jfs: fix diAllocExt error in resizing filesystem
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blobe928e1af7b71fee4cc287ab53837d9a7cc55b030
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
107 return 0;
110 void __weak perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count);
124 void perf_disable(void)
126 __perf_disable();
127 hw_perf_disable();
130 void perf_enable(void)
132 if (__perf_enable())
133 hw_perf_enable();
136 static void get_ctx(struct perf_event_context *ctx)
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
141 static void free_ctx(struct rcu_head *head)
143 struct perf_event_context *ctx;
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
149 static void put_ctx(struct perf_event_context *ctx)
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
160 static void unclone_ctx(struct perf_event_context *ctx)
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
169 * If we inherit events we want to return the parent event id
170 * to userspace.
172 static u64 primary_event_id(struct perf_event *event)
174 u64 id = event->id;
176 if (event->parent)
177 id = event->parent->id;
179 return id;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190 struct perf_event_context *ctx;
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 raw_spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
217 rcu_read_unlock();
218 return ctx;
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228 struct perf_event_context *ctx;
229 unsigned long flags;
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
236 return ctx;
239 static void perf_unpin_context(struct perf_event_context *ctx)
241 unsigned long flags;
243 raw_spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
249 static inline u64 perf_clock(void)
251 return cpu_clock(raw_smp_processor_id());
255 * Update the record of the current time in a context.
257 static void update_context_time(struct perf_event_context *ctx)
259 u64 now = perf_clock();
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
266 * Update the total_time_enabled and total_time_running fields for a event.
268 static void update_event_times(struct perf_event *event)
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
282 event->total_time_enabled = run_end - event->tstamp_enabled;
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
289 event->total_time_running = run_end - event->tstamp_running;
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
296 static void
297 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
299 struct perf_event *group_leader = event->group_leader;
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
323 static void
324 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
326 struct perf_event *sibling, *tmp;
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
340 update_event_times(event);
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359 list_move_tail(&sibling->group_entry, &ctx->group_list);
360 sibling->group_leader = sibling;
364 static void
365 event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
388 static void
389 group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
393 struct perf_event *event;
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
398 event_sched_out(group_event, cpuctx, ctx);
401 * Schedule out siblings (if any):
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
411 * Cross CPU call to remove a performance event
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
416 static void __perf_event_remove_from_context(void *info)
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
430 raw_spin_lock(&ctx->lock);
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
435 perf_disable();
437 event_sched_out(event, cpuctx, ctx);
439 list_del_event(event, ctx);
441 if (!ctx->task) {
443 * Allow more per task events with respect to the
444 * reservation:
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
451 perf_enable();
452 raw_spin_unlock(&ctx->lock);
457 * Remove the event from a task's (or a CPU's) list of events.
459 * Must be called with ctx->mutex held.
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
471 static void perf_event_remove_from_context(struct perf_event *event)
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
476 if (!task) {
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
487 retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
491 raw_spin_lock_irq(&ctx->lock);
493 * If the context is active we need to retry the smp call.
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
496 raw_spin_unlock_irq(&ctx->lock);
497 goto retry;
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
505 if (!list_empty(&event->group_entry))
506 list_del_event(event, ctx);
507 raw_spin_unlock_irq(&ctx->lock);
511 * Update total_time_enabled and total_time_running for all events in a group.
513 static void update_group_times(struct perf_event *leader)
515 struct perf_event *event;
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
523 * Cross CPU call to disable a performance event
525 static void __perf_event_disable(void *info)
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
538 raw_spin_lock(&ctx->lock);
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
554 raw_spin_unlock(&ctx->lock);
558 * Disable a event.
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
570 void perf_event_disable(struct perf_event *event)
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
575 if (!task) {
577 * Disable the event on the cpu that it's on
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
587 raw_spin_lock_irq(&ctx->lock);
589 * If the event is still active, we need to retry the cross-call.
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 raw_spin_unlock_irq(&ctx->lock);
593 goto retry;
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
605 raw_spin_unlock_irq(&ctx->lock);
608 static int
609 event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx,
612 int cpu)
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
620 * The new state must be visible before we turn it on in the hardware:
622 smp_wmb();
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
639 return 0;
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx,
646 int cpu)
648 struct perf_event *event, *partial_group;
649 int ret;
651 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0;
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 if (ret)
656 return ret < 0 ? ret : 0;
658 if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 return -EAGAIN;
662 * Schedule in siblings as one group (if any):
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) {
666 partial_group = event;
667 goto group_error;
671 return 0;
673 group_error:
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event == partial_group)
680 break;
681 event_sched_out(event, cpuctx, ctx);
683 event_sched_out(group_event, cpuctx, ctx);
685 return -EAGAIN;
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
692 static int is_software_only_group(struct perf_event *leader)
694 struct perf_event *event;
696 if (!is_software_event(leader))
697 return 0;
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
703 return 1;
707 * Work out whether we can put this event group on the CPU now.
709 static int group_can_go_on(struct perf_event *event,
710 struct perf_cpu_context *cpuctx,
711 int can_add_hw)
714 * Groups consisting entirely of software events can always go on.
716 if (is_software_only_group(event))
717 return 1;
719 * If an exclusive group is already on, no other hardware
720 * events can go on.
722 if (cpuctx->exclusive)
723 return 0;
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
728 if (event->attr.exclusive && cpuctx->active_oncpu)
729 return 0;
731 * Otherwise, try to add it if all previous groups were able
732 * to go on.
734 return can_add_hw;
737 static void add_event_to_ctx(struct perf_event *event,
738 struct perf_event_context *ctx)
740 list_add_event(event, ctx);
741 event->tstamp_enabled = ctx->time;
742 event->tstamp_running = ctx->time;
743 event->tstamp_stopped = ctx->time;
747 * Cross CPU call to install and enable a performance event
749 * Must be called with ctx->mutex held
751 static void __perf_install_in_context(void *info)
753 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err;
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
767 if (ctx->task && cpuctx->task_ctx != ctx) {
768 if (cpuctx->task_ctx || ctx->task != current)
769 return;
770 cpuctx->task_ctx = ctx;
773 raw_spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 update_context_time(ctx);
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
781 perf_disable();
783 add_event_to_ctx(event, ctx);
785 if (event->cpu != -1 && event->cpu != smp_processor_id())
786 goto unlock;
789 * Don't put the event on if it is disabled or if
790 * it is in a group and the group isn't on.
792 if (event->state != PERF_EVENT_STATE_INACTIVE ||
793 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
794 goto unlock;
797 * An exclusive event can't go on if there are already active
798 * hardware events, and no hardware event can go on if there
799 * is already an exclusive event on.
801 if (!group_can_go_on(event, cpuctx, 1))
802 err = -EEXIST;
803 else
804 err = event_sched_in(event, cpuctx, ctx, cpu);
806 if (err) {
808 * This event couldn't go on. If it is in a group
809 * then we have to pull the whole group off.
810 * If the event group is pinned then put it in error state.
812 if (leader != event)
813 group_sched_out(leader, cpuctx, ctx);
814 if (leader->attr.pinned) {
815 update_group_times(leader);
816 leader->state = PERF_EVENT_STATE_ERROR;
820 if (!err && !ctx->task && cpuctx->max_pertask)
821 cpuctx->max_pertask--;
823 unlock:
824 perf_enable();
826 raw_spin_unlock(&ctx->lock);
830 * Attach a performance event to a context
832 * First we add the event to the list with the hardware enable bit
833 * in event->hw_config cleared.
835 * If the event is attached to a task which is on a CPU we use a smp
836 * call to enable it in the task context. The task might have been
837 * scheduled away, but we check this in the smp call again.
839 * Must be called with ctx->mutex held.
841 static void
842 perf_install_in_context(struct perf_event_context *ctx,
843 struct perf_event *event,
844 int cpu)
846 struct task_struct *task = ctx->task;
848 if (!task) {
850 * Per cpu events are installed via an smp call and
851 * the install is always successful.
853 smp_call_function_single(cpu, __perf_install_in_context,
854 event, 1);
855 return;
858 retry:
859 task_oncpu_function_call(task, __perf_install_in_context,
860 event);
862 raw_spin_lock_irq(&ctx->lock);
864 * we need to retry the smp call.
866 if (ctx->is_active && list_empty(&event->group_entry)) {
867 raw_spin_unlock_irq(&ctx->lock);
868 goto retry;
872 * The lock prevents that this context is scheduled in so we
873 * can add the event safely, if it the call above did not
874 * succeed.
876 if (list_empty(&event->group_entry))
877 add_event_to_ctx(event, ctx);
878 raw_spin_unlock_irq(&ctx->lock);
882 * Put a event into inactive state and update time fields.
883 * Enabling the leader of a group effectively enables all
884 * the group members that aren't explicitly disabled, so we
885 * have to update their ->tstamp_enabled also.
886 * Note: this works for group members as well as group leaders
887 * since the non-leader members' sibling_lists will be empty.
889 static void __perf_event_mark_enabled(struct perf_event *event,
890 struct perf_event_context *ctx)
892 struct perf_event *sub;
894 event->state = PERF_EVENT_STATE_INACTIVE;
895 event->tstamp_enabled = ctx->time - event->total_time_enabled;
896 list_for_each_entry(sub, &event->sibling_list, group_entry)
897 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
898 sub->tstamp_enabled =
899 ctx->time - sub->total_time_enabled;
903 * Cross CPU call to enable a performance event
905 static void __perf_event_enable(void *info)
907 struct perf_event *event = info;
908 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
909 struct perf_event_context *ctx = event->ctx;
910 struct perf_event *leader = event->group_leader;
911 int err;
914 * If this is a per-task event, need to check whether this
915 * event's task is the current task on this cpu.
917 if (ctx->task && cpuctx->task_ctx != ctx) {
918 if (cpuctx->task_ctx || ctx->task != current)
919 return;
920 cpuctx->task_ctx = ctx;
923 raw_spin_lock(&ctx->lock);
924 ctx->is_active = 1;
925 update_context_time(ctx);
927 if (event->state >= PERF_EVENT_STATE_INACTIVE)
928 goto unlock;
929 __perf_event_mark_enabled(event, ctx);
931 if (event->cpu != -1 && event->cpu != smp_processor_id())
932 goto unlock;
935 * If the event is in a group and isn't the group leader,
936 * then don't put it on unless the group is on.
938 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
939 goto unlock;
941 if (!group_can_go_on(event, cpuctx, 1)) {
942 err = -EEXIST;
943 } else {
944 perf_disable();
945 if (event == leader)
946 err = group_sched_in(event, cpuctx, ctx,
947 smp_processor_id());
948 else
949 err = event_sched_in(event, cpuctx, ctx,
950 smp_processor_id());
951 perf_enable();
954 if (err) {
956 * If this event can't go on and it's part of a
957 * group, then the whole group has to come off.
959 if (leader != event)
960 group_sched_out(leader, cpuctx, ctx);
961 if (leader->attr.pinned) {
962 update_group_times(leader);
963 leader->state = PERF_EVENT_STATE_ERROR;
967 unlock:
968 raw_spin_unlock(&ctx->lock);
972 * Enable a event.
974 * If event->ctx is a cloned context, callers must make sure that
975 * every task struct that event->ctx->task could possibly point to
976 * remains valid. This condition is satisfied when called through
977 * perf_event_for_each_child or perf_event_for_each as described
978 * for perf_event_disable.
980 void perf_event_enable(struct perf_event *event)
982 struct perf_event_context *ctx = event->ctx;
983 struct task_struct *task = ctx->task;
985 if (!task) {
987 * Enable the event on the cpu that it's on
989 smp_call_function_single(event->cpu, __perf_event_enable,
990 event, 1);
991 return;
994 raw_spin_lock_irq(&ctx->lock);
995 if (event->state >= PERF_EVENT_STATE_INACTIVE)
996 goto out;
999 * If the event is in error state, clear that first.
1000 * That way, if we see the event in error state below, we
1001 * know that it has gone back into error state, as distinct
1002 * from the task having been scheduled away before the
1003 * cross-call arrived.
1005 if (event->state == PERF_EVENT_STATE_ERROR)
1006 event->state = PERF_EVENT_STATE_OFF;
1008 retry:
1009 raw_spin_unlock_irq(&ctx->lock);
1010 task_oncpu_function_call(task, __perf_event_enable, event);
1012 raw_spin_lock_irq(&ctx->lock);
1015 * If the context is active and the event is still off,
1016 * we need to retry the cross-call.
1018 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1019 goto retry;
1022 * Since we have the lock this context can't be scheduled
1023 * in, so we can change the state safely.
1025 if (event->state == PERF_EVENT_STATE_OFF)
1026 __perf_event_mark_enabled(event, ctx);
1028 out:
1029 raw_spin_unlock_irq(&ctx->lock);
1032 static int perf_event_refresh(struct perf_event *event, int refresh)
1035 * not supported on inherited events
1037 if (event->attr.inherit)
1038 return -EINVAL;
1040 atomic_add(refresh, &event->event_limit);
1041 perf_event_enable(event);
1043 return 0;
1046 void __perf_event_sched_out(struct perf_event_context *ctx,
1047 struct perf_cpu_context *cpuctx)
1049 struct perf_event *event;
1051 raw_spin_lock(&ctx->lock);
1052 ctx->is_active = 0;
1053 if (likely(!ctx->nr_events))
1054 goto out;
1055 update_context_time(ctx);
1057 perf_disable();
1058 if (ctx->nr_active) {
1059 list_for_each_entry(event, &ctx->group_list, group_entry)
1060 group_sched_out(event, cpuctx, ctx);
1062 perf_enable();
1063 out:
1064 raw_spin_unlock(&ctx->lock);
1068 * Test whether two contexts are equivalent, i.e. whether they
1069 * have both been cloned from the same version of the same context
1070 * and they both have the same number of enabled events.
1071 * If the number of enabled events is the same, then the set
1072 * of enabled events should be the same, because these are both
1073 * inherited contexts, therefore we can't access individual events
1074 * in them directly with an fd; we can only enable/disable all
1075 * events via prctl, or enable/disable all events in a family
1076 * via ioctl, which will have the same effect on both contexts.
1078 static int context_equiv(struct perf_event_context *ctx1,
1079 struct perf_event_context *ctx2)
1081 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082 && ctx1->parent_gen == ctx2->parent_gen
1083 && !ctx1->pin_count && !ctx2->pin_count;
1086 static void __perf_event_sync_stat(struct perf_event *event,
1087 struct perf_event *next_event)
1089 u64 value;
1091 if (!event->attr.inherit_stat)
1092 return;
1095 * Update the event value, we cannot use perf_event_read()
1096 * because we're in the middle of a context switch and have IRQs
1097 * disabled, which upsets smp_call_function_single(), however
1098 * we know the event must be on the current CPU, therefore we
1099 * don't need to use it.
1101 switch (event->state) {
1102 case PERF_EVENT_STATE_ACTIVE:
1103 event->pmu->read(event);
1104 /* fall-through */
1106 case PERF_EVENT_STATE_INACTIVE:
1107 update_event_times(event);
1108 break;
1110 default:
1111 break;
1115 * In order to keep per-task stats reliable we need to flip the event
1116 * values when we flip the contexts.
1118 value = atomic64_read(&next_event->count);
1119 value = atomic64_xchg(&event->count, value);
1120 atomic64_set(&next_event->count, value);
1122 swap(event->total_time_enabled, next_event->total_time_enabled);
1123 swap(event->total_time_running, next_event->total_time_running);
1126 * Since we swizzled the values, update the user visible data too.
1128 perf_event_update_userpage(event);
1129 perf_event_update_userpage(next_event);
1132 #define list_next_entry(pos, member) \
1133 list_entry(pos->member.next, typeof(*pos), member)
1135 static void perf_event_sync_stat(struct perf_event_context *ctx,
1136 struct perf_event_context *next_ctx)
1138 struct perf_event *event, *next_event;
1140 if (!ctx->nr_stat)
1141 return;
1143 update_context_time(ctx);
1145 event = list_first_entry(&ctx->event_list,
1146 struct perf_event, event_entry);
1148 next_event = list_first_entry(&next_ctx->event_list,
1149 struct perf_event, event_entry);
1151 while (&event->event_entry != &ctx->event_list &&
1152 &next_event->event_entry != &next_ctx->event_list) {
1154 __perf_event_sync_stat(event, next_event);
1156 event = list_next_entry(event, event_entry);
1157 next_event = list_next_entry(next_event, event_entry);
1162 * Called from scheduler to remove the events of the current task,
1163 * with interrupts disabled.
1165 * We stop each event and update the event value in event->count.
1167 * This does not protect us against NMI, but disable()
1168 * sets the disabled bit in the control field of event _before_
1169 * accessing the event control register. If a NMI hits, then it will
1170 * not restart the event.
1172 void perf_event_task_sched_out(struct task_struct *task,
1173 struct task_struct *next, int cpu)
1175 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1176 struct perf_event_context *ctx = task->perf_event_ctxp;
1177 struct perf_event_context *next_ctx;
1178 struct perf_event_context *parent;
1179 struct pt_regs *regs;
1180 int do_switch = 1;
1182 regs = task_pt_regs(task);
1183 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1185 if (likely(!ctx || !cpuctx->task_ctx))
1186 return;
1188 rcu_read_lock();
1189 parent = rcu_dereference(ctx->parent_ctx);
1190 next_ctx = next->perf_event_ctxp;
1191 if (parent && next_ctx &&
1192 rcu_dereference(next_ctx->parent_ctx) == parent) {
1194 * Looks like the two contexts are clones, so we might be
1195 * able to optimize the context switch. We lock both
1196 * contexts and check that they are clones under the
1197 * lock (including re-checking that neither has been
1198 * uncloned in the meantime). It doesn't matter which
1199 * order we take the locks because no other cpu could
1200 * be trying to lock both of these tasks.
1202 raw_spin_lock(&ctx->lock);
1203 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1204 if (context_equiv(ctx, next_ctx)) {
1206 * XXX do we need a memory barrier of sorts
1207 * wrt to rcu_dereference() of perf_event_ctxp
1209 task->perf_event_ctxp = next_ctx;
1210 next->perf_event_ctxp = ctx;
1211 ctx->task = next;
1212 next_ctx->task = task;
1213 do_switch = 0;
1215 perf_event_sync_stat(ctx, next_ctx);
1217 raw_spin_unlock(&next_ctx->lock);
1218 raw_spin_unlock(&ctx->lock);
1220 rcu_read_unlock();
1222 if (do_switch) {
1223 __perf_event_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1229 * Called with IRQs disabled
1231 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1233 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1235 if (!cpuctx->task_ctx)
1236 return;
1238 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1239 return;
1241 __perf_event_sched_out(ctx, cpuctx);
1242 cpuctx->task_ctx = NULL;
1246 * Called with IRQs disabled
1248 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1250 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1253 static void
1254 __perf_event_sched_in(struct perf_event_context *ctx,
1255 struct perf_cpu_context *cpuctx, int cpu)
1257 struct perf_event *event;
1258 int can_add_hw = 1;
1260 raw_spin_lock(&ctx->lock);
1261 ctx->is_active = 1;
1262 if (likely(!ctx->nr_events))
1263 goto out;
1265 ctx->timestamp = perf_clock();
1267 perf_disable();
1270 * First go through the list and put on any pinned groups
1271 * in order to give them the best chance of going on.
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 if (event->state <= PERF_EVENT_STATE_OFF ||
1275 !event->attr.pinned)
1276 continue;
1277 if (event->cpu != -1 && event->cpu != cpu)
1278 continue;
1280 if (group_can_go_on(event, cpuctx, 1))
1281 group_sched_in(event, cpuctx, ctx, cpu);
1284 * If this pinned group hasn't been scheduled,
1285 * put it in error state.
1287 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1288 update_group_times(event);
1289 event->state = PERF_EVENT_STATE_ERROR;
1293 list_for_each_entry(event, &ctx->group_list, group_entry) {
1295 * Ignore events in OFF or ERROR state, and
1296 * ignore pinned events since we did them already.
1298 if (event->state <= PERF_EVENT_STATE_OFF ||
1299 event->attr.pinned)
1300 continue;
1303 * Listen to the 'cpu' scheduling filter constraint
1304 * of events:
1306 if (event->cpu != -1 && event->cpu != cpu)
1307 continue;
1309 if (group_can_go_on(event, cpuctx, can_add_hw))
1310 if (group_sched_in(event, cpuctx, ctx, cpu))
1311 can_add_hw = 0;
1313 perf_enable();
1314 out:
1315 raw_spin_unlock(&ctx->lock);
1319 * Called from scheduler to add the events of the current task
1320 * with interrupts disabled.
1322 * We restore the event value and then enable it.
1324 * This does not protect us against NMI, but enable()
1325 * sets the enabled bit in the control field of event _before_
1326 * accessing the event control register. If a NMI hits, then it will
1327 * keep the event running.
1329 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1331 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1332 struct perf_event_context *ctx = task->perf_event_ctxp;
1334 if (likely(!ctx))
1335 return;
1336 if (cpuctx->task_ctx == ctx)
1337 return;
1338 __perf_event_sched_in(ctx, cpuctx, cpu);
1339 cpuctx->task_ctx = ctx;
1342 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1344 struct perf_event_context *ctx = &cpuctx->ctx;
1346 __perf_event_sched_in(ctx, cpuctx, cpu);
1349 #define MAX_INTERRUPTS (~0ULL)
1351 static void perf_log_throttle(struct perf_event *event, int enable);
1353 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1355 u64 frequency = event->attr.sample_freq;
1356 u64 sec = NSEC_PER_SEC;
1357 u64 divisor, dividend;
1359 int count_fls, nsec_fls, frequency_fls, sec_fls;
1361 count_fls = fls64(count);
1362 nsec_fls = fls64(nsec);
1363 frequency_fls = fls64(frequency);
1364 sec_fls = 30;
1367 * We got @count in @nsec, with a target of sample_freq HZ
1368 * the target period becomes:
1370 * @count * 10^9
1371 * period = -------------------
1372 * @nsec * sample_freq
1377 * Reduce accuracy by one bit such that @a and @b converge
1378 * to a similar magnitude.
1380 #define REDUCE_FLS(a, b) \
1381 do { \
1382 if (a##_fls > b##_fls) { \
1383 a >>= 1; \
1384 a##_fls--; \
1385 } else { \
1386 b >>= 1; \
1387 b##_fls--; \
1389 } while (0)
1392 * Reduce accuracy until either term fits in a u64, then proceed with
1393 * the other, so that finally we can do a u64/u64 division.
1395 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1396 REDUCE_FLS(nsec, frequency);
1397 REDUCE_FLS(sec, count);
1400 if (count_fls + sec_fls > 64) {
1401 divisor = nsec * frequency;
1403 while (count_fls + sec_fls > 64) {
1404 REDUCE_FLS(count, sec);
1405 divisor >>= 1;
1408 dividend = count * sec;
1409 } else {
1410 dividend = count * sec;
1412 while (nsec_fls + frequency_fls > 64) {
1413 REDUCE_FLS(nsec, frequency);
1414 dividend >>= 1;
1417 divisor = nsec * frequency;
1420 return div64_u64(dividend, divisor);
1423 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1425 struct hw_perf_event *hwc = &event->hw;
1426 u64 period, sample_period;
1427 s64 delta;
1429 period = perf_calculate_period(event, nsec, count);
1431 delta = (s64)(period - hwc->sample_period);
1432 delta = (delta + 7) / 8; /* low pass filter */
1434 sample_period = hwc->sample_period + delta;
1436 if (!sample_period)
1437 sample_period = 1;
1439 hwc->sample_period = sample_period;
1441 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1442 perf_disable();
1443 event->pmu->disable(event);
1444 atomic64_set(&hwc->period_left, 0);
1445 event->pmu->enable(event);
1446 perf_enable();
1450 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1452 struct perf_event *event;
1453 struct hw_perf_event *hwc;
1454 u64 interrupts, now;
1455 s64 delta;
1457 raw_spin_lock(&ctx->lock);
1458 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1459 if (event->state != PERF_EVENT_STATE_ACTIVE)
1460 continue;
1462 if (event->cpu != -1 && event->cpu != smp_processor_id())
1463 continue;
1465 hwc = &event->hw;
1467 interrupts = hwc->interrupts;
1468 hwc->interrupts = 0;
1471 * unthrottle events on the tick
1473 if (interrupts == MAX_INTERRUPTS) {
1474 perf_log_throttle(event, 1);
1475 event->pmu->unthrottle(event);
1478 if (!event->attr.freq || !event->attr.sample_freq)
1479 continue;
1481 event->pmu->read(event);
1482 now = atomic64_read(&event->count);
1483 delta = now - hwc->freq_count_stamp;
1484 hwc->freq_count_stamp = now;
1486 if (delta > 0)
1487 perf_adjust_period(event, TICK_NSEC, delta);
1489 raw_spin_unlock(&ctx->lock);
1493 * Round-robin a context's events:
1495 static void rotate_ctx(struct perf_event_context *ctx)
1497 struct perf_event *event;
1499 if (!ctx->nr_events)
1500 return;
1502 raw_spin_lock(&ctx->lock);
1504 * Rotate the first entry last (works just fine for group events too):
1506 perf_disable();
1507 list_for_each_entry(event, &ctx->group_list, group_entry) {
1508 list_move_tail(&event->group_entry, &ctx->group_list);
1509 break;
1511 perf_enable();
1513 raw_spin_unlock(&ctx->lock);
1516 void perf_event_task_tick(struct task_struct *curr, int cpu)
1518 struct perf_cpu_context *cpuctx;
1519 struct perf_event_context *ctx;
1521 if (!atomic_read(&nr_events))
1522 return;
1524 cpuctx = &per_cpu(perf_cpu_context, cpu);
1525 ctx = curr->perf_event_ctxp;
1527 perf_ctx_adjust_freq(&cpuctx->ctx);
1528 if (ctx)
1529 perf_ctx_adjust_freq(ctx);
1531 perf_event_cpu_sched_out(cpuctx);
1532 if (ctx)
1533 __perf_event_task_sched_out(ctx);
1535 rotate_ctx(&cpuctx->ctx);
1536 if (ctx)
1537 rotate_ctx(ctx);
1539 perf_event_cpu_sched_in(cpuctx, cpu);
1540 if (ctx)
1541 perf_event_task_sched_in(curr, cpu);
1545 * Enable all of a task's events that have been marked enable-on-exec.
1546 * This expects task == current.
1548 static void perf_event_enable_on_exec(struct task_struct *task)
1550 struct perf_event_context *ctx;
1551 struct perf_event *event;
1552 unsigned long flags;
1553 int enabled = 0;
1555 local_irq_save(flags);
1556 ctx = task->perf_event_ctxp;
1557 if (!ctx || !ctx->nr_events)
1558 goto out;
1560 __perf_event_task_sched_out(ctx);
1562 raw_spin_lock(&ctx->lock);
1564 list_for_each_entry(event, &ctx->group_list, group_entry) {
1565 if (!event->attr.enable_on_exec)
1566 continue;
1567 event->attr.enable_on_exec = 0;
1568 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1569 continue;
1570 __perf_event_mark_enabled(event, ctx);
1571 enabled = 1;
1575 * Unclone this context if we enabled any event.
1577 if (enabled)
1578 unclone_ctx(ctx);
1580 raw_spin_unlock(&ctx->lock);
1582 perf_event_task_sched_in(task, smp_processor_id());
1583 out:
1584 local_irq_restore(flags);
1588 * Cross CPU call to read the hardware event
1590 static void __perf_event_read(void *info)
1592 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1593 struct perf_event *event = info;
1594 struct perf_event_context *ctx = event->ctx;
1597 * If this is a task context, we need to check whether it is
1598 * the current task context of this cpu. If not it has been
1599 * scheduled out before the smp call arrived. In that case
1600 * event->count would have been updated to a recent sample
1601 * when the event was scheduled out.
1603 if (ctx->task && cpuctx->task_ctx != ctx)
1604 return;
1606 raw_spin_lock(&ctx->lock);
1607 update_context_time(ctx);
1608 update_event_times(event);
1609 raw_spin_unlock(&ctx->lock);
1611 event->pmu->read(event);
1614 static u64 perf_event_read(struct perf_event *event)
1617 * If event is enabled and currently active on a CPU, update the
1618 * value in the event structure:
1620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1621 smp_call_function_single(event->oncpu,
1622 __perf_event_read, event, 1);
1623 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1624 struct perf_event_context *ctx = event->ctx;
1625 unsigned long flags;
1627 raw_spin_lock_irqsave(&ctx->lock, flags);
1628 update_context_time(ctx);
1629 update_event_times(event);
1630 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1633 return atomic64_read(&event->count);
1637 * Initialize the perf_event context in a task_struct:
1639 static void
1640 __perf_event_init_context(struct perf_event_context *ctx,
1641 struct task_struct *task)
1643 raw_spin_lock_init(&ctx->lock);
1644 mutex_init(&ctx->mutex);
1645 INIT_LIST_HEAD(&ctx->group_list);
1646 INIT_LIST_HEAD(&ctx->event_list);
1647 atomic_set(&ctx->refcount, 1);
1648 ctx->task = task;
1651 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1653 struct perf_event_context *ctx;
1654 struct perf_cpu_context *cpuctx;
1655 struct task_struct *task;
1656 unsigned long flags;
1657 int err;
1659 if (pid == -1 && cpu != -1) {
1660 /* Must be root to operate on a CPU event: */
1661 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1662 return ERR_PTR(-EACCES);
1664 if (cpu < 0 || cpu >= nr_cpumask_bits)
1665 return ERR_PTR(-EINVAL);
1668 * We could be clever and allow to attach a event to an
1669 * offline CPU and activate it when the CPU comes up, but
1670 * that's for later.
1672 if (!cpu_online(cpu))
1673 return ERR_PTR(-ENODEV);
1675 cpuctx = &per_cpu(perf_cpu_context, cpu);
1676 ctx = &cpuctx->ctx;
1677 get_ctx(ctx);
1679 return ctx;
1682 rcu_read_lock();
1683 if (!pid)
1684 task = current;
1685 else
1686 task = find_task_by_vpid(pid);
1687 if (task)
1688 get_task_struct(task);
1689 rcu_read_unlock();
1691 if (!task)
1692 return ERR_PTR(-ESRCH);
1695 * Can't attach events to a dying task.
1697 err = -ESRCH;
1698 if (task->flags & PF_EXITING)
1699 goto errout;
1701 /* Reuse ptrace permission checks for now. */
1702 err = -EACCES;
1703 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1704 goto errout;
1706 retry:
1707 ctx = perf_lock_task_context(task, &flags);
1708 if (ctx) {
1709 unclone_ctx(ctx);
1710 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1713 if (!ctx) {
1714 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1715 err = -ENOMEM;
1716 if (!ctx)
1717 goto errout;
1718 __perf_event_init_context(ctx, task);
1719 get_ctx(ctx);
1720 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1722 * We raced with some other task; use
1723 * the context they set.
1725 kfree(ctx);
1726 goto retry;
1728 get_task_struct(task);
1731 put_task_struct(task);
1732 return ctx;
1734 errout:
1735 put_task_struct(task);
1736 return ERR_PTR(err);
1739 static void perf_event_free_filter(struct perf_event *event);
1741 static void free_event_rcu(struct rcu_head *head)
1743 struct perf_event *event;
1745 event = container_of(head, struct perf_event, rcu_head);
1746 if (event->ns)
1747 put_pid_ns(event->ns);
1748 perf_event_free_filter(event);
1749 kfree(event);
1752 static void perf_pending_sync(struct perf_event *event);
1754 static void free_event(struct perf_event *event)
1756 perf_pending_sync(event);
1758 if (!event->parent) {
1759 atomic_dec(&nr_events);
1760 if (event->attr.mmap)
1761 atomic_dec(&nr_mmap_events);
1762 if (event->attr.comm)
1763 atomic_dec(&nr_comm_events);
1764 if (event->attr.task)
1765 atomic_dec(&nr_task_events);
1768 if (event->output) {
1769 fput(event->output->filp);
1770 event->output = NULL;
1773 if (event->destroy)
1774 event->destroy(event);
1776 put_ctx(event->ctx);
1777 call_rcu(&event->rcu_head, free_event_rcu);
1780 int perf_event_release_kernel(struct perf_event *event)
1782 struct perf_event_context *ctx = event->ctx;
1784 WARN_ON_ONCE(ctx->parent_ctx);
1785 mutex_lock(&ctx->mutex);
1786 perf_event_remove_from_context(event);
1787 mutex_unlock(&ctx->mutex);
1789 mutex_lock(&event->owner->perf_event_mutex);
1790 list_del_init(&event->owner_entry);
1791 mutex_unlock(&event->owner->perf_event_mutex);
1792 put_task_struct(event->owner);
1794 free_event(event);
1796 return 0;
1798 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1801 * Called when the last reference to the file is gone.
1803 static int perf_release(struct inode *inode, struct file *file)
1805 struct perf_event *event = file->private_data;
1807 file->private_data = NULL;
1809 return perf_event_release_kernel(event);
1812 static int perf_event_read_size(struct perf_event *event)
1814 int entry = sizeof(u64); /* value */
1815 int size = 0;
1816 int nr = 1;
1818 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1819 size += sizeof(u64);
1821 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1822 size += sizeof(u64);
1824 if (event->attr.read_format & PERF_FORMAT_ID)
1825 entry += sizeof(u64);
1827 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1828 nr += event->group_leader->nr_siblings;
1829 size += sizeof(u64);
1832 size += entry * nr;
1834 return size;
1837 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1839 struct perf_event *child;
1840 u64 total = 0;
1842 *enabled = 0;
1843 *running = 0;
1845 mutex_lock(&event->child_mutex);
1846 total += perf_event_read(event);
1847 *enabled += event->total_time_enabled +
1848 atomic64_read(&event->child_total_time_enabled);
1849 *running += event->total_time_running +
1850 atomic64_read(&event->child_total_time_running);
1852 list_for_each_entry(child, &event->child_list, child_list) {
1853 total += perf_event_read(child);
1854 *enabled += child->total_time_enabled;
1855 *running += child->total_time_running;
1857 mutex_unlock(&event->child_mutex);
1859 return total;
1861 EXPORT_SYMBOL_GPL(perf_event_read_value);
1863 static int perf_event_read_group(struct perf_event *event,
1864 u64 read_format, char __user *buf)
1866 struct perf_event *leader = event->group_leader, *sub;
1867 int n = 0, size = 0, ret = -EFAULT;
1868 struct perf_event_context *ctx = leader->ctx;
1869 u64 values[5];
1870 u64 count, enabled, running;
1872 mutex_lock(&ctx->mutex);
1873 count = perf_event_read_value(leader, &enabled, &running);
1875 values[n++] = 1 + leader->nr_siblings;
1876 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1877 values[n++] = enabled;
1878 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1879 values[n++] = running;
1880 values[n++] = count;
1881 if (read_format & PERF_FORMAT_ID)
1882 values[n++] = primary_event_id(leader);
1884 size = n * sizeof(u64);
1886 if (copy_to_user(buf, values, size))
1887 goto unlock;
1889 ret = size;
1891 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1892 n = 0;
1894 values[n++] = perf_event_read_value(sub, &enabled, &running);
1895 if (read_format & PERF_FORMAT_ID)
1896 values[n++] = primary_event_id(sub);
1898 size = n * sizeof(u64);
1900 if (copy_to_user(buf + ret, values, size)) {
1901 ret = -EFAULT;
1902 goto unlock;
1905 ret += size;
1907 unlock:
1908 mutex_unlock(&ctx->mutex);
1910 return ret;
1913 static int perf_event_read_one(struct perf_event *event,
1914 u64 read_format, char __user *buf)
1916 u64 enabled, running;
1917 u64 values[4];
1918 int n = 0;
1920 values[n++] = perf_event_read_value(event, &enabled, &running);
1921 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1922 values[n++] = enabled;
1923 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1924 values[n++] = running;
1925 if (read_format & PERF_FORMAT_ID)
1926 values[n++] = primary_event_id(event);
1928 if (copy_to_user(buf, values, n * sizeof(u64)))
1929 return -EFAULT;
1931 return n * sizeof(u64);
1935 * Read the performance event - simple non blocking version for now
1937 static ssize_t
1938 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1940 u64 read_format = event->attr.read_format;
1941 int ret;
1944 * Return end-of-file for a read on a event that is in
1945 * error state (i.e. because it was pinned but it couldn't be
1946 * scheduled on to the CPU at some point).
1948 if (event->state == PERF_EVENT_STATE_ERROR)
1949 return 0;
1951 if (count < perf_event_read_size(event))
1952 return -ENOSPC;
1954 WARN_ON_ONCE(event->ctx->parent_ctx);
1955 if (read_format & PERF_FORMAT_GROUP)
1956 ret = perf_event_read_group(event, read_format, buf);
1957 else
1958 ret = perf_event_read_one(event, read_format, buf);
1960 return ret;
1963 static ssize_t
1964 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1966 struct perf_event *event = file->private_data;
1968 return perf_read_hw(event, buf, count);
1971 static unsigned int perf_poll(struct file *file, poll_table *wait)
1973 struct perf_event *event = file->private_data;
1974 struct perf_mmap_data *data;
1975 unsigned int events = POLL_HUP;
1977 rcu_read_lock();
1978 data = rcu_dereference(event->data);
1979 if (data)
1980 events = atomic_xchg(&data->poll, 0);
1981 rcu_read_unlock();
1983 poll_wait(file, &event->waitq, wait);
1985 return events;
1988 static void perf_event_reset(struct perf_event *event)
1990 (void)perf_event_read(event);
1991 atomic64_set(&event->count, 0);
1992 perf_event_update_userpage(event);
1996 * Holding the top-level event's child_mutex means that any
1997 * descendant process that has inherited this event will block
1998 * in sync_child_event if it goes to exit, thus satisfying the
1999 * task existence requirements of perf_event_enable/disable.
2001 static void perf_event_for_each_child(struct perf_event *event,
2002 void (*func)(struct perf_event *))
2004 struct perf_event *child;
2006 WARN_ON_ONCE(event->ctx->parent_ctx);
2007 mutex_lock(&event->child_mutex);
2008 func(event);
2009 list_for_each_entry(child, &event->child_list, child_list)
2010 func(child);
2011 mutex_unlock(&event->child_mutex);
2014 static void perf_event_for_each(struct perf_event *event,
2015 void (*func)(struct perf_event *))
2017 struct perf_event_context *ctx = event->ctx;
2018 struct perf_event *sibling;
2020 WARN_ON_ONCE(ctx->parent_ctx);
2021 mutex_lock(&ctx->mutex);
2022 event = event->group_leader;
2024 perf_event_for_each_child(event, func);
2025 func(event);
2026 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2027 perf_event_for_each_child(event, func);
2028 mutex_unlock(&ctx->mutex);
2031 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2033 struct perf_event_context *ctx = event->ctx;
2034 unsigned long size;
2035 int ret = 0;
2036 u64 value;
2038 if (!event->attr.sample_period)
2039 return -EINVAL;
2041 size = copy_from_user(&value, arg, sizeof(value));
2042 if (size != sizeof(value))
2043 return -EFAULT;
2045 if (!value)
2046 return -EINVAL;
2048 raw_spin_lock_irq(&ctx->lock);
2049 if (event->attr.freq) {
2050 if (value > sysctl_perf_event_sample_rate) {
2051 ret = -EINVAL;
2052 goto unlock;
2055 event->attr.sample_freq = value;
2056 } else {
2057 event->attr.sample_period = value;
2058 event->hw.sample_period = value;
2060 unlock:
2061 raw_spin_unlock_irq(&ctx->lock);
2063 return ret;
2066 static int perf_event_set_output(struct perf_event *event, int output_fd);
2067 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2069 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2071 struct perf_event *event = file->private_data;
2072 void (*func)(struct perf_event *);
2073 u32 flags = arg;
2075 switch (cmd) {
2076 case PERF_EVENT_IOC_ENABLE:
2077 func = perf_event_enable;
2078 break;
2079 case PERF_EVENT_IOC_DISABLE:
2080 func = perf_event_disable;
2081 break;
2082 case PERF_EVENT_IOC_RESET:
2083 func = perf_event_reset;
2084 break;
2086 case PERF_EVENT_IOC_REFRESH:
2087 return perf_event_refresh(event, arg);
2089 case PERF_EVENT_IOC_PERIOD:
2090 return perf_event_period(event, (u64 __user *)arg);
2092 case PERF_EVENT_IOC_SET_OUTPUT:
2093 return perf_event_set_output(event, arg);
2095 case PERF_EVENT_IOC_SET_FILTER:
2096 return perf_event_set_filter(event, (void __user *)arg);
2098 default:
2099 return -ENOTTY;
2102 if (flags & PERF_IOC_FLAG_GROUP)
2103 perf_event_for_each(event, func);
2104 else
2105 perf_event_for_each_child(event, func);
2107 return 0;
2110 int perf_event_task_enable(void)
2112 struct perf_event *event;
2114 mutex_lock(&current->perf_event_mutex);
2115 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2116 perf_event_for_each_child(event, perf_event_enable);
2117 mutex_unlock(&current->perf_event_mutex);
2119 return 0;
2122 int perf_event_task_disable(void)
2124 struct perf_event *event;
2126 mutex_lock(&current->perf_event_mutex);
2127 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2128 perf_event_for_each_child(event, perf_event_disable);
2129 mutex_unlock(&current->perf_event_mutex);
2131 return 0;
2134 #ifndef PERF_EVENT_INDEX_OFFSET
2135 # define PERF_EVENT_INDEX_OFFSET 0
2136 #endif
2138 static int perf_event_index(struct perf_event *event)
2140 if (event->state != PERF_EVENT_STATE_ACTIVE)
2141 return 0;
2143 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2147 * Callers need to ensure there can be no nesting of this function, otherwise
2148 * the seqlock logic goes bad. We can not serialize this because the arch
2149 * code calls this from NMI context.
2151 void perf_event_update_userpage(struct perf_event *event)
2153 struct perf_event_mmap_page *userpg;
2154 struct perf_mmap_data *data;
2156 rcu_read_lock();
2157 data = rcu_dereference(event->data);
2158 if (!data)
2159 goto unlock;
2161 userpg = data->user_page;
2164 * Disable preemption so as to not let the corresponding user-space
2165 * spin too long if we get preempted.
2167 preempt_disable();
2168 ++userpg->lock;
2169 barrier();
2170 userpg->index = perf_event_index(event);
2171 userpg->offset = atomic64_read(&event->count);
2172 if (event->state == PERF_EVENT_STATE_ACTIVE)
2173 userpg->offset -= atomic64_read(&event->hw.prev_count);
2175 userpg->time_enabled = event->total_time_enabled +
2176 atomic64_read(&event->child_total_time_enabled);
2178 userpg->time_running = event->total_time_running +
2179 atomic64_read(&event->child_total_time_running);
2181 barrier();
2182 ++userpg->lock;
2183 preempt_enable();
2184 unlock:
2185 rcu_read_unlock();
2188 static unsigned long perf_data_size(struct perf_mmap_data *data)
2190 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2193 #ifndef CONFIG_PERF_USE_VMALLOC
2196 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2199 static struct page *
2200 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2202 if (pgoff > data->nr_pages)
2203 return NULL;
2205 if (pgoff == 0)
2206 return virt_to_page(data->user_page);
2208 return virt_to_page(data->data_pages[pgoff - 1]);
2211 static struct perf_mmap_data *
2212 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2214 struct perf_mmap_data *data;
2215 unsigned long size;
2216 int i;
2218 WARN_ON(atomic_read(&event->mmap_count));
2220 size = sizeof(struct perf_mmap_data);
2221 size += nr_pages * sizeof(void *);
2223 data = kzalloc(size, GFP_KERNEL);
2224 if (!data)
2225 goto fail;
2227 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2228 if (!data->user_page)
2229 goto fail_user_page;
2231 for (i = 0; i < nr_pages; i++) {
2232 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2233 if (!data->data_pages[i])
2234 goto fail_data_pages;
2237 data->data_order = 0;
2238 data->nr_pages = nr_pages;
2240 return data;
2242 fail_data_pages:
2243 for (i--; i >= 0; i--)
2244 free_page((unsigned long)data->data_pages[i]);
2246 free_page((unsigned long)data->user_page);
2248 fail_user_page:
2249 kfree(data);
2251 fail:
2252 return NULL;
2255 static void perf_mmap_free_page(unsigned long addr)
2257 struct page *page = virt_to_page((void *)addr);
2259 page->mapping = NULL;
2260 __free_page(page);
2263 static void perf_mmap_data_free(struct perf_mmap_data *data)
2265 int i;
2267 perf_mmap_free_page((unsigned long)data->user_page);
2268 for (i = 0; i < data->nr_pages; i++)
2269 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2270 kfree(data);
2273 #else
2276 * Back perf_mmap() with vmalloc memory.
2278 * Required for architectures that have d-cache aliasing issues.
2281 static struct page *
2282 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2284 if (pgoff > (1UL << data->data_order))
2285 return NULL;
2287 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2290 static void perf_mmap_unmark_page(void *addr)
2292 struct page *page = vmalloc_to_page(addr);
2294 page->mapping = NULL;
2297 static void perf_mmap_data_free_work(struct work_struct *work)
2299 struct perf_mmap_data *data;
2300 void *base;
2301 int i, nr;
2303 data = container_of(work, struct perf_mmap_data, work);
2304 nr = 1 << data->data_order;
2306 base = data->user_page;
2307 for (i = 0; i < nr + 1; i++)
2308 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2310 vfree(base);
2311 kfree(data);
2314 static void perf_mmap_data_free(struct perf_mmap_data *data)
2316 schedule_work(&data->work);
2319 static struct perf_mmap_data *
2320 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2322 struct perf_mmap_data *data;
2323 unsigned long size;
2324 void *all_buf;
2326 WARN_ON(atomic_read(&event->mmap_count));
2328 size = sizeof(struct perf_mmap_data);
2329 size += sizeof(void *);
2331 data = kzalloc(size, GFP_KERNEL);
2332 if (!data)
2333 goto fail;
2335 INIT_WORK(&data->work, perf_mmap_data_free_work);
2337 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2338 if (!all_buf)
2339 goto fail_all_buf;
2341 data->user_page = all_buf;
2342 data->data_pages[0] = all_buf + PAGE_SIZE;
2343 data->data_order = ilog2(nr_pages);
2344 data->nr_pages = 1;
2346 return data;
2348 fail_all_buf:
2349 kfree(data);
2351 fail:
2352 return NULL;
2355 #endif
2357 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2359 struct perf_event *event = vma->vm_file->private_data;
2360 struct perf_mmap_data *data;
2361 int ret = VM_FAULT_SIGBUS;
2363 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2364 if (vmf->pgoff == 0)
2365 ret = 0;
2366 return ret;
2369 rcu_read_lock();
2370 data = rcu_dereference(event->data);
2371 if (!data)
2372 goto unlock;
2374 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2375 goto unlock;
2377 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2378 if (!vmf->page)
2379 goto unlock;
2381 get_page(vmf->page);
2382 vmf->page->mapping = vma->vm_file->f_mapping;
2383 vmf->page->index = vmf->pgoff;
2385 ret = 0;
2386 unlock:
2387 rcu_read_unlock();
2389 return ret;
2392 static void
2393 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2395 long max_size = perf_data_size(data);
2397 atomic_set(&data->lock, -1);
2399 if (event->attr.watermark) {
2400 data->watermark = min_t(long, max_size,
2401 event->attr.wakeup_watermark);
2404 if (!data->watermark)
2405 data->watermark = max_size / 2;
2408 rcu_assign_pointer(event->data, data);
2411 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2413 struct perf_mmap_data *data;
2415 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2416 perf_mmap_data_free(data);
2419 static void perf_mmap_data_release(struct perf_event *event)
2421 struct perf_mmap_data *data = event->data;
2423 WARN_ON(atomic_read(&event->mmap_count));
2425 rcu_assign_pointer(event->data, NULL);
2426 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2429 static void perf_mmap_open(struct vm_area_struct *vma)
2431 struct perf_event *event = vma->vm_file->private_data;
2433 atomic_inc(&event->mmap_count);
2436 static void perf_mmap_close(struct vm_area_struct *vma)
2438 struct perf_event *event = vma->vm_file->private_data;
2440 WARN_ON_ONCE(event->ctx->parent_ctx);
2441 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2442 unsigned long size = perf_data_size(event->data);
2443 struct user_struct *user = current_user();
2445 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2446 vma->vm_mm->locked_vm -= event->data->nr_locked;
2447 perf_mmap_data_release(event);
2448 mutex_unlock(&event->mmap_mutex);
2452 static const struct vm_operations_struct perf_mmap_vmops = {
2453 .open = perf_mmap_open,
2454 .close = perf_mmap_close,
2455 .fault = perf_mmap_fault,
2456 .page_mkwrite = perf_mmap_fault,
2459 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2461 struct perf_event *event = file->private_data;
2462 unsigned long user_locked, user_lock_limit;
2463 struct user_struct *user = current_user();
2464 unsigned long locked, lock_limit;
2465 struct perf_mmap_data *data;
2466 unsigned long vma_size;
2467 unsigned long nr_pages;
2468 long user_extra, extra;
2469 int ret = 0;
2471 if (!(vma->vm_flags & VM_SHARED))
2472 return -EINVAL;
2474 vma_size = vma->vm_end - vma->vm_start;
2475 nr_pages = (vma_size / PAGE_SIZE) - 1;
2478 * If we have data pages ensure they're a power-of-two number, so we
2479 * can do bitmasks instead of modulo.
2481 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2482 return -EINVAL;
2484 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2485 return -EINVAL;
2487 if (vma->vm_pgoff != 0)
2488 return -EINVAL;
2490 WARN_ON_ONCE(event->ctx->parent_ctx);
2491 mutex_lock(&event->mmap_mutex);
2492 if (event->output) {
2493 ret = -EINVAL;
2494 goto unlock;
2497 if (atomic_inc_not_zero(&event->mmap_count)) {
2498 if (nr_pages != event->data->nr_pages)
2499 ret = -EINVAL;
2500 goto unlock;
2503 user_extra = nr_pages + 1;
2504 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2507 * Increase the limit linearly with more CPUs:
2509 user_lock_limit *= num_online_cpus();
2511 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2513 extra = 0;
2514 if (user_locked > user_lock_limit)
2515 extra = user_locked - user_lock_limit;
2517 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2518 lock_limit >>= PAGE_SHIFT;
2519 locked = vma->vm_mm->locked_vm + extra;
2521 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2522 !capable(CAP_IPC_LOCK)) {
2523 ret = -EPERM;
2524 goto unlock;
2527 WARN_ON(event->data);
2529 data = perf_mmap_data_alloc(event, nr_pages);
2530 ret = -ENOMEM;
2531 if (!data)
2532 goto unlock;
2534 ret = 0;
2535 perf_mmap_data_init(event, data);
2537 atomic_set(&event->mmap_count, 1);
2538 atomic_long_add(user_extra, &user->locked_vm);
2539 vma->vm_mm->locked_vm += extra;
2540 event->data->nr_locked = extra;
2541 if (vma->vm_flags & VM_WRITE)
2542 event->data->writable = 1;
2544 unlock:
2545 mutex_unlock(&event->mmap_mutex);
2547 vma->vm_flags |= VM_RESERVED;
2548 vma->vm_ops = &perf_mmap_vmops;
2550 return ret;
2553 static int perf_fasync(int fd, struct file *filp, int on)
2555 struct inode *inode = filp->f_path.dentry->d_inode;
2556 struct perf_event *event = filp->private_data;
2557 int retval;
2559 mutex_lock(&inode->i_mutex);
2560 retval = fasync_helper(fd, filp, on, &event->fasync);
2561 mutex_unlock(&inode->i_mutex);
2563 if (retval < 0)
2564 return retval;
2566 return 0;
2569 static const struct file_operations perf_fops = {
2570 .release = perf_release,
2571 .read = perf_read,
2572 .poll = perf_poll,
2573 .unlocked_ioctl = perf_ioctl,
2574 .compat_ioctl = perf_ioctl,
2575 .mmap = perf_mmap,
2576 .fasync = perf_fasync,
2580 * Perf event wakeup
2582 * If there's data, ensure we set the poll() state and publish everything
2583 * to user-space before waking everybody up.
2586 void perf_event_wakeup(struct perf_event *event)
2588 wake_up_all(&event->waitq);
2590 if (event->pending_kill) {
2591 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2592 event->pending_kill = 0;
2597 * Pending wakeups
2599 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2601 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2602 * single linked list and use cmpxchg() to add entries lockless.
2605 static void perf_pending_event(struct perf_pending_entry *entry)
2607 struct perf_event *event = container_of(entry,
2608 struct perf_event, pending);
2610 if (event->pending_disable) {
2611 event->pending_disable = 0;
2612 __perf_event_disable(event);
2615 if (event->pending_wakeup) {
2616 event->pending_wakeup = 0;
2617 perf_event_wakeup(event);
2621 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2623 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2624 PENDING_TAIL,
2627 static void perf_pending_queue(struct perf_pending_entry *entry,
2628 void (*func)(struct perf_pending_entry *))
2630 struct perf_pending_entry **head;
2632 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2633 return;
2635 entry->func = func;
2637 head = &get_cpu_var(perf_pending_head);
2639 do {
2640 entry->next = *head;
2641 } while (cmpxchg(head, entry->next, entry) != entry->next);
2643 set_perf_event_pending();
2645 put_cpu_var(perf_pending_head);
2648 static int __perf_pending_run(void)
2650 struct perf_pending_entry *list;
2651 int nr = 0;
2653 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2654 while (list != PENDING_TAIL) {
2655 void (*func)(struct perf_pending_entry *);
2656 struct perf_pending_entry *entry = list;
2658 list = list->next;
2660 func = entry->func;
2661 entry->next = NULL;
2663 * Ensure we observe the unqueue before we issue the wakeup,
2664 * so that we won't be waiting forever.
2665 * -- see perf_not_pending().
2667 smp_wmb();
2669 func(entry);
2670 nr++;
2673 return nr;
2676 static inline int perf_not_pending(struct perf_event *event)
2679 * If we flush on whatever cpu we run, there is a chance we don't
2680 * need to wait.
2682 get_cpu();
2683 __perf_pending_run();
2684 put_cpu();
2687 * Ensure we see the proper queue state before going to sleep
2688 * so that we do not miss the wakeup. -- see perf_pending_handle()
2690 smp_rmb();
2691 return event->pending.next == NULL;
2694 static void perf_pending_sync(struct perf_event *event)
2696 wait_event(event->waitq, perf_not_pending(event));
2699 void perf_event_do_pending(void)
2701 __perf_pending_run();
2705 * Callchain support -- arch specific
2708 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2710 return NULL;
2714 * Output
2716 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2717 unsigned long offset, unsigned long head)
2719 unsigned long mask;
2721 if (!data->writable)
2722 return true;
2724 mask = perf_data_size(data) - 1;
2726 offset = (offset - tail) & mask;
2727 head = (head - tail) & mask;
2729 if ((int)(head - offset) < 0)
2730 return false;
2732 return true;
2735 static void perf_output_wakeup(struct perf_output_handle *handle)
2737 atomic_set(&handle->data->poll, POLL_IN);
2739 if (handle->nmi) {
2740 handle->event->pending_wakeup = 1;
2741 perf_pending_queue(&handle->event->pending,
2742 perf_pending_event);
2743 } else
2744 perf_event_wakeup(handle->event);
2748 * Curious locking construct.
2750 * We need to ensure a later event_id doesn't publish a head when a former
2751 * event_id isn't done writing. However since we need to deal with NMIs we
2752 * cannot fully serialize things.
2754 * What we do is serialize between CPUs so we only have to deal with NMI
2755 * nesting on a single CPU.
2757 * We only publish the head (and generate a wakeup) when the outer-most
2758 * event_id completes.
2760 static void perf_output_lock(struct perf_output_handle *handle)
2762 struct perf_mmap_data *data = handle->data;
2763 int cur, cpu = get_cpu();
2765 handle->locked = 0;
2767 for (;;) {
2768 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2769 if (cur == -1) {
2770 handle->locked = 1;
2771 break;
2773 if (cur == cpu)
2774 break;
2776 cpu_relax();
2780 static void perf_output_unlock(struct perf_output_handle *handle)
2782 struct perf_mmap_data *data = handle->data;
2783 unsigned long head;
2784 int cpu;
2786 data->done_head = data->head;
2788 if (!handle->locked)
2789 goto out;
2791 again:
2793 * The xchg implies a full barrier that ensures all writes are done
2794 * before we publish the new head, matched by a rmb() in userspace when
2795 * reading this position.
2797 while ((head = atomic_long_xchg(&data->done_head, 0)))
2798 data->user_page->data_head = head;
2801 * NMI can happen here, which means we can miss a done_head update.
2804 cpu = atomic_xchg(&data->lock, -1);
2805 WARN_ON_ONCE(cpu != smp_processor_id());
2808 * Therefore we have to validate we did not indeed do so.
2810 if (unlikely(atomic_long_read(&data->done_head))) {
2812 * Since we had it locked, we can lock it again.
2814 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2815 cpu_relax();
2817 goto again;
2820 if (atomic_xchg(&data->wakeup, 0))
2821 perf_output_wakeup(handle);
2822 out:
2823 put_cpu();
2826 void perf_output_copy(struct perf_output_handle *handle,
2827 const void *buf, unsigned int len)
2829 unsigned int pages_mask;
2830 unsigned long offset;
2831 unsigned int size;
2832 void **pages;
2834 offset = handle->offset;
2835 pages_mask = handle->data->nr_pages - 1;
2836 pages = handle->data->data_pages;
2838 do {
2839 unsigned long page_offset;
2840 unsigned long page_size;
2841 int nr;
2843 nr = (offset >> PAGE_SHIFT) & pages_mask;
2844 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2845 page_offset = offset & (page_size - 1);
2846 size = min_t(unsigned int, page_size - page_offset, len);
2848 memcpy(pages[nr] + page_offset, buf, size);
2850 len -= size;
2851 buf += size;
2852 offset += size;
2853 } while (len);
2855 handle->offset = offset;
2858 * Check we didn't copy past our reservation window, taking the
2859 * possible unsigned int wrap into account.
2861 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2864 int perf_output_begin(struct perf_output_handle *handle,
2865 struct perf_event *event, unsigned int size,
2866 int nmi, int sample)
2868 struct perf_event *output_event;
2869 struct perf_mmap_data *data;
2870 unsigned long tail, offset, head;
2871 int have_lost;
2872 struct {
2873 struct perf_event_header header;
2874 u64 id;
2875 u64 lost;
2876 } lost_event;
2878 rcu_read_lock();
2880 * For inherited events we send all the output towards the parent.
2882 if (event->parent)
2883 event = event->parent;
2885 output_event = rcu_dereference(event->output);
2886 if (output_event)
2887 event = output_event;
2889 data = rcu_dereference(event->data);
2890 if (!data)
2891 goto out;
2893 handle->data = data;
2894 handle->event = event;
2895 handle->nmi = nmi;
2896 handle->sample = sample;
2898 if (!data->nr_pages)
2899 goto fail;
2901 have_lost = atomic_read(&data->lost);
2902 if (have_lost)
2903 size += sizeof(lost_event);
2905 perf_output_lock(handle);
2907 do {
2909 * Userspace could choose to issue a mb() before updating the
2910 * tail pointer. So that all reads will be completed before the
2911 * write is issued.
2913 tail = ACCESS_ONCE(data->user_page->data_tail);
2914 smp_rmb();
2915 offset = head = atomic_long_read(&data->head);
2916 head += size;
2917 if (unlikely(!perf_output_space(data, tail, offset, head)))
2918 goto fail;
2919 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2921 handle->offset = offset;
2922 handle->head = head;
2924 if (head - tail > data->watermark)
2925 atomic_set(&data->wakeup, 1);
2927 if (have_lost) {
2928 lost_event.header.type = PERF_RECORD_LOST;
2929 lost_event.header.misc = 0;
2930 lost_event.header.size = sizeof(lost_event);
2931 lost_event.id = event->id;
2932 lost_event.lost = atomic_xchg(&data->lost, 0);
2934 perf_output_put(handle, lost_event);
2937 return 0;
2939 fail:
2940 atomic_inc(&data->lost);
2941 perf_output_unlock(handle);
2942 out:
2943 rcu_read_unlock();
2945 return -ENOSPC;
2948 void perf_output_end(struct perf_output_handle *handle)
2950 struct perf_event *event = handle->event;
2951 struct perf_mmap_data *data = handle->data;
2953 int wakeup_events = event->attr.wakeup_events;
2955 if (handle->sample && wakeup_events) {
2956 int events = atomic_inc_return(&data->events);
2957 if (events >= wakeup_events) {
2958 atomic_sub(wakeup_events, &data->events);
2959 atomic_set(&data->wakeup, 1);
2963 perf_output_unlock(handle);
2964 rcu_read_unlock();
2967 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2970 * only top level events have the pid namespace they were created in
2972 if (event->parent)
2973 event = event->parent;
2975 return task_tgid_nr_ns(p, event->ns);
2978 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2981 * only top level events have the pid namespace they were created in
2983 if (event->parent)
2984 event = event->parent;
2986 return task_pid_nr_ns(p, event->ns);
2989 static void perf_output_read_one(struct perf_output_handle *handle,
2990 struct perf_event *event)
2992 u64 read_format = event->attr.read_format;
2993 u64 values[4];
2994 int n = 0;
2996 values[n++] = atomic64_read(&event->count);
2997 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2998 values[n++] = event->total_time_enabled +
2999 atomic64_read(&event->child_total_time_enabled);
3001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3002 values[n++] = event->total_time_running +
3003 atomic64_read(&event->child_total_time_running);
3005 if (read_format & PERF_FORMAT_ID)
3006 values[n++] = primary_event_id(event);
3008 perf_output_copy(handle, values, n * sizeof(u64));
3012 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3014 static void perf_output_read_group(struct perf_output_handle *handle,
3015 struct perf_event *event)
3017 struct perf_event *leader = event->group_leader, *sub;
3018 u64 read_format = event->attr.read_format;
3019 u64 values[5];
3020 int n = 0;
3022 values[n++] = 1 + leader->nr_siblings;
3024 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3025 values[n++] = leader->total_time_enabled;
3027 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3028 values[n++] = leader->total_time_running;
3030 if (leader != event)
3031 leader->pmu->read(leader);
3033 values[n++] = atomic64_read(&leader->count);
3034 if (read_format & PERF_FORMAT_ID)
3035 values[n++] = primary_event_id(leader);
3037 perf_output_copy(handle, values, n * sizeof(u64));
3039 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3040 n = 0;
3042 if (sub != event)
3043 sub->pmu->read(sub);
3045 values[n++] = atomic64_read(&sub->count);
3046 if (read_format & PERF_FORMAT_ID)
3047 values[n++] = primary_event_id(sub);
3049 perf_output_copy(handle, values, n * sizeof(u64));
3053 static void perf_output_read(struct perf_output_handle *handle,
3054 struct perf_event *event)
3056 if (event->attr.read_format & PERF_FORMAT_GROUP)
3057 perf_output_read_group(handle, event);
3058 else
3059 perf_output_read_one(handle, event);
3062 void perf_output_sample(struct perf_output_handle *handle,
3063 struct perf_event_header *header,
3064 struct perf_sample_data *data,
3065 struct perf_event *event)
3067 u64 sample_type = data->type;
3069 perf_output_put(handle, *header);
3071 if (sample_type & PERF_SAMPLE_IP)
3072 perf_output_put(handle, data->ip);
3074 if (sample_type & PERF_SAMPLE_TID)
3075 perf_output_put(handle, data->tid_entry);
3077 if (sample_type & PERF_SAMPLE_TIME)
3078 perf_output_put(handle, data->time);
3080 if (sample_type & PERF_SAMPLE_ADDR)
3081 perf_output_put(handle, data->addr);
3083 if (sample_type & PERF_SAMPLE_ID)
3084 perf_output_put(handle, data->id);
3086 if (sample_type & PERF_SAMPLE_STREAM_ID)
3087 perf_output_put(handle, data->stream_id);
3089 if (sample_type & PERF_SAMPLE_CPU)
3090 perf_output_put(handle, data->cpu_entry);
3092 if (sample_type & PERF_SAMPLE_PERIOD)
3093 perf_output_put(handle, data->period);
3095 if (sample_type & PERF_SAMPLE_READ)
3096 perf_output_read(handle, event);
3098 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3099 if (data->callchain) {
3100 int size = 1;
3102 if (data->callchain)
3103 size += data->callchain->nr;
3105 size *= sizeof(u64);
3107 perf_output_copy(handle, data->callchain, size);
3108 } else {
3109 u64 nr = 0;
3110 perf_output_put(handle, nr);
3114 if (sample_type & PERF_SAMPLE_RAW) {
3115 if (data->raw) {
3116 perf_output_put(handle, data->raw->size);
3117 perf_output_copy(handle, data->raw->data,
3118 data->raw->size);
3119 } else {
3120 struct {
3121 u32 size;
3122 u32 data;
3123 } raw = {
3124 .size = sizeof(u32),
3125 .data = 0,
3127 perf_output_put(handle, raw);
3132 void perf_prepare_sample(struct perf_event_header *header,
3133 struct perf_sample_data *data,
3134 struct perf_event *event,
3135 struct pt_regs *regs)
3137 u64 sample_type = event->attr.sample_type;
3139 data->type = sample_type;
3141 header->type = PERF_RECORD_SAMPLE;
3142 header->size = sizeof(*header);
3144 header->misc = 0;
3145 header->misc |= perf_misc_flags(regs);
3147 if (sample_type & PERF_SAMPLE_IP) {
3148 data->ip = perf_instruction_pointer(regs);
3150 header->size += sizeof(data->ip);
3153 if (sample_type & PERF_SAMPLE_TID) {
3154 /* namespace issues */
3155 data->tid_entry.pid = perf_event_pid(event, current);
3156 data->tid_entry.tid = perf_event_tid(event, current);
3158 header->size += sizeof(data->tid_entry);
3161 if (sample_type & PERF_SAMPLE_TIME) {
3162 data->time = perf_clock();
3164 header->size += sizeof(data->time);
3167 if (sample_type & PERF_SAMPLE_ADDR)
3168 header->size += sizeof(data->addr);
3170 if (sample_type & PERF_SAMPLE_ID) {
3171 data->id = primary_event_id(event);
3173 header->size += sizeof(data->id);
3176 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3177 data->stream_id = event->id;
3179 header->size += sizeof(data->stream_id);
3182 if (sample_type & PERF_SAMPLE_CPU) {
3183 data->cpu_entry.cpu = raw_smp_processor_id();
3184 data->cpu_entry.reserved = 0;
3186 header->size += sizeof(data->cpu_entry);
3189 if (sample_type & PERF_SAMPLE_PERIOD)
3190 header->size += sizeof(data->period);
3192 if (sample_type & PERF_SAMPLE_READ)
3193 header->size += perf_event_read_size(event);
3195 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3196 int size = 1;
3198 data->callchain = perf_callchain(regs);
3200 if (data->callchain)
3201 size += data->callchain->nr;
3203 header->size += size * sizeof(u64);
3206 if (sample_type & PERF_SAMPLE_RAW) {
3207 int size = sizeof(u32);
3209 if (data->raw)
3210 size += data->raw->size;
3211 else
3212 size += sizeof(u32);
3214 WARN_ON_ONCE(size & (sizeof(u64)-1));
3215 header->size += size;
3219 static void perf_event_output(struct perf_event *event, int nmi,
3220 struct perf_sample_data *data,
3221 struct pt_regs *regs)
3223 struct perf_output_handle handle;
3224 struct perf_event_header header;
3226 perf_prepare_sample(&header, data, event, regs);
3228 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3229 return;
3231 perf_output_sample(&handle, &header, data, event);
3233 perf_output_end(&handle);
3237 * read event_id
3240 struct perf_read_event {
3241 struct perf_event_header header;
3243 u32 pid;
3244 u32 tid;
3247 static void
3248 perf_event_read_event(struct perf_event *event,
3249 struct task_struct *task)
3251 struct perf_output_handle handle;
3252 struct perf_read_event read_event = {
3253 .header = {
3254 .type = PERF_RECORD_READ,
3255 .misc = 0,
3256 .size = sizeof(read_event) + perf_event_read_size(event),
3258 .pid = perf_event_pid(event, task),
3259 .tid = perf_event_tid(event, task),
3261 int ret;
3263 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3264 if (ret)
3265 return;
3267 perf_output_put(&handle, read_event);
3268 perf_output_read(&handle, event);
3270 perf_output_end(&handle);
3274 * task tracking -- fork/exit
3276 * enabled by: attr.comm | attr.mmap | attr.task
3279 struct perf_task_event {
3280 struct task_struct *task;
3281 struct perf_event_context *task_ctx;
3283 struct {
3284 struct perf_event_header header;
3286 u32 pid;
3287 u32 ppid;
3288 u32 tid;
3289 u32 ptid;
3290 u64 time;
3291 } event_id;
3294 static void perf_event_task_output(struct perf_event *event,
3295 struct perf_task_event *task_event)
3297 struct perf_output_handle handle;
3298 int size;
3299 struct task_struct *task = task_event->task;
3300 int ret;
3302 size = task_event->event_id.header.size;
3303 ret = perf_output_begin(&handle, event, size, 0, 0);
3305 if (ret)
3306 return;
3308 task_event->event_id.pid = perf_event_pid(event, task);
3309 task_event->event_id.ppid = perf_event_pid(event, current);
3311 task_event->event_id.tid = perf_event_tid(event, task);
3312 task_event->event_id.ptid = perf_event_tid(event, current);
3314 perf_output_put(&handle, task_event->event_id);
3316 perf_output_end(&handle);
3319 static int perf_event_task_match(struct perf_event *event)
3321 if (event->state < PERF_EVENT_STATE_INACTIVE)
3322 return 0;
3324 if (event->cpu != -1 && event->cpu != smp_processor_id())
3325 return 0;
3327 if (event->attr.comm || event->attr.mmap || event->attr.task)
3328 return 1;
3330 return 0;
3333 static void perf_event_task_ctx(struct perf_event_context *ctx,
3334 struct perf_task_event *task_event)
3336 struct perf_event *event;
3338 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3339 if (perf_event_task_match(event))
3340 perf_event_task_output(event, task_event);
3344 static void perf_event_task_event(struct perf_task_event *task_event)
3346 struct perf_cpu_context *cpuctx;
3347 struct perf_event_context *ctx = task_event->task_ctx;
3349 rcu_read_lock();
3350 cpuctx = &get_cpu_var(perf_cpu_context);
3351 perf_event_task_ctx(&cpuctx->ctx, task_event);
3352 if (!ctx)
3353 ctx = rcu_dereference(current->perf_event_ctxp);
3354 if (ctx)
3355 perf_event_task_ctx(ctx, task_event);
3356 put_cpu_var(perf_cpu_context);
3357 rcu_read_unlock();
3360 static void perf_event_task(struct task_struct *task,
3361 struct perf_event_context *task_ctx,
3362 int new)
3364 struct perf_task_event task_event;
3366 if (!atomic_read(&nr_comm_events) &&
3367 !atomic_read(&nr_mmap_events) &&
3368 !atomic_read(&nr_task_events))
3369 return;
3371 task_event = (struct perf_task_event){
3372 .task = task,
3373 .task_ctx = task_ctx,
3374 .event_id = {
3375 .header = {
3376 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3377 .misc = 0,
3378 .size = sizeof(task_event.event_id),
3380 /* .pid */
3381 /* .ppid */
3382 /* .tid */
3383 /* .ptid */
3384 .time = perf_clock(),
3388 perf_event_task_event(&task_event);
3391 void perf_event_fork(struct task_struct *task)
3393 perf_event_task(task, NULL, 1);
3397 * comm tracking
3400 struct perf_comm_event {
3401 struct task_struct *task;
3402 char *comm;
3403 int comm_size;
3405 struct {
3406 struct perf_event_header header;
3408 u32 pid;
3409 u32 tid;
3410 } event_id;
3413 static void perf_event_comm_output(struct perf_event *event,
3414 struct perf_comm_event *comm_event)
3416 struct perf_output_handle handle;
3417 int size = comm_event->event_id.header.size;
3418 int ret = perf_output_begin(&handle, event, size, 0, 0);
3420 if (ret)
3421 return;
3423 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3424 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3426 perf_output_put(&handle, comm_event->event_id);
3427 perf_output_copy(&handle, comm_event->comm,
3428 comm_event->comm_size);
3429 perf_output_end(&handle);
3432 static int perf_event_comm_match(struct perf_event *event)
3434 if (event->state < PERF_EVENT_STATE_INACTIVE)
3435 return 0;
3437 if (event->cpu != -1 && event->cpu != smp_processor_id())
3438 return 0;
3440 if (event->attr.comm)
3441 return 1;
3443 return 0;
3446 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3447 struct perf_comm_event *comm_event)
3449 struct perf_event *event;
3451 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3452 if (perf_event_comm_match(event))
3453 perf_event_comm_output(event, comm_event);
3457 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3459 struct perf_cpu_context *cpuctx;
3460 struct perf_event_context *ctx;
3461 unsigned int size;
3462 char comm[TASK_COMM_LEN];
3464 memset(comm, 0, sizeof(comm));
3465 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3466 size = ALIGN(strlen(comm)+1, sizeof(u64));
3468 comm_event->comm = comm;
3469 comm_event->comm_size = size;
3471 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3473 rcu_read_lock();
3474 cpuctx = &get_cpu_var(perf_cpu_context);
3475 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3476 ctx = rcu_dereference(current->perf_event_ctxp);
3477 if (ctx)
3478 perf_event_comm_ctx(ctx, comm_event);
3479 put_cpu_var(perf_cpu_context);
3480 rcu_read_unlock();
3483 void perf_event_comm(struct task_struct *task)
3485 struct perf_comm_event comm_event;
3487 if (task->perf_event_ctxp)
3488 perf_event_enable_on_exec(task);
3490 if (!atomic_read(&nr_comm_events))
3491 return;
3493 comm_event = (struct perf_comm_event){
3494 .task = task,
3495 /* .comm */
3496 /* .comm_size */
3497 .event_id = {
3498 .header = {
3499 .type = PERF_RECORD_COMM,
3500 .misc = 0,
3501 /* .size */
3503 /* .pid */
3504 /* .tid */
3508 perf_event_comm_event(&comm_event);
3512 * mmap tracking
3515 struct perf_mmap_event {
3516 struct vm_area_struct *vma;
3518 const char *file_name;
3519 int file_size;
3521 struct {
3522 struct perf_event_header header;
3524 u32 pid;
3525 u32 tid;
3526 u64 start;
3527 u64 len;
3528 u64 pgoff;
3529 } event_id;
3532 static void perf_event_mmap_output(struct perf_event *event,
3533 struct perf_mmap_event *mmap_event)
3535 struct perf_output_handle handle;
3536 int size = mmap_event->event_id.header.size;
3537 int ret = perf_output_begin(&handle, event, size, 0, 0);
3539 if (ret)
3540 return;
3542 mmap_event->event_id.pid = perf_event_pid(event, current);
3543 mmap_event->event_id.tid = perf_event_tid(event, current);
3545 perf_output_put(&handle, mmap_event->event_id);
3546 perf_output_copy(&handle, mmap_event->file_name,
3547 mmap_event->file_size);
3548 perf_output_end(&handle);
3551 static int perf_event_mmap_match(struct perf_event *event,
3552 struct perf_mmap_event *mmap_event)
3554 if (event->state < PERF_EVENT_STATE_INACTIVE)
3555 return 0;
3557 if (event->cpu != -1 && event->cpu != smp_processor_id())
3558 return 0;
3560 if (event->attr.mmap)
3561 return 1;
3563 return 0;
3566 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3567 struct perf_mmap_event *mmap_event)
3569 struct perf_event *event;
3571 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3572 if (perf_event_mmap_match(event, mmap_event))
3573 perf_event_mmap_output(event, mmap_event);
3577 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3579 struct perf_cpu_context *cpuctx;
3580 struct perf_event_context *ctx;
3581 struct vm_area_struct *vma = mmap_event->vma;
3582 struct file *file = vma->vm_file;
3583 unsigned int size;
3584 char tmp[16];
3585 char *buf = NULL;
3586 const char *name;
3588 memset(tmp, 0, sizeof(tmp));
3590 if (file) {
3592 * d_path works from the end of the buffer backwards, so we
3593 * need to add enough zero bytes after the string to handle
3594 * the 64bit alignment we do later.
3596 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3597 if (!buf) {
3598 name = strncpy(tmp, "//enomem", sizeof(tmp));
3599 goto got_name;
3601 name = d_path(&file->f_path, buf, PATH_MAX);
3602 if (IS_ERR(name)) {
3603 name = strncpy(tmp, "//toolong", sizeof(tmp));
3604 goto got_name;
3606 } else {
3607 if (arch_vma_name(mmap_event->vma)) {
3608 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3609 sizeof(tmp));
3610 goto got_name;
3613 if (!vma->vm_mm) {
3614 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3615 goto got_name;
3618 name = strncpy(tmp, "//anon", sizeof(tmp));
3619 goto got_name;
3622 got_name:
3623 size = ALIGN(strlen(name)+1, sizeof(u64));
3625 mmap_event->file_name = name;
3626 mmap_event->file_size = size;
3628 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3630 rcu_read_lock();
3631 cpuctx = &get_cpu_var(perf_cpu_context);
3632 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3633 ctx = rcu_dereference(current->perf_event_ctxp);
3634 if (ctx)
3635 perf_event_mmap_ctx(ctx, mmap_event);
3636 put_cpu_var(perf_cpu_context);
3637 rcu_read_unlock();
3639 kfree(buf);
3642 void __perf_event_mmap(struct vm_area_struct *vma)
3644 struct perf_mmap_event mmap_event;
3646 if (!atomic_read(&nr_mmap_events))
3647 return;
3649 mmap_event = (struct perf_mmap_event){
3650 .vma = vma,
3651 /* .file_name */
3652 /* .file_size */
3653 .event_id = {
3654 .header = {
3655 .type = PERF_RECORD_MMAP,
3656 .misc = 0,
3657 /* .size */
3659 /* .pid */
3660 /* .tid */
3661 .start = vma->vm_start,
3662 .len = vma->vm_end - vma->vm_start,
3663 .pgoff = vma->vm_pgoff,
3667 perf_event_mmap_event(&mmap_event);
3671 * IRQ throttle logging
3674 static void perf_log_throttle(struct perf_event *event, int enable)
3676 struct perf_output_handle handle;
3677 int ret;
3679 struct {
3680 struct perf_event_header header;
3681 u64 time;
3682 u64 id;
3683 u64 stream_id;
3684 } throttle_event = {
3685 .header = {
3686 .type = PERF_RECORD_THROTTLE,
3687 .misc = 0,
3688 .size = sizeof(throttle_event),
3690 .time = perf_clock(),
3691 .id = primary_event_id(event),
3692 .stream_id = event->id,
3695 if (enable)
3696 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3698 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3699 if (ret)
3700 return;
3702 perf_output_put(&handle, throttle_event);
3703 perf_output_end(&handle);
3707 * Generic event overflow handling, sampling.
3710 static int __perf_event_overflow(struct perf_event *event, int nmi,
3711 int throttle, struct perf_sample_data *data,
3712 struct pt_regs *regs)
3714 int events = atomic_read(&event->event_limit);
3715 struct hw_perf_event *hwc = &event->hw;
3716 int ret = 0;
3718 throttle = (throttle && event->pmu->unthrottle != NULL);
3720 if (!throttle) {
3721 hwc->interrupts++;
3722 } else {
3723 if (hwc->interrupts != MAX_INTERRUPTS) {
3724 hwc->interrupts++;
3725 if (HZ * hwc->interrupts >
3726 (u64)sysctl_perf_event_sample_rate) {
3727 hwc->interrupts = MAX_INTERRUPTS;
3728 perf_log_throttle(event, 0);
3729 ret = 1;
3731 } else {
3733 * Keep re-disabling events even though on the previous
3734 * pass we disabled it - just in case we raced with a
3735 * sched-in and the event got enabled again:
3737 ret = 1;
3741 if (event->attr.freq) {
3742 u64 now = perf_clock();
3743 s64 delta = now - hwc->freq_time_stamp;
3745 hwc->freq_time_stamp = now;
3747 if (delta > 0 && delta < 2*TICK_NSEC)
3748 perf_adjust_period(event, delta, hwc->last_period);
3752 * XXX event_limit might not quite work as expected on inherited
3753 * events
3756 event->pending_kill = POLL_IN;
3757 if (events && atomic_dec_and_test(&event->event_limit)) {
3758 ret = 1;
3759 event->pending_kill = POLL_HUP;
3760 if (nmi) {
3761 event->pending_disable = 1;
3762 perf_pending_queue(&event->pending,
3763 perf_pending_event);
3764 } else
3765 perf_event_disable(event);
3768 if (event->overflow_handler)
3769 event->overflow_handler(event, nmi, data, regs);
3770 else
3771 perf_event_output(event, nmi, data, regs);
3773 return ret;
3776 int perf_event_overflow(struct perf_event *event, int nmi,
3777 struct perf_sample_data *data,
3778 struct pt_regs *regs)
3780 return __perf_event_overflow(event, nmi, 1, data, regs);
3784 * Generic software event infrastructure
3788 * We directly increment event->count and keep a second value in
3789 * event->hw.period_left to count intervals. This period event
3790 * is kept in the range [-sample_period, 0] so that we can use the
3791 * sign as trigger.
3794 static u64 perf_swevent_set_period(struct perf_event *event)
3796 struct hw_perf_event *hwc = &event->hw;
3797 u64 period = hwc->last_period;
3798 u64 nr, offset;
3799 s64 old, val;
3801 hwc->last_period = hwc->sample_period;
3803 again:
3804 old = val = atomic64_read(&hwc->period_left);
3805 if (val < 0)
3806 return 0;
3808 nr = div64_u64(period + val, period);
3809 offset = nr * period;
3810 val -= offset;
3811 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3812 goto again;
3814 return nr;
3817 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3818 int nmi, struct perf_sample_data *data,
3819 struct pt_regs *regs)
3821 struct hw_perf_event *hwc = &event->hw;
3822 int throttle = 0;
3824 data->period = event->hw.last_period;
3825 if (!overflow)
3826 overflow = perf_swevent_set_period(event);
3828 if (hwc->interrupts == MAX_INTERRUPTS)
3829 return;
3831 for (; overflow; overflow--) {
3832 if (__perf_event_overflow(event, nmi, throttle,
3833 data, regs)) {
3835 * We inhibit the overflow from happening when
3836 * hwc->interrupts == MAX_INTERRUPTS.
3838 break;
3840 throttle = 1;
3844 static void perf_swevent_unthrottle(struct perf_event *event)
3847 * Nothing to do, we already reset hwc->interrupts.
3851 static void perf_swevent_add(struct perf_event *event, u64 nr,
3852 int nmi, struct perf_sample_data *data,
3853 struct pt_regs *regs)
3855 struct hw_perf_event *hwc = &event->hw;
3857 atomic64_add(nr, &event->count);
3859 if (!regs)
3860 return;
3862 if (!hwc->sample_period)
3863 return;
3865 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3866 return perf_swevent_overflow(event, 1, nmi, data, regs);
3868 if (atomic64_add_negative(nr, &hwc->period_left))
3869 return;
3871 perf_swevent_overflow(event, 0, nmi, data, regs);
3874 static int perf_swevent_is_counting(struct perf_event *event)
3877 * The event is active, we're good!
3879 if (event->state == PERF_EVENT_STATE_ACTIVE)
3880 return 1;
3883 * The event is off/error, not counting.
3885 if (event->state != PERF_EVENT_STATE_INACTIVE)
3886 return 0;
3889 * The event is inactive, if the context is active
3890 * we're part of a group that didn't make it on the 'pmu',
3891 * not counting.
3893 if (event->ctx->is_active)
3894 return 0;
3897 * We're inactive and the context is too, this means the
3898 * task is scheduled out, we're counting events that happen
3899 * to us, like migration events.
3901 return 1;
3904 static int perf_tp_event_match(struct perf_event *event,
3905 struct perf_sample_data *data);
3907 static int perf_exclude_event(struct perf_event *event,
3908 struct pt_regs *regs)
3910 if (regs) {
3911 if (event->attr.exclude_user && user_mode(regs))
3912 return 1;
3914 if (event->attr.exclude_kernel && !user_mode(regs))
3915 return 1;
3918 return 0;
3921 static int perf_swevent_match(struct perf_event *event,
3922 enum perf_type_id type,
3923 u32 event_id,
3924 struct perf_sample_data *data,
3925 struct pt_regs *regs)
3927 if (event->cpu != -1 && event->cpu != smp_processor_id())
3928 return 0;
3930 if (!perf_swevent_is_counting(event))
3931 return 0;
3933 if (event->attr.type != type)
3934 return 0;
3936 if (event->attr.config != event_id)
3937 return 0;
3939 if (perf_exclude_event(event, regs))
3940 return 0;
3942 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3943 !perf_tp_event_match(event, data))
3944 return 0;
3946 return 1;
3949 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3950 enum perf_type_id type,
3951 u32 event_id, u64 nr, int nmi,
3952 struct perf_sample_data *data,
3953 struct pt_regs *regs)
3955 struct perf_event *event;
3957 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3958 if (perf_swevent_match(event, type, event_id, data, regs))
3959 perf_swevent_add(event, nr, nmi, data, regs);
3963 int perf_swevent_get_recursion_context(void)
3965 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3966 int rctx;
3968 if (in_nmi())
3969 rctx = 3;
3970 else if (in_irq())
3971 rctx = 2;
3972 else if (in_softirq())
3973 rctx = 1;
3974 else
3975 rctx = 0;
3977 if (cpuctx->recursion[rctx]) {
3978 put_cpu_var(perf_cpu_context);
3979 return -1;
3982 cpuctx->recursion[rctx]++;
3983 barrier();
3985 return rctx;
3987 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
3989 void perf_swevent_put_recursion_context(int rctx)
3991 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3992 barrier();
3993 cpuctx->recursion[rctx]--;
3994 put_cpu_var(perf_cpu_context);
3996 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
3998 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3999 u64 nr, int nmi,
4000 struct perf_sample_data *data,
4001 struct pt_regs *regs)
4003 struct perf_cpu_context *cpuctx;
4004 struct perf_event_context *ctx;
4006 cpuctx = &__get_cpu_var(perf_cpu_context);
4007 rcu_read_lock();
4008 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4009 nr, nmi, data, regs);
4011 * doesn't really matter which of the child contexts the
4012 * events ends up in.
4014 ctx = rcu_dereference(current->perf_event_ctxp);
4015 if (ctx)
4016 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4017 rcu_read_unlock();
4020 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4021 struct pt_regs *regs, u64 addr)
4023 struct perf_sample_data data;
4024 int rctx;
4026 rctx = perf_swevent_get_recursion_context();
4027 if (rctx < 0)
4028 return;
4030 perf_sample_data_init(&data, addr);
4032 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4034 perf_swevent_put_recursion_context(rctx);
4037 static void perf_swevent_read(struct perf_event *event)
4041 static int perf_swevent_enable(struct perf_event *event)
4043 struct hw_perf_event *hwc = &event->hw;
4045 if (hwc->sample_period) {
4046 hwc->last_period = hwc->sample_period;
4047 perf_swevent_set_period(event);
4049 return 0;
4052 static void perf_swevent_disable(struct perf_event *event)
4056 static const struct pmu perf_ops_generic = {
4057 .enable = perf_swevent_enable,
4058 .disable = perf_swevent_disable,
4059 .read = perf_swevent_read,
4060 .unthrottle = perf_swevent_unthrottle,
4064 * hrtimer based swevent callback
4067 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4069 enum hrtimer_restart ret = HRTIMER_RESTART;
4070 struct perf_sample_data data;
4071 struct pt_regs *regs;
4072 struct perf_event *event;
4073 u64 period;
4075 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4076 event->pmu->read(event);
4078 perf_sample_data_init(&data, 0);
4079 data.period = event->hw.last_period;
4080 regs = get_irq_regs();
4082 * In case we exclude kernel IPs or are somehow not in interrupt
4083 * context, provide the next best thing, the user IP.
4085 if ((event->attr.exclude_kernel || !regs) &&
4086 !event->attr.exclude_user)
4087 regs = task_pt_regs(current);
4089 if (regs) {
4090 if (!(event->attr.exclude_idle && current->pid == 0))
4091 if (perf_event_overflow(event, 0, &data, regs))
4092 ret = HRTIMER_NORESTART;
4095 period = max_t(u64, 10000, event->hw.sample_period);
4096 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4098 return ret;
4101 static void perf_swevent_start_hrtimer(struct perf_event *event)
4103 struct hw_perf_event *hwc = &event->hw;
4105 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4106 hwc->hrtimer.function = perf_swevent_hrtimer;
4107 if (hwc->sample_period) {
4108 u64 period;
4110 if (hwc->remaining) {
4111 if (hwc->remaining < 0)
4112 period = 10000;
4113 else
4114 period = hwc->remaining;
4115 hwc->remaining = 0;
4116 } else {
4117 period = max_t(u64, 10000, hwc->sample_period);
4119 __hrtimer_start_range_ns(&hwc->hrtimer,
4120 ns_to_ktime(period), 0,
4121 HRTIMER_MODE_REL, 0);
4125 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4127 struct hw_perf_event *hwc = &event->hw;
4129 if (hwc->sample_period) {
4130 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4131 hwc->remaining = ktime_to_ns(remaining);
4133 hrtimer_cancel(&hwc->hrtimer);
4138 * Software event: cpu wall time clock
4141 static void cpu_clock_perf_event_update(struct perf_event *event)
4143 int cpu = raw_smp_processor_id();
4144 s64 prev;
4145 u64 now;
4147 now = cpu_clock(cpu);
4148 prev = atomic64_xchg(&event->hw.prev_count, now);
4149 atomic64_add(now - prev, &event->count);
4152 static int cpu_clock_perf_event_enable(struct perf_event *event)
4154 struct hw_perf_event *hwc = &event->hw;
4155 int cpu = raw_smp_processor_id();
4157 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4158 perf_swevent_start_hrtimer(event);
4160 return 0;
4163 static void cpu_clock_perf_event_disable(struct perf_event *event)
4165 perf_swevent_cancel_hrtimer(event);
4166 cpu_clock_perf_event_update(event);
4169 static void cpu_clock_perf_event_read(struct perf_event *event)
4171 cpu_clock_perf_event_update(event);
4174 static const struct pmu perf_ops_cpu_clock = {
4175 .enable = cpu_clock_perf_event_enable,
4176 .disable = cpu_clock_perf_event_disable,
4177 .read = cpu_clock_perf_event_read,
4181 * Software event: task time clock
4184 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4186 u64 prev;
4187 s64 delta;
4189 prev = atomic64_xchg(&event->hw.prev_count, now);
4190 delta = now - prev;
4191 atomic64_add(delta, &event->count);
4194 static int task_clock_perf_event_enable(struct perf_event *event)
4196 struct hw_perf_event *hwc = &event->hw;
4197 u64 now;
4199 now = event->ctx->time;
4201 atomic64_set(&hwc->prev_count, now);
4203 perf_swevent_start_hrtimer(event);
4205 return 0;
4208 static void task_clock_perf_event_disable(struct perf_event *event)
4210 perf_swevent_cancel_hrtimer(event);
4211 task_clock_perf_event_update(event, event->ctx->time);
4215 static void task_clock_perf_event_read(struct perf_event *event)
4217 u64 time;
4219 if (!in_nmi()) {
4220 update_context_time(event->ctx);
4221 time = event->ctx->time;
4222 } else {
4223 u64 now = perf_clock();
4224 u64 delta = now - event->ctx->timestamp;
4225 time = event->ctx->time + delta;
4228 task_clock_perf_event_update(event, time);
4231 static const struct pmu perf_ops_task_clock = {
4232 .enable = task_clock_perf_event_enable,
4233 .disable = task_clock_perf_event_disable,
4234 .read = task_clock_perf_event_read,
4237 #ifdef CONFIG_EVENT_PROFILE
4239 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4240 int entry_size)
4242 struct pt_regs *regs = get_irq_regs();
4243 struct perf_sample_data data;
4244 struct perf_raw_record raw = {
4245 .size = entry_size,
4246 .data = record,
4249 perf_sample_data_init(&data, addr);
4250 data.raw = &raw;
4252 if (!regs)
4253 regs = task_pt_regs(current);
4255 /* Trace events already protected against recursion */
4256 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4257 &data, regs);
4259 EXPORT_SYMBOL_GPL(perf_tp_event);
4261 static int perf_tp_event_match(struct perf_event *event,
4262 struct perf_sample_data *data)
4264 void *record = data->raw->data;
4266 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4267 return 1;
4268 return 0;
4271 static void tp_perf_event_destroy(struct perf_event *event)
4273 ftrace_profile_disable(event->attr.config);
4276 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4279 * Raw tracepoint data is a severe data leak, only allow root to
4280 * have these.
4282 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4283 perf_paranoid_tracepoint_raw() &&
4284 !capable(CAP_SYS_ADMIN))
4285 return ERR_PTR(-EPERM);
4287 if (ftrace_profile_enable(event->attr.config))
4288 return NULL;
4290 event->destroy = tp_perf_event_destroy;
4292 return &perf_ops_generic;
4295 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4297 char *filter_str;
4298 int ret;
4300 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4301 return -EINVAL;
4303 filter_str = strndup_user(arg, PAGE_SIZE);
4304 if (IS_ERR(filter_str))
4305 return PTR_ERR(filter_str);
4307 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4309 kfree(filter_str);
4310 return ret;
4313 static void perf_event_free_filter(struct perf_event *event)
4315 ftrace_profile_free_filter(event);
4318 #else
4320 static int perf_tp_event_match(struct perf_event *event,
4321 struct perf_sample_data *data)
4323 return 1;
4326 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4328 return NULL;
4331 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4333 return -ENOENT;
4336 static void perf_event_free_filter(struct perf_event *event)
4340 #endif /* CONFIG_EVENT_PROFILE */
4342 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4343 static void bp_perf_event_destroy(struct perf_event *event)
4345 release_bp_slot(event);
4348 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4350 int err;
4352 err = register_perf_hw_breakpoint(bp);
4353 if (err)
4354 return ERR_PTR(err);
4356 bp->destroy = bp_perf_event_destroy;
4358 return &perf_ops_bp;
4361 void perf_bp_event(struct perf_event *bp, void *data)
4363 struct perf_sample_data sample;
4364 struct pt_regs *regs = data;
4366 perf_sample_data_init(&sample, bp->attr.bp_addr);
4368 if (!perf_exclude_event(bp, regs))
4369 perf_swevent_add(bp, 1, 1, &sample, regs);
4371 #else
4372 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4374 return NULL;
4377 void perf_bp_event(struct perf_event *bp, void *regs)
4380 #endif
4382 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4384 static void sw_perf_event_destroy(struct perf_event *event)
4386 u64 event_id = event->attr.config;
4388 WARN_ON(event->parent);
4390 atomic_dec(&perf_swevent_enabled[event_id]);
4393 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4395 const struct pmu *pmu = NULL;
4396 u64 event_id = event->attr.config;
4399 * Software events (currently) can't in general distinguish
4400 * between user, kernel and hypervisor events.
4401 * However, context switches and cpu migrations are considered
4402 * to be kernel events, and page faults are never hypervisor
4403 * events.
4405 switch (event_id) {
4406 case PERF_COUNT_SW_CPU_CLOCK:
4407 pmu = &perf_ops_cpu_clock;
4409 break;
4410 case PERF_COUNT_SW_TASK_CLOCK:
4412 * If the user instantiates this as a per-cpu event,
4413 * use the cpu_clock event instead.
4415 if (event->ctx->task)
4416 pmu = &perf_ops_task_clock;
4417 else
4418 pmu = &perf_ops_cpu_clock;
4420 break;
4421 case PERF_COUNT_SW_PAGE_FAULTS:
4422 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4423 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4424 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4425 case PERF_COUNT_SW_CPU_MIGRATIONS:
4426 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4427 case PERF_COUNT_SW_EMULATION_FAULTS:
4428 if (!event->parent) {
4429 atomic_inc(&perf_swevent_enabled[event_id]);
4430 event->destroy = sw_perf_event_destroy;
4432 pmu = &perf_ops_generic;
4433 break;
4436 return pmu;
4440 * Allocate and initialize a event structure
4442 static struct perf_event *
4443 perf_event_alloc(struct perf_event_attr *attr,
4444 int cpu,
4445 struct perf_event_context *ctx,
4446 struct perf_event *group_leader,
4447 struct perf_event *parent_event,
4448 perf_overflow_handler_t overflow_handler,
4449 gfp_t gfpflags)
4451 const struct pmu *pmu;
4452 struct perf_event *event;
4453 struct hw_perf_event *hwc;
4454 long err;
4456 event = kzalloc(sizeof(*event), gfpflags);
4457 if (!event)
4458 return ERR_PTR(-ENOMEM);
4461 * Single events are their own group leaders, with an
4462 * empty sibling list:
4464 if (!group_leader)
4465 group_leader = event;
4467 mutex_init(&event->child_mutex);
4468 INIT_LIST_HEAD(&event->child_list);
4470 INIT_LIST_HEAD(&event->group_entry);
4471 INIT_LIST_HEAD(&event->event_entry);
4472 INIT_LIST_HEAD(&event->sibling_list);
4473 init_waitqueue_head(&event->waitq);
4475 mutex_init(&event->mmap_mutex);
4477 event->cpu = cpu;
4478 event->attr = *attr;
4479 event->group_leader = group_leader;
4480 event->pmu = NULL;
4481 event->ctx = ctx;
4482 event->oncpu = -1;
4484 event->parent = parent_event;
4486 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4487 event->id = atomic64_inc_return(&perf_event_id);
4489 event->state = PERF_EVENT_STATE_INACTIVE;
4491 if (!overflow_handler && parent_event)
4492 overflow_handler = parent_event->overflow_handler;
4494 event->overflow_handler = overflow_handler;
4496 if (attr->disabled)
4497 event->state = PERF_EVENT_STATE_OFF;
4499 pmu = NULL;
4501 hwc = &event->hw;
4502 hwc->sample_period = attr->sample_period;
4503 if (attr->freq && attr->sample_freq)
4504 hwc->sample_period = 1;
4505 hwc->last_period = hwc->sample_period;
4507 atomic64_set(&hwc->period_left, hwc->sample_period);
4510 * we currently do not support PERF_FORMAT_GROUP on inherited events
4512 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4513 goto done;
4515 switch (attr->type) {
4516 case PERF_TYPE_RAW:
4517 case PERF_TYPE_HARDWARE:
4518 case PERF_TYPE_HW_CACHE:
4519 pmu = hw_perf_event_init(event);
4520 break;
4522 case PERF_TYPE_SOFTWARE:
4523 pmu = sw_perf_event_init(event);
4524 break;
4526 case PERF_TYPE_TRACEPOINT:
4527 pmu = tp_perf_event_init(event);
4528 break;
4530 case PERF_TYPE_BREAKPOINT:
4531 pmu = bp_perf_event_init(event);
4532 break;
4535 default:
4536 break;
4538 done:
4539 err = 0;
4540 if (!pmu)
4541 err = -EINVAL;
4542 else if (IS_ERR(pmu))
4543 err = PTR_ERR(pmu);
4545 if (err) {
4546 if (event->ns)
4547 put_pid_ns(event->ns);
4548 kfree(event);
4549 return ERR_PTR(err);
4552 event->pmu = pmu;
4554 if (!event->parent) {
4555 atomic_inc(&nr_events);
4556 if (event->attr.mmap)
4557 atomic_inc(&nr_mmap_events);
4558 if (event->attr.comm)
4559 atomic_inc(&nr_comm_events);
4560 if (event->attr.task)
4561 atomic_inc(&nr_task_events);
4564 return event;
4567 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4568 struct perf_event_attr *attr)
4570 u32 size;
4571 int ret;
4573 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4574 return -EFAULT;
4577 * zero the full structure, so that a short copy will be nice.
4579 memset(attr, 0, sizeof(*attr));
4581 ret = get_user(size, &uattr->size);
4582 if (ret)
4583 return ret;
4585 if (size > PAGE_SIZE) /* silly large */
4586 goto err_size;
4588 if (!size) /* abi compat */
4589 size = PERF_ATTR_SIZE_VER0;
4591 if (size < PERF_ATTR_SIZE_VER0)
4592 goto err_size;
4595 * If we're handed a bigger struct than we know of,
4596 * ensure all the unknown bits are 0 - i.e. new
4597 * user-space does not rely on any kernel feature
4598 * extensions we dont know about yet.
4600 if (size > sizeof(*attr)) {
4601 unsigned char __user *addr;
4602 unsigned char __user *end;
4603 unsigned char val;
4605 addr = (void __user *)uattr + sizeof(*attr);
4606 end = (void __user *)uattr + size;
4608 for (; addr < end; addr++) {
4609 ret = get_user(val, addr);
4610 if (ret)
4611 return ret;
4612 if (val)
4613 goto err_size;
4615 size = sizeof(*attr);
4618 ret = copy_from_user(attr, uattr, size);
4619 if (ret)
4620 return -EFAULT;
4623 * If the type exists, the corresponding creation will verify
4624 * the attr->config.
4626 if (attr->type >= PERF_TYPE_MAX)
4627 return -EINVAL;
4629 if (attr->__reserved_1)
4630 return -EINVAL;
4632 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4633 return -EINVAL;
4635 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4636 return -EINVAL;
4638 out:
4639 return ret;
4641 err_size:
4642 put_user(sizeof(*attr), &uattr->size);
4643 ret = -E2BIG;
4644 goto out;
4647 static int perf_event_set_output(struct perf_event *event, int output_fd)
4649 struct perf_event *output_event = NULL;
4650 struct file *output_file = NULL;
4651 struct perf_event *old_output;
4652 int fput_needed = 0;
4653 int ret = -EINVAL;
4655 if (!output_fd)
4656 goto set;
4658 output_file = fget_light(output_fd, &fput_needed);
4659 if (!output_file)
4660 return -EBADF;
4662 if (output_file->f_op != &perf_fops)
4663 goto out;
4665 output_event = output_file->private_data;
4667 /* Don't chain output fds */
4668 if (output_event->output)
4669 goto out;
4671 /* Don't set an output fd when we already have an output channel */
4672 if (event->data)
4673 goto out;
4675 atomic_long_inc(&output_file->f_count);
4677 set:
4678 mutex_lock(&event->mmap_mutex);
4679 old_output = event->output;
4680 rcu_assign_pointer(event->output, output_event);
4681 mutex_unlock(&event->mmap_mutex);
4683 if (old_output) {
4685 * we need to make sure no existing perf_output_*()
4686 * is still referencing this event.
4688 synchronize_rcu();
4689 fput(old_output->filp);
4692 ret = 0;
4693 out:
4694 fput_light(output_file, fput_needed);
4695 return ret;
4699 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4701 * @attr_uptr: event_id type attributes for monitoring/sampling
4702 * @pid: target pid
4703 * @cpu: target cpu
4704 * @group_fd: group leader event fd
4706 SYSCALL_DEFINE5(perf_event_open,
4707 struct perf_event_attr __user *, attr_uptr,
4708 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4710 struct perf_event *event, *group_leader;
4711 struct perf_event_attr attr;
4712 struct perf_event_context *ctx;
4713 struct file *event_file = NULL;
4714 struct file *group_file = NULL;
4715 int fput_needed = 0;
4716 int fput_needed2 = 0;
4717 int err;
4719 /* for future expandability... */
4720 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4721 return -EINVAL;
4723 err = perf_copy_attr(attr_uptr, &attr);
4724 if (err)
4725 return err;
4727 if (!attr.exclude_kernel) {
4728 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4729 return -EACCES;
4732 if (attr.freq) {
4733 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4734 return -EINVAL;
4738 * Get the target context (task or percpu):
4740 ctx = find_get_context(pid, cpu);
4741 if (IS_ERR(ctx))
4742 return PTR_ERR(ctx);
4745 * Look up the group leader (we will attach this event to it):
4747 group_leader = NULL;
4748 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4749 err = -EINVAL;
4750 group_file = fget_light(group_fd, &fput_needed);
4751 if (!group_file)
4752 goto err_put_context;
4753 if (group_file->f_op != &perf_fops)
4754 goto err_put_context;
4756 group_leader = group_file->private_data;
4758 * Do not allow a recursive hierarchy (this new sibling
4759 * becoming part of another group-sibling):
4761 if (group_leader->group_leader != group_leader)
4762 goto err_put_context;
4764 * Do not allow to attach to a group in a different
4765 * task or CPU context:
4767 if (group_leader->ctx != ctx)
4768 goto err_put_context;
4770 * Only a group leader can be exclusive or pinned
4772 if (attr.exclusive || attr.pinned)
4773 goto err_put_context;
4776 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4777 NULL, NULL, GFP_KERNEL);
4778 err = PTR_ERR(event);
4779 if (IS_ERR(event))
4780 goto err_put_context;
4782 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4783 if (err < 0)
4784 goto err_free_put_context;
4786 event_file = fget_light(err, &fput_needed2);
4787 if (!event_file)
4788 goto err_free_put_context;
4790 if (flags & PERF_FLAG_FD_OUTPUT) {
4791 err = perf_event_set_output(event, group_fd);
4792 if (err)
4793 goto err_fput_free_put_context;
4796 event->filp = event_file;
4797 WARN_ON_ONCE(ctx->parent_ctx);
4798 mutex_lock(&ctx->mutex);
4799 perf_install_in_context(ctx, event, cpu);
4800 ++ctx->generation;
4801 mutex_unlock(&ctx->mutex);
4803 event->owner = current;
4804 get_task_struct(current);
4805 mutex_lock(&current->perf_event_mutex);
4806 list_add_tail(&event->owner_entry, &current->perf_event_list);
4807 mutex_unlock(&current->perf_event_mutex);
4809 err_fput_free_put_context:
4810 fput_light(event_file, fput_needed2);
4812 err_free_put_context:
4813 if (err < 0)
4814 free_event(event);
4816 err_put_context:
4817 if (err < 0)
4818 put_ctx(ctx);
4820 fput_light(group_file, fput_needed);
4822 return err;
4826 * perf_event_create_kernel_counter
4828 * @attr: attributes of the counter to create
4829 * @cpu: cpu in which the counter is bound
4830 * @pid: task to profile
4832 struct perf_event *
4833 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4834 pid_t pid,
4835 perf_overflow_handler_t overflow_handler)
4837 struct perf_event *event;
4838 struct perf_event_context *ctx;
4839 int err;
4842 * Get the target context (task or percpu):
4845 ctx = find_get_context(pid, cpu);
4846 if (IS_ERR(ctx)) {
4847 err = PTR_ERR(ctx);
4848 goto err_exit;
4851 event = perf_event_alloc(attr, cpu, ctx, NULL,
4852 NULL, overflow_handler, GFP_KERNEL);
4853 if (IS_ERR(event)) {
4854 err = PTR_ERR(event);
4855 goto err_put_context;
4858 event->filp = NULL;
4859 WARN_ON_ONCE(ctx->parent_ctx);
4860 mutex_lock(&ctx->mutex);
4861 perf_install_in_context(ctx, event, cpu);
4862 ++ctx->generation;
4863 mutex_unlock(&ctx->mutex);
4865 event->owner = current;
4866 get_task_struct(current);
4867 mutex_lock(&current->perf_event_mutex);
4868 list_add_tail(&event->owner_entry, &current->perf_event_list);
4869 mutex_unlock(&current->perf_event_mutex);
4871 return event;
4873 err_put_context:
4874 put_ctx(ctx);
4875 err_exit:
4876 return ERR_PTR(err);
4878 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4881 * inherit a event from parent task to child task:
4883 static struct perf_event *
4884 inherit_event(struct perf_event *parent_event,
4885 struct task_struct *parent,
4886 struct perf_event_context *parent_ctx,
4887 struct task_struct *child,
4888 struct perf_event *group_leader,
4889 struct perf_event_context *child_ctx)
4891 struct perf_event *child_event;
4894 * Instead of creating recursive hierarchies of events,
4895 * we link inherited events back to the original parent,
4896 * which has a filp for sure, which we use as the reference
4897 * count:
4899 if (parent_event->parent)
4900 parent_event = parent_event->parent;
4902 child_event = perf_event_alloc(&parent_event->attr,
4903 parent_event->cpu, child_ctx,
4904 group_leader, parent_event,
4905 NULL, GFP_KERNEL);
4906 if (IS_ERR(child_event))
4907 return child_event;
4908 get_ctx(child_ctx);
4911 * Make the child state follow the state of the parent event,
4912 * not its attr.disabled bit. We hold the parent's mutex,
4913 * so we won't race with perf_event_{en, dis}able_family.
4915 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4916 child_event->state = PERF_EVENT_STATE_INACTIVE;
4917 else
4918 child_event->state = PERF_EVENT_STATE_OFF;
4920 if (parent_event->attr.freq)
4921 child_event->hw.sample_period = parent_event->hw.sample_period;
4923 child_event->overflow_handler = parent_event->overflow_handler;
4926 * Link it up in the child's context:
4928 add_event_to_ctx(child_event, child_ctx);
4931 * Get a reference to the parent filp - we will fput it
4932 * when the child event exits. This is safe to do because
4933 * we are in the parent and we know that the filp still
4934 * exists and has a nonzero count:
4936 atomic_long_inc(&parent_event->filp->f_count);
4939 * Link this into the parent event's child list
4941 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4942 mutex_lock(&parent_event->child_mutex);
4943 list_add_tail(&child_event->child_list, &parent_event->child_list);
4944 mutex_unlock(&parent_event->child_mutex);
4946 return child_event;
4949 static int inherit_group(struct perf_event *parent_event,
4950 struct task_struct *parent,
4951 struct perf_event_context *parent_ctx,
4952 struct task_struct *child,
4953 struct perf_event_context *child_ctx)
4955 struct perf_event *leader;
4956 struct perf_event *sub;
4957 struct perf_event *child_ctr;
4959 leader = inherit_event(parent_event, parent, parent_ctx,
4960 child, NULL, child_ctx);
4961 if (IS_ERR(leader))
4962 return PTR_ERR(leader);
4963 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4964 child_ctr = inherit_event(sub, parent, parent_ctx,
4965 child, leader, child_ctx);
4966 if (IS_ERR(child_ctr))
4967 return PTR_ERR(child_ctr);
4969 return 0;
4972 static void sync_child_event(struct perf_event *child_event,
4973 struct task_struct *child)
4975 struct perf_event *parent_event = child_event->parent;
4976 u64 child_val;
4978 if (child_event->attr.inherit_stat)
4979 perf_event_read_event(child_event, child);
4981 child_val = atomic64_read(&child_event->count);
4984 * Add back the child's count to the parent's count:
4986 atomic64_add(child_val, &parent_event->count);
4987 atomic64_add(child_event->total_time_enabled,
4988 &parent_event->child_total_time_enabled);
4989 atomic64_add(child_event->total_time_running,
4990 &parent_event->child_total_time_running);
4993 * Remove this event from the parent's list
4995 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4996 mutex_lock(&parent_event->child_mutex);
4997 list_del_init(&child_event->child_list);
4998 mutex_unlock(&parent_event->child_mutex);
5001 * Release the parent event, if this was the last
5002 * reference to it.
5004 fput(parent_event->filp);
5007 static void
5008 __perf_event_exit_task(struct perf_event *child_event,
5009 struct perf_event_context *child_ctx,
5010 struct task_struct *child)
5012 struct perf_event *parent_event;
5014 perf_event_remove_from_context(child_event);
5016 parent_event = child_event->parent;
5018 * It can happen that parent exits first, and has events
5019 * that are still around due to the child reference. These
5020 * events need to be zapped - but otherwise linger.
5022 if (parent_event) {
5023 sync_child_event(child_event, child);
5024 free_event(child_event);
5029 * When a child task exits, feed back event values to parent events.
5031 void perf_event_exit_task(struct task_struct *child)
5033 struct perf_event *child_event, *tmp;
5034 struct perf_event_context *child_ctx;
5035 unsigned long flags;
5037 if (likely(!child->perf_event_ctxp)) {
5038 perf_event_task(child, NULL, 0);
5039 return;
5042 local_irq_save(flags);
5044 * We can't reschedule here because interrupts are disabled,
5045 * and either child is current or it is a task that can't be
5046 * scheduled, so we are now safe from rescheduling changing
5047 * our context.
5049 child_ctx = child->perf_event_ctxp;
5050 __perf_event_task_sched_out(child_ctx);
5053 * Take the context lock here so that if find_get_context is
5054 * reading child->perf_event_ctxp, we wait until it has
5055 * incremented the context's refcount before we do put_ctx below.
5057 raw_spin_lock(&child_ctx->lock);
5058 child->perf_event_ctxp = NULL;
5060 * If this context is a clone; unclone it so it can't get
5061 * swapped to another process while we're removing all
5062 * the events from it.
5064 unclone_ctx(child_ctx);
5065 update_context_time(child_ctx);
5066 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5069 * Report the task dead after unscheduling the events so that we
5070 * won't get any samples after PERF_RECORD_EXIT. We can however still
5071 * get a few PERF_RECORD_READ events.
5073 perf_event_task(child, child_ctx, 0);
5076 * We can recurse on the same lock type through:
5078 * __perf_event_exit_task()
5079 * sync_child_event()
5080 * fput(parent_event->filp)
5081 * perf_release()
5082 * mutex_lock(&ctx->mutex)
5084 * But since its the parent context it won't be the same instance.
5086 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5088 again:
5089 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5090 group_entry)
5091 __perf_event_exit_task(child_event, child_ctx, child);
5094 * If the last event was a group event, it will have appended all
5095 * its siblings to the list, but we obtained 'tmp' before that which
5096 * will still point to the list head terminating the iteration.
5098 if (!list_empty(&child_ctx->group_list))
5099 goto again;
5101 mutex_unlock(&child_ctx->mutex);
5103 put_ctx(child_ctx);
5107 * free an unexposed, unused context as created by inheritance by
5108 * init_task below, used by fork() in case of fail.
5110 void perf_event_free_task(struct task_struct *task)
5112 struct perf_event_context *ctx = task->perf_event_ctxp;
5113 struct perf_event *event, *tmp;
5115 if (!ctx)
5116 return;
5118 mutex_lock(&ctx->mutex);
5119 again:
5120 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5121 struct perf_event *parent = event->parent;
5123 if (WARN_ON_ONCE(!parent))
5124 continue;
5126 mutex_lock(&parent->child_mutex);
5127 list_del_init(&event->child_list);
5128 mutex_unlock(&parent->child_mutex);
5130 fput(parent->filp);
5132 list_del_event(event, ctx);
5133 free_event(event);
5136 if (!list_empty(&ctx->group_list))
5137 goto again;
5139 mutex_unlock(&ctx->mutex);
5141 put_ctx(ctx);
5145 * Initialize the perf_event context in task_struct
5147 int perf_event_init_task(struct task_struct *child)
5149 struct perf_event_context *child_ctx = NULL, *parent_ctx;
5150 struct perf_event_context *cloned_ctx;
5151 struct perf_event *event;
5152 struct task_struct *parent = current;
5153 int inherited_all = 1;
5154 int ret = 0;
5156 child->perf_event_ctxp = NULL;
5158 mutex_init(&child->perf_event_mutex);
5159 INIT_LIST_HEAD(&child->perf_event_list);
5161 if (likely(!parent->perf_event_ctxp))
5162 return 0;
5165 * If the parent's context is a clone, pin it so it won't get
5166 * swapped under us.
5168 parent_ctx = perf_pin_task_context(parent);
5171 * No need to check if parent_ctx != NULL here; since we saw
5172 * it non-NULL earlier, the only reason for it to become NULL
5173 * is if we exit, and since we're currently in the middle of
5174 * a fork we can't be exiting at the same time.
5178 * Lock the parent list. No need to lock the child - not PID
5179 * hashed yet and not running, so nobody can access it.
5181 mutex_lock(&parent_ctx->mutex);
5184 * We dont have to disable NMIs - we are only looking at
5185 * the list, not manipulating it:
5187 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5189 if (!event->attr.inherit) {
5190 inherited_all = 0;
5191 continue;
5194 if (!child->perf_event_ctxp) {
5196 * This is executed from the parent task context, so
5197 * inherit events that have been marked for cloning.
5198 * First allocate and initialize a context for the
5199 * child.
5202 child_ctx = kzalloc(sizeof(struct perf_event_context),
5203 GFP_KERNEL);
5204 if (!child_ctx) {
5205 ret = -ENOMEM;
5206 break;
5209 __perf_event_init_context(child_ctx, child);
5210 child->perf_event_ctxp = child_ctx;
5211 get_task_struct(child);
5214 ret = inherit_group(event, parent, parent_ctx,
5215 child, child_ctx);
5216 if (ret) {
5217 inherited_all = 0;
5218 break;
5222 if (child_ctx && inherited_all) {
5224 * Mark the child context as a clone of the parent
5225 * context, or of whatever the parent is a clone of.
5226 * Note that if the parent is a clone, it could get
5227 * uncloned at any point, but that doesn't matter
5228 * because the list of events and the generation
5229 * count can't have changed since we took the mutex.
5231 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5232 if (cloned_ctx) {
5233 child_ctx->parent_ctx = cloned_ctx;
5234 child_ctx->parent_gen = parent_ctx->parent_gen;
5235 } else {
5236 child_ctx->parent_ctx = parent_ctx;
5237 child_ctx->parent_gen = parent_ctx->generation;
5239 get_ctx(child_ctx->parent_ctx);
5242 mutex_unlock(&parent_ctx->mutex);
5244 perf_unpin_context(parent_ctx);
5246 return ret;
5249 static void __init perf_event_init_all_cpus(void)
5251 int cpu;
5252 struct perf_cpu_context *cpuctx;
5254 for_each_possible_cpu(cpu) {
5255 cpuctx = &per_cpu(perf_cpu_context, cpu);
5256 __perf_event_init_context(&cpuctx->ctx, NULL);
5260 static void __cpuinit perf_event_init_cpu(int cpu)
5262 struct perf_cpu_context *cpuctx;
5264 cpuctx = &per_cpu(perf_cpu_context, cpu);
5266 spin_lock(&perf_resource_lock);
5267 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5268 spin_unlock(&perf_resource_lock);
5270 hw_perf_event_setup(cpu);
5273 #ifdef CONFIG_HOTPLUG_CPU
5274 static void __perf_event_exit_cpu(void *info)
5276 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5277 struct perf_event_context *ctx = &cpuctx->ctx;
5278 struct perf_event *event, *tmp;
5280 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5281 __perf_event_remove_from_context(event);
5283 static void perf_event_exit_cpu(int cpu)
5285 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5286 struct perf_event_context *ctx = &cpuctx->ctx;
5288 mutex_lock(&ctx->mutex);
5289 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5290 mutex_unlock(&ctx->mutex);
5292 #else
5293 static inline void perf_event_exit_cpu(int cpu) { }
5294 #endif
5296 static int __cpuinit
5297 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5299 unsigned int cpu = (long)hcpu;
5301 switch (action) {
5303 case CPU_UP_PREPARE:
5304 case CPU_UP_PREPARE_FROZEN:
5305 perf_event_init_cpu(cpu);
5306 break;
5308 case CPU_ONLINE:
5309 case CPU_ONLINE_FROZEN:
5310 hw_perf_event_setup_online(cpu);
5311 break;
5313 case CPU_DOWN_PREPARE:
5314 case CPU_DOWN_PREPARE_FROZEN:
5315 perf_event_exit_cpu(cpu);
5316 break;
5318 default:
5319 break;
5322 return NOTIFY_OK;
5326 * This has to have a higher priority than migration_notifier in sched.c.
5328 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5329 .notifier_call = perf_cpu_notify,
5330 .priority = 20,
5333 void __init perf_event_init(void)
5335 perf_event_init_all_cpus();
5336 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5337 (void *)(long)smp_processor_id());
5338 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5339 (void *)(long)smp_processor_id());
5340 register_cpu_notifier(&perf_cpu_nb);
5343 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5345 return sprintf(buf, "%d\n", perf_reserved_percpu);
5348 static ssize_t
5349 perf_set_reserve_percpu(struct sysdev_class *class,
5350 const char *buf,
5351 size_t count)
5353 struct perf_cpu_context *cpuctx;
5354 unsigned long val;
5355 int err, cpu, mpt;
5357 err = strict_strtoul(buf, 10, &val);
5358 if (err)
5359 return err;
5360 if (val > perf_max_events)
5361 return -EINVAL;
5363 spin_lock(&perf_resource_lock);
5364 perf_reserved_percpu = val;
5365 for_each_online_cpu(cpu) {
5366 cpuctx = &per_cpu(perf_cpu_context, cpu);
5367 raw_spin_lock_irq(&cpuctx->ctx.lock);
5368 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5369 perf_max_events - perf_reserved_percpu);
5370 cpuctx->max_pertask = mpt;
5371 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5373 spin_unlock(&perf_resource_lock);
5375 return count;
5378 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5380 return sprintf(buf, "%d\n", perf_overcommit);
5383 static ssize_t
5384 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5386 unsigned long val;
5387 int err;
5389 err = strict_strtoul(buf, 10, &val);
5390 if (err)
5391 return err;
5392 if (val > 1)
5393 return -EINVAL;
5395 spin_lock(&perf_resource_lock);
5396 perf_overcommit = val;
5397 spin_unlock(&perf_resource_lock);
5399 return count;
5402 static SYSDEV_CLASS_ATTR(
5403 reserve_percpu,
5404 0644,
5405 perf_show_reserve_percpu,
5406 perf_set_reserve_percpu
5409 static SYSDEV_CLASS_ATTR(
5410 overcommit,
5411 0644,
5412 perf_show_overcommit,
5413 perf_set_overcommit
5416 static struct attribute *perfclass_attrs[] = {
5417 &attr_reserve_percpu.attr,
5418 &attr_overcommit.attr,
5419 NULL
5422 static struct attribute_group perfclass_attr_group = {
5423 .attrs = perfclass_attrs,
5424 .name = "perf_events",
5427 static int __init perf_event_sysfs_init(void)
5429 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5430 &perfclass_attr_group);
5432 device_initcall(perf_event_sysfs_init);