mfd: Copy the device pointer to the twl4030-madc structure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / spi / spi_fsl_spi.c
blob7963c9b495662d792d9681d17fdad4ddb1c0a082
1 /*
2 * Freescale SPI controller driver.
4 * Maintainer: Kumar Gala
6 * Copyright (C) 2006 Polycom, Inc.
7 * Copyright 2010 Freescale Semiconductor, Inc.
9 * CPM SPI and QE buffer descriptors mode support:
10 * Copyright (c) 2009 MontaVista Software, Inc.
11 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/irq.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
26 #include <linux/platform_device.h>
27 #include <linux/fsl_devices.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/mm.h>
30 #include <linux/mutex.h>
31 #include <linux/of.h>
32 #include <linux/of_platform.h>
33 #include <linux/gpio.h>
34 #include <linux/of_gpio.h>
36 #include <sysdev/fsl_soc.h>
37 #include <asm/cpm.h>
38 #include <asm/qe.h>
40 #include "spi_fsl_lib.h"
42 /* CPM1 and CPM2 are mutually exclusive. */
43 #ifdef CONFIG_CPM1
44 #include <asm/cpm1.h>
45 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
46 #else
47 #include <asm/cpm2.h>
48 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
49 #endif
51 /* SPI Controller registers */
52 struct fsl_spi_reg {
53 u8 res1[0x20];
54 __be32 mode;
55 __be32 event;
56 __be32 mask;
57 __be32 command;
58 __be32 transmit;
59 __be32 receive;
62 /* SPI Controller mode register definitions */
63 #define SPMODE_LOOP (1 << 30)
64 #define SPMODE_CI_INACTIVEHIGH (1 << 29)
65 #define SPMODE_CP_BEGIN_EDGECLK (1 << 28)
66 #define SPMODE_DIV16 (1 << 27)
67 #define SPMODE_REV (1 << 26)
68 #define SPMODE_MS (1 << 25)
69 #define SPMODE_ENABLE (1 << 24)
70 #define SPMODE_LEN(x) ((x) << 20)
71 #define SPMODE_PM(x) ((x) << 16)
72 #define SPMODE_OP (1 << 14)
73 #define SPMODE_CG(x) ((x) << 7)
76 * Default for SPI Mode:
77 * SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk
79 #define SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \
80 SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf))
82 /* SPIE register values */
83 #define SPIE_NE 0x00000200 /* Not empty */
84 #define SPIE_NF 0x00000100 /* Not full */
86 /* SPIM register values */
87 #define SPIM_NE 0x00000200 /* Not empty */
88 #define SPIM_NF 0x00000100 /* Not full */
90 #define SPIE_TXB 0x00000200 /* Last char is written to tx fifo */
91 #define SPIE_RXB 0x00000100 /* Last char is written to rx buf */
93 /* SPCOM register values */
94 #define SPCOM_STR (1 << 23) /* Start transmit */
96 #define SPI_PRAM_SIZE 0x100
97 #define SPI_MRBLR ((unsigned int)PAGE_SIZE)
99 static void *fsl_dummy_rx;
100 static DEFINE_MUTEX(fsl_dummy_rx_lock);
101 static int fsl_dummy_rx_refcnt;
103 static void fsl_spi_change_mode(struct spi_device *spi)
105 struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
106 struct spi_mpc8xxx_cs *cs = spi->controller_state;
107 struct fsl_spi_reg *reg_base = mspi->reg_base;
108 __be32 __iomem *mode = &reg_base->mode;
109 unsigned long flags;
111 if (cs->hw_mode == mpc8xxx_spi_read_reg(mode))
112 return;
114 /* Turn off IRQs locally to minimize time that SPI is disabled. */
115 local_irq_save(flags);
117 /* Turn off SPI unit prior changing mode */
118 mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
120 /* When in CPM mode, we need to reinit tx and rx. */
121 if (mspi->flags & SPI_CPM_MODE) {
122 if (mspi->flags & SPI_QE) {
123 qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
124 QE_CR_PROTOCOL_UNSPECIFIED, 0);
125 } else {
126 cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
127 if (mspi->flags & SPI_CPM1) {
128 out_be16(&mspi->pram->rbptr,
129 in_be16(&mspi->pram->rbase));
130 out_be16(&mspi->pram->tbptr,
131 in_be16(&mspi->pram->tbase));
135 mpc8xxx_spi_write_reg(mode, cs->hw_mode);
136 local_irq_restore(flags);
139 static void fsl_spi_chipselect(struct spi_device *spi, int value)
141 struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
142 struct fsl_spi_platform_data *pdata = spi->dev.parent->platform_data;
143 bool pol = spi->mode & SPI_CS_HIGH;
144 struct spi_mpc8xxx_cs *cs = spi->controller_state;
146 if (value == BITBANG_CS_INACTIVE) {
147 if (pdata->cs_control)
148 pdata->cs_control(spi, !pol);
151 if (value == BITBANG_CS_ACTIVE) {
152 mpc8xxx_spi->rx_shift = cs->rx_shift;
153 mpc8xxx_spi->tx_shift = cs->tx_shift;
154 mpc8xxx_spi->get_rx = cs->get_rx;
155 mpc8xxx_spi->get_tx = cs->get_tx;
157 fsl_spi_change_mode(spi);
159 if (pdata->cs_control)
160 pdata->cs_control(spi, pol);
164 static int mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs,
165 struct spi_device *spi,
166 struct mpc8xxx_spi *mpc8xxx_spi,
167 int bits_per_word)
169 cs->rx_shift = 0;
170 cs->tx_shift = 0;
171 if (bits_per_word <= 8) {
172 cs->get_rx = mpc8xxx_spi_rx_buf_u8;
173 cs->get_tx = mpc8xxx_spi_tx_buf_u8;
174 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
175 cs->rx_shift = 16;
176 cs->tx_shift = 24;
178 } else if (bits_per_word <= 16) {
179 cs->get_rx = mpc8xxx_spi_rx_buf_u16;
180 cs->get_tx = mpc8xxx_spi_tx_buf_u16;
181 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
182 cs->rx_shift = 16;
183 cs->tx_shift = 16;
185 } else if (bits_per_word <= 32) {
186 cs->get_rx = mpc8xxx_spi_rx_buf_u32;
187 cs->get_tx = mpc8xxx_spi_tx_buf_u32;
188 } else
189 return -EINVAL;
191 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE &&
192 spi->mode & SPI_LSB_FIRST) {
193 cs->tx_shift = 0;
194 if (bits_per_word <= 8)
195 cs->rx_shift = 8;
196 else
197 cs->rx_shift = 0;
199 mpc8xxx_spi->rx_shift = cs->rx_shift;
200 mpc8xxx_spi->tx_shift = cs->tx_shift;
201 mpc8xxx_spi->get_rx = cs->get_rx;
202 mpc8xxx_spi->get_tx = cs->get_tx;
204 return bits_per_word;
207 static int mspi_apply_qe_mode_quirks(struct spi_mpc8xxx_cs *cs,
208 struct spi_device *spi,
209 int bits_per_word)
211 /* QE uses Little Endian for words > 8
212 * so transform all words > 8 into 8 bits
213 * Unfortnatly that doesn't work for LSB so
214 * reject these for now */
215 /* Note: 32 bits word, LSB works iff
216 * tfcr/rfcr is set to CPMFCR_GBL */
217 if (spi->mode & SPI_LSB_FIRST &&
218 bits_per_word > 8)
219 return -EINVAL;
220 if (bits_per_word > 8)
221 return 8; /* pretend its 8 bits */
222 return bits_per_word;
225 static int fsl_spi_setup_transfer(struct spi_device *spi,
226 struct spi_transfer *t)
228 struct mpc8xxx_spi *mpc8xxx_spi;
229 int bits_per_word = 0;
230 u8 pm;
231 u32 hz = 0;
232 struct spi_mpc8xxx_cs *cs = spi->controller_state;
234 mpc8xxx_spi = spi_master_get_devdata(spi->master);
236 if (t) {
237 bits_per_word = t->bits_per_word;
238 hz = t->speed_hz;
241 /* spi_transfer level calls that work per-word */
242 if (!bits_per_word)
243 bits_per_word = spi->bits_per_word;
245 /* Make sure its a bit width we support [4..16, 32] */
246 if ((bits_per_word < 4)
247 || ((bits_per_word > 16) && (bits_per_word != 32)))
248 return -EINVAL;
250 if (!hz)
251 hz = spi->max_speed_hz;
253 if (!(mpc8xxx_spi->flags & SPI_CPM_MODE))
254 bits_per_word = mspi_apply_cpu_mode_quirks(cs, spi,
255 mpc8xxx_spi,
256 bits_per_word);
257 else if (mpc8xxx_spi->flags & SPI_QE)
258 bits_per_word = mspi_apply_qe_mode_quirks(cs, spi,
259 bits_per_word);
261 if (bits_per_word < 0)
262 return bits_per_word;
264 if (bits_per_word == 32)
265 bits_per_word = 0;
266 else
267 bits_per_word = bits_per_word - 1;
269 /* mask out bits we are going to set */
270 cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
271 | SPMODE_PM(0xF));
273 cs->hw_mode |= SPMODE_LEN(bits_per_word);
275 if ((mpc8xxx_spi->spibrg / hz) > 64) {
276 cs->hw_mode |= SPMODE_DIV16;
277 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
279 WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
280 "Will use %d Hz instead.\n", dev_name(&spi->dev),
281 hz, mpc8xxx_spi->spibrg / 1024);
282 if (pm > 16)
283 pm = 16;
284 } else {
285 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
287 if (pm)
288 pm--;
290 cs->hw_mode |= SPMODE_PM(pm);
292 fsl_spi_change_mode(spi);
293 return 0;
296 static void fsl_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
298 struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
299 struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
300 unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
301 unsigned int xfer_ofs;
302 struct fsl_spi_reg *reg_base = mspi->reg_base;
304 xfer_ofs = mspi->xfer_in_progress->len - mspi->count;
306 if (mspi->rx_dma == mspi->dma_dummy_rx)
307 out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma);
308 else
309 out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
310 out_be16(&rx_bd->cbd_datlen, 0);
311 out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);
313 if (mspi->tx_dma == mspi->dma_dummy_tx)
314 out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma);
315 else
316 out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
317 out_be16(&tx_bd->cbd_datlen, xfer_len);
318 out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
319 BD_SC_LAST);
321 /* start transfer */
322 mpc8xxx_spi_write_reg(&reg_base->command, SPCOM_STR);
325 static int fsl_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
326 struct spi_transfer *t, bool is_dma_mapped)
328 struct device *dev = mspi->dev;
329 struct fsl_spi_reg *reg_base = mspi->reg_base;
331 if (is_dma_mapped) {
332 mspi->map_tx_dma = 0;
333 mspi->map_rx_dma = 0;
334 } else {
335 mspi->map_tx_dma = 1;
336 mspi->map_rx_dma = 1;
339 if (!t->tx_buf) {
340 mspi->tx_dma = mspi->dma_dummy_tx;
341 mspi->map_tx_dma = 0;
344 if (!t->rx_buf) {
345 mspi->rx_dma = mspi->dma_dummy_rx;
346 mspi->map_rx_dma = 0;
349 if (mspi->map_tx_dma) {
350 void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */
352 mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
353 DMA_TO_DEVICE);
354 if (dma_mapping_error(dev, mspi->tx_dma)) {
355 dev_err(dev, "unable to map tx dma\n");
356 return -ENOMEM;
358 } else if (t->tx_buf) {
359 mspi->tx_dma = t->tx_dma;
362 if (mspi->map_rx_dma) {
363 mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
364 DMA_FROM_DEVICE);
365 if (dma_mapping_error(dev, mspi->rx_dma)) {
366 dev_err(dev, "unable to map rx dma\n");
367 goto err_rx_dma;
369 } else if (t->rx_buf) {
370 mspi->rx_dma = t->rx_dma;
373 /* enable rx ints */
374 mpc8xxx_spi_write_reg(&reg_base->mask, SPIE_RXB);
376 mspi->xfer_in_progress = t;
377 mspi->count = t->len;
379 /* start CPM transfers */
380 fsl_spi_cpm_bufs_start(mspi);
382 return 0;
384 err_rx_dma:
385 if (mspi->map_tx_dma)
386 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
387 return -ENOMEM;
390 static void fsl_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
392 struct device *dev = mspi->dev;
393 struct spi_transfer *t = mspi->xfer_in_progress;
395 if (mspi->map_tx_dma)
396 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
397 if (mspi->map_rx_dma)
398 dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
399 mspi->xfer_in_progress = NULL;
402 static int fsl_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
403 struct spi_transfer *t, unsigned int len)
405 u32 word;
406 struct fsl_spi_reg *reg_base = mspi->reg_base;
408 mspi->count = len;
410 /* enable rx ints */
411 mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
413 /* transmit word */
414 word = mspi->get_tx(mspi);
415 mpc8xxx_spi_write_reg(&reg_base->transmit, word);
417 return 0;
420 static int fsl_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
421 bool is_dma_mapped)
423 struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
424 struct fsl_spi_reg *reg_base;
425 unsigned int len = t->len;
426 u8 bits_per_word;
427 int ret;
429 reg_base = mpc8xxx_spi->reg_base;
430 bits_per_word = spi->bits_per_word;
431 if (t->bits_per_word)
432 bits_per_word = t->bits_per_word;
434 if (bits_per_word > 8) {
435 /* invalid length? */
436 if (len & 1)
437 return -EINVAL;
438 len /= 2;
440 if (bits_per_word > 16) {
441 /* invalid length? */
442 if (len & 1)
443 return -EINVAL;
444 len /= 2;
447 mpc8xxx_spi->tx = t->tx_buf;
448 mpc8xxx_spi->rx = t->rx_buf;
450 INIT_COMPLETION(mpc8xxx_spi->done);
452 if (mpc8xxx_spi->flags & SPI_CPM_MODE)
453 ret = fsl_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
454 else
455 ret = fsl_spi_cpu_bufs(mpc8xxx_spi, t, len);
456 if (ret)
457 return ret;
459 wait_for_completion(&mpc8xxx_spi->done);
461 /* disable rx ints */
462 mpc8xxx_spi_write_reg(&reg_base->mask, 0);
464 if (mpc8xxx_spi->flags & SPI_CPM_MODE)
465 fsl_spi_cpm_bufs_complete(mpc8xxx_spi);
467 return mpc8xxx_spi->count;
470 static void fsl_spi_do_one_msg(struct spi_message *m)
472 struct spi_device *spi = m->spi;
473 struct spi_transfer *t;
474 unsigned int cs_change;
475 const int nsecs = 50;
476 int status;
478 cs_change = 1;
479 status = 0;
480 list_for_each_entry(t, &m->transfers, transfer_list) {
481 if (t->bits_per_word || t->speed_hz) {
482 /* Don't allow changes if CS is active */
483 status = -EINVAL;
485 if (cs_change)
486 status = fsl_spi_setup_transfer(spi, t);
487 if (status < 0)
488 break;
491 if (cs_change) {
492 fsl_spi_chipselect(spi, BITBANG_CS_ACTIVE);
493 ndelay(nsecs);
495 cs_change = t->cs_change;
496 if (t->len)
497 status = fsl_spi_bufs(spi, t, m->is_dma_mapped);
498 if (status) {
499 status = -EMSGSIZE;
500 break;
502 m->actual_length += t->len;
504 if (t->delay_usecs)
505 udelay(t->delay_usecs);
507 if (cs_change) {
508 ndelay(nsecs);
509 fsl_spi_chipselect(spi, BITBANG_CS_INACTIVE);
510 ndelay(nsecs);
514 m->status = status;
515 m->complete(m->context);
517 if (status || !cs_change) {
518 ndelay(nsecs);
519 fsl_spi_chipselect(spi, BITBANG_CS_INACTIVE);
522 fsl_spi_setup_transfer(spi, NULL);
525 static int fsl_spi_setup(struct spi_device *spi)
527 struct mpc8xxx_spi *mpc8xxx_spi;
528 struct fsl_spi_reg *reg_base;
529 int retval;
530 u32 hw_mode;
531 struct spi_mpc8xxx_cs *cs = spi->controller_state;
533 if (!spi->max_speed_hz)
534 return -EINVAL;
536 if (!cs) {
537 cs = kzalloc(sizeof *cs, GFP_KERNEL);
538 if (!cs)
539 return -ENOMEM;
540 spi->controller_state = cs;
542 mpc8xxx_spi = spi_master_get_devdata(spi->master);
544 reg_base = mpc8xxx_spi->reg_base;
546 hw_mode = cs->hw_mode; /* Save original settings */
547 cs->hw_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
548 /* mask out bits we are going to set */
549 cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
550 | SPMODE_REV | SPMODE_LOOP);
552 if (spi->mode & SPI_CPHA)
553 cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;
554 if (spi->mode & SPI_CPOL)
555 cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
556 if (!(spi->mode & SPI_LSB_FIRST))
557 cs->hw_mode |= SPMODE_REV;
558 if (spi->mode & SPI_LOOP)
559 cs->hw_mode |= SPMODE_LOOP;
561 retval = fsl_spi_setup_transfer(spi, NULL);
562 if (retval < 0) {
563 cs->hw_mode = hw_mode; /* Restore settings */
564 return retval;
566 return 0;
569 static void fsl_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
571 u16 len;
572 struct fsl_spi_reg *reg_base = mspi->reg_base;
574 dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
575 in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);
577 len = in_be16(&mspi->rx_bd->cbd_datlen);
578 if (len > mspi->count) {
579 WARN_ON(1);
580 len = mspi->count;
583 /* Clear the events */
584 mpc8xxx_spi_write_reg(&reg_base->event, events);
586 mspi->count -= len;
587 if (mspi->count)
588 fsl_spi_cpm_bufs_start(mspi);
589 else
590 complete(&mspi->done);
593 static void fsl_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
595 struct fsl_spi_reg *reg_base = mspi->reg_base;
597 /* We need handle RX first */
598 if (events & SPIE_NE) {
599 u32 rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
601 if (mspi->rx)
602 mspi->get_rx(rx_data, mspi);
605 if ((events & SPIE_NF) == 0)
606 /* spin until TX is done */
607 while (((events =
608 mpc8xxx_spi_read_reg(&reg_base->event)) &
609 SPIE_NF) == 0)
610 cpu_relax();
612 /* Clear the events */
613 mpc8xxx_spi_write_reg(&reg_base->event, events);
615 mspi->count -= 1;
616 if (mspi->count) {
617 u32 word = mspi->get_tx(mspi);
619 mpc8xxx_spi_write_reg(&reg_base->transmit, word);
620 } else {
621 complete(&mspi->done);
625 static irqreturn_t fsl_spi_irq(s32 irq, void *context_data)
627 struct mpc8xxx_spi *mspi = context_data;
628 irqreturn_t ret = IRQ_NONE;
629 u32 events;
630 struct fsl_spi_reg *reg_base = mspi->reg_base;
632 /* Get interrupt events(tx/rx) */
633 events = mpc8xxx_spi_read_reg(&reg_base->event);
634 if (events)
635 ret = IRQ_HANDLED;
637 dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);
639 if (mspi->flags & SPI_CPM_MODE)
640 fsl_spi_cpm_irq(mspi, events);
641 else
642 fsl_spi_cpu_irq(mspi, events);
644 return ret;
647 static void *fsl_spi_alloc_dummy_rx(void)
649 mutex_lock(&fsl_dummy_rx_lock);
651 if (!fsl_dummy_rx)
652 fsl_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
653 if (fsl_dummy_rx)
654 fsl_dummy_rx_refcnt++;
656 mutex_unlock(&fsl_dummy_rx_lock);
658 return fsl_dummy_rx;
661 static void fsl_spi_free_dummy_rx(void)
663 mutex_lock(&fsl_dummy_rx_lock);
665 switch (fsl_dummy_rx_refcnt) {
666 case 0:
667 WARN_ON(1);
668 break;
669 case 1:
670 kfree(fsl_dummy_rx);
671 fsl_dummy_rx = NULL;
672 /* fall through */
673 default:
674 fsl_dummy_rx_refcnt--;
675 break;
678 mutex_unlock(&fsl_dummy_rx_lock);
681 static unsigned long fsl_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
683 struct device *dev = mspi->dev;
684 struct device_node *np = dev->of_node;
685 const u32 *iprop;
686 int size;
687 unsigned long spi_base_ofs;
688 unsigned long pram_ofs = -ENOMEM;
690 /* Can't use of_address_to_resource(), QE muram isn't at 0. */
691 iprop = of_get_property(np, "reg", &size);
693 /* QE with a fixed pram location? */
694 if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
695 return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);
697 /* QE but with a dynamic pram location? */
698 if (mspi->flags & SPI_QE) {
699 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
700 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
701 QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
702 return pram_ofs;
705 /* CPM1 and CPM2 pram must be at a fixed addr. */
706 if (!iprop || size != sizeof(*iprop) * 4)
707 return -ENOMEM;
709 spi_base_ofs = cpm_muram_alloc_fixed(iprop[2], 2);
710 if (IS_ERR_VALUE(spi_base_ofs))
711 return -ENOMEM;
713 if (mspi->flags & SPI_CPM2) {
714 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
715 if (!IS_ERR_VALUE(pram_ofs)) {
716 u16 __iomem *spi_base = cpm_muram_addr(spi_base_ofs);
718 out_be16(spi_base, pram_ofs);
720 } else {
721 struct spi_pram __iomem *pram = cpm_muram_addr(spi_base_ofs);
722 u16 rpbase = in_be16(&pram->rpbase);
724 /* Microcode relocation patch applied? */
725 if (rpbase)
726 pram_ofs = rpbase;
727 else
728 return spi_base_ofs;
731 cpm_muram_free(spi_base_ofs);
732 return pram_ofs;
735 static int fsl_spi_cpm_init(struct mpc8xxx_spi *mspi)
737 struct device *dev = mspi->dev;
738 struct device_node *np = dev->of_node;
739 const u32 *iprop;
740 int size;
741 unsigned long pram_ofs;
742 unsigned long bds_ofs;
744 if (!(mspi->flags & SPI_CPM_MODE))
745 return 0;
747 if (!fsl_spi_alloc_dummy_rx())
748 return -ENOMEM;
750 if (mspi->flags & SPI_QE) {
751 iprop = of_get_property(np, "cell-index", &size);
752 if (iprop && size == sizeof(*iprop))
753 mspi->subblock = *iprop;
755 switch (mspi->subblock) {
756 default:
757 dev_warn(dev, "cell-index unspecified, assuming SPI1");
758 /* fall through */
759 case 0:
760 mspi->subblock = QE_CR_SUBBLOCK_SPI1;
761 break;
762 case 1:
763 mspi->subblock = QE_CR_SUBBLOCK_SPI2;
764 break;
768 pram_ofs = fsl_spi_cpm_get_pram(mspi);
769 if (IS_ERR_VALUE(pram_ofs)) {
770 dev_err(dev, "can't allocate spi parameter ram\n");
771 goto err_pram;
774 bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
775 sizeof(*mspi->rx_bd), 8);
776 if (IS_ERR_VALUE(bds_ofs)) {
777 dev_err(dev, "can't allocate bds\n");
778 goto err_bds;
781 mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
782 DMA_TO_DEVICE);
783 if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
784 dev_err(dev, "unable to map dummy tx buffer\n");
785 goto err_dummy_tx;
788 mspi->dma_dummy_rx = dma_map_single(dev, fsl_dummy_rx, SPI_MRBLR,
789 DMA_FROM_DEVICE);
790 if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
791 dev_err(dev, "unable to map dummy rx buffer\n");
792 goto err_dummy_rx;
795 mspi->pram = cpm_muram_addr(pram_ofs);
797 mspi->tx_bd = cpm_muram_addr(bds_ofs);
798 mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));
800 /* Initialize parameter ram. */
801 out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
802 out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
803 out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
804 out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
805 out_be16(&mspi->pram->mrblr, SPI_MRBLR);
806 out_be32(&mspi->pram->rstate, 0);
807 out_be32(&mspi->pram->rdp, 0);
808 out_be16(&mspi->pram->rbptr, 0);
809 out_be16(&mspi->pram->rbc, 0);
810 out_be32(&mspi->pram->rxtmp, 0);
811 out_be32(&mspi->pram->tstate, 0);
812 out_be32(&mspi->pram->tdp, 0);
813 out_be16(&mspi->pram->tbptr, 0);
814 out_be16(&mspi->pram->tbc, 0);
815 out_be32(&mspi->pram->txtmp, 0);
817 return 0;
819 err_dummy_rx:
820 dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
821 err_dummy_tx:
822 cpm_muram_free(bds_ofs);
823 err_bds:
824 cpm_muram_free(pram_ofs);
825 err_pram:
826 fsl_spi_free_dummy_rx();
827 return -ENOMEM;
830 static void fsl_spi_cpm_free(struct mpc8xxx_spi *mspi)
832 struct device *dev = mspi->dev;
834 dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
835 dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
836 cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
837 cpm_muram_free(cpm_muram_offset(mspi->pram));
838 fsl_spi_free_dummy_rx();
841 static void fsl_spi_remove(struct mpc8xxx_spi *mspi)
843 iounmap(mspi->reg_base);
844 fsl_spi_cpm_free(mspi);
847 static struct spi_master * __devinit fsl_spi_probe(struct device *dev,
848 struct resource *mem, unsigned int irq)
850 struct fsl_spi_platform_data *pdata = dev->platform_data;
851 struct spi_master *master;
852 struct mpc8xxx_spi *mpc8xxx_spi;
853 struct fsl_spi_reg *reg_base;
854 u32 regval;
855 int ret = 0;
857 master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
858 if (master == NULL) {
859 ret = -ENOMEM;
860 goto err;
863 dev_set_drvdata(dev, master);
865 ret = mpc8xxx_spi_probe(dev, mem, irq);
866 if (ret)
867 goto err_probe;
869 master->setup = fsl_spi_setup;
871 mpc8xxx_spi = spi_master_get_devdata(master);
872 mpc8xxx_spi->spi_do_one_msg = fsl_spi_do_one_msg;
873 mpc8xxx_spi->spi_remove = fsl_spi_remove;
876 ret = fsl_spi_cpm_init(mpc8xxx_spi);
877 if (ret)
878 goto err_cpm_init;
880 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
881 mpc8xxx_spi->rx_shift = 16;
882 mpc8xxx_spi->tx_shift = 24;
885 mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
886 if (mpc8xxx_spi->reg_base == NULL) {
887 ret = -ENOMEM;
888 goto err_ioremap;
891 /* Register for SPI Interrupt */
892 ret = request_irq(mpc8xxx_spi->irq, fsl_spi_irq,
893 0, "fsl_spi", mpc8xxx_spi);
895 if (ret != 0)
896 goto free_irq;
898 reg_base = mpc8xxx_spi->reg_base;
900 /* SPI controller initializations */
901 mpc8xxx_spi_write_reg(&reg_base->mode, 0);
902 mpc8xxx_spi_write_reg(&reg_base->mask, 0);
903 mpc8xxx_spi_write_reg(&reg_base->command, 0);
904 mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
906 /* Enable SPI interface */
907 regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
908 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE)
909 regval |= SPMODE_OP;
911 mpc8xxx_spi_write_reg(&reg_base->mode, regval);
913 ret = spi_register_master(master);
914 if (ret < 0)
915 goto unreg_master;
917 dev_info(dev, "at 0x%p (irq = %d), %s mode\n", reg_base,
918 mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
920 return master;
922 unreg_master:
923 free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
924 free_irq:
925 iounmap(mpc8xxx_spi->reg_base);
926 err_ioremap:
927 fsl_spi_cpm_free(mpc8xxx_spi);
928 err_cpm_init:
929 err_probe:
930 spi_master_put(master);
931 err:
932 return ERR_PTR(ret);
935 static void fsl_spi_cs_control(struct spi_device *spi, bool on)
937 struct device *dev = spi->dev.parent;
938 struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data);
939 u16 cs = spi->chip_select;
940 int gpio = pinfo->gpios[cs];
941 bool alow = pinfo->alow_flags[cs];
943 gpio_set_value(gpio, on ^ alow);
946 static int of_fsl_spi_get_chipselects(struct device *dev)
948 struct device_node *np = dev->of_node;
949 struct fsl_spi_platform_data *pdata = dev->platform_data;
950 struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
951 unsigned int ngpios;
952 int i = 0;
953 int ret;
955 ngpios = of_gpio_count(np);
956 if (!ngpios) {
958 * SPI w/o chip-select line. One SPI device is still permitted
959 * though.
961 pdata->max_chipselect = 1;
962 return 0;
965 pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
966 if (!pinfo->gpios)
967 return -ENOMEM;
968 memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
970 pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
971 GFP_KERNEL);
972 if (!pinfo->alow_flags) {
973 ret = -ENOMEM;
974 goto err_alloc_flags;
977 for (; i < ngpios; i++) {
978 int gpio;
979 enum of_gpio_flags flags;
981 gpio = of_get_gpio_flags(np, i, &flags);
982 if (!gpio_is_valid(gpio)) {
983 dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
984 ret = gpio;
985 goto err_loop;
988 ret = gpio_request(gpio, dev_name(dev));
989 if (ret) {
990 dev_err(dev, "can't request gpio #%d: %d\n", i, ret);
991 goto err_loop;
994 pinfo->gpios[i] = gpio;
995 pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW;
997 ret = gpio_direction_output(pinfo->gpios[i],
998 pinfo->alow_flags[i]);
999 if (ret) {
1000 dev_err(dev, "can't set output direction for gpio "
1001 "#%d: %d\n", i, ret);
1002 goto err_loop;
1006 pdata->max_chipselect = ngpios;
1007 pdata->cs_control = fsl_spi_cs_control;
1009 return 0;
1011 err_loop:
1012 while (i >= 0) {
1013 if (gpio_is_valid(pinfo->gpios[i]))
1014 gpio_free(pinfo->gpios[i]);
1015 i--;
1018 kfree(pinfo->alow_flags);
1019 pinfo->alow_flags = NULL;
1020 err_alloc_flags:
1021 kfree(pinfo->gpios);
1022 pinfo->gpios = NULL;
1023 return ret;
1026 static int of_fsl_spi_free_chipselects(struct device *dev)
1028 struct fsl_spi_platform_data *pdata = dev->platform_data;
1029 struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1030 int i;
1032 if (!pinfo->gpios)
1033 return 0;
1035 for (i = 0; i < pdata->max_chipselect; i++) {
1036 if (gpio_is_valid(pinfo->gpios[i]))
1037 gpio_free(pinfo->gpios[i]);
1040 kfree(pinfo->gpios);
1041 kfree(pinfo->alow_flags);
1042 return 0;
1045 static int __devinit of_fsl_spi_probe(struct platform_device *ofdev)
1047 struct device *dev = &ofdev->dev;
1048 struct device_node *np = ofdev->dev.of_node;
1049 struct spi_master *master;
1050 struct resource mem;
1051 struct resource irq;
1052 int ret = -ENOMEM;
1054 ret = of_mpc8xxx_spi_probe(ofdev);
1055 if (ret)
1056 return ret;
1058 ret = of_fsl_spi_get_chipselects(dev);
1059 if (ret)
1060 goto err;
1062 ret = of_address_to_resource(np, 0, &mem);
1063 if (ret)
1064 goto err;
1066 ret = of_irq_to_resource(np, 0, &irq);
1067 if (!ret) {
1068 ret = -EINVAL;
1069 goto err;
1072 master = fsl_spi_probe(dev, &mem, irq.start);
1073 if (IS_ERR(master)) {
1074 ret = PTR_ERR(master);
1075 goto err;
1078 return 0;
1080 err:
1081 of_fsl_spi_free_chipselects(dev);
1082 return ret;
1085 static int __devexit of_fsl_spi_remove(struct platform_device *ofdev)
1087 int ret;
1089 ret = mpc8xxx_spi_remove(&ofdev->dev);
1090 if (ret)
1091 return ret;
1092 of_fsl_spi_free_chipselects(&ofdev->dev);
1093 return 0;
1096 static const struct of_device_id of_fsl_spi_match[] = {
1097 { .compatible = "fsl,spi" },
1100 MODULE_DEVICE_TABLE(of, of_fsl_spi_match);
1102 static struct platform_driver of_fsl_spi_driver = {
1103 .driver = {
1104 .name = "fsl_spi",
1105 .owner = THIS_MODULE,
1106 .of_match_table = of_fsl_spi_match,
1108 .probe = of_fsl_spi_probe,
1109 .remove = __devexit_p(of_fsl_spi_remove),
1112 #ifdef CONFIG_MPC832x_RDB
1114 * XXX XXX XXX
1115 * This is "legacy" platform driver, was used by the MPC8323E-RDB boards
1116 * only. The driver should go away soon, since newer MPC8323E-RDB's device
1117 * tree can work with OpenFirmware driver. But for now we support old trees
1118 * as well.
1120 static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev)
1122 struct resource *mem;
1123 int irq;
1124 struct spi_master *master;
1126 if (!pdev->dev.platform_data)
1127 return -EINVAL;
1129 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1130 if (!mem)
1131 return -EINVAL;
1133 irq = platform_get_irq(pdev, 0);
1134 if (irq <= 0)
1135 return -EINVAL;
1137 master = fsl_spi_probe(&pdev->dev, mem, irq);
1138 if (IS_ERR(master))
1139 return PTR_ERR(master);
1140 return 0;
1143 static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev)
1145 return mpc8xxx_spi_remove(&pdev->dev);
1148 MODULE_ALIAS("platform:mpc8xxx_spi");
1149 static struct platform_driver mpc8xxx_spi_driver = {
1150 .probe = plat_mpc8xxx_spi_probe,
1151 .remove = __devexit_p(plat_mpc8xxx_spi_remove),
1152 .driver = {
1153 .name = "mpc8xxx_spi",
1154 .owner = THIS_MODULE,
1158 static bool legacy_driver_failed;
1160 static void __init legacy_driver_register(void)
1162 legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver);
1165 static void __exit legacy_driver_unregister(void)
1167 if (legacy_driver_failed)
1168 return;
1169 platform_driver_unregister(&mpc8xxx_spi_driver);
1171 #else
1172 static void __init legacy_driver_register(void) {}
1173 static void __exit legacy_driver_unregister(void) {}
1174 #endif /* CONFIG_MPC832x_RDB */
1176 static int __init fsl_spi_init(void)
1178 legacy_driver_register();
1179 return platform_driver_register(&of_fsl_spi_driver);
1181 module_init(fsl_spi_init);
1183 static void __exit fsl_spi_exit(void)
1185 platform_driver_unregister(&of_fsl_spi_driver);
1186 legacy_driver_unregister();
1188 module_exit(fsl_spi_exit);
1190 MODULE_AUTHOR("Kumar Gala");
1191 MODULE_DESCRIPTION("Simple Freescale SPI Driver");
1192 MODULE_LICENSE("GPL");