1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
4 #include <linux/preempt.h>
6 #include <linux/cpumask.h>
8 #include <linux/init.h>
10 #include <asm/percpu.h>
12 /* enough to cover all DEFINE_PER_CPUs in modules */
14 #define PERCPU_MODULE_RESERVE (8 << 10)
16 #define PERCPU_MODULE_RESERVE 0
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
29 #define get_cpu_var(var) (*({ \
31 &__get_cpu_var(var); }))
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
37 #define put_cpu_var(var) do { \
42 #define get_cpu_ptr(var) ({ \
46 #define put_cpu_ptr(var) do { \
51 /* minimum unit size, also is the maximum supported allocation size */
52 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
61 #define PERCPU_DYNAMIC_EARLY_SLOTS 128
62 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
75 #if BITS_PER_LONG > 32
76 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
78 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
81 extern void *pcpu_base_addr
;
82 extern const unsigned long *pcpu_unit_offsets
;
84 struct pcpu_group_info
{
85 int nr_units
; /* aligned # of units */
86 unsigned long base_offset
; /* base address offset */
87 unsigned int *cpu_map
; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
91 struct pcpu_alloc_info
{
98 size_t __ai_size
; /* internal, don't use */
99 int nr_groups
; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups
[];
110 extern const char *pcpu_fc_names
[PCPU_FC_NR
];
112 extern enum pcpu_fc pcpu_chosen_fc
;
114 typedef void * (*pcpu_fc_alloc_fn_t
)(unsigned int cpu
, size_t size
,
116 typedef void (*pcpu_fc_free_fn_t
)(void *ptr
, size_t size
);
117 typedef void (*pcpu_fc_populate_pte_fn_t
)(unsigned long addr
);
118 typedef int (pcpu_fc_cpu_distance_fn_t
)(unsigned int from
, unsigned int to
);
120 extern struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
122 extern void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
);
124 extern int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128 extern int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
131 pcpu_fc_alloc_fn_t alloc_fn
,
132 pcpu_fc_free_fn_t free_fn
);
135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136 extern int __init
pcpu_page_first_chunk(size_t reserved_size
,
137 pcpu_fc_alloc_fn_t alloc_fn
,
138 pcpu_fc_free_fn_t free_fn
,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn
);
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
148 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
150 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
153 extern void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
);
154 extern bool is_kernel_percpu_address(unsigned long addr
);
156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 extern void __init
setup_per_cpu_areas(void);
159 extern void __init
percpu_init_late(void);
161 extern void __percpu
*__alloc_percpu(size_t size
, size_t align
);
162 extern void free_percpu(void __percpu
*__pdata
);
163 extern phys_addr_t
per_cpu_ptr_to_phys(void *addr
);
165 #define alloc_percpu(type) \
166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
169 * Optional methods for optimized non-lvalue per-cpu variable access.
171 * @var can be a percpu variable or a field of it and its size should
172 * equal char, int or long. percpu_read() evaluates to a lvalue and
173 * all others to void.
175 * These operations are guaranteed to be atomic w.r.t. preemption.
176 * The generic versions use plain get/put_cpu_var(). Archs are
177 * encouraged to implement single-instruction alternatives which don't
178 * require preemption protection.
181 # define percpu_read(var) \
183 typeof(var) *pr_ptr__ = &(var); \
184 typeof(var) pr_ret__; \
185 pr_ret__ = get_cpu_var(*pr_ptr__); \
186 put_cpu_var(*pr_ptr__); \
191 #define __percpu_generic_to_op(var, val, op) \
193 typeof(var) *pgto_ptr__ = &(var); \
194 get_cpu_var(*pgto_ptr__) op val; \
195 put_cpu_var(*pgto_ptr__); \
199 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
203 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
207 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
211 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
215 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
219 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
227 extern void __bad_size_call_parameter(void);
229 #define __pcpu_size_call_return(stem, variable) \
230 ({ typeof(variable) pscr_ret__; \
231 __verify_pcpu_ptr(&(variable)); \
232 switch(sizeof(variable)) { \
233 case 1: pscr_ret__ = stem##1(variable);break; \
234 case 2: pscr_ret__ = stem##2(variable);break; \
235 case 4: pscr_ret__ = stem##4(variable);break; \
236 case 8: pscr_ret__ = stem##8(variable);break; \
238 __bad_size_call_parameter();break; \
243 #define __pcpu_size_call_return2(stem, variable, ...) \
245 typeof(variable) pscr2_ret__; \
246 __verify_pcpu_ptr(&(variable)); \
247 switch(sizeof(variable)) { \
248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
253 __bad_size_call_parameter(); break; \
259 * Special handling for cmpxchg_double. cmpxchg_double is passed two
260 * percpu variables. The first has to be aligned to a double word
261 * boundary and the second has to follow directly thereafter.
263 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
266 __verify_pcpu_ptr(&pcp1); \
267 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
268 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
269 VM_BUG_ON((unsigned long)(&pcp2) != \
270 (unsigned long)(&pcp1) + sizeof(pcp1)); \
271 switch(sizeof(pcp1)) { \
272 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
273 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
274 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
275 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
277 __bad_size_call_parameter(); break; \
282 #define __pcpu_size_call(stem, variable, ...) \
284 __verify_pcpu_ptr(&(variable)); \
285 switch(sizeof(variable)) { \
286 case 1: stem##1(variable, __VA_ARGS__);break; \
287 case 2: stem##2(variable, __VA_ARGS__);break; \
288 case 4: stem##4(variable, __VA_ARGS__);break; \
289 case 8: stem##8(variable, __VA_ARGS__);break; \
291 __bad_size_call_parameter();break; \
296 * Optimized manipulation for memory allocated through the per cpu
297 * allocator or for addresses of per cpu variables.
299 * These operation guarantee exclusivity of access for other operations
300 * on the *same* processor. The assumption is that per cpu data is only
301 * accessed by a single processor instance (the current one).
303 * The first group is used for accesses that must be done in a
304 * preemption safe way since we know that the context is not preempt
305 * safe. Interrupts may occur. If the interrupt modifies the variable
306 * too then RMW actions will not be reliable.
308 * The arch code can provide optimized functions in two ways:
310 * 1. Override the function completely. F.e. define this_cpu_add().
311 * The arch must then ensure that the various scalar format passed
312 * are handled correctly.
314 * 2. Provide functions for certain scalar sizes. F.e. provide
315 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
316 * sized RMW actions. If arch code does not provide operations for
317 * a scalar size then the fallback in the generic code will be
321 #define _this_cpu_generic_read(pcp) \
322 ({ typeof(pcp) ret__; \
324 ret__ = *this_cpu_ptr(&(pcp)); \
329 #ifndef this_cpu_read
330 # ifndef this_cpu_read_1
331 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
333 # ifndef this_cpu_read_2
334 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
336 # ifndef this_cpu_read_4
337 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
339 # ifndef this_cpu_read_8
340 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
342 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
345 #define _this_cpu_generic_to_op(pcp, val, op) \
348 *__this_cpu_ptr(&(pcp)) op val; \
352 #ifndef this_cpu_write
353 # ifndef this_cpu_write_1
354 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
356 # ifndef this_cpu_write_2
357 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
359 # ifndef this_cpu_write_4
360 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
362 # ifndef this_cpu_write_8
363 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
365 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
369 # ifndef this_cpu_add_1
370 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
372 # ifndef this_cpu_add_2
373 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
375 # ifndef this_cpu_add_4
376 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
378 # ifndef this_cpu_add_8
379 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
381 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
385 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
389 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
393 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
397 # ifndef this_cpu_and_1
398 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
400 # ifndef this_cpu_and_2
401 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
403 # ifndef this_cpu_and_4
404 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
406 # ifndef this_cpu_and_8
407 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
409 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
413 # ifndef this_cpu_or_1
414 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
416 # ifndef this_cpu_or_2
417 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
419 # ifndef this_cpu_or_4
420 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
422 # ifndef this_cpu_or_8
423 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
425 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
429 # ifndef this_cpu_xor_1
430 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
432 # ifndef this_cpu_xor_2
433 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
435 # ifndef this_cpu_xor_4
436 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
438 # ifndef this_cpu_xor_8
439 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
441 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
444 #define _this_cpu_generic_add_return(pcp, val) \
448 __this_cpu_add(pcp, val); \
449 ret__ = __this_cpu_read(pcp); \
454 #ifndef this_cpu_add_return
455 # ifndef this_cpu_add_return_1
456 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
458 # ifndef this_cpu_add_return_2
459 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
461 # ifndef this_cpu_add_return_4
462 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
464 # ifndef this_cpu_add_return_8
465 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
467 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
470 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
471 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
472 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
474 #define _this_cpu_generic_xchg(pcp, nval) \
475 ({ typeof(pcp) ret__; \
477 ret__ = __this_cpu_read(pcp); \
478 __this_cpu_write(pcp, nval); \
483 #ifndef this_cpu_xchg
484 # ifndef this_cpu_xchg_1
485 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
487 # ifndef this_cpu_xchg_2
488 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
490 # ifndef this_cpu_xchg_4
491 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
493 # ifndef this_cpu_xchg_8
494 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
496 # define this_cpu_xchg(pcp, nval) \
497 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
500 #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
501 ({ typeof(pcp) ret__; \
503 ret__ = __this_cpu_read(pcp); \
504 if (ret__ == (oval)) \
505 __this_cpu_write(pcp, nval); \
510 #ifndef this_cpu_cmpxchg
511 # ifndef this_cpu_cmpxchg_1
512 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
514 # ifndef this_cpu_cmpxchg_2
515 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
517 # ifndef this_cpu_cmpxchg_4
518 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
520 # ifndef this_cpu_cmpxchg_8
521 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
523 # define this_cpu_cmpxchg(pcp, oval, nval) \
524 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
528 * cmpxchg_double replaces two adjacent scalars at once. The first
529 * two parameters are per cpu variables which have to be of the same
530 * size. A truth value is returned to indicate success or failure
531 * (since a double register result is difficult to handle). There is
532 * very limited hardware support for these operations, so only certain
535 #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
539 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
540 oval1, oval2, nval1, nval2); \
545 #ifndef this_cpu_cmpxchg_double
546 # ifndef this_cpu_cmpxchg_double_1
547 # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
548 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
550 # ifndef this_cpu_cmpxchg_double_2
551 # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
552 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
554 # ifndef this_cpu_cmpxchg_double_4
555 # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
556 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
558 # ifndef this_cpu_cmpxchg_double_8
559 # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
560 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
562 # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
563 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
567 * Generic percpu operations that do not require preemption handling.
568 * Either we do not care about races or the caller has the
569 * responsibility of handling preemptions issues. Arch code can still
570 * override these instructions since the arch per cpu code may be more
571 * efficient and may actually get race freeness for free (that is the
572 * case for x86 for example).
574 * If there is no other protection through preempt disable and/or
575 * disabling interupts then one of these RMW operations can show unexpected
576 * behavior because the execution thread was rescheduled on another processor
577 * or an interrupt occurred and the same percpu variable was modified from
578 * the interrupt context.
580 #ifndef __this_cpu_read
581 # ifndef __this_cpu_read_1
582 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
584 # ifndef __this_cpu_read_2
585 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
587 # ifndef __this_cpu_read_4
588 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
590 # ifndef __this_cpu_read_8
591 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
593 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
596 #define __this_cpu_generic_to_op(pcp, val, op) \
598 *__this_cpu_ptr(&(pcp)) op val; \
601 #ifndef __this_cpu_write
602 # ifndef __this_cpu_write_1
603 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
605 # ifndef __this_cpu_write_2
606 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
608 # ifndef __this_cpu_write_4
609 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
611 # ifndef __this_cpu_write_8
612 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
614 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
617 #ifndef __this_cpu_add
618 # ifndef __this_cpu_add_1
619 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
621 # ifndef __this_cpu_add_2
622 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
624 # ifndef __this_cpu_add_4
625 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
627 # ifndef __this_cpu_add_8
628 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
630 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
633 #ifndef __this_cpu_sub
634 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
637 #ifndef __this_cpu_inc
638 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
641 #ifndef __this_cpu_dec
642 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
645 #ifndef __this_cpu_and
646 # ifndef __this_cpu_and_1
647 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
649 # ifndef __this_cpu_and_2
650 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
652 # ifndef __this_cpu_and_4
653 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
655 # ifndef __this_cpu_and_8
656 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
658 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
661 #ifndef __this_cpu_or
662 # ifndef __this_cpu_or_1
663 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
665 # ifndef __this_cpu_or_2
666 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
668 # ifndef __this_cpu_or_4
669 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
671 # ifndef __this_cpu_or_8
672 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
674 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
677 #ifndef __this_cpu_xor
678 # ifndef __this_cpu_xor_1
679 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
681 # ifndef __this_cpu_xor_2
682 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
684 # ifndef __this_cpu_xor_4
685 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
687 # ifndef __this_cpu_xor_8
688 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
690 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
693 #define __this_cpu_generic_add_return(pcp, val) \
695 __this_cpu_add(pcp, val); \
696 __this_cpu_read(pcp); \
699 #ifndef __this_cpu_add_return
700 # ifndef __this_cpu_add_return_1
701 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
703 # ifndef __this_cpu_add_return_2
704 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
706 # ifndef __this_cpu_add_return_4
707 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
709 # ifndef __this_cpu_add_return_8
710 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
712 # define __this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
715 #define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
716 #define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
717 #define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
719 #define __this_cpu_generic_xchg(pcp, nval) \
720 ({ typeof(pcp) ret__; \
721 ret__ = __this_cpu_read(pcp); \
722 __this_cpu_write(pcp, nval); \
726 #ifndef __this_cpu_xchg
727 # ifndef __this_cpu_xchg_1
728 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
730 # ifndef __this_cpu_xchg_2
731 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
733 # ifndef __this_cpu_xchg_4
734 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
736 # ifndef __this_cpu_xchg_8
737 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
739 # define __this_cpu_xchg(pcp, nval) \
740 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
743 #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
746 ret__ = __this_cpu_read(pcp); \
747 if (ret__ == (oval)) \
748 __this_cpu_write(pcp, nval); \
752 #ifndef __this_cpu_cmpxchg
753 # ifndef __this_cpu_cmpxchg_1
754 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
756 # ifndef __this_cpu_cmpxchg_2
757 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
759 # ifndef __this_cpu_cmpxchg_4
760 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
762 # ifndef __this_cpu_cmpxchg_8
763 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
765 # define __this_cpu_cmpxchg(pcp, oval, nval) \
766 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
769 #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
772 if (__this_cpu_read(pcp1) == (oval1) && \
773 __this_cpu_read(pcp2) == (oval2)) { \
774 __this_cpu_write(pcp1, (nval1)); \
775 __this_cpu_write(pcp2, (nval2)); \
781 #ifndef __this_cpu_cmpxchg_double
782 # ifndef __this_cpu_cmpxchg_double_1
783 # define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
784 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
786 # ifndef __this_cpu_cmpxchg_double_2
787 # define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
788 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
790 # ifndef __this_cpu_cmpxchg_double_4
791 # define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
792 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
794 # ifndef __this_cpu_cmpxchg_double_8
795 # define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
796 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
798 # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
799 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
803 * IRQ safe versions of the per cpu RMW operations. Note that these operations
804 * are *not* safe against modification of the same variable from another
805 * processors (which one gets when using regular atomic operations)
806 * They are guaranteed to be atomic vs. local interrupts and
809 #define irqsafe_cpu_generic_to_op(pcp, val, op) \
811 unsigned long flags; \
812 local_irq_save(flags); \
813 *__this_cpu_ptr(&(pcp)) op val; \
814 local_irq_restore(flags); \
817 #ifndef irqsafe_cpu_add
818 # ifndef irqsafe_cpu_add_1
819 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
821 # ifndef irqsafe_cpu_add_2
822 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
824 # ifndef irqsafe_cpu_add_4
825 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
827 # ifndef irqsafe_cpu_add_8
828 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
830 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
833 #ifndef irqsafe_cpu_sub
834 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
837 #ifndef irqsafe_cpu_inc
838 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
841 #ifndef irqsafe_cpu_dec
842 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
845 #ifndef irqsafe_cpu_and
846 # ifndef irqsafe_cpu_and_1
847 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
849 # ifndef irqsafe_cpu_and_2
850 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
852 # ifndef irqsafe_cpu_and_4
853 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
855 # ifndef irqsafe_cpu_and_8
856 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
858 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
861 #ifndef irqsafe_cpu_or
862 # ifndef irqsafe_cpu_or_1
863 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
865 # ifndef irqsafe_cpu_or_2
866 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
868 # ifndef irqsafe_cpu_or_4
869 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
871 # ifndef irqsafe_cpu_or_8
872 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
874 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
877 #ifndef irqsafe_cpu_xor
878 # ifndef irqsafe_cpu_xor_1
879 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
881 # ifndef irqsafe_cpu_xor_2
882 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
884 # ifndef irqsafe_cpu_xor_4
885 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
887 # ifndef irqsafe_cpu_xor_8
888 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
890 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
893 #define irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) \
896 unsigned long flags; \
897 local_irq_save(flags); \
898 ret__ = __this_cpu_read(pcp); \
899 if (ret__ == (oval)) \
900 __this_cpu_write(pcp, nval); \
901 local_irq_restore(flags); \
905 #ifndef irqsafe_cpu_cmpxchg
906 # ifndef irqsafe_cpu_cmpxchg_1
907 # define irqsafe_cpu_cmpxchg_1(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
909 # ifndef irqsafe_cpu_cmpxchg_2
910 # define irqsafe_cpu_cmpxchg_2(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
912 # ifndef irqsafe_cpu_cmpxchg_4
913 # define irqsafe_cpu_cmpxchg_4(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
915 # ifndef irqsafe_cpu_cmpxchg_8
916 # define irqsafe_cpu_cmpxchg_8(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
918 # define irqsafe_cpu_cmpxchg(pcp, oval, nval) \
919 __pcpu_size_call_return2(irqsafe_cpu_cmpxchg_, (pcp), oval, nval)
922 #define irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
925 unsigned long flags; \
926 local_irq_save(flags); \
927 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
928 oval1, oval2, nval1, nval2); \
929 local_irq_restore(flags); \
933 #ifndef irqsafe_cpu_cmpxchg_double
934 # ifndef irqsafe_cpu_cmpxchg_double_1
935 # define irqsafe_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
936 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
938 # ifndef irqsafe_cpu_cmpxchg_double_2
939 # define irqsafe_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
940 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
942 # ifndef irqsafe_cpu_cmpxchg_double_4
943 # define irqsafe_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
944 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
946 # ifndef irqsafe_cpu_cmpxchg_double_8
947 # define irqsafe_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
948 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
950 # define irqsafe_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
951 __pcpu_double_call_return_bool(irqsafe_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
954 #endif /* __LINUX_PERCPU_H */