dm: rework queueing and suspension
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / acpi / processor_idle.c
blob4e6e758bd397f50686b3d951edabb8c93742fd38
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
63 #define ACPI_PROCESSOR_CLASS "processor"
64 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER "power"
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD 1 /* 1us */
69 #define C3_OVERHEAD 1 /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
80 static s64 us_to_pm_timer_ticks(s64 t)
82 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
85 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86 * For now disable this. Probably a bug somewhere else.
88 * To skip this limit, boot/load with a large max_cstate limit.
90 static int set_max_cstate(const struct dmi_system_id *id)
92 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93 return 0;
95 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96 " Override with \"processor.max_cstate=%d\"\n", id->ident,
97 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
99 max_cstate = (long)id->driver_data;
101 return 0;
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105 callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107 { set_max_cstate, "Clevo 5600D", {
108 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110 (void *)2},
116 * Callers should disable interrupts before the call and enable
117 * interrupts after return.
119 static void acpi_safe_halt(void)
121 current_thread_info()->status &= ~TS_POLLING;
123 * TS_POLLING-cleared state must be visible before we
124 * test NEED_RESCHED:
126 smp_mb();
127 if (!need_resched()) {
128 safe_halt();
129 local_irq_disable();
131 current_thread_info()->status |= TS_POLLING;
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
137 * Some BIOS implementations switch to C3 in the published C2 state.
138 * This seems to be a common problem on AMD boxen, but other vendors
139 * are affected too. We pick the most conservative approach: we assume
140 * that the local APIC stops in both C2 and C3.
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143 struct acpi_processor_cx *cx)
145 struct acpi_processor_power *pwr = &pr->power;
146 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
149 * Check, if one of the previous states already marked the lapic
150 * unstable
152 if (pwr->timer_broadcast_on_state < state)
153 return;
155 if (cx->type >= type)
156 pr->power.timer_broadcast_on_state = state;
159 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
161 unsigned long reason;
163 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
164 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
166 clockevents_notify(reason, &pr->id);
169 /* Power(C) State timer broadcast control */
170 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
171 struct acpi_processor_cx *cx,
172 int broadcast)
174 int state = cx - pr->power.states;
176 if (state >= pr->power.timer_broadcast_on_state) {
177 unsigned long reason;
179 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
180 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
181 clockevents_notify(reason, &pr->id);
185 #else
187 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
188 struct acpi_processor_cx *cstate) { }
189 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
190 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
191 struct acpi_processor_cx *cx,
192 int broadcast)
196 #endif
199 * Suspend / resume control
201 static int acpi_idle_suspend;
203 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
205 acpi_idle_suspend = 1;
206 return 0;
209 int acpi_processor_resume(struct acpi_device * device)
211 acpi_idle_suspend = 0;
212 return 0;
215 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
216 static int tsc_halts_in_c(int state)
218 switch (boot_cpu_data.x86_vendor) {
219 case X86_VENDOR_AMD:
220 case X86_VENDOR_INTEL:
222 * AMD Fam10h TSC will tick in all
223 * C/P/S0/S1 states when this bit is set.
225 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
226 return 0;
228 /*FALL THROUGH*/
229 default:
230 return state > ACPI_STATE_C1;
233 #endif
235 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
238 if (!pr)
239 return -EINVAL;
241 if (!pr->pblk)
242 return -ENODEV;
244 /* if info is obtained from pblk/fadt, type equals state */
245 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
246 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
248 #ifndef CONFIG_HOTPLUG_CPU
250 * Check for P_LVL2_UP flag before entering C2 and above on
251 * an SMP system.
253 if ((num_online_cpus() > 1) &&
254 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
255 return -ENODEV;
256 #endif
258 /* determine C2 and C3 address from pblk */
259 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
260 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
262 /* determine latencies from FADT */
263 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
264 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
266 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
267 "lvl2[0x%08x] lvl3[0x%08x]\n",
268 pr->power.states[ACPI_STATE_C2].address,
269 pr->power.states[ACPI_STATE_C3].address));
271 return 0;
274 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 if (!pr->power.states[ACPI_STATE_C1].valid) {
277 /* set the first C-State to C1 */
278 /* all processors need to support C1 */
279 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
280 pr->power.states[ACPI_STATE_C1].valid = 1;
281 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283 /* the C0 state only exists as a filler in our array */
284 pr->power.states[ACPI_STATE_C0].valid = 1;
285 return 0;
288 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
290 acpi_status status = 0;
291 acpi_integer count;
292 int current_count;
293 int i;
294 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
295 union acpi_object *cst;
298 if (nocst)
299 return -ENODEV;
301 current_count = 0;
303 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
304 if (ACPI_FAILURE(status)) {
305 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
306 return -ENODEV;
309 cst = buffer.pointer;
311 /* There must be at least 2 elements */
312 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
313 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
314 status = -EFAULT;
315 goto end;
318 count = cst->package.elements[0].integer.value;
320 /* Validate number of power states. */
321 if (count < 1 || count != cst->package.count - 1) {
322 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
323 status = -EFAULT;
324 goto end;
327 /* Tell driver that at least _CST is supported. */
328 pr->flags.has_cst = 1;
330 for (i = 1; i <= count; i++) {
331 union acpi_object *element;
332 union acpi_object *obj;
333 struct acpi_power_register *reg;
334 struct acpi_processor_cx cx;
336 memset(&cx, 0, sizeof(cx));
338 element = &(cst->package.elements[i]);
339 if (element->type != ACPI_TYPE_PACKAGE)
340 continue;
342 if (element->package.count != 4)
343 continue;
345 obj = &(element->package.elements[0]);
347 if (obj->type != ACPI_TYPE_BUFFER)
348 continue;
350 reg = (struct acpi_power_register *)obj->buffer.pointer;
352 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
353 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
354 continue;
356 /* There should be an easy way to extract an integer... */
357 obj = &(element->package.elements[1]);
358 if (obj->type != ACPI_TYPE_INTEGER)
359 continue;
361 cx.type = obj->integer.value;
363 * Some buggy BIOSes won't list C1 in _CST -
364 * Let acpi_processor_get_power_info_default() handle them later
366 if (i == 1 && cx.type != ACPI_STATE_C1)
367 current_count++;
369 cx.address = reg->address;
370 cx.index = current_count + 1;
372 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
373 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
374 if (acpi_processor_ffh_cstate_probe
375 (pr->id, &cx, reg) == 0) {
376 cx.entry_method = ACPI_CSTATE_FFH;
377 } else if (cx.type == ACPI_STATE_C1) {
379 * C1 is a special case where FIXED_HARDWARE
380 * can be handled in non-MWAIT way as well.
381 * In that case, save this _CST entry info.
382 * Otherwise, ignore this info and continue.
384 cx.entry_method = ACPI_CSTATE_HALT;
385 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
386 } else {
387 continue;
389 if (cx.type == ACPI_STATE_C1 &&
390 (idle_halt || idle_nomwait)) {
392 * In most cases the C1 space_id obtained from
393 * _CST object is FIXED_HARDWARE access mode.
394 * But when the option of idle=halt is added,
395 * the entry_method type should be changed from
396 * CSTATE_FFH to CSTATE_HALT.
397 * When the option of idle=nomwait is added,
398 * the C1 entry_method type should be
399 * CSTATE_HALT.
401 cx.entry_method = ACPI_CSTATE_HALT;
402 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
404 } else {
405 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
406 cx.address);
409 if (cx.type == ACPI_STATE_C1) {
410 cx.valid = 1;
413 obj = &(element->package.elements[2]);
414 if (obj->type != ACPI_TYPE_INTEGER)
415 continue;
417 cx.latency = obj->integer.value;
419 obj = &(element->package.elements[3]);
420 if (obj->type != ACPI_TYPE_INTEGER)
421 continue;
423 cx.power = obj->integer.value;
425 current_count++;
426 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
429 * We support total ACPI_PROCESSOR_MAX_POWER - 1
430 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
432 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
433 printk(KERN_WARNING
434 "Limiting number of power states to max (%d)\n",
435 ACPI_PROCESSOR_MAX_POWER);
436 printk(KERN_WARNING
437 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
438 break;
442 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
443 current_count));
445 /* Validate number of power states discovered */
446 if (current_count < 2)
447 status = -EFAULT;
449 end:
450 kfree(buffer.pointer);
452 return status;
455 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
458 if (!cx->address)
459 return;
462 * C2 latency must be less than or equal to 100
463 * microseconds.
465 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
466 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
467 "latency too large [%d]\n", cx->latency));
468 return;
472 * Otherwise we've met all of our C2 requirements.
473 * Normalize the C2 latency to expidite policy
475 cx->valid = 1;
477 cx->latency_ticks = cx->latency;
479 return;
482 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
483 struct acpi_processor_cx *cx)
485 static int bm_check_flag;
488 if (!cx->address)
489 return;
492 * C3 latency must be less than or equal to 1000
493 * microseconds.
495 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
496 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
497 "latency too large [%d]\n", cx->latency));
498 return;
502 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
503 * DMA transfers are used by any ISA device to avoid livelock.
504 * Note that we could disable Type-F DMA (as recommended by
505 * the erratum), but this is known to disrupt certain ISA
506 * devices thus we take the conservative approach.
508 else if (errata.piix4.fdma) {
509 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
510 "C3 not supported on PIIX4 with Type-F DMA\n"));
511 return;
514 /* All the logic here assumes flags.bm_check is same across all CPUs */
515 if (!bm_check_flag) {
516 /* Determine whether bm_check is needed based on CPU */
517 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
518 bm_check_flag = pr->flags.bm_check;
519 } else {
520 pr->flags.bm_check = bm_check_flag;
523 if (pr->flags.bm_check) {
524 if (!pr->flags.bm_control) {
525 if (pr->flags.has_cst != 1) {
526 /* bus mastering control is necessary */
527 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
528 "C3 support requires BM control\n"));
529 return;
530 } else {
531 /* Here we enter C3 without bus mastering */
532 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
533 "C3 support without BM control\n"));
536 } else {
538 * WBINVD should be set in fadt, for C3 state to be
539 * supported on when bm_check is not required.
541 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
542 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
543 "Cache invalidation should work properly"
544 " for C3 to be enabled on SMP systems\n"));
545 return;
550 * Otherwise we've met all of our C3 requirements.
551 * Normalize the C3 latency to expidite policy. Enable
552 * checking of bus mastering status (bm_check) so we can
553 * use this in our C3 policy
555 cx->valid = 1;
557 cx->latency_ticks = cx->latency;
559 * On older chipsets, BM_RLD needs to be set
560 * in order for Bus Master activity to wake the
561 * system from C3. Newer chipsets handle DMA
562 * during C3 automatically and BM_RLD is a NOP.
563 * In either case, the proper way to
564 * handle BM_RLD is to set it and leave it set.
566 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
568 return;
571 static int acpi_processor_power_verify(struct acpi_processor *pr)
573 unsigned int i;
574 unsigned int working = 0;
576 pr->power.timer_broadcast_on_state = INT_MAX;
578 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
579 struct acpi_processor_cx *cx = &pr->power.states[i];
581 switch (cx->type) {
582 case ACPI_STATE_C1:
583 cx->valid = 1;
584 break;
586 case ACPI_STATE_C2:
587 acpi_processor_power_verify_c2(cx);
588 if (cx->valid)
589 acpi_timer_check_state(i, pr, cx);
590 break;
592 case ACPI_STATE_C3:
593 acpi_processor_power_verify_c3(pr, cx);
594 if (cx->valid)
595 acpi_timer_check_state(i, pr, cx);
596 break;
599 if (cx->valid)
600 working++;
603 acpi_propagate_timer_broadcast(pr);
605 return (working);
608 static int acpi_processor_get_power_info(struct acpi_processor *pr)
610 unsigned int i;
611 int result;
614 /* NOTE: the idle thread may not be running while calling
615 * this function */
617 /* Zero initialize all the C-states info. */
618 memset(pr->power.states, 0, sizeof(pr->power.states));
620 result = acpi_processor_get_power_info_cst(pr);
621 if (result == -ENODEV)
622 result = acpi_processor_get_power_info_fadt(pr);
624 if (result)
625 return result;
627 acpi_processor_get_power_info_default(pr);
629 pr->power.count = acpi_processor_power_verify(pr);
632 * if one state of type C2 or C3 is available, mark this
633 * CPU as being "idle manageable"
635 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
636 if (pr->power.states[i].valid) {
637 pr->power.count = i;
638 if (pr->power.states[i].type >= ACPI_STATE_C2)
639 pr->flags.power = 1;
643 return 0;
646 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
648 struct acpi_processor *pr = seq->private;
649 unsigned int i;
652 if (!pr)
653 goto end;
655 seq_printf(seq, "active state: C%zd\n"
656 "max_cstate: C%d\n"
657 "bus master activity: %08x\n"
658 "maximum allowed latency: %d usec\n",
659 pr->power.state ? pr->power.state - pr->power.states : 0,
660 max_cstate, (unsigned)pr->power.bm_activity,
661 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
663 seq_puts(seq, "states:\n");
665 for (i = 1; i <= pr->power.count; i++) {
666 seq_printf(seq, " %cC%d: ",
667 (&pr->power.states[i] ==
668 pr->power.state ? '*' : ' '), i);
670 if (!pr->power.states[i].valid) {
671 seq_puts(seq, "<not supported>\n");
672 continue;
675 switch (pr->power.states[i].type) {
676 case ACPI_STATE_C1:
677 seq_printf(seq, "type[C1] ");
678 break;
679 case ACPI_STATE_C2:
680 seq_printf(seq, "type[C2] ");
681 break;
682 case ACPI_STATE_C3:
683 seq_printf(seq, "type[C3] ");
684 break;
685 default:
686 seq_printf(seq, "type[--] ");
687 break;
690 if (pr->power.states[i].promotion.state)
691 seq_printf(seq, "promotion[C%zd] ",
692 (pr->power.states[i].promotion.state -
693 pr->power.states));
694 else
695 seq_puts(seq, "promotion[--] ");
697 if (pr->power.states[i].demotion.state)
698 seq_printf(seq, "demotion[C%zd] ",
699 (pr->power.states[i].demotion.state -
700 pr->power.states));
701 else
702 seq_puts(seq, "demotion[--] ");
704 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
705 pr->power.states[i].latency,
706 pr->power.states[i].usage,
707 (unsigned long long)pr->power.states[i].time);
710 end:
711 return 0;
714 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
716 return single_open(file, acpi_processor_power_seq_show,
717 PDE(inode)->data);
720 static const struct file_operations acpi_processor_power_fops = {
721 .owner = THIS_MODULE,
722 .open = acpi_processor_power_open_fs,
723 .read = seq_read,
724 .llseek = seq_lseek,
725 .release = single_release,
730 * acpi_idle_bm_check - checks if bus master activity was detected
732 static int acpi_idle_bm_check(void)
734 u32 bm_status = 0;
736 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
737 if (bm_status)
738 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
740 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
741 * the true state of bus mastering activity; forcing us to
742 * manually check the BMIDEA bit of each IDE channel.
744 else if (errata.piix4.bmisx) {
745 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
746 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
747 bm_status = 1;
749 return bm_status;
753 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
754 * @cx: cstate data
756 * Caller disables interrupt before call and enables interrupt after return.
758 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
760 /* Don't trace irqs off for idle */
761 stop_critical_timings();
762 if (cx->entry_method == ACPI_CSTATE_FFH) {
763 /* Call into architectural FFH based C-state */
764 acpi_processor_ffh_cstate_enter(cx);
765 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
766 acpi_safe_halt();
767 } else {
768 int unused;
769 /* IO port based C-state */
770 inb(cx->address);
771 /* Dummy wait op - must do something useless after P_LVL2 read
772 because chipsets cannot guarantee that STPCLK# signal
773 gets asserted in time to freeze execution properly. */
774 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
776 start_critical_timings();
780 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
781 * @dev: the target CPU
782 * @state: the state data
784 * This is equivalent to the HALT instruction.
786 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
787 struct cpuidle_state *state)
789 ktime_t kt1, kt2;
790 s64 idle_time;
791 struct acpi_processor *pr;
792 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
794 pr = __get_cpu_var(processors);
796 if (unlikely(!pr))
797 return 0;
799 local_irq_disable();
801 /* Do not access any ACPI IO ports in suspend path */
802 if (acpi_idle_suspend) {
803 acpi_safe_halt();
804 local_irq_enable();
805 return 0;
808 kt1 = ktime_get_real();
809 acpi_idle_do_entry(cx);
810 kt2 = ktime_get_real();
811 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
813 local_irq_enable();
814 cx->usage++;
816 return idle_time;
820 * acpi_idle_enter_simple - enters an ACPI state without BM handling
821 * @dev: the target CPU
822 * @state: the state data
824 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
825 struct cpuidle_state *state)
827 struct acpi_processor *pr;
828 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
829 ktime_t kt1, kt2;
830 s64 idle_time;
831 s64 sleep_ticks = 0;
833 pr = __get_cpu_var(processors);
835 if (unlikely(!pr))
836 return 0;
838 if (acpi_idle_suspend)
839 return(acpi_idle_enter_c1(dev, state));
841 local_irq_disable();
842 current_thread_info()->status &= ~TS_POLLING;
844 * TS_POLLING-cleared state must be visible before we test
845 * NEED_RESCHED:
847 smp_mb();
849 if (unlikely(need_resched())) {
850 current_thread_info()->status |= TS_POLLING;
851 local_irq_enable();
852 return 0;
856 * Must be done before busmaster disable as we might need to
857 * access HPET !
859 acpi_state_timer_broadcast(pr, cx, 1);
861 if (cx->type == ACPI_STATE_C3)
862 ACPI_FLUSH_CPU_CACHE();
864 kt1 = ktime_get_real();
865 /* Tell the scheduler that we are going deep-idle: */
866 sched_clock_idle_sleep_event();
867 acpi_idle_do_entry(cx);
868 kt2 = ktime_get_real();
869 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
871 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
872 /* TSC could halt in idle, so notify users */
873 if (tsc_halts_in_c(cx->type))
874 mark_tsc_unstable("TSC halts in idle");;
875 #endif
876 sleep_ticks = us_to_pm_timer_ticks(idle_time);
878 /* Tell the scheduler how much we idled: */
879 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
881 local_irq_enable();
882 current_thread_info()->status |= TS_POLLING;
884 cx->usage++;
886 acpi_state_timer_broadcast(pr, cx, 0);
887 cx->time += sleep_ticks;
888 return idle_time;
891 static int c3_cpu_count;
892 static DEFINE_SPINLOCK(c3_lock);
895 * acpi_idle_enter_bm - enters C3 with proper BM handling
896 * @dev: the target CPU
897 * @state: the state data
899 * If BM is detected, the deepest non-C3 idle state is entered instead.
901 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
902 struct cpuidle_state *state)
904 struct acpi_processor *pr;
905 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
906 ktime_t kt1, kt2;
907 s64 idle_time;
908 s64 sleep_ticks = 0;
911 pr = __get_cpu_var(processors);
913 if (unlikely(!pr))
914 return 0;
916 if (acpi_idle_suspend)
917 return(acpi_idle_enter_c1(dev, state));
919 if (acpi_idle_bm_check()) {
920 if (dev->safe_state) {
921 dev->last_state = dev->safe_state;
922 return dev->safe_state->enter(dev, dev->safe_state);
923 } else {
924 local_irq_disable();
925 acpi_safe_halt();
926 local_irq_enable();
927 return 0;
931 local_irq_disable();
932 current_thread_info()->status &= ~TS_POLLING;
934 * TS_POLLING-cleared state must be visible before we test
935 * NEED_RESCHED:
937 smp_mb();
939 if (unlikely(need_resched())) {
940 current_thread_info()->status |= TS_POLLING;
941 local_irq_enable();
942 return 0;
945 acpi_unlazy_tlb(smp_processor_id());
947 /* Tell the scheduler that we are going deep-idle: */
948 sched_clock_idle_sleep_event();
950 * Must be done before busmaster disable as we might need to
951 * access HPET !
953 acpi_state_timer_broadcast(pr, cx, 1);
956 * disable bus master
957 * bm_check implies we need ARB_DIS
958 * !bm_check implies we need cache flush
959 * bm_control implies whether we can do ARB_DIS
961 * That leaves a case where bm_check is set and bm_control is
962 * not set. In that case we cannot do much, we enter C3
963 * without doing anything.
965 if (pr->flags.bm_check && pr->flags.bm_control) {
966 spin_lock(&c3_lock);
967 c3_cpu_count++;
968 /* Disable bus master arbitration when all CPUs are in C3 */
969 if (c3_cpu_count == num_online_cpus())
970 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
971 spin_unlock(&c3_lock);
972 } else if (!pr->flags.bm_check) {
973 ACPI_FLUSH_CPU_CACHE();
976 kt1 = ktime_get_real();
977 acpi_idle_do_entry(cx);
978 kt2 = ktime_get_real();
979 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
981 /* Re-enable bus master arbitration */
982 if (pr->flags.bm_check && pr->flags.bm_control) {
983 spin_lock(&c3_lock);
984 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
985 c3_cpu_count--;
986 spin_unlock(&c3_lock);
989 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
990 /* TSC could halt in idle, so notify users */
991 if (tsc_halts_in_c(ACPI_STATE_C3))
992 mark_tsc_unstable("TSC halts in idle");
993 #endif
994 sleep_ticks = us_to_pm_timer_ticks(idle_time);
995 /* Tell the scheduler how much we idled: */
996 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
998 local_irq_enable();
999 current_thread_info()->status |= TS_POLLING;
1001 cx->usage++;
1003 acpi_state_timer_broadcast(pr, cx, 0);
1004 cx->time += sleep_ticks;
1005 return idle_time;
1008 struct cpuidle_driver acpi_idle_driver = {
1009 .name = "acpi_idle",
1010 .owner = THIS_MODULE,
1014 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1015 * @pr: the ACPI processor
1017 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1019 int i, count = CPUIDLE_DRIVER_STATE_START;
1020 struct acpi_processor_cx *cx;
1021 struct cpuidle_state *state;
1022 struct cpuidle_device *dev = &pr->power.dev;
1024 if (!pr->flags.power_setup_done)
1025 return -EINVAL;
1027 if (pr->flags.power == 0) {
1028 return -EINVAL;
1031 dev->cpu = pr->id;
1032 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1033 dev->states[i].name[0] = '\0';
1034 dev->states[i].desc[0] = '\0';
1037 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1038 cx = &pr->power.states[i];
1039 state = &dev->states[count];
1041 if (!cx->valid)
1042 continue;
1044 #ifdef CONFIG_HOTPLUG_CPU
1045 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1046 !pr->flags.has_cst &&
1047 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1048 continue;
1049 #endif
1050 cpuidle_set_statedata(state, cx);
1052 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1053 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1054 state->exit_latency = cx->latency;
1055 state->target_residency = cx->latency * latency_factor;
1056 state->power_usage = cx->power;
1058 state->flags = 0;
1059 switch (cx->type) {
1060 case ACPI_STATE_C1:
1061 state->flags |= CPUIDLE_FLAG_SHALLOW;
1062 if (cx->entry_method == ACPI_CSTATE_FFH)
1063 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1065 state->enter = acpi_idle_enter_c1;
1066 dev->safe_state = state;
1067 break;
1069 case ACPI_STATE_C2:
1070 state->flags |= CPUIDLE_FLAG_BALANCED;
1071 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1072 state->enter = acpi_idle_enter_simple;
1073 dev->safe_state = state;
1074 break;
1076 case ACPI_STATE_C3:
1077 state->flags |= CPUIDLE_FLAG_DEEP;
1078 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1079 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1080 state->enter = pr->flags.bm_check ?
1081 acpi_idle_enter_bm :
1082 acpi_idle_enter_simple;
1083 break;
1086 count++;
1087 if (count == CPUIDLE_STATE_MAX)
1088 break;
1091 dev->state_count = count;
1093 if (!count)
1094 return -EINVAL;
1096 return 0;
1099 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1101 int ret = 0;
1103 if (boot_option_idle_override)
1104 return 0;
1106 if (!pr)
1107 return -EINVAL;
1109 if (nocst) {
1110 return -ENODEV;
1113 if (!pr->flags.power_setup_done)
1114 return -ENODEV;
1116 cpuidle_pause_and_lock();
1117 cpuidle_disable_device(&pr->power.dev);
1118 acpi_processor_get_power_info(pr);
1119 if (pr->flags.power) {
1120 acpi_processor_setup_cpuidle(pr);
1121 ret = cpuidle_enable_device(&pr->power.dev);
1123 cpuidle_resume_and_unlock();
1125 return ret;
1128 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1129 struct acpi_device *device)
1131 acpi_status status = 0;
1132 static int first_run;
1133 struct proc_dir_entry *entry = NULL;
1134 unsigned int i;
1136 if (boot_option_idle_override)
1137 return 0;
1139 if (!first_run) {
1140 if (idle_halt) {
1142 * When the boot option of "idle=halt" is added, halt
1143 * is used for CPU IDLE.
1144 * In such case C2/C3 is meaningless. So the max_cstate
1145 * is set to one.
1147 max_cstate = 1;
1149 dmi_check_system(processor_power_dmi_table);
1150 max_cstate = acpi_processor_cstate_check(max_cstate);
1151 if (max_cstate < ACPI_C_STATES_MAX)
1152 printk(KERN_NOTICE
1153 "ACPI: processor limited to max C-state %d\n",
1154 max_cstate);
1155 first_run++;
1158 if (!pr)
1159 return -EINVAL;
1161 if (acpi_gbl_FADT.cst_control && !nocst) {
1162 status =
1163 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1164 if (ACPI_FAILURE(status)) {
1165 ACPI_EXCEPTION((AE_INFO, status,
1166 "Notifying BIOS of _CST ability failed"));
1170 acpi_processor_get_power_info(pr);
1171 pr->flags.power_setup_done = 1;
1174 * Install the idle handler if processor power management is supported.
1175 * Note that we use previously set idle handler will be used on
1176 * platforms that only support C1.
1178 if (pr->flags.power) {
1179 acpi_processor_setup_cpuidle(pr);
1180 if (cpuidle_register_device(&pr->power.dev))
1181 return -EIO;
1183 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1184 for (i = 1; i <= pr->power.count; i++)
1185 if (pr->power.states[i].valid)
1186 printk(" C%d[C%d]", i,
1187 pr->power.states[i].type);
1188 printk(")\n");
1191 /* 'power' [R] */
1192 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1193 S_IRUGO, acpi_device_dir(device),
1194 &acpi_processor_power_fops,
1195 acpi_driver_data(device));
1196 if (!entry)
1197 return -EIO;
1198 return 0;
1201 int acpi_processor_power_exit(struct acpi_processor *pr,
1202 struct acpi_device *device)
1204 if (boot_option_idle_override)
1205 return 0;
1207 cpuidle_unregister_device(&pr->power.dev);
1208 pr->flags.power_setup_done = 0;
1210 if (acpi_device_dir(device))
1211 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1212 acpi_device_dir(device));
1214 return 0;