 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
765 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
767 sparse_memory_present_with_active_regions(MAX_NUMNODES);
768 sparse_init();
770 #ifdef CONFIG_VIRTUAL_MEM_MAP
771 VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
772 sizeof(struct page));
773 vmem_map = (struct page *) VMALLOC_END;
774 efi_memmap_walk(create_mem_map_page_table, NULL);
775 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
776 #endif
778 for_each_online_node(node) {
779 num_physpages += mem_data[node].num_physpages;
780 pfn_offset = mem_data[node].min_pfn;
782 #ifdef CONFIG_VIRTUAL_MEM_MAP
783 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
784 #endif
785 if (mem_data[node].max_pfn > max_pfn)
786 max_pfn = mem_data[node].max_pfn;
789 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
790 #ifdef CONFIG_ZONE_DMA
791 max_zone_pfns[ZONE_DMA] = max_dma;
792 #endif
793 max_zone_pfns[ZONE_NORMAL] = max_pfn;
794 free_area_init_nodes(max_zone_pfns);
796 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
799 #ifdef CONFIG_MEMORY_HOTPLUG
800 pg_data_t *arch_alloc_nodedata(int nid)
802 unsigned long size = compute_pernodesize(nid);
804 return kzalloc(size, GFP_KERNEL);
807 void arch_free_nodedata(pg_data_t *pgdat)
809 kfree(pgdat);
812 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
814 pgdat_list[update_node] = update_pgdat;
815 scatter_node_data();
817 #endif
819 #ifdef CONFIG_SPARSEMEM_VMEMMAP
820 int __meminit vmemmap_populate(struct page *start_page,
821 unsigned long size, int node)
823 return vmemmap_populate_basepages(start_page, size, node);
825 #endif