tree-wide: Assorted spelling fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / media / video / gspca / ov519.c
blobe5e4c4440d3949e64dd742d5094eb52cf80a03b1
1 /**
2 * OV519 driver
4 * Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr)
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
10 * Original copyright for the ov511 driver is:
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
19 * ov51x-jpeg original copyright is:
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 #define MODULE_NAME "ov519"
41 #include "gspca.h"
43 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
44 MODULE_DESCRIPTION("OV519 USB Camera Driver");
45 MODULE_LICENSE("GPL");
47 /* global parameters */
48 static int frame_rate;
50 /* Number of times to retry a failed I2C transaction. Increase this if you
51 * are getting "Failed to read sensor ID..." */
52 static int i2c_detect_tries = 10;
54 /* ov519 device descriptor */
55 struct sd {
56 struct gspca_dev gspca_dev; /* !! must be the first item */
58 __u8 packet_nr;
60 char bridge;
61 #define BRIDGE_OV511 0
62 #define BRIDGE_OV511PLUS 1
63 #define BRIDGE_OV518 2
64 #define BRIDGE_OV518PLUS 3
65 #define BRIDGE_OV519 4
66 #define BRIDGE_OVFX2 5
67 #define BRIDGE_W9968CF 6
68 #define BRIDGE_MASK 7
70 char invert_led;
71 #define BRIDGE_INVERT_LED 8
73 /* Determined by sensor type */
74 __u8 sif;
76 __u8 brightness;
77 __u8 contrast;
78 __u8 colors;
79 __u8 hflip;
80 __u8 vflip;
81 __u8 autobrightness;
82 __u8 freq;
83 __u8 quality;
84 #define QUALITY_MIN 50
85 #define QUALITY_MAX 70
86 #define QUALITY_DEF 50
88 __u8 stopped; /* Streaming is temporarily paused */
90 __u8 frame_rate; /* current Framerate */
91 __u8 clockdiv; /* clockdiv override */
93 char sensor; /* Type of image sensor chip (SEN_*) */
94 #define SEN_UNKNOWN 0
95 #define SEN_OV2610 1
96 #define SEN_OV3610 2
97 #define SEN_OV6620 3
98 #define SEN_OV6630 4
99 #define SEN_OV66308AF 5
100 #define SEN_OV7610 6
101 #define SEN_OV7620 7
102 #define SEN_OV7640 8
103 #define SEN_OV7670 9
104 #define SEN_OV76BE 10
105 #define SEN_OV8610 11
107 u8 sensor_addr;
108 int sensor_width;
109 int sensor_height;
110 int sensor_reg_cache[256];
112 u8 *jpeg_hdr;
115 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
116 the ov sensors which is already present here. When we have the time we
117 really should move the sensor drivers to v4l2 sub drivers. */
118 #include "w996Xcf.c"
120 /* V4L2 controls supported by the driver */
121 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
122 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
123 static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val);
124 static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val);
125 static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val);
126 static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val);
127 static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val);
128 static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val);
129 static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val);
130 static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val);
131 static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val);
132 static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val);
133 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
134 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
135 static void setbrightness(struct gspca_dev *gspca_dev);
136 static void setcontrast(struct gspca_dev *gspca_dev);
137 static void setcolors(struct gspca_dev *gspca_dev);
138 static void setautobrightness(struct sd *sd);
139 static void setfreq(struct sd *sd);
141 static const struct ctrl sd_ctrls[] = {
144 .id = V4L2_CID_BRIGHTNESS,
145 .type = V4L2_CTRL_TYPE_INTEGER,
146 .name = "Brightness",
147 .minimum = 0,
148 .maximum = 255,
149 .step = 1,
150 #define BRIGHTNESS_DEF 127
151 .default_value = BRIGHTNESS_DEF,
153 .set = sd_setbrightness,
154 .get = sd_getbrightness,
158 .id = V4L2_CID_CONTRAST,
159 .type = V4L2_CTRL_TYPE_INTEGER,
160 .name = "Contrast",
161 .minimum = 0,
162 .maximum = 255,
163 .step = 1,
164 #define CONTRAST_DEF 127
165 .default_value = CONTRAST_DEF,
167 .set = sd_setcontrast,
168 .get = sd_getcontrast,
172 .id = V4L2_CID_SATURATION,
173 .type = V4L2_CTRL_TYPE_INTEGER,
174 .name = "Color",
175 .minimum = 0,
176 .maximum = 255,
177 .step = 1,
178 #define COLOR_DEF 127
179 .default_value = COLOR_DEF,
181 .set = sd_setcolors,
182 .get = sd_getcolors,
184 /* The flip controls work with ov7670 only */
185 #define HFLIP_IDX 3
188 .id = V4L2_CID_HFLIP,
189 .type = V4L2_CTRL_TYPE_BOOLEAN,
190 .name = "Mirror",
191 .minimum = 0,
192 .maximum = 1,
193 .step = 1,
194 #define HFLIP_DEF 0
195 .default_value = HFLIP_DEF,
197 .set = sd_sethflip,
198 .get = sd_gethflip,
200 #define VFLIP_IDX 4
203 .id = V4L2_CID_VFLIP,
204 .type = V4L2_CTRL_TYPE_BOOLEAN,
205 .name = "Vflip",
206 .minimum = 0,
207 .maximum = 1,
208 .step = 1,
209 #define VFLIP_DEF 0
210 .default_value = VFLIP_DEF,
212 .set = sd_setvflip,
213 .get = sd_getvflip,
215 #define AUTOBRIGHT_IDX 5
218 .id = V4L2_CID_AUTOBRIGHTNESS,
219 .type = V4L2_CTRL_TYPE_BOOLEAN,
220 .name = "Auto Brightness",
221 .minimum = 0,
222 .maximum = 1,
223 .step = 1,
224 #define AUTOBRIGHT_DEF 1
225 .default_value = AUTOBRIGHT_DEF,
227 .set = sd_setautobrightness,
228 .get = sd_getautobrightness,
230 #define FREQ_IDX 6
233 .id = V4L2_CID_POWER_LINE_FREQUENCY,
234 .type = V4L2_CTRL_TYPE_MENU,
235 .name = "Light frequency filter",
236 .minimum = 0,
237 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
238 .step = 1,
239 #define FREQ_DEF 0
240 .default_value = FREQ_DEF,
242 .set = sd_setfreq,
243 .get = sd_getfreq,
245 #define OV7670_FREQ_IDX 7
248 .id = V4L2_CID_POWER_LINE_FREQUENCY,
249 .type = V4L2_CTRL_TYPE_MENU,
250 .name = "Light frequency filter",
251 .minimum = 0,
252 .maximum = 3, /* 0: 0, 1: 50Hz, 2:60Hz 3: Auto Hz */
253 .step = 1,
254 #define OV7670_FREQ_DEF 3
255 .default_value = OV7670_FREQ_DEF,
257 .set = sd_setfreq,
258 .get = sd_getfreq,
262 static const struct v4l2_pix_format ov519_vga_mode[] = {
263 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
264 .bytesperline = 320,
265 .sizeimage = 320 * 240 * 3 / 8 + 590,
266 .colorspace = V4L2_COLORSPACE_JPEG,
267 .priv = 1},
268 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
269 .bytesperline = 640,
270 .sizeimage = 640 * 480 * 3 / 8 + 590,
271 .colorspace = V4L2_COLORSPACE_JPEG,
272 .priv = 0},
274 static const struct v4l2_pix_format ov519_sif_mode[] = {
275 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
276 .bytesperline = 160,
277 .sizeimage = 160 * 120 * 3 / 8 + 590,
278 .colorspace = V4L2_COLORSPACE_JPEG,
279 .priv = 3},
280 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
281 .bytesperline = 176,
282 .sizeimage = 176 * 144 * 3 / 8 + 590,
283 .colorspace = V4L2_COLORSPACE_JPEG,
284 .priv = 1},
285 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
286 .bytesperline = 320,
287 .sizeimage = 320 * 240 * 3 / 8 + 590,
288 .colorspace = V4L2_COLORSPACE_JPEG,
289 .priv = 2},
290 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
291 .bytesperline = 352,
292 .sizeimage = 352 * 288 * 3 / 8 + 590,
293 .colorspace = V4L2_COLORSPACE_JPEG,
294 .priv = 0},
297 /* Note some of the sizeimage values for the ov511 / ov518 may seem
298 larger then necessary, however they need to be this big as the ov511 /
299 ov518 always fills the entire isoc frame, using 0 padding bytes when
300 it doesn't have any data. So with low framerates the amount of data
301 transfered can become quite large (libv4l will remove all the 0 padding
302 in userspace). */
303 static const struct v4l2_pix_format ov518_vga_mode[] = {
304 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
305 .bytesperline = 320,
306 .sizeimage = 320 * 240 * 3,
307 .colorspace = V4L2_COLORSPACE_JPEG,
308 .priv = 1},
309 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
310 .bytesperline = 640,
311 .sizeimage = 640 * 480 * 2,
312 .colorspace = V4L2_COLORSPACE_JPEG,
313 .priv = 0},
315 static const struct v4l2_pix_format ov518_sif_mode[] = {
316 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
317 .bytesperline = 160,
318 .sizeimage = 70000,
319 .colorspace = V4L2_COLORSPACE_JPEG,
320 .priv = 3},
321 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
322 .bytesperline = 176,
323 .sizeimage = 70000,
324 .colorspace = V4L2_COLORSPACE_JPEG,
325 .priv = 1},
326 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
327 .bytesperline = 320,
328 .sizeimage = 320 * 240 * 3,
329 .colorspace = V4L2_COLORSPACE_JPEG,
330 .priv = 2},
331 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
332 .bytesperline = 352,
333 .sizeimage = 352 * 288 * 3,
334 .colorspace = V4L2_COLORSPACE_JPEG,
335 .priv = 0},
338 static const struct v4l2_pix_format ov511_vga_mode[] = {
339 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
340 .bytesperline = 320,
341 .sizeimage = 320 * 240 * 3,
342 .colorspace = V4L2_COLORSPACE_JPEG,
343 .priv = 1},
344 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
345 .bytesperline = 640,
346 .sizeimage = 640 * 480 * 2,
347 .colorspace = V4L2_COLORSPACE_JPEG,
348 .priv = 0},
350 static const struct v4l2_pix_format ov511_sif_mode[] = {
351 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
352 .bytesperline = 160,
353 .sizeimage = 70000,
354 .colorspace = V4L2_COLORSPACE_JPEG,
355 .priv = 3},
356 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
357 .bytesperline = 176,
358 .sizeimage = 70000,
359 .colorspace = V4L2_COLORSPACE_JPEG,
360 .priv = 1},
361 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
362 .bytesperline = 320,
363 .sizeimage = 320 * 240 * 3,
364 .colorspace = V4L2_COLORSPACE_JPEG,
365 .priv = 2},
366 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
367 .bytesperline = 352,
368 .sizeimage = 352 * 288 * 3,
369 .colorspace = V4L2_COLORSPACE_JPEG,
370 .priv = 0},
373 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
374 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
375 .bytesperline = 320,
376 .sizeimage = 320 * 240,
377 .colorspace = V4L2_COLORSPACE_SRGB,
378 .priv = 1},
379 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
380 .bytesperline = 640,
381 .sizeimage = 640 * 480,
382 .colorspace = V4L2_COLORSPACE_SRGB,
383 .priv = 0},
385 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
386 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
387 .bytesperline = 160,
388 .sizeimage = 160 * 120,
389 .colorspace = V4L2_COLORSPACE_SRGB,
390 .priv = 3},
391 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
392 .bytesperline = 176,
393 .sizeimage = 176 * 144,
394 .colorspace = V4L2_COLORSPACE_SRGB,
395 .priv = 1},
396 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
397 .bytesperline = 320,
398 .sizeimage = 320 * 240,
399 .colorspace = V4L2_COLORSPACE_SRGB,
400 .priv = 2},
401 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
402 .bytesperline = 352,
403 .sizeimage = 352 * 288,
404 .colorspace = V4L2_COLORSPACE_SRGB,
405 .priv = 0},
407 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
408 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
409 .bytesperline = 1600,
410 .sizeimage = 1600 * 1200,
411 .colorspace = V4L2_COLORSPACE_SRGB},
413 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
414 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
415 .bytesperline = 640,
416 .sizeimage = 640 * 480,
417 .colorspace = V4L2_COLORSPACE_SRGB,
418 .priv = 1},
419 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
420 .bytesperline = 800,
421 .sizeimage = 800 * 600,
422 .colorspace = V4L2_COLORSPACE_SRGB,
423 .priv = 1},
424 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
425 .bytesperline = 1024,
426 .sizeimage = 1024 * 768,
427 .colorspace = V4L2_COLORSPACE_SRGB,
428 .priv = 1},
429 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
430 .bytesperline = 1600,
431 .sizeimage = 1600 * 1200,
432 .colorspace = V4L2_COLORSPACE_SRGB,
433 .priv = 0},
434 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
435 .bytesperline = 2048,
436 .sizeimage = 2048 * 1536,
437 .colorspace = V4L2_COLORSPACE_SRGB,
438 .priv = 0},
442 /* Registers common to OV511 / OV518 */
443 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
444 #define R51x_SYS_RESET 0x50
445 /* Reset type flags */
446 #define OV511_RESET_OMNICE 0x08
447 #define R51x_SYS_INIT 0x53
448 #define R51x_SYS_SNAP 0x52
449 #define R51x_SYS_CUST_ID 0x5F
450 #define R51x_COMP_LUT_BEGIN 0x80
452 /* OV511 Camera interface register numbers */
453 #define R511_CAM_DELAY 0x10
454 #define R511_CAM_EDGE 0x11
455 #define R511_CAM_PXCNT 0x12
456 #define R511_CAM_LNCNT 0x13
457 #define R511_CAM_PXDIV 0x14
458 #define R511_CAM_LNDIV 0x15
459 #define R511_CAM_UV_EN 0x16
460 #define R511_CAM_LINE_MODE 0x17
461 #define R511_CAM_OPTS 0x18
463 #define R511_SNAP_FRAME 0x19
464 #define R511_SNAP_PXCNT 0x1A
465 #define R511_SNAP_LNCNT 0x1B
466 #define R511_SNAP_PXDIV 0x1C
467 #define R511_SNAP_LNDIV 0x1D
468 #define R511_SNAP_UV_EN 0x1E
469 #define R511_SNAP_UV_EN 0x1E
470 #define R511_SNAP_OPTS 0x1F
472 #define R511_DRAM_FLOW_CTL 0x20
473 #define R511_FIFO_OPTS 0x31
474 #define R511_I2C_CTL 0x40
475 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
476 #define R511_COMP_EN 0x78
477 #define R511_COMP_LUT_EN 0x79
479 /* OV518 Camera interface register numbers */
480 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
481 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
483 /* OV519 Camera interface register numbers */
484 #define OV519_R10_H_SIZE 0x10
485 #define OV519_R11_V_SIZE 0x11
486 #define OV519_R12_X_OFFSETL 0x12
487 #define OV519_R13_X_OFFSETH 0x13
488 #define OV519_R14_Y_OFFSETL 0x14
489 #define OV519_R15_Y_OFFSETH 0x15
490 #define OV519_R16_DIVIDER 0x16
491 #define OV519_R20_DFR 0x20
492 #define OV519_R25_FORMAT 0x25
494 /* OV519 System Controller register numbers */
495 #define OV519_SYS_RESET1 0x51
496 #define OV519_SYS_EN_CLK1 0x54
498 #define OV519_GPIO_DATA_OUT0 0x71
499 #define OV519_GPIO_IO_CTRL0 0x72
501 #define OV511_ENDPOINT_ADDRESS 1 /* Isoc endpoint number */
504 * The FX2 chip does not give us a zero length read at end of frame.
505 * It does, however, give a short read at the end of a frame, if
506 * necessary, rather than run two frames together.
508 * By choosing the right bulk transfer size, we are guaranteed to always
509 * get a short read for the last read of each frame. Frame sizes are
510 * always a composite number (width * height, or a multiple) so if we
511 * choose a prime number, we are guaranteed that the last read of a
512 * frame will be short.
514 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
515 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
516 * to figure out why. [PMiller]
518 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
520 * It isn't enough to know the number of bytes per frame, in case we
521 * have data dropouts or buffer overruns (even though the FX2 double
522 * buffers, there are some pretty strict real time constraints for
523 * isochronous transfer for larger frame sizes).
525 #define OVFX2_BULK_SIZE (13 * 4096)
527 /* I2C registers */
528 #define R51x_I2C_W_SID 0x41
529 #define R51x_I2C_SADDR_3 0x42
530 #define R51x_I2C_SADDR_2 0x43
531 #define R51x_I2C_R_SID 0x44
532 #define R51x_I2C_DATA 0x45
533 #define R518_I2C_CTL 0x47 /* OV518(+) only */
534 #define OVFX2_I2C_ADDR 0x00
536 /* I2C ADDRESSES */
537 #define OV7xx0_SID 0x42
538 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
539 #define OV8xx0_SID 0xa0
540 #define OV6xx0_SID 0xc0
542 /* OV7610 registers */
543 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
544 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
545 #define OV7610_REG_RED 0x02 /* red channel balance */
546 #define OV7610_REG_SAT 0x03 /* saturation */
547 #define OV8610_REG_HUE 0x04 /* 04 reserved */
548 #define OV7610_REG_CNT 0x05 /* Y contrast */
549 #define OV7610_REG_BRT 0x06 /* Y brightness */
550 #define OV7610_REG_COM_C 0x14 /* misc common regs */
551 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
552 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
553 #define OV7610_REG_COM_I 0x29 /* misc settings */
555 /* OV7670 registers */
556 #define OV7670_REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
557 #define OV7670_REG_BLUE 0x01 /* blue gain */
558 #define OV7670_REG_RED 0x02 /* red gain */
559 #define OV7670_REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
560 #define OV7670_REG_COM1 0x04 /* Control 1 */
561 #define OV7670_REG_AECHH 0x07 /* AEC MS 5 bits */
562 #define OV7670_REG_COM3 0x0c /* Control 3 */
563 #define OV7670_REG_COM4 0x0d /* Control 4 */
564 #define OV7670_REG_COM5 0x0e /* All "reserved" */
565 #define OV7670_REG_COM6 0x0f /* Control 6 */
566 #define OV7670_REG_AECH 0x10 /* More bits of AEC value */
567 #define OV7670_REG_CLKRC 0x11 /* Clock control */
568 #define OV7670_REG_COM7 0x12 /* Control 7 */
569 #define OV7670_COM7_FMT_VGA 0x00
570 #define OV7670_COM7_YUV 0x00 /* YUV */
571 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
572 #define OV7670_COM7_FMT_MASK 0x38
573 #define OV7670_COM7_RESET 0x80 /* Register reset */
574 #define OV7670_REG_COM8 0x13 /* Control 8 */
575 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
576 #define OV7670_COM8_AWB 0x02 /* White balance enable */
577 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
578 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
579 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
580 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
581 #define OV7670_REG_COM9 0x14 /* Control 9 - gain ceiling */
582 #define OV7670_REG_COM10 0x15 /* Control 10 */
583 #define OV7670_REG_HSTART 0x17 /* Horiz start high bits */
584 #define OV7670_REG_HSTOP 0x18 /* Horiz stop high bits */
585 #define OV7670_REG_VSTART 0x19 /* Vert start high bits */
586 #define OV7670_REG_VSTOP 0x1a /* Vert stop high bits */
587 #define OV7670_REG_MVFP 0x1e /* Mirror / vflip */
588 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
589 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
590 #define OV7670_REG_AEW 0x24 /* AGC upper limit */
591 #define OV7670_REG_AEB 0x25 /* AGC lower limit */
592 #define OV7670_REG_VPT 0x26 /* AGC/AEC fast mode op region */
593 #define OV7670_REG_HREF 0x32 /* HREF pieces */
594 #define OV7670_REG_TSLB 0x3a /* lots of stuff */
595 #define OV7670_REG_COM11 0x3b /* Control 11 */
596 #define OV7670_COM11_EXP 0x02
597 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
598 #define OV7670_REG_COM12 0x3c /* Control 12 */
599 #define OV7670_REG_COM13 0x3d /* Control 13 */
600 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
601 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
602 #define OV7670_REG_COM14 0x3e /* Control 14 */
603 #define OV7670_REG_EDGE 0x3f /* Edge enhancement factor */
604 #define OV7670_REG_COM15 0x40 /* Control 15 */
605 #define OV7670_COM15_R00FF 0xc0 /* 00 to FF */
606 #define OV7670_REG_COM16 0x41 /* Control 16 */
607 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
608 #define OV7670_REG_BRIGHT 0x55 /* Brightness */
609 #define OV7670_REG_CONTRAS 0x56 /* Contrast control */
610 #define OV7670_REG_GFIX 0x69 /* Fix gain control */
611 #define OV7670_REG_RGB444 0x8c /* RGB 444 control */
612 #define OV7670_REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
613 #define OV7670_REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
614 #define OV7670_REG_BD50MAX 0xa5 /* 50hz banding step limit */
615 #define OV7670_REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
616 #define OV7670_REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
617 #define OV7670_REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
618 #define OV7670_REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
619 #define OV7670_REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
620 #define OV7670_REG_BD60MAX 0xab /* 60hz banding step limit */
622 struct ov_regvals {
623 __u8 reg;
624 __u8 val;
626 struct ov_i2c_regvals {
627 __u8 reg;
628 __u8 val;
631 /* Settings for OV2610 camera chip */
632 static const struct ov_i2c_regvals norm_2610[] =
634 { 0x12, 0x80 }, /* reset */
637 static const struct ov_i2c_regvals norm_3620b[] =
640 * From the datasheet: "Note that after writing to register COMH
641 * (0x12) to change the sensor mode, registers related to the
642 * sensor’s cropping window will be reset back to their default
643 * values."
645 * "wait 4096 external clock ... to make sure the sensor is
646 * stable and ready to access registers" i.e. 160us at 24MHz
649 { 0x12, 0x80 }, /* COMH reset */
650 { 0x12, 0x00 }, /* QXGA, master */
653 * 11 CLKRC "Clock Rate Control"
654 * [7] internal frequency doublers: on
655 * [6] video port mode: master
656 * [5:0] clock divider: 1
658 { 0x11, 0x80 },
661 * 13 COMI "Common Control I"
662 * = 192 (0xC0) 11000000
663 * COMI[7] "AEC speed selection"
664 * = 1 (0x01) 1....... "Faster AEC correction"
665 * COMI[6] "AEC speed step selection"
666 * = 1 (0x01) .1...... "Big steps, fast"
667 * COMI[5] "Banding filter on off"
668 * = 0 (0x00) ..0..... "Off"
669 * COMI[4] "Banding filter option"
670 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
671 * the PLL is ON"
672 * COMI[3] "Reserved"
673 * = 0 (0x00) ....0...
674 * COMI[2] "AGC auto manual control selection"
675 * = 0 (0x00) .....0.. "Manual"
676 * COMI[1] "AWB auto manual control selection"
677 * = 0 (0x00) ......0. "Manual"
678 * COMI[0] "Exposure control"
679 * = 0 (0x00) .......0 "Manual"
681 { 0x13, 0xC0 },
684 * 09 COMC "Common Control C"
685 * = 8 (0x08) 00001000
686 * COMC[7:5] "Reserved"
687 * = 0 (0x00) 000.....
688 * COMC[4] "Sleep Mode Enable"
689 * = 0 (0x00) ...0.... "Normal mode"
690 * COMC[3:2] "Sensor sampling reset timing selection"
691 * = 2 (0x02) ....10.. "Longer reset time"
692 * COMC[1:0] "Output drive current select"
693 * = 0 (0x00) ......00 "Weakest"
695 { 0x09, 0x08 },
698 * 0C COMD "Common Control D"
699 * = 8 (0x08) 00001000
700 * COMD[7] "Reserved"
701 * = 0 (0x00) 0.......
702 * COMD[6] "Swap MSB and LSB at the output port"
703 * = 0 (0x00) .0...... "False"
704 * COMD[5:3] "Reserved"
705 * = 1 (0x01) ..001...
706 * COMD[2] "Output Average On Off"
707 * = 0 (0x00) .....0.. "Output Normal"
708 * COMD[1] "Sensor precharge voltage selection"
709 * = 0 (0x00) ......0. "Selects internal
710 * reference precharge
711 * voltage"
712 * COMD[0] "Snapshot option"
713 * = 0 (0x00) .......0 "Enable live video output
714 * after snapshot sequence"
716 { 0x0c, 0x08 },
719 * 0D COME "Common Control E"
720 * = 161 (0xA1) 10100001
721 * COME[7] "Output average option"
722 * = 1 (0x01) 1....... "Output average of 4 pixels"
723 * COME[6] "Anti-blooming control"
724 * = 0 (0x00) .0...... "Off"
725 * COME[5:3] "Reserved"
726 * = 4 (0x04) ..100...
727 * COME[2] "Clock output power down pin status"
728 * = 0 (0x00) .....0.. "Tri-state data output pin
729 * on power down"
730 * COME[1] "Data output pin status selection at power down"
731 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
732 * HREF, and CHSYNC pins on
733 * power down"
734 * COME[0] "Auto zero circuit select"
735 * = 1 (0x01) .......1 "On"
737 { 0x0d, 0xA1 },
740 * 0E COMF "Common Control F"
741 * = 112 (0x70) 01110000
742 * COMF[7] "System clock selection"
743 * = 0 (0x00) 0....... "Use 24 MHz system clock"
744 * COMF[6:4] "Reserved"
745 * = 7 (0x07) .111....
746 * COMF[3] "Manual auto negative offset canceling selection"
747 * = 0 (0x00) ....0... "Auto detect negative
748 * offset and cancel it"
749 * COMF[2:0] "Reserved"
750 * = 0 (0x00) .....000
752 { 0x0e, 0x70 },
755 * 0F COMG "Common Control G"
756 * = 66 (0x42) 01000010
757 * COMG[7] "Optical black output selection"
758 * = 0 (0x00) 0....... "Disable"
759 * COMG[6] "Black level calibrate selection"
760 * = 1 (0x01) .1...... "Use optical black pixels
761 * to calibrate"
762 * COMG[5:4] "Reserved"
763 * = 0 (0x00) ..00....
764 * COMG[3] "Channel offset adjustment"
765 * = 0 (0x00) ....0... "Disable offset adjustment"
766 * COMG[2] "ADC black level calibration option"
767 * = 0 (0x00) .....0.. "Use B/G line and G/R
768 * line to calibrate each
769 * channel's black level"
770 * COMG[1] "Reserved"
771 * = 1 (0x01) ......1.
772 * COMG[0] "ADC black level calibration enable"
773 * = 0 (0x00) .......0 "Disable"
775 { 0x0f, 0x42 },
778 * 14 COMJ "Common Control J"
779 * = 198 (0xC6) 11000110
780 * COMJ[7:6] "AGC gain ceiling"
781 * = 3 (0x03) 11...... "8x"
782 * COMJ[5:4] "Reserved"
783 * = 0 (0x00) ..00....
784 * COMJ[3] "Auto banding filter"
785 * = 0 (0x00) ....0... "Banding filter is always
786 * on off depending on
787 * COMI[5] setting"
788 * COMJ[2] "VSYNC drop option"
789 * = 1 (0x01) .....1.. "SYNC is dropped if frame
790 * data is dropped"
791 * COMJ[1] "Frame data drop"
792 * = 1 (0x01) ......1. "Drop frame data if
793 * exposure is not within
794 * tolerance. In AEC mode,
795 * data is normally dropped
796 * when data is out of
797 * range."
798 * COMJ[0] "Reserved"
799 * = 0 (0x00) .......0
801 { 0x14, 0xC6 },
804 * 15 COMK "Common Control K"
805 * = 2 (0x02) 00000010
806 * COMK[7] "CHSYNC pin output swap"
807 * = 0 (0x00) 0....... "CHSYNC"
808 * COMK[6] "HREF pin output swap"
809 * = 0 (0x00) .0...... "HREF"
810 * COMK[5] "PCLK output selection"
811 * = 0 (0x00) ..0..... "PCLK always output"
812 * COMK[4] "PCLK edge selection"
813 * = 0 (0x00) ...0.... "Data valid on falling edge"
814 * COMK[3] "HREF output polarity"
815 * = 0 (0x00) ....0... "positive"
816 * COMK[2] "Reserved"
817 * = 0 (0x00) .....0..
818 * COMK[1] "VSYNC polarity"
819 * = 1 (0x01) ......1. "negative"
820 * COMK[0] "HSYNC polarity"
821 * = 0 (0x00) .......0 "positive"
823 { 0x15, 0x02 },
826 * 33 CHLF "Current Control"
827 * = 9 (0x09) 00001001
828 * CHLF[7:6] "Sensor current control"
829 * = 0 (0x00) 00......
830 * CHLF[5] "Sensor current range control"
831 * = 0 (0x00) ..0..... "normal range"
832 * CHLF[4] "Sensor current"
833 * = 0 (0x00) ...0.... "normal current"
834 * CHLF[3] "Sensor buffer current control"
835 * = 1 (0x01) ....1... "half current"
836 * CHLF[2] "Column buffer current control"
837 * = 0 (0x00) .....0.. "normal current"
838 * CHLF[1] "Analog DSP current control"
839 * = 0 (0x00) ......0. "normal current"
840 * CHLF[1] "ADC current control"
841 * = 0 (0x00) ......0. "normal current"
843 { 0x33, 0x09 },
846 * 34 VBLM "Blooming Control"
847 * = 80 (0x50) 01010000
848 * VBLM[7] "Hard soft reset switch"
849 * = 0 (0x00) 0....... "Hard reset"
850 * VBLM[6:4] "Blooming voltage selection"
851 * = 5 (0x05) .101....
852 * VBLM[3:0] "Sensor current control"
853 * = 0 (0x00) ....0000
855 { 0x34, 0x50 },
858 * 36 VCHG "Sensor Precharge Voltage Control"
859 * = 0 (0x00) 00000000
860 * VCHG[7] "Reserved"
861 * = 0 (0x00) 0.......
862 * VCHG[6:4] "Sensor precharge voltage control"
863 * = 0 (0x00) .000....
864 * VCHG[3:0] "Sensor array common reference"
865 * = 0 (0x00) ....0000
867 { 0x36, 0x00 },
870 * 37 ADC "ADC Reference Control"
871 * = 4 (0x04) 00000100
872 * ADC[7:4] "Reserved"
873 * = 0 (0x00) 0000....
874 * ADC[3] "ADC input signal range"
875 * = 0 (0x00) ....0... "Input signal 1.0x"
876 * ADC[2:0] "ADC range control"
877 * = 4 (0x04) .....100
879 { 0x37, 0x04 },
882 * 38 ACOM "Analog Common Ground"
883 * = 82 (0x52) 01010010
884 * ACOM[7] "Analog gain control"
885 * = 0 (0x00) 0....... "Gain 1x"
886 * ACOM[6] "Analog black level calibration"
887 * = 1 (0x01) .1...... "On"
888 * ACOM[5:0] "Reserved"
889 * = 18 (0x12) ..010010
891 { 0x38, 0x52 },
894 * 3A FREFA "Internal Reference Adjustment"
895 * = 0 (0x00) 00000000
896 * FREFA[7:0] "Range"
897 * = 0 (0x00) 00000000
899 { 0x3a, 0x00 },
902 * 3C FVOPT "Internal Reference Adjustment"
903 * = 31 (0x1F) 00011111
904 * FVOPT[7:0] "Range"
905 * = 31 (0x1F) 00011111
907 { 0x3c, 0x1F },
910 * 44 Undocumented = 0 (0x00) 00000000
911 * 44[7:0] "It's a secret"
912 * = 0 (0x00) 00000000
914 { 0x44, 0x00 },
917 * 40 Undocumented = 0 (0x00) 00000000
918 * 40[7:0] "It's a secret"
919 * = 0 (0x00) 00000000
921 { 0x40, 0x00 },
924 * 41 Undocumented = 0 (0x00) 00000000
925 * 41[7:0] "It's a secret"
926 * = 0 (0x00) 00000000
928 { 0x41, 0x00 },
931 * 42 Undocumented = 0 (0x00) 00000000
932 * 42[7:0] "It's a secret"
933 * = 0 (0x00) 00000000
935 { 0x42, 0x00 },
938 * 43 Undocumented = 0 (0x00) 00000000
939 * 43[7:0] "It's a secret"
940 * = 0 (0x00) 00000000
942 { 0x43, 0x00 },
945 * 45 Undocumented = 128 (0x80) 10000000
946 * 45[7:0] "It's a secret"
947 * = 128 (0x80) 10000000
949 { 0x45, 0x80 },
952 * 48 Undocumented = 192 (0xC0) 11000000
953 * 48[7:0] "It's a secret"
954 * = 192 (0xC0) 11000000
956 { 0x48, 0xC0 },
959 * 49 Undocumented = 25 (0x19) 00011001
960 * 49[7:0] "It's a secret"
961 * = 25 (0x19) 00011001
963 { 0x49, 0x19 },
966 * 4B Undocumented = 128 (0x80) 10000000
967 * 4B[7:0] "It's a secret"
968 * = 128 (0x80) 10000000
970 { 0x4B, 0x80 },
973 * 4D Undocumented = 196 (0xC4) 11000100
974 * 4D[7:0] "It's a secret"
975 * = 196 (0xC4) 11000100
977 { 0x4D, 0xC4 },
980 * 35 VREF "Reference Voltage Control"
981 * = 76 (0x4C) 01001100
982 * VREF[7:5] "Column high reference control"
983 * = 2 (0x02) 010..... "higher voltage"
984 * VREF[4:2] "Column low reference control"
985 * = 3 (0x03) ...011.. "Highest voltage"
986 * VREF[1:0] "Reserved"
987 * = 0 (0x00) ......00
989 { 0x35, 0x4C },
992 * 3D Undocumented = 0 (0x00) 00000000
993 * 3D[7:0] "It's a secret"
994 * = 0 (0x00) 00000000
996 { 0x3D, 0x00 },
999 * 3E Undocumented = 0 (0x00) 00000000
1000 * 3E[7:0] "It's a secret"
1001 * = 0 (0x00) 00000000
1003 { 0x3E, 0x00 },
1006 * 3B FREFB "Internal Reference Adjustment"
1007 * = 24 (0x18) 00011000
1008 * FREFB[7:0] "Range"
1009 * = 24 (0x18) 00011000
1011 { 0x3b, 0x18 },
1014 * 33 CHLF "Current Control"
1015 * = 25 (0x19) 00011001
1016 * CHLF[7:6] "Sensor current control"
1017 * = 0 (0x00) 00......
1018 * CHLF[5] "Sensor current range control"
1019 * = 0 (0x00) ..0..... "normal range"
1020 * CHLF[4] "Sensor current"
1021 * = 1 (0x01) ...1.... "double current"
1022 * CHLF[3] "Sensor buffer current control"
1023 * = 1 (0x01) ....1... "half current"
1024 * CHLF[2] "Column buffer current control"
1025 * = 0 (0x00) .....0.. "normal current"
1026 * CHLF[1] "Analog DSP current control"
1027 * = 0 (0x00) ......0. "normal current"
1028 * CHLF[1] "ADC current control"
1029 * = 0 (0x00) ......0. "normal current"
1031 { 0x33, 0x19 },
1034 * 34 VBLM "Blooming Control"
1035 * = 90 (0x5A) 01011010
1036 * VBLM[7] "Hard soft reset switch"
1037 * = 0 (0x00) 0....... "Hard reset"
1038 * VBLM[6:4] "Blooming voltage selection"
1039 * = 5 (0x05) .101....
1040 * VBLM[3:0] "Sensor current control"
1041 * = 10 (0x0A) ....1010
1043 { 0x34, 0x5A },
1046 * 3B FREFB "Internal Reference Adjustment"
1047 * = 0 (0x00) 00000000
1048 * FREFB[7:0] "Range"
1049 * = 0 (0x00) 00000000
1051 { 0x3b, 0x00 },
1054 * 33 CHLF "Current Control"
1055 * = 9 (0x09) 00001001
1056 * CHLF[7:6] "Sensor current control"
1057 * = 0 (0x00) 00......
1058 * CHLF[5] "Sensor current range control"
1059 * = 0 (0x00) ..0..... "normal range"
1060 * CHLF[4] "Sensor current"
1061 * = 0 (0x00) ...0.... "normal current"
1062 * CHLF[3] "Sensor buffer current control"
1063 * = 1 (0x01) ....1... "half current"
1064 * CHLF[2] "Column buffer current control"
1065 * = 0 (0x00) .....0.. "normal current"
1066 * CHLF[1] "Analog DSP current control"
1067 * = 0 (0x00) ......0. "normal current"
1068 * CHLF[1] "ADC current control"
1069 * = 0 (0x00) ......0. "normal current"
1071 { 0x33, 0x09 },
1074 * 34 VBLM "Blooming Control"
1075 * = 80 (0x50) 01010000
1076 * VBLM[7] "Hard soft reset switch"
1077 * = 0 (0x00) 0....... "Hard reset"
1078 * VBLM[6:4] "Blooming voltage selection"
1079 * = 5 (0x05) .101....
1080 * VBLM[3:0] "Sensor current control"
1081 * = 0 (0x00) ....0000
1083 { 0x34, 0x50 },
1086 * 12 COMH "Common Control H"
1087 * = 64 (0x40) 01000000
1088 * COMH[7] "SRST"
1089 * = 0 (0x00) 0....... "No-op"
1090 * COMH[6:4] "Resolution selection"
1091 * = 4 (0x04) .100.... "XGA"
1092 * COMH[3] "Master slave selection"
1093 * = 0 (0x00) ....0... "Master mode"
1094 * COMH[2] "Internal B/R channel option"
1095 * = 0 (0x00) .....0.. "B/R use same channel"
1096 * COMH[1] "Color bar test pattern"
1097 * = 0 (0x00) ......0. "Off"
1098 * COMH[0] "Reserved"
1099 * = 0 (0x00) .......0
1101 { 0x12, 0x40 },
1104 * 17 HREFST "Horizontal window start"
1105 * = 31 (0x1F) 00011111
1106 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1107 * = 31 (0x1F) 00011111
1109 { 0x17, 0x1F },
1112 * 18 HREFEND "Horizontal window end"
1113 * = 95 (0x5F) 01011111
1114 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1115 * = 95 (0x5F) 01011111
1117 { 0x18, 0x5F },
1120 * 19 VSTRT "Vertical window start"
1121 * = 0 (0x00) 00000000
1122 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1123 * = 0 (0x00) 00000000
1125 { 0x19, 0x00 },
1128 * 1A VEND "Vertical window end"
1129 * = 96 (0x60) 01100000
1130 * VEND[7:0] "Vertical Window End, 8 MSBs"
1131 * = 96 (0x60) 01100000
1133 { 0x1a, 0x60 },
1136 * 32 COMM "Common Control M"
1137 * = 18 (0x12) 00010010
1138 * COMM[7:6] "Pixel clock divide option"
1139 * = 0 (0x00) 00...... "/1"
1140 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1141 * = 2 (0x02) ..010...
1142 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1143 * = 2 (0x02) .....010
1145 { 0x32, 0x12 },
1148 * 03 COMA "Common Control A"
1149 * = 74 (0x4A) 01001010
1150 * COMA[7:4] "AWB Update Threshold"
1151 * = 4 (0x04) 0100....
1152 * COMA[3:2] "Vertical window end line control 2 LSBs"
1153 * = 2 (0x02) ....10..
1154 * COMA[1:0] "Vertical window start line control 2 LSBs"
1155 * = 2 (0x02) ......10
1157 { 0x03, 0x4A },
1160 * 11 CLKRC "Clock Rate Control"
1161 * = 128 (0x80) 10000000
1162 * CLKRC[7] "Internal frequency doublers on off seclection"
1163 * = 1 (0x01) 1....... "On"
1164 * CLKRC[6] "Digital video master slave selection"
1165 * = 0 (0x00) .0...... "Master mode, sensor
1166 * provides PCLK"
1167 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1168 * = 0 (0x00) ..000000
1170 { 0x11, 0x80 },
1173 * 12 COMH "Common Control H"
1174 * = 0 (0x00) 00000000
1175 * COMH[7] "SRST"
1176 * = 0 (0x00) 0....... "No-op"
1177 * COMH[6:4] "Resolution selection"
1178 * = 0 (0x00) .000.... "QXGA"
1179 * COMH[3] "Master slave selection"
1180 * = 0 (0x00) ....0... "Master mode"
1181 * COMH[2] "Internal B/R channel option"
1182 * = 0 (0x00) .....0.. "B/R use same channel"
1183 * COMH[1] "Color bar test pattern"
1184 * = 0 (0x00) ......0. "Off"
1185 * COMH[0] "Reserved"
1186 * = 0 (0x00) .......0
1188 { 0x12, 0x00 },
1191 * 12 COMH "Common Control H"
1192 * = 64 (0x40) 01000000
1193 * COMH[7] "SRST"
1194 * = 0 (0x00) 0....... "No-op"
1195 * COMH[6:4] "Resolution selection"
1196 * = 4 (0x04) .100.... "XGA"
1197 * COMH[3] "Master slave selection"
1198 * = 0 (0x00) ....0... "Master mode"
1199 * COMH[2] "Internal B/R channel option"
1200 * = 0 (0x00) .....0.. "B/R use same channel"
1201 * COMH[1] "Color bar test pattern"
1202 * = 0 (0x00) ......0. "Off"
1203 * COMH[0] "Reserved"
1204 * = 0 (0x00) .......0
1206 { 0x12, 0x40 },
1209 * 17 HREFST "Horizontal window start"
1210 * = 31 (0x1F) 00011111
1211 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1212 * = 31 (0x1F) 00011111
1214 { 0x17, 0x1F },
1217 * 18 HREFEND "Horizontal window end"
1218 * = 95 (0x5F) 01011111
1219 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1220 * = 95 (0x5F) 01011111
1222 { 0x18, 0x5F },
1225 * 19 VSTRT "Vertical window start"
1226 * = 0 (0x00) 00000000
1227 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1228 * = 0 (0x00) 00000000
1230 { 0x19, 0x00 },
1233 * 1A VEND "Vertical window end"
1234 * = 96 (0x60) 01100000
1235 * VEND[7:0] "Vertical Window End, 8 MSBs"
1236 * = 96 (0x60) 01100000
1238 { 0x1a, 0x60 },
1241 * 32 COMM "Common Control M"
1242 * = 18 (0x12) 00010010
1243 * COMM[7:6] "Pixel clock divide option"
1244 * = 0 (0x00) 00...... "/1"
1245 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1246 * = 2 (0x02) ..010...
1247 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1248 * = 2 (0x02) .....010
1250 { 0x32, 0x12 },
1253 * 03 COMA "Common Control A"
1254 * = 74 (0x4A) 01001010
1255 * COMA[7:4] "AWB Update Threshold"
1256 * = 4 (0x04) 0100....
1257 * COMA[3:2] "Vertical window end line control 2 LSBs"
1258 * = 2 (0x02) ....10..
1259 * COMA[1:0] "Vertical window start line control 2 LSBs"
1260 * = 2 (0x02) ......10
1262 { 0x03, 0x4A },
1265 * 02 RED "Red Gain Control"
1266 * = 175 (0xAF) 10101111
1267 * RED[7] "Action"
1268 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1269 * RED[6:0] "Value"
1270 * = 47 (0x2F) .0101111
1272 { 0x02, 0xAF },
1275 * 2D ADDVSL "VSYNC Pulse Width"
1276 * = 210 (0xD2) 11010010
1277 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1278 * = 210 (0xD2) 11010010
1280 { 0x2d, 0xD2 },
1283 * 00 GAIN = 24 (0x18) 00011000
1284 * GAIN[7:6] "Reserved"
1285 * = 0 (0x00) 00......
1286 * GAIN[5] "Double"
1287 * = 0 (0x00) ..0..... "False"
1288 * GAIN[4] "Double"
1289 * = 1 (0x01) ...1.... "True"
1290 * GAIN[3:0] "Range"
1291 * = 8 (0x08) ....1000
1293 { 0x00, 0x18 },
1296 * 01 BLUE "Blue Gain Control"
1297 * = 240 (0xF0) 11110000
1298 * BLUE[7] "Action"
1299 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1300 * BLUE[6:0] "Value"
1301 * = 112 (0x70) .1110000
1303 { 0x01, 0xF0 },
1306 * 10 AEC "Automatic Exposure Control"
1307 * = 10 (0x0A) 00001010
1308 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1309 * = 10 (0x0A) 00001010
1311 { 0x10, 0x0A },
1313 { 0xE1, 0x67 },
1314 { 0xE3, 0x03 },
1315 { 0xE4, 0x26 },
1316 { 0xE5, 0x3E },
1317 { 0xF8, 0x01 },
1318 { 0xFF, 0x01 },
1321 static const struct ov_i2c_regvals norm_6x20[] = {
1322 { 0x12, 0x80 }, /* reset */
1323 { 0x11, 0x01 },
1324 { 0x03, 0x60 },
1325 { 0x05, 0x7f }, /* For when autoadjust is off */
1326 { 0x07, 0xa8 },
1327 /* The ratio of 0x0c and 0x0d controls the white point */
1328 { 0x0c, 0x24 },
1329 { 0x0d, 0x24 },
1330 { 0x0f, 0x15 }, /* COMS */
1331 { 0x10, 0x75 }, /* AEC Exposure time */
1332 { 0x12, 0x24 }, /* Enable AGC */
1333 { 0x14, 0x04 },
1334 /* 0x16: 0x06 helps frame stability with moving objects */
1335 { 0x16, 0x06 },
1336 /* { 0x20, 0x30 }, * Aperture correction enable */
1337 { 0x26, 0xb2 }, /* BLC enable */
1338 /* 0x28: 0x05 Selects RGB format if RGB on */
1339 { 0x28, 0x05 },
1340 { 0x2a, 0x04 }, /* Disable framerate adjust */
1341 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1342 { 0x2d, 0x85 },
1343 { 0x33, 0xa0 }, /* Color Processing Parameter */
1344 { 0x34, 0xd2 }, /* Max A/D range */
1345 { 0x38, 0x8b },
1346 { 0x39, 0x40 },
1348 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1349 { 0x3c, 0x3c }, /* Change AEC mode */
1350 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1352 { 0x3d, 0x80 },
1353 /* These next two registers (0x4a, 0x4b) are undocumented.
1354 * They control the color balance */
1355 { 0x4a, 0x80 },
1356 { 0x4b, 0x80 },
1357 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1358 { 0x4e, 0xc1 },
1359 { 0x4f, 0x04 },
1360 /* Do 50-53 have any effect? */
1361 /* Toggle 0x12[2] off and on here? */
1364 static const struct ov_i2c_regvals norm_6x30[] = {
1365 { 0x12, 0x80 }, /* Reset */
1366 { 0x00, 0x1f }, /* Gain */
1367 { 0x01, 0x99 }, /* Blue gain */
1368 { 0x02, 0x7c }, /* Red gain */
1369 { 0x03, 0xc0 }, /* Saturation */
1370 { 0x05, 0x0a }, /* Contrast */
1371 { 0x06, 0x95 }, /* Brightness */
1372 { 0x07, 0x2d }, /* Sharpness */
1373 { 0x0c, 0x20 },
1374 { 0x0d, 0x20 },
1375 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1376 { 0x0f, 0x05 },
1377 { 0x10, 0x9a },
1378 { 0x11, 0x00 }, /* Pixel clock = fastest */
1379 { 0x12, 0x24 }, /* Enable AGC and AWB */
1380 { 0x13, 0x21 },
1381 { 0x14, 0x80 },
1382 { 0x15, 0x01 },
1383 { 0x16, 0x03 },
1384 { 0x17, 0x38 },
1385 { 0x18, 0xea },
1386 { 0x19, 0x04 },
1387 { 0x1a, 0x93 },
1388 { 0x1b, 0x00 },
1389 { 0x1e, 0xc4 },
1390 { 0x1f, 0x04 },
1391 { 0x20, 0x20 },
1392 { 0x21, 0x10 },
1393 { 0x22, 0x88 },
1394 { 0x23, 0xc0 }, /* Crystal circuit power level */
1395 { 0x25, 0x9a }, /* Increase AEC black ratio */
1396 { 0x26, 0xb2 }, /* BLC enable */
1397 { 0x27, 0xa2 },
1398 { 0x28, 0x00 },
1399 { 0x29, 0x00 },
1400 { 0x2a, 0x84 }, /* 60 Hz power */
1401 { 0x2b, 0xa8 }, /* 60 Hz power */
1402 { 0x2c, 0xa0 },
1403 { 0x2d, 0x95 }, /* Enable auto-brightness */
1404 { 0x2e, 0x88 },
1405 { 0x33, 0x26 },
1406 { 0x34, 0x03 },
1407 { 0x36, 0x8f },
1408 { 0x37, 0x80 },
1409 { 0x38, 0x83 },
1410 { 0x39, 0x80 },
1411 { 0x3a, 0x0f },
1412 { 0x3b, 0x3c },
1413 { 0x3c, 0x1a },
1414 { 0x3d, 0x80 },
1415 { 0x3e, 0x80 },
1416 { 0x3f, 0x0e },
1417 { 0x40, 0x00 }, /* White bal */
1418 { 0x41, 0x00 }, /* White bal */
1419 { 0x42, 0x80 },
1420 { 0x43, 0x3f }, /* White bal */
1421 { 0x44, 0x80 },
1422 { 0x45, 0x20 },
1423 { 0x46, 0x20 },
1424 { 0x47, 0x80 },
1425 { 0x48, 0x7f },
1426 { 0x49, 0x00 },
1427 { 0x4a, 0x00 },
1428 { 0x4b, 0x80 },
1429 { 0x4c, 0xd0 },
1430 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1431 { 0x4e, 0x40 },
1432 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1433 { 0x50, 0xff },
1434 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1435 { 0x55, 0xff },
1436 { 0x56, 0x12 },
1437 { 0x57, 0x81 },
1438 { 0x58, 0x75 },
1439 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1440 { 0x5a, 0x2c },
1441 { 0x5b, 0x0f }, /* AWB chrominance levels */
1442 { 0x5c, 0x10 },
1443 { 0x3d, 0x80 },
1444 { 0x27, 0xa6 },
1445 { 0x12, 0x20 }, /* Toggle AWB */
1446 { 0x12, 0x24 },
1449 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1451 * Register 0x0f in the 7610 has the following effects:
1453 * 0x85 (AEC method 1): Best overall, good contrast range
1454 * 0x45 (AEC method 2): Very overexposed
1455 * 0xa5 (spec sheet default): Ok, but the black level is
1456 * shifted resulting in loss of contrast
1457 * 0x05 (old driver setting): very overexposed, too much
1458 * contrast
1460 static const struct ov_i2c_regvals norm_7610[] = {
1461 { 0x10, 0xff },
1462 { 0x16, 0x06 },
1463 { 0x28, 0x24 },
1464 { 0x2b, 0xac },
1465 { 0x12, 0x00 },
1466 { 0x38, 0x81 },
1467 { 0x28, 0x24 }, /* 0c */
1468 { 0x0f, 0x85 }, /* lg's setting */
1469 { 0x15, 0x01 },
1470 { 0x20, 0x1c },
1471 { 0x23, 0x2a },
1472 { 0x24, 0x10 },
1473 { 0x25, 0x8a },
1474 { 0x26, 0xa2 },
1475 { 0x27, 0xc2 },
1476 { 0x2a, 0x04 },
1477 { 0x2c, 0xfe },
1478 { 0x2d, 0x93 },
1479 { 0x30, 0x71 },
1480 { 0x31, 0x60 },
1481 { 0x32, 0x26 },
1482 { 0x33, 0x20 },
1483 { 0x34, 0x48 },
1484 { 0x12, 0x24 },
1485 { 0x11, 0x01 },
1486 { 0x0c, 0x24 },
1487 { 0x0d, 0x24 },
1490 static const struct ov_i2c_regvals norm_7620[] = {
1491 { 0x12, 0x80 }, /* reset */
1492 { 0x00, 0x00 }, /* gain */
1493 { 0x01, 0x80 }, /* blue gain */
1494 { 0x02, 0x80 }, /* red gain */
1495 { 0x03, 0xc0 }, /* OV7670_REG_VREF */
1496 { 0x06, 0x60 },
1497 { 0x07, 0x00 },
1498 { 0x0c, 0x24 },
1499 { 0x0c, 0x24 },
1500 { 0x0d, 0x24 },
1501 { 0x11, 0x01 },
1502 { 0x12, 0x24 },
1503 { 0x13, 0x01 },
1504 { 0x14, 0x84 },
1505 { 0x15, 0x01 },
1506 { 0x16, 0x03 },
1507 { 0x17, 0x2f },
1508 { 0x18, 0xcf },
1509 { 0x19, 0x06 },
1510 { 0x1a, 0xf5 },
1511 { 0x1b, 0x00 },
1512 { 0x20, 0x18 },
1513 { 0x21, 0x80 },
1514 { 0x22, 0x80 },
1515 { 0x23, 0x00 },
1516 { 0x26, 0xa2 },
1517 { 0x27, 0xea },
1518 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1519 { 0x29, 0x00 },
1520 { 0x2a, 0x10 },
1521 { 0x2b, 0x00 },
1522 { 0x2c, 0x88 },
1523 { 0x2d, 0x91 },
1524 { 0x2e, 0x80 },
1525 { 0x2f, 0x44 },
1526 { 0x60, 0x27 },
1527 { 0x61, 0x02 },
1528 { 0x62, 0x5f },
1529 { 0x63, 0xd5 },
1530 { 0x64, 0x57 },
1531 { 0x65, 0x83 },
1532 { 0x66, 0x55 },
1533 { 0x67, 0x92 },
1534 { 0x68, 0xcf },
1535 { 0x69, 0x76 },
1536 { 0x6a, 0x22 },
1537 { 0x6b, 0x00 },
1538 { 0x6c, 0x02 },
1539 { 0x6d, 0x44 },
1540 { 0x6e, 0x80 },
1541 { 0x6f, 0x1d },
1542 { 0x70, 0x8b },
1543 { 0x71, 0x00 },
1544 { 0x72, 0x14 },
1545 { 0x73, 0x54 },
1546 { 0x74, 0x00 },
1547 { 0x75, 0x8e },
1548 { 0x76, 0x00 },
1549 { 0x77, 0xff },
1550 { 0x78, 0x80 },
1551 { 0x79, 0x80 },
1552 { 0x7a, 0x80 },
1553 { 0x7b, 0xe2 },
1554 { 0x7c, 0x00 },
1557 /* 7640 and 7648. The defaults should be OK for most registers. */
1558 static const struct ov_i2c_regvals norm_7640[] = {
1559 { 0x12, 0x80 },
1560 { 0x12, 0x14 },
1563 /* 7670. Defaults taken from OmniVision provided data,
1564 * as provided by Jonathan Corbet of OLPC */
1565 static const struct ov_i2c_regvals norm_7670[] = {
1566 { OV7670_REG_COM7, OV7670_COM7_RESET },
1567 { OV7670_REG_TSLB, 0x04 }, /* OV */
1568 { OV7670_REG_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1569 { OV7670_REG_CLKRC, 0x01 },
1571 * Set the hardware window. These values from OV don't entirely
1572 * make sense - hstop is less than hstart. But they work...
1574 { OV7670_REG_HSTART, 0x13 },
1575 { OV7670_REG_HSTOP, 0x01 },
1576 { OV7670_REG_HREF, 0xb6 },
1577 { OV7670_REG_VSTART, 0x02 },
1578 { OV7670_REG_VSTOP, 0x7a },
1579 { OV7670_REG_VREF, 0x0a },
1581 { OV7670_REG_COM3, 0x00 },
1582 { OV7670_REG_COM14, 0x00 },
1583 /* Mystery scaling numbers */
1584 { 0x70, 0x3a },
1585 { 0x71, 0x35 },
1586 { 0x72, 0x11 },
1587 { 0x73, 0xf0 },
1588 { 0xa2, 0x02 },
1589 /* { OV7670_REG_COM10, 0x0 }, */
1591 /* Gamma curve values */
1592 { 0x7a, 0x20 },
1593 { 0x7b, 0x10 },
1594 { 0x7c, 0x1e },
1595 { 0x7d, 0x35 },
1596 { 0x7e, 0x5a },
1597 { 0x7f, 0x69 },
1598 { 0x80, 0x76 },
1599 { 0x81, 0x80 },
1600 { 0x82, 0x88 },
1601 { 0x83, 0x8f },
1602 { 0x84, 0x96 },
1603 { 0x85, 0xa3 },
1604 { 0x86, 0xaf },
1605 { 0x87, 0xc4 },
1606 { 0x88, 0xd7 },
1607 { 0x89, 0xe8 },
1609 /* AGC and AEC parameters. Note we start by disabling those features,
1610 then turn them only after tweaking the values. */
1611 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1612 | OV7670_COM8_AECSTEP
1613 | OV7670_COM8_BFILT },
1614 { OV7670_REG_GAIN, 0x00 },
1615 { OV7670_REG_AECH, 0x00 },
1616 { OV7670_REG_COM4, 0x40 }, /* magic reserved bit */
1617 { OV7670_REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1618 { OV7670_REG_BD50MAX, 0x05 },
1619 { OV7670_REG_BD60MAX, 0x07 },
1620 { OV7670_REG_AEW, 0x95 },
1621 { OV7670_REG_AEB, 0x33 },
1622 { OV7670_REG_VPT, 0xe3 },
1623 { OV7670_REG_HAECC1, 0x78 },
1624 { OV7670_REG_HAECC2, 0x68 },
1625 { 0xa1, 0x03 }, /* magic */
1626 { OV7670_REG_HAECC3, 0xd8 },
1627 { OV7670_REG_HAECC4, 0xd8 },
1628 { OV7670_REG_HAECC5, 0xf0 },
1629 { OV7670_REG_HAECC6, 0x90 },
1630 { OV7670_REG_HAECC7, 0x94 },
1631 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1632 | OV7670_COM8_AECSTEP
1633 | OV7670_COM8_BFILT
1634 | OV7670_COM8_AGC
1635 | OV7670_COM8_AEC },
1637 /* Almost all of these are magic "reserved" values. */
1638 { OV7670_REG_COM5, 0x61 },
1639 { OV7670_REG_COM6, 0x4b },
1640 { 0x16, 0x02 },
1641 { OV7670_REG_MVFP, 0x07 },
1642 { 0x21, 0x02 },
1643 { 0x22, 0x91 },
1644 { 0x29, 0x07 },
1645 { 0x33, 0x0b },
1646 { 0x35, 0x0b },
1647 { 0x37, 0x1d },
1648 { 0x38, 0x71 },
1649 { 0x39, 0x2a },
1650 { OV7670_REG_COM12, 0x78 },
1651 { 0x4d, 0x40 },
1652 { 0x4e, 0x20 },
1653 { OV7670_REG_GFIX, 0x00 },
1654 { 0x6b, 0x4a },
1655 { 0x74, 0x10 },
1656 { 0x8d, 0x4f },
1657 { 0x8e, 0x00 },
1658 { 0x8f, 0x00 },
1659 { 0x90, 0x00 },
1660 { 0x91, 0x00 },
1661 { 0x96, 0x00 },
1662 { 0x9a, 0x00 },
1663 { 0xb0, 0x84 },
1664 { 0xb1, 0x0c },
1665 { 0xb2, 0x0e },
1666 { 0xb3, 0x82 },
1667 { 0xb8, 0x0a },
1669 /* More reserved magic, some of which tweaks white balance */
1670 { 0x43, 0x0a },
1671 { 0x44, 0xf0 },
1672 { 0x45, 0x34 },
1673 { 0x46, 0x58 },
1674 { 0x47, 0x28 },
1675 { 0x48, 0x3a },
1676 { 0x59, 0x88 },
1677 { 0x5a, 0x88 },
1678 { 0x5b, 0x44 },
1679 { 0x5c, 0x67 },
1680 { 0x5d, 0x49 },
1681 { 0x5e, 0x0e },
1682 { 0x6c, 0x0a },
1683 { 0x6d, 0x55 },
1684 { 0x6e, 0x11 },
1685 { 0x6f, 0x9f },
1686 /* "9e for advance AWB" */
1687 { 0x6a, 0x40 },
1688 { OV7670_REG_BLUE, 0x40 },
1689 { OV7670_REG_RED, 0x60 },
1690 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1691 | OV7670_COM8_AECSTEP
1692 | OV7670_COM8_BFILT
1693 | OV7670_COM8_AGC
1694 | OV7670_COM8_AEC
1695 | OV7670_COM8_AWB },
1697 /* Matrix coefficients */
1698 { 0x4f, 0x80 },
1699 { 0x50, 0x80 },
1700 { 0x51, 0x00 },
1701 { 0x52, 0x22 },
1702 { 0x53, 0x5e },
1703 { 0x54, 0x80 },
1704 { 0x58, 0x9e },
1706 { OV7670_REG_COM16, OV7670_COM16_AWBGAIN },
1707 { OV7670_REG_EDGE, 0x00 },
1708 { 0x75, 0x05 },
1709 { 0x76, 0xe1 },
1710 { 0x4c, 0x00 },
1711 { 0x77, 0x01 },
1712 { OV7670_REG_COM13, OV7670_COM13_GAMMA
1713 | OV7670_COM13_UVSAT
1714 | 2}, /* was 3 */
1715 { 0x4b, 0x09 },
1716 { 0xc9, 0x60 },
1717 { OV7670_REG_COM16, 0x38 },
1718 { 0x56, 0x40 },
1720 { 0x34, 0x11 },
1721 { OV7670_REG_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1722 { 0xa4, 0x88 },
1723 { 0x96, 0x00 },
1724 { 0x97, 0x30 },
1725 { 0x98, 0x20 },
1726 { 0x99, 0x30 },
1727 { 0x9a, 0x84 },
1728 { 0x9b, 0x29 },
1729 { 0x9c, 0x03 },
1730 { 0x9d, 0x4c },
1731 { 0x9e, 0x3f },
1732 { 0x78, 0x04 },
1734 /* Extra-weird stuff. Some sort of multiplexor register */
1735 { 0x79, 0x01 },
1736 { 0xc8, 0xf0 },
1737 { 0x79, 0x0f },
1738 { 0xc8, 0x00 },
1739 { 0x79, 0x10 },
1740 { 0xc8, 0x7e },
1741 { 0x79, 0x0a },
1742 { 0xc8, 0x80 },
1743 { 0x79, 0x0b },
1744 { 0xc8, 0x01 },
1745 { 0x79, 0x0c },
1746 { 0xc8, 0x0f },
1747 { 0x79, 0x0d },
1748 { 0xc8, 0x20 },
1749 { 0x79, 0x09 },
1750 { 0xc8, 0x80 },
1751 { 0x79, 0x02 },
1752 { 0xc8, 0xc0 },
1753 { 0x79, 0x03 },
1754 { 0xc8, 0x40 },
1755 { 0x79, 0x05 },
1756 { 0xc8, 0x30 },
1757 { 0x79, 0x26 },
1760 static const struct ov_i2c_regvals norm_8610[] = {
1761 { 0x12, 0x80 },
1762 { 0x00, 0x00 },
1763 { 0x01, 0x80 },
1764 { 0x02, 0x80 },
1765 { 0x03, 0xc0 },
1766 { 0x04, 0x30 },
1767 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1768 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1769 { 0x0a, 0x86 },
1770 { 0x0b, 0xb0 },
1771 { 0x0c, 0x20 },
1772 { 0x0d, 0x20 },
1773 { 0x11, 0x01 },
1774 { 0x12, 0x25 },
1775 { 0x13, 0x01 },
1776 { 0x14, 0x04 },
1777 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
1778 { 0x16, 0x03 },
1779 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1780 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1781 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1782 { 0x1a, 0xf5 },
1783 { 0x1b, 0x00 },
1784 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1785 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1786 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1787 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1788 { 0x26, 0xa2 },
1789 { 0x27, 0xea },
1790 { 0x28, 0x00 },
1791 { 0x29, 0x00 },
1792 { 0x2a, 0x80 },
1793 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1794 { 0x2c, 0xac },
1795 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1796 { 0x2e, 0x80 },
1797 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1798 { 0x4c, 0x00 },
1799 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1800 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1801 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1802 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1803 { 0x63, 0xff },
1804 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1805 * maybe thats wrong */
1806 { 0x65, 0x00 },
1807 { 0x66, 0x55 },
1808 { 0x67, 0xb0 },
1809 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1810 { 0x69, 0x02 },
1811 { 0x6a, 0x22 },
1812 { 0x6b, 0x00 },
1813 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1814 * deleting bit7 colors the first images red */
1815 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1816 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1817 { 0x6f, 0x01 },
1818 { 0x70, 0x8b },
1819 { 0x71, 0x00 },
1820 { 0x72, 0x14 },
1821 { 0x73, 0x54 },
1822 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1823 { 0x75, 0x0e },
1824 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1825 { 0x77, 0xff },
1826 { 0x78, 0x80 },
1827 { 0x79, 0x80 },
1828 { 0x7a, 0x80 },
1829 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1830 { 0x7c, 0x00 },
1831 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1832 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1833 { 0x7f, 0xfb },
1834 { 0x80, 0x28 },
1835 { 0x81, 0x00 },
1836 { 0x82, 0x23 },
1837 { 0x83, 0x0b },
1838 { 0x84, 0x00 },
1839 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1840 { 0x86, 0xc9 },
1841 { 0x87, 0x00 },
1842 { 0x88, 0x00 },
1843 { 0x89, 0x01 },
1844 { 0x12, 0x20 },
1845 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1848 static unsigned char ov7670_abs_to_sm(unsigned char v)
1850 if (v > 127)
1851 return v & 0x7f;
1852 return (128 - v) | 0x80;
1855 /* Write a OV519 register */
1856 static int reg_w(struct sd *sd, __u16 index, __u16 value)
1858 int ret, req = 0;
1860 switch (sd->bridge) {
1861 case BRIDGE_OV511:
1862 case BRIDGE_OV511PLUS:
1863 req = 2;
1864 break;
1865 case BRIDGE_OVFX2:
1866 req = 0x0a;
1867 /* fall through */
1868 case BRIDGE_W9968CF:
1869 ret = usb_control_msg(sd->gspca_dev.dev,
1870 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1871 req,
1872 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1873 value, index, NULL, 0, 500);
1874 goto leave;
1875 default:
1876 req = 1;
1879 sd->gspca_dev.usb_buf[0] = value;
1880 ret = usb_control_msg(sd->gspca_dev.dev,
1881 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1882 req,
1883 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1884 0, index,
1885 sd->gspca_dev.usb_buf, 1, 500);
1886 leave:
1887 if (ret < 0) {
1888 PDEBUG(D_ERR, "Write reg 0x%04x -> [0x%02x] failed",
1889 value, index);
1890 return ret;
1893 PDEBUG(D_USBO, "Write reg 0x%04x -> [0x%02x]", value, index);
1894 return 0;
1897 /* Read from a OV519 register, note not valid for the w9968cf!! */
1898 /* returns: negative is error, pos or zero is data */
1899 static int reg_r(struct sd *sd, __u16 index)
1901 int ret;
1902 int req;
1904 switch (sd->bridge) {
1905 case BRIDGE_OV511:
1906 case BRIDGE_OV511PLUS:
1907 req = 3;
1908 break;
1909 case BRIDGE_OVFX2:
1910 req = 0x0b;
1911 break;
1912 default:
1913 req = 1;
1916 ret = usb_control_msg(sd->gspca_dev.dev,
1917 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1918 req,
1919 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1920 0, index, sd->gspca_dev.usb_buf, 1, 500);
1922 if (ret >= 0) {
1923 ret = sd->gspca_dev.usb_buf[0];
1924 PDEBUG(D_USBI, "Read reg [0x%02X] -> 0x%04X", index, ret);
1925 } else
1926 PDEBUG(D_ERR, "Read reg [0x%02x] failed", index);
1928 return ret;
1931 /* Read 8 values from a OV519 register */
1932 static int reg_r8(struct sd *sd,
1933 __u16 index)
1935 int ret;
1937 ret = usb_control_msg(sd->gspca_dev.dev,
1938 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1939 1, /* REQ_IO */
1940 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1941 0, index, sd->gspca_dev.usb_buf, 8, 500);
1943 if (ret >= 0)
1944 ret = sd->gspca_dev.usb_buf[0];
1945 else
1946 PDEBUG(D_ERR, "Read reg 8 [0x%02x] failed", index);
1948 return ret;
1952 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
1953 * the same position as 1's in "mask" are cleared and set to "value". Bits
1954 * that are in the same position as 0's in "mask" are preserved, regardless
1955 * of their respective state in "value".
1957 static int reg_w_mask(struct sd *sd,
1958 __u16 index,
1959 __u8 value,
1960 __u8 mask)
1962 int ret;
1963 __u8 oldval;
1965 if (mask != 0xff) {
1966 value &= mask; /* Enforce mask on value */
1967 ret = reg_r(sd, index);
1968 if (ret < 0)
1969 return ret;
1971 oldval = ret & ~mask; /* Clear the masked bits */
1972 value |= oldval; /* Set the desired bits */
1974 return reg_w(sd, index, value);
1978 * Writes multiple (n) byte value to a single register. Only valid with certain
1979 * registers (0x30 and 0xc4 - 0xce).
1981 static int ov518_reg_w32(struct sd *sd, __u16 index, u32 value, int n)
1983 int ret;
1985 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
1987 ret = usb_control_msg(sd->gspca_dev.dev,
1988 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1989 1 /* REG_IO */,
1990 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1991 0, index,
1992 sd->gspca_dev.usb_buf, n, 500);
1993 if (ret < 0) {
1994 PDEBUG(D_ERR, "Write reg32 [%02x] %08x failed", index, value);
1995 return ret;
1998 return 0;
2001 static int ov511_i2c_w(struct sd *sd, __u8 reg, __u8 value)
2003 int rc, retries;
2005 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2007 /* Three byte write cycle */
2008 for (retries = 6; ; ) {
2009 /* Select camera register */
2010 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
2011 if (rc < 0)
2012 return rc;
2014 /* Write "value" to I2C data port of OV511 */
2015 rc = reg_w(sd, R51x_I2C_DATA, value);
2016 if (rc < 0)
2017 return rc;
2019 /* Initiate 3-byte write cycle */
2020 rc = reg_w(sd, R511_I2C_CTL, 0x01);
2021 if (rc < 0)
2022 return rc;
2024 do {
2025 rc = reg_r(sd, R511_I2C_CTL);
2026 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2028 if (rc < 0)
2029 return rc;
2031 if ((rc & 2) == 0) /* Ack? */
2032 break;
2033 if (--retries < 0) {
2034 PDEBUG(D_USBO, "i2c write retries exhausted");
2035 return -1;
2039 return 0;
2042 static int ov511_i2c_r(struct sd *sd, __u8 reg)
2044 int rc, value, retries;
2046 /* Two byte write cycle */
2047 for (retries = 6; ; ) {
2048 /* Select camera register */
2049 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
2050 if (rc < 0)
2051 return rc;
2053 /* Initiate 2-byte write cycle */
2054 rc = reg_w(sd, R511_I2C_CTL, 0x03);
2055 if (rc < 0)
2056 return rc;
2058 do {
2059 rc = reg_r(sd, R511_I2C_CTL);
2060 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2062 if (rc < 0)
2063 return rc;
2065 if ((rc & 2) == 0) /* Ack? */
2066 break;
2068 /* I2C abort */
2069 reg_w(sd, R511_I2C_CTL, 0x10);
2071 if (--retries < 0) {
2072 PDEBUG(D_USBI, "i2c write retries exhausted");
2073 return -1;
2077 /* Two byte read cycle */
2078 for (retries = 6; ; ) {
2079 /* Initiate 2-byte read cycle */
2080 rc = reg_w(sd, R511_I2C_CTL, 0x05);
2081 if (rc < 0)
2082 return rc;
2084 do {
2085 rc = reg_r(sd, R511_I2C_CTL);
2086 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2088 if (rc < 0)
2089 return rc;
2091 if ((rc & 2) == 0) /* Ack? */
2092 break;
2094 /* I2C abort */
2095 rc = reg_w(sd, R511_I2C_CTL, 0x10);
2096 if (rc < 0)
2097 return rc;
2099 if (--retries < 0) {
2100 PDEBUG(D_USBI, "i2c read retries exhausted");
2101 return -1;
2105 value = reg_r(sd, R51x_I2C_DATA);
2107 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
2109 /* This is needed to make i2c_w() work */
2110 rc = reg_w(sd, R511_I2C_CTL, 0x05);
2111 if (rc < 0)
2112 return rc;
2114 return value;
2118 * The OV518 I2C I/O procedure is different, hence, this function.
2119 * This is normally only called from i2c_w(). Note that this function
2120 * always succeeds regardless of whether the sensor is present and working.
2122 static int ov518_i2c_w(struct sd *sd,
2123 __u8 reg,
2124 __u8 value)
2126 int rc;
2128 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2130 /* Select camera register */
2131 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
2132 if (rc < 0)
2133 return rc;
2135 /* Write "value" to I2C data port of OV511 */
2136 rc = reg_w(sd, R51x_I2C_DATA, value);
2137 if (rc < 0)
2138 return rc;
2140 /* Initiate 3-byte write cycle */
2141 rc = reg_w(sd, R518_I2C_CTL, 0x01);
2142 if (rc < 0)
2143 return rc;
2145 /* wait for write complete */
2146 msleep(4);
2147 return reg_r8(sd, R518_I2C_CTL);
2151 * returns: negative is error, pos or zero is data
2153 * The OV518 I2C I/O procedure is different, hence, this function.
2154 * This is normally only called from i2c_r(). Note that this function
2155 * always succeeds regardless of whether the sensor is present and working.
2157 static int ov518_i2c_r(struct sd *sd, __u8 reg)
2159 int rc, value;
2161 /* Select camera register */
2162 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
2163 if (rc < 0)
2164 return rc;
2166 /* Initiate 2-byte write cycle */
2167 rc = reg_w(sd, R518_I2C_CTL, 0x03);
2168 if (rc < 0)
2169 return rc;
2171 /* Initiate 2-byte read cycle */
2172 rc = reg_w(sd, R518_I2C_CTL, 0x05);
2173 if (rc < 0)
2174 return rc;
2175 value = reg_r(sd, R51x_I2C_DATA);
2176 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
2177 return value;
2180 static int ovfx2_i2c_w(struct sd *sd, __u8 reg, __u8 value)
2182 int ret;
2184 ret = usb_control_msg(sd->gspca_dev.dev,
2185 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2186 0x02,
2187 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2188 (__u16)value, (__u16)reg, NULL, 0, 500);
2190 if (ret < 0) {
2191 PDEBUG(D_ERR, "i2c 0x%02x -> [0x%02x] failed", value, reg);
2192 return ret;
2195 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2196 return 0;
2199 static int ovfx2_i2c_r(struct sd *sd, __u8 reg)
2201 int ret;
2203 ret = usb_control_msg(sd->gspca_dev.dev,
2204 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2205 0x03,
2206 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2207 0, (__u16)reg, sd->gspca_dev.usb_buf, 1, 500);
2209 if (ret >= 0) {
2210 ret = sd->gspca_dev.usb_buf[0];
2211 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, ret);
2212 } else
2213 PDEBUG(D_ERR, "i2c read [0x%02x] failed", reg);
2215 return ret;
2218 static int i2c_w(struct sd *sd, __u8 reg, __u8 value)
2220 int ret = -1;
2222 if (sd->sensor_reg_cache[reg] == value)
2223 return 0;
2225 switch (sd->bridge) {
2226 case BRIDGE_OV511:
2227 case BRIDGE_OV511PLUS:
2228 ret = ov511_i2c_w(sd, reg, value);
2229 break;
2230 case BRIDGE_OV518:
2231 case BRIDGE_OV518PLUS:
2232 case BRIDGE_OV519:
2233 ret = ov518_i2c_w(sd, reg, value);
2234 break;
2235 case BRIDGE_OVFX2:
2236 ret = ovfx2_i2c_w(sd, reg, value);
2237 break;
2238 case BRIDGE_W9968CF:
2239 ret = w9968cf_i2c_w(sd, reg, value);
2240 break;
2243 if (ret >= 0) {
2244 /* Up on sensor reset empty the register cache */
2245 if (reg == 0x12 && (value & 0x80))
2246 memset(sd->sensor_reg_cache, -1,
2247 sizeof(sd->sensor_reg_cache));
2248 else
2249 sd->sensor_reg_cache[reg] = value;
2252 return ret;
2255 static int i2c_r(struct sd *sd, __u8 reg)
2257 int ret = -1;
2259 if (sd->sensor_reg_cache[reg] != -1)
2260 return sd->sensor_reg_cache[reg];
2262 switch (sd->bridge) {
2263 case BRIDGE_OV511:
2264 case BRIDGE_OV511PLUS:
2265 ret = ov511_i2c_r(sd, reg);
2266 break;
2267 case BRIDGE_OV518:
2268 case BRIDGE_OV518PLUS:
2269 case BRIDGE_OV519:
2270 ret = ov518_i2c_r(sd, reg);
2271 break;
2272 case BRIDGE_OVFX2:
2273 ret = ovfx2_i2c_r(sd, reg);
2274 break;
2275 case BRIDGE_W9968CF:
2276 ret = w9968cf_i2c_r(sd, reg);
2277 break;
2280 if (ret >= 0)
2281 sd->sensor_reg_cache[reg] = ret;
2283 return ret;
2286 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2287 * the same position as 1's in "mask" are cleared and set to "value". Bits
2288 * that are in the same position as 0's in "mask" are preserved, regardless
2289 * of their respective state in "value".
2291 static int i2c_w_mask(struct sd *sd,
2292 __u8 reg,
2293 __u8 value,
2294 __u8 mask)
2296 int rc;
2297 __u8 oldval;
2299 value &= mask; /* Enforce mask on value */
2300 rc = i2c_r(sd, reg);
2301 if (rc < 0)
2302 return rc;
2303 oldval = rc & ~mask; /* Clear the masked bits */
2304 value |= oldval; /* Set the desired bits */
2305 return i2c_w(sd, reg, value);
2308 /* Temporarily stops OV511 from functioning. Must do this before changing
2309 * registers while the camera is streaming */
2310 static inline int ov51x_stop(struct sd *sd)
2312 PDEBUG(D_STREAM, "stopping");
2313 sd->stopped = 1;
2314 switch (sd->bridge) {
2315 case BRIDGE_OV511:
2316 case BRIDGE_OV511PLUS:
2317 return reg_w(sd, R51x_SYS_RESET, 0x3d);
2318 case BRIDGE_OV518:
2319 case BRIDGE_OV518PLUS:
2320 return reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2321 case BRIDGE_OV519:
2322 return reg_w(sd, OV519_SYS_RESET1, 0x0f);
2323 case BRIDGE_OVFX2:
2324 return reg_w_mask(sd, 0x0f, 0x00, 0x02);
2325 case BRIDGE_W9968CF:
2326 return reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2329 return 0;
2332 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2333 * actually stopped (for performance). */
2334 static inline int ov51x_restart(struct sd *sd)
2336 int rc;
2338 PDEBUG(D_STREAM, "restarting");
2339 if (!sd->stopped)
2340 return 0;
2341 sd->stopped = 0;
2343 /* Reinitialize the stream */
2344 switch (sd->bridge) {
2345 case BRIDGE_OV511:
2346 case BRIDGE_OV511PLUS:
2347 return reg_w(sd, R51x_SYS_RESET, 0x00);
2348 case BRIDGE_OV518:
2349 case BRIDGE_OV518PLUS:
2350 rc = reg_w(sd, 0x2f, 0x80);
2351 if (rc < 0)
2352 return rc;
2353 return reg_w(sd, R51x_SYS_RESET, 0x00);
2354 case BRIDGE_OV519:
2355 return reg_w(sd, OV519_SYS_RESET1, 0x00);
2356 case BRIDGE_OVFX2:
2357 return reg_w_mask(sd, 0x0f, 0x02, 0x02);
2358 case BRIDGE_W9968CF:
2359 return reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2362 return 0;
2365 static int ov51x_set_slave_ids(struct sd *sd, __u8 slave);
2367 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2368 * is synchronized. Returns <0 on failure.
2370 static int init_ov_sensor(struct sd *sd, __u8 slave)
2372 int i;
2374 if (ov51x_set_slave_ids(sd, slave) < 0)
2375 return -EIO;
2377 /* Reset the sensor */
2378 if (i2c_w(sd, 0x12, 0x80) < 0)
2379 return -EIO;
2381 /* Wait for it to initialize */
2382 msleep(150);
2384 for (i = 0; i < i2c_detect_tries; i++) {
2385 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2386 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2387 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2388 return 0;
2391 /* Reset the sensor */
2392 if (i2c_w(sd, 0x12, 0x80) < 0)
2393 return -EIO;
2394 /* Wait for it to initialize */
2395 msleep(150);
2396 /* Dummy read to sync I2C */
2397 if (i2c_r(sd, 0x00) < 0)
2398 return -EIO;
2400 return -EIO;
2403 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2404 * and the read slave will be set to (slave + 1).
2405 * This should not be called from outside the i2c I/O functions.
2406 * Sets I2C read and write slave IDs. Returns <0 for error
2408 static int ov51x_set_slave_ids(struct sd *sd,
2409 __u8 slave)
2411 int rc;
2413 switch (sd->bridge) {
2414 case BRIDGE_OVFX2:
2415 return reg_w(sd, OVFX2_I2C_ADDR, slave);
2416 case BRIDGE_W9968CF:
2417 sd->sensor_addr = slave;
2418 return 0;
2421 rc = reg_w(sd, R51x_I2C_W_SID, slave);
2422 if (rc < 0)
2423 return rc;
2424 return reg_w(sd, R51x_I2C_R_SID, slave + 1);
2427 static int write_regvals(struct sd *sd,
2428 const struct ov_regvals *regvals,
2429 int n)
2431 int rc;
2433 while (--n >= 0) {
2434 rc = reg_w(sd, regvals->reg, regvals->val);
2435 if (rc < 0)
2436 return rc;
2437 regvals++;
2439 return 0;
2442 static int write_i2c_regvals(struct sd *sd,
2443 const struct ov_i2c_regvals *regvals,
2444 int n)
2446 int rc;
2448 while (--n >= 0) {
2449 rc = i2c_w(sd, regvals->reg, regvals->val);
2450 if (rc < 0)
2451 return rc;
2452 regvals++;
2454 return 0;
2457 /****************************************************************************
2459 * OV511 and sensor configuration
2461 ***************************************************************************/
2463 /* This initializes the OV2x10 / OV3610 / OV3620 */
2464 static int ov_hires_configure(struct sd *sd)
2466 int high, low;
2468 if (sd->bridge != BRIDGE_OVFX2) {
2469 PDEBUG(D_ERR, "error hires sensors only supported with ovfx2");
2470 return -1;
2473 PDEBUG(D_PROBE, "starting ov hires configuration");
2475 /* Detect sensor (sub)type */
2476 high = i2c_r(sd, 0x0a);
2477 low = i2c_r(sd, 0x0b);
2478 /* info("%x, %x", high, low); */
2479 if (high == 0x96 && low == 0x40) {
2480 PDEBUG(D_PROBE, "Sensor is an OV2610");
2481 sd->sensor = SEN_OV2610;
2482 } else if (high == 0x36 && (low & 0x0f) == 0x00) {
2483 PDEBUG(D_PROBE, "Sensor is an OV3610");
2484 sd->sensor = SEN_OV3610;
2485 } else {
2486 PDEBUG(D_ERR, "Error unknown sensor type: 0x%02x%02x",
2487 high, low);
2488 return -1;
2491 /* Set sensor-specific vars */
2492 return 0;
2496 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2497 * the same register settings as the OV8610, since they are very similar.
2499 static int ov8xx0_configure(struct sd *sd)
2501 int rc;
2503 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2505 /* Detect sensor (sub)type */
2506 rc = i2c_r(sd, OV7610_REG_COM_I);
2507 if (rc < 0) {
2508 PDEBUG(D_ERR, "Error detecting sensor type");
2509 return -1;
2511 if ((rc & 3) == 1) {
2512 sd->sensor = SEN_OV8610;
2513 } else {
2514 PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
2515 return -1;
2518 /* Set sensor-specific vars */
2519 return 0;
2522 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2523 * the same register settings as the OV7610, since they are very similar.
2525 static int ov7xx0_configure(struct sd *sd)
2527 int rc, high, low;
2530 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2532 /* Detect sensor (sub)type */
2533 rc = i2c_r(sd, OV7610_REG_COM_I);
2535 /* add OV7670 here
2536 * it appears to be wrongly detected as a 7610 by default */
2537 if (rc < 0) {
2538 PDEBUG(D_ERR, "Error detecting sensor type");
2539 return -1;
2541 if ((rc & 3) == 3) {
2542 /* quick hack to make OV7670s work */
2543 high = i2c_r(sd, 0x0a);
2544 low = i2c_r(sd, 0x0b);
2545 /* info("%x, %x", high, low); */
2546 if (high == 0x76 && low == 0x73) {
2547 PDEBUG(D_PROBE, "Sensor is an OV7670");
2548 sd->sensor = SEN_OV7670;
2549 } else {
2550 PDEBUG(D_PROBE, "Sensor is an OV7610");
2551 sd->sensor = SEN_OV7610;
2553 } else if ((rc & 3) == 1) {
2554 /* I don't know what's different about the 76BE yet. */
2555 if (i2c_r(sd, 0x15) & 1) {
2556 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2557 sd->sensor = SEN_OV7620;
2558 } else {
2559 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2560 sd->sensor = SEN_OV76BE;
2562 } else if ((rc & 3) == 0) {
2563 /* try to read product id registers */
2564 high = i2c_r(sd, 0x0a);
2565 if (high < 0) {
2566 PDEBUG(D_ERR, "Error detecting camera chip PID");
2567 return high;
2569 low = i2c_r(sd, 0x0b);
2570 if (low < 0) {
2571 PDEBUG(D_ERR, "Error detecting camera chip VER");
2572 return low;
2574 if (high == 0x76) {
2575 switch (low) {
2576 case 0x30:
2577 PDEBUG(D_PROBE, "Sensor is an OV7630/OV7635");
2578 PDEBUG(D_ERR,
2579 "7630 is not supported by this driver");
2580 return -1;
2581 case 0x40:
2582 PDEBUG(D_PROBE, "Sensor is an OV7645");
2583 sd->sensor = SEN_OV7640; /* FIXME */
2584 break;
2585 case 0x45:
2586 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2587 sd->sensor = SEN_OV7640; /* FIXME */
2588 break;
2589 case 0x48:
2590 PDEBUG(D_PROBE, "Sensor is an OV7648");
2591 sd->sensor = SEN_OV7640; /* FIXME */
2592 break;
2593 default:
2594 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2595 return -1;
2597 } else {
2598 PDEBUG(D_PROBE, "Sensor is an OV7620");
2599 sd->sensor = SEN_OV7620;
2601 } else {
2602 PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
2603 return -1;
2606 /* Set sensor-specific vars */
2607 return 0;
2610 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2611 static int ov6xx0_configure(struct sd *sd)
2613 int rc;
2614 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2616 /* Detect sensor (sub)type */
2617 rc = i2c_r(sd, OV7610_REG_COM_I);
2618 if (rc < 0) {
2619 PDEBUG(D_ERR, "Error detecting sensor type");
2620 return -1;
2623 /* Ugh. The first two bits are the version bits, but
2624 * the entire register value must be used. I guess OVT
2625 * underestimated how many variants they would make. */
2626 switch (rc) {
2627 case 0x00:
2628 sd->sensor = SEN_OV6630;
2629 PDEBUG(D_ERR,
2630 "WARNING: Sensor is an OV66308. Your camera may have");
2631 PDEBUG(D_ERR, "been misdetected in previous driver versions.");
2632 break;
2633 case 0x01:
2634 sd->sensor = SEN_OV6620;
2635 PDEBUG(D_PROBE, "Sensor is an OV6620");
2636 break;
2637 case 0x02:
2638 sd->sensor = SEN_OV6630;
2639 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2640 break;
2641 case 0x03:
2642 sd->sensor = SEN_OV66308AF;
2643 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2644 break;
2645 case 0x90:
2646 sd->sensor = SEN_OV6630;
2647 PDEBUG(D_ERR,
2648 "WARNING: Sensor is an OV66307. Your camera may have");
2649 PDEBUG(D_ERR, "been misdetected in previous driver versions.");
2650 break;
2651 default:
2652 PDEBUG(D_ERR, "FATAL: Unknown sensor version: 0x%02x", rc);
2653 return -1;
2656 /* Set sensor-specific vars */
2657 sd->sif = 1;
2659 return 0;
2662 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2663 static void ov51x_led_control(struct sd *sd, int on)
2665 if (sd->invert_led)
2666 on = !on;
2668 switch (sd->bridge) {
2669 /* OV511 has no LED control */
2670 case BRIDGE_OV511PLUS:
2671 reg_w(sd, R511_SYS_LED_CTL, on ? 1 : 0);
2672 break;
2673 case BRIDGE_OV518:
2674 case BRIDGE_OV518PLUS:
2675 reg_w_mask(sd, R518_GPIO_OUT, on ? 0x02 : 0x00, 0x02);
2676 break;
2677 case BRIDGE_OV519:
2678 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, !on, 1); /* 0 / 1 */
2679 break;
2683 static int ov51x_upload_quan_tables(struct sd *sd)
2685 const unsigned char yQuanTable511[] = {
2686 0, 1, 1, 2, 2, 3, 3, 4,
2687 1, 1, 1, 2, 2, 3, 4, 4,
2688 1, 1, 2, 2, 3, 4, 4, 4,
2689 2, 2, 2, 3, 4, 4, 4, 4,
2690 2, 2, 3, 4, 4, 5, 5, 5,
2691 3, 3, 4, 4, 5, 5, 5, 5,
2692 3, 4, 4, 4, 5, 5, 5, 5,
2693 4, 4, 4, 4, 5, 5, 5, 5
2696 const unsigned char uvQuanTable511[] = {
2697 0, 2, 2, 3, 4, 4, 4, 4,
2698 2, 2, 2, 4, 4, 4, 4, 4,
2699 2, 2, 3, 4, 4, 4, 4, 4,
2700 3, 4, 4, 4, 4, 4, 4, 4,
2701 4, 4, 4, 4, 4, 4, 4, 4,
2702 4, 4, 4, 4, 4, 4, 4, 4,
2703 4, 4, 4, 4, 4, 4, 4, 4,
2704 4, 4, 4, 4, 4, 4, 4, 4
2707 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2708 const unsigned char yQuanTable518[] = {
2709 5, 4, 5, 6, 6, 7, 7, 7,
2710 5, 5, 5, 5, 6, 7, 7, 7,
2711 6, 6, 6, 6, 7, 7, 7, 8,
2712 7, 7, 6, 7, 7, 7, 8, 8
2715 const unsigned char uvQuanTable518[] = {
2716 6, 6, 6, 7, 7, 7, 7, 7,
2717 6, 6, 6, 7, 7, 7, 7, 7,
2718 6, 6, 6, 7, 7, 7, 7, 8,
2719 7, 7, 7, 7, 7, 7, 8, 8
2722 const unsigned char *pYTable, *pUVTable;
2723 unsigned char val0, val1;
2724 int i, size, rc, reg = R51x_COMP_LUT_BEGIN;
2726 PDEBUG(D_PROBE, "Uploading quantization tables");
2728 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2729 pYTable = yQuanTable511;
2730 pUVTable = uvQuanTable511;
2731 size = 32;
2732 } else {
2733 pYTable = yQuanTable518;
2734 pUVTable = uvQuanTable518;
2735 size = 16;
2738 for (i = 0; i < size; i++) {
2739 val0 = *pYTable++;
2740 val1 = *pYTable++;
2741 val0 &= 0x0f;
2742 val1 &= 0x0f;
2743 val0 |= val1 << 4;
2744 rc = reg_w(sd, reg, val0);
2745 if (rc < 0)
2746 return rc;
2748 val0 = *pUVTable++;
2749 val1 = *pUVTable++;
2750 val0 &= 0x0f;
2751 val1 &= 0x0f;
2752 val0 |= val1 << 4;
2753 rc = reg_w(sd, reg + size, val0);
2754 if (rc < 0)
2755 return rc;
2757 reg++;
2760 return 0;
2763 /* This initializes the OV511/OV511+ and the sensor */
2764 static int ov511_configure(struct gspca_dev *gspca_dev)
2766 struct sd *sd = (struct sd *) gspca_dev;
2767 int rc;
2769 /* For 511 and 511+ */
2770 const struct ov_regvals init_511[] = {
2771 { R51x_SYS_RESET, 0x7f },
2772 { R51x_SYS_INIT, 0x01 },
2773 { R51x_SYS_RESET, 0x7f },
2774 { R51x_SYS_INIT, 0x01 },
2775 { R51x_SYS_RESET, 0x3f },
2776 { R51x_SYS_INIT, 0x01 },
2777 { R51x_SYS_RESET, 0x3d },
2780 const struct ov_regvals norm_511[] = {
2781 { R511_DRAM_FLOW_CTL, 0x01 },
2782 { R51x_SYS_SNAP, 0x00 },
2783 { R51x_SYS_SNAP, 0x02 },
2784 { R51x_SYS_SNAP, 0x00 },
2785 { R511_FIFO_OPTS, 0x1f },
2786 { R511_COMP_EN, 0x00 },
2787 { R511_COMP_LUT_EN, 0x03 },
2790 const struct ov_regvals norm_511_p[] = {
2791 { R511_DRAM_FLOW_CTL, 0xff },
2792 { R51x_SYS_SNAP, 0x00 },
2793 { R51x_SYS_SNAP, 0x02 },
2794 { R51x_SYS_SNAP, 0x00 },
2795 { R511_FIFO_OPTS, 0xff },
2796 { R511_COMP_EN, 0x00 },
2797 { R511_COMP_LUT_EN, 0x03 },
2800 const struct ov_regvals compress_511[] = {
2801 { 0x70, 0x1f },
2802 { 0x71, 0x05 },
2803 { 0x72, 0x06 },
2804 { 0x73, 0x06 },
2805 { 0x74, 0x14 },
2806 { 0x75, 0x03 },
2807 { 0x76, 0x04 },
2808 { 0x77, 0x04 },
2811 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
2813 rc = write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2814 if (rc < 0)
2815 return rc;
2817 switch (sd->bridge) {
2818 case BRIDGE_OV511:
2819 rc = write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2820 if (rc < 0)
2821 return rc;
2822 break;
2823 case BRIDGE_OV511PLUS:
2824 rc = write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
2825 if (rc < 0)
2826 return rc;
2827 break;
2830 /* Init compression */
2831 rc = write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
2832 if (rc < 0)
2833 return rc;
2835 rc = ov51x_upload_quan_tables(sd);
2836 if (rc < 0) {
2837 PDEBUG(D_ERR, "Error uploading quantization tables");
2838 return rc;
2841 return 0;
2844 /* This initializes the OV518/OV518+ and the sensor */
2845 static int ov518_configure(struct gspca_dev *gspca_dev)
2847 struct sd *sd = (struct sd *) gspca_dev;
2848 int rc;
2850 /* For 518 and 518+ */
2851 const struct ov_regvals init_518[] = {
2852 { R51x_SYS_RESET, 0x40 },
2853 { R51x_SYS_INIT, 0xe1 },
2854 { R51x_SYS_RESET, 0x3e },
2855 { R51x_SYS_INIT, 0xe1 },
2856 { R51x_SYS_RESET, 0x00 },
2857 { R51x_SYS_INIT, 0xe1 },
2858 { 0x46, 0x00 },
2859 { 0x5d, 0x03 },
2862 const struct ov_regvals norm_518[] = {
2863 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2864 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2865 { 0x31, 0x0f },
2866 { 0x5d, 0x03 },
2867 { 0x24, 0x9f },
2868 { 0x25, 0x90 },
2869 { 0x20, 0x00 },
2870 { 0x51, 0x04 },
2871 { 0x71, 0x19 },
2872 { 0x2f, 0x80 },
2875 const struct ov_regvals norm_518_p[] = {
2876 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2877 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2878 { 0x31, 0x0f },
2879 { 0x5d, 0x03 },
2880 { 0x24, 0x9f },
2881 { 0x25, 0x90 },
2882 { 0x20, 0x60 },
2883 { 0x51, 0x02 },
2884 { 0x71, 0x19 },
2885 { 0x40, 0xff },
2886 { 0x41, 0x42 },
2887 { 0x46, 0x00 },
2888 { 0x33, 0x04 },
2889 { 0x21, 0x19 },
2890 { 0x3f, 0x10 },
2891 { 0x2f, 0x80 },
2894 /* First 5 bits of custom ID reg are a revision ID on OV518 */
2895 PDEBUG(D_PROBE, "Device revision %d",
2896 0x1F & reg_r(sd, R51x_SYS_CUST_ID));
2898 rc = write_regvals(sd, init_518, ARRAY_SIZE(init_518));
2899 if (rc < 0)
2900 return rc;
2902 /* Set LED GPIO pin to output mode */
2903 rc = reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
2904 if (rc < 0)
2905 return rc;
2907 switch (sd->bridge) {
2908 case BRIDGE_OV518:
2909 rc = write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
2910 if (rc < 0)
2911 return rc;
2912 break;
2913 case BRIDGE_OV518PLUS:
2914 rc = write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
2915 if (rc < 0)
2916 return rc;
2917 break;
2920 rc = ov51x_upload_quan_tables(sd);
2921 if (rc < 0) {
2922 PDEBUG(D_ERR, "Error uploading quantization tables");
2923 return rc;
2926 rc = reg_w(sd, 0x2f, 0x80);
2927 if (rc < 0)
2928 return rc;
2930 return 0;
2933 static int ov519_configure(struct sd *sd)
2935 static const struct ov_regvals init_519[] = {
2936 { 0x5a, 0x6d }, /* EnableSystem */
2937 { 0x53, 0x9b },
2938 { 0x54, 0xff }, /* set bit2 to enable jpeg */
2939 { 0x5d, 0x03 },
2940 { 0x49, 0x01 },
2941 { 0x48, 0x00 },
2942 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
2943 * detection will fail. This deserves further investigation. */
2944 { OV519_GPIO_IO_CTRL0, 0xee },
2945 { 0x51, 0x0f }, /* SetUsbInit */
2946 { 0x51, 0x00 },
2947 { 0x22, 0x00 },
2948 /* windows reads 0x55 at this point*/
2951 return write_regvals(sd, init_519, ARRAY_SIZE(init_519));
2954 static int ovfx2_configure(struct sd *sd)
2956 static const struct ov_regvals init_fx2[] = {
2957 { 0x00, 0x60 },
2958 { 0x02, 0x01 },
2959 { 0x0f, 0x1d },
2960 { 0xe9, 0x82 },
2961 { 0xea, 0xc7 },
2962 { 0xeb, 0x10 },
2963 { 0xec, 0xf6 },
2966 sd->stopped = 1;
2968 return write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
2971 /* this function is called at probe time */
2972 static int sd_config(struct gspca_dev *gspca_dev,
2973 const struct usb_device_id *id)
2975 struct sd *sd = (struct sd *) gspca_dev;
2976 struct cam *cam = &gspca_dev->cam;
2977 int ret = 0;
2979 sd->bridge = id->driver_info & BRIDGE_MASK;
2980 sd->invert_led = id->driver_info & BRIDGE_INVERT_LED;
2982 switch (sd->bridge) {
2983 case BRIDGE_OV511:
2984 case BRIDGE_OV511PLUS:
2985 ret = ov511_configure(gspca_dev);
2986 break;
2987 case BRIDGE_OV518:
2988 case BRIDGE_OV518PLUS:
2989 ret = ov518_configure(gspca_dev);
2990 break;
2991 case BRIDGE_OV519:
2992 ret = ov519_configure(sd);
2993 break;
2994 case BRIDGE_OVFX2:
2995 ret = ovfx2_configure(sd);
2996 cam->bulk_size = OVFX2_BULK_SIZE;
2997 cam->bulk_nurbs = MAX_NURBS;
2998 cam->bulk = 1;
2999 break;
3000 case BRIDGE_W9968CF:
3001 ret = w9968cf_configure(sd);
3002 cam->reverse_alts = 1;
3003 break;
3006 if (ret)
3007 goto error;
3009 ov51x_led_control(sd, 0); /* turn LED off */
3011 /* The OV519 must be more aggressive about sensor detection since
3012 * I2C write will never fail if the sensor is not present. We have
3013 * to try to initialize the sensor to detect its presence */
3015 /* Test for 76xx */
3016 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3017 if (ov7xx0_configure(sd) < 0) {
3018 PDEBUG(D_ERR, "Failed to configure OV7xx0");
3019 goto error;
3021 /* Test for 6xx0 */
3022 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3023 if (ov6xx0_configure(sd) < 0) {
3024 PDEBUG(D_ERR, "Failed to configure OV6xx0");
3025 goto error;
3027 /* Test for 8xx0 */
3028 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3029 if (ov8xx0_configure(sd) < 0) {
3030 PDEBUG(D_ERR, "Failed to configure OV8xx0");
3031 goto error;
3033 /* Test for 3xxx / 2xxx */
3034 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3035 if (ov_hires_configure(sd) < 0) {
3036 PDEBUG(D_ERR, "Failed to configure high res OV");
3037 goto error;
3039 } else {
3040 PDEBUG(D_ERR, "Can't determine sensor slave IDs");
3041 goto error;
3044 switch (sd->bridge) {
3045 case BRIDGE_OV511:
3046 case BRIDGE_OV511PLUS:
3047 if (!sd->sif) {
3048 cam->cam_mode = ov511_vga_mode;
3049 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3050 } else {
3051 cam->cam_mode = ov511_sif_mode;
3052 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3054 break;
3055 case BRIDGE_OV518:
3056 case BRIDGE_OV518PLUS:
3057 if (!sd->sif) {
3058 cam->cam_mode = ov518_vga_mode;
3059 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3060 } else {
3061 cam->cam_mode = ov518_sif_mode;
3062 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3064 break;
3065 case BRIDGE_OV519:
3066 if (!sd->sif) {
3067 cam->cam_mode = ov519_vga_mode;
3068 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3069 } else {
3070 cam->cam_mode = ov519_sif_mode;
3071 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3073 break;
3074 case BRIDGE_OVFX2:
3075 if (sd->sensor == SEN_OV2610) {
3076 cam->cam_mode = ovfx2_ov2610_mode;
3077 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3078 } else if (sd->sensor == SEN_OV3610) {
3079 cam->cam_mode = ovfx2_ov3610_mode;
3080 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3081 } else if (!sd->sif) {
3082 cam->cam_mode = ov519_vga_mode;
3083 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3084 } else {
3085 cam->cam_mode = ov519_sif_mode;
3086 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3088 break;
3089 case BRIDGE_W9968CF:
3090 cam->cam_mode = w9968cf_vga_mode;
3091 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3092 if (sd->sif)
3093 cam->nmodes--;
3095 /* w9968cf needs initialisation once the sensor is known */
3096 if (w9968cf_init(sd) < 0)
3097 goto error;
3098 break;
3100 sd->brightness = BRIGHTNESS_DEF;
3101 if (sd->sensor == SEN_OV6630 || sd->sensor == SEN_OV66308AF)
3102 sd->contrast = 200; /* The default is too low for the ov6630 */
3103 else
3104 sd->contrast = CONTRAST_DEF;
3105 sd->colors = COLOR_DEF;
3106 sd->hflip = HFLIP_DEF;
3107 sd->vflip = VFLIP_DEF;
3108 sd->autobrightness = AUTOBRIGHT_DEF;
3109 if (sd->sensor == SEN_OV7670) {
3110 sd->freq = OV7670_FREQ_DEF;
3111 gspca_dev->ctrl_dis = 1 << FREQ_IDX;
3112 } else {
3113 sd->freq = FREQ_DEF;
3114 gspca_dev->ctrl_dis = (1 << HFLIP_IDX) | (1 << VFLIP_IDX) |
3115 (1 << OV7670_FREQ_IDX);
3117 sd->quality = QUALITY_DEF;
3118 if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7670)
3119 gspca_dev->ctrl_dis |= 1 << AUTOBRIGHT_IDX;
3120 /* OV8610 Frequency filter control should work but needs testing */
3121 if (sd->sensor == SEN_OV8610)
3122 gspca_dev->ctrl_dis |= 1 << FREQ_IDX;
3123 /* No controls for the OV2610/OV3610 */
3124 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
3125 gspca_dev->ctrl_dis |= 0xFF;
3127 return 0;
3128 error:
3129 PDEBUG(D_ERR, "OV519 Config failed");
3130 return -EBUSY;
3133 /* this function is called at probe and resume time */
3134 static int sd_init(struct gspca_dev *gspca_dev)
3136 struct sd *sd = (struct sd *) gspca_dev;
3138 /* initialize the sensor */
3139 switch (sd->sensor) {
3140 case SEN_OV2610:
3141 if (write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610)))
3142 return -EIO;
3143 /* Enable autogain, autoexpo, awb, bandfilter */
3144 if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
3145 return -EIO;
3146 break;
3147 case SEN_OV3610:
3148 if (write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b)))
3149 return -EIO;
3150 /* Enable autogain, autoexpo, awb, bandfilter */
3151 if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
3152 return -EIO;
3153 break;
3154 case SEN_OV6620:
3155 if (write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20)))
3156 return -EIO;
3157 break;
3158 case SEN_OV6630:
3159 case SEN_OV66308AF:
3160 if (write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30)))
3161 return -EIO;
3162 break;
3163 default:
3164 /* case SEN_OV7610: */
3165 /* case SEN_OV76BE: */
3166 if (write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610)))
3167 return -EIO;
3168 if (i2c_w_mask(sd, 0x0e, 0x00, 0x40))
3169 return -EIO;
3170 break;
3171 case SEN_OV7620:
3172 if (write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620)))
3173 return -EIO;
3174 break;
3175 case SEN_OV7640:
3176 if (write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640)))
3177 return -EIO;
3178 break;
3179 case SEN_OV7670:
3180 if (write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670)))
3181 return -EIO;
3182 break;
3183 case SEN_OV8610:
3184 if (write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610)))
3185 return -EIO;
3186 break;
3188 return 0;
3191 /* Set up the OV511/OV511+ with the given image parameters.
3193 * Do not put any sensor-specific code in here (including I2C I/O functions)
3195 static int ov511_mode_init_regs(struct sd *sd)
3197 int hsegs, vsegs, packet_size, fps, needed;
3198 int interlaced = 0;
3199 struct usb_host_interface *alt;
3200 struct usb_interface *intf;
3202 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3203 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3204 if (!alt) {
3205 PDEBUG(D_ERR, "Couldn't get altsetting");
3206 return -EIO;
3209 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3210 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3212 reg_w(sd, R511_CAM_UV_EN, 0x01);
3213 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3214 reg_w(sd, R511_SNAP_OPTS, 0x03);
3216 /* Here I'm assuming that snapshot size == image size.
3217 * I hope that's always true. --claudio
3219 hsegs = (sd->gspca_dev.width >> 3) - 1;
3220 vsegs = (sd->gspca_dev.height >> 3) - 1;
3222 reg_w(sd, R511_CAM_PXCNT, hsegs);
3223 reg_w(sd, R511_CAM_LNCNT, vsegs);
3224 reg_w(sd, R511_CAM_PXDIV, 0x00);
3225 reg_w(sd, R511_CAM_LNDIV, 0x00);
3227 /* YUV420, low pass filter on */
3228 reg_w(sd, R511_CAM_OPTS, 0x03);
3230 /* Snapshot additions */
3231 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3232 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3233 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3234 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3236 /******** Set the framerate ********/
3237 if (frame_rate > 0)
3238 sd->frame_rate = frame_rate;
3240 switch (sd->sensor) {
3241 case SEN_OV6620:
3242 /* No framerate control, doesn't like higher rates yet */
3243 sd->clockdiv = 3;
3244 break;
3246 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3247 for more sensors we need to do this for them too */
3248 case SEN_OV7620:
3249 case SEN_OV7640:
3250 case SEN_OV76BE:
3251 if (sd->gspca_dev.width == 320)
3252 interlaced = 1;
3253 /* Fall through */
3254 case SEN_OV6630:
3255 case SEN_OV7610:
3256 case SEN_OV7670:
3257 switch (sd->frame_rate) {
3258 case 30:
3259 case 25:
3260 /* Not enough bandwidth to do 640x480 @ 30 fps */
3261 if (sd->gspca_dev.width != 640) {
3262 sd->clockdiv = 0;
3263 break;
3265 /* Fall through for 640x480 case */
3266 default:
3267 /* case 20: */
3268 /* case 15: */
3269 sd->clockdiv = 1;
3270 break;
3271 case 10:
3272 sd->clockdiv = 2;
3273 break;
3274 case 5:
3275 sd->clockdiv = 5;
3276 break;
3278 if (interlaced) {
3279 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3280 /* Higher then 10 does not work */
3281 if (sd->clockdiv > 10)
3282 sd->clockdiv = 10;
3284 break;
3286 case SEN_OV8610:
3287 /* No framerate control ?? */
3288 sd->clockdiv = 0;
3289 break;
3292 /* Check if we have enough bandwidth to disable compression */
3293 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3294 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3295 /* 1400 is a conservative estimate of the max nr of isoc packets/sec */
3296 if (needed > 1400 * packet_size) {
3297 /* Enable Y and UV quantization and compression */
3298 reg_w(sd, R511_COMP_EN, 0x07);
3299 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3300 } else {
3301 reg_w(sd, R511_COMP_EN, 0x06);
3302 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3305 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3306 reg_w(sd, R51x_SYS_RESET, 0);
3308 return 0;
3311 /* Sets up the OV518/OV518+ with the given image parameters
3313 * OV518 needs a completely different approach, until we can figure out what
3314 * the individual registers do. Also, only 15 FPS is supported now.
3316 * Do not put any sensor-specific code in here (including I2C I/O functions)
3318 static int ov518_mode_init_regs(struct sd *sd)
3320 int hsegs, vsegs, packet_size;
3321 struct usb_host_interface *alt;
3322 struct usb_interface *intf;
3324 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3325 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3326 if (!alt) {
3327 PDEBUG(D_ERR, "Couldn't get altsetting");
3328 return -EIO;
3331 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3332 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3334 /******** Set the mode ********/
3336 reg_w(sd, 0x2b, 0);
3337 reg_w(sd, 0x2c, 0);
3338 reg_w(sd, 0x2d, 0);
3339 reg_w(sd, 0x2e, 0);
3340 reg_w(sd, 0x3b, 0);
3341 reg_w(sd, 0x3c, 0);
3342 reg_w(sd, 0x3d, 0);
3343 reg_w(sd, 0x3e, 0);
3345 if (sd->bridge == BRIDGE_OV518) {
3346 /* Set 8-bit (YVYU) input format */
3347 reg_w_mask(sd, 0x20, 0x08, 0x08);
3349 /* Set 12-bit (4:2:0) output format */
3350 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3351 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3352 } else {
3353 reg_w(sd, 0x28, 0x80);
3354 reg_w(sd, 0x38, 0x80);
3357 hsegs = sd->gspca_dev.width / 16;
3358 vsegs = sd->gspca_dev.height / 4;
3360 reg_w(sd, 0x29, hsegs);
3361 reg_w(sd, 0x2a, vsegs);
3363 reg_w(sd, 0x39, hsegs);
3364 reg_w(sd, 0x3a, vsegs);
3366 /* Windows driver does this here; who knows why */
3367 reg_w(sd, 0x2f, 0x80);
3369 /******** Set the framerate ********/
3370 sd->clockdiv = 1;
3372 /* Mode independent, but framerate dependent, regs */
3373 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3374 reg_w(sd, 0x51, 0x04);
3375 reg_w(sd, 0x22, 0x18);
3376 reg_w(sd, 0x23, 0xff);
3378 if (sd->bridge == BRIDGE_OV518PLUS) {
3379 switch (sd->sensor) {
3380 case SEN_OV7620:
3381 if (sd->gspca_dev.width == 320) {
3382 reg_w(sd, 0x20, 0x00);
3383 reg_w(sd, 0x21, 0x19);
3384 } else {
3385 reg_w(sd, 0x20, 0x60);
3386 reg_w(sd, 0x21, 0x1f);
3388 break;
3389 default:
3390 reg_w(sd, 0x21, 0x19);
3392 } else
3393 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3395 /* FIXME: Sensor-specific */
3396 /* Bit 5 is what matters here. Of course, it is "reserved" */
3397 i2c_w(sd, 0x54, 0x23);
3399 reg_w(sd, 0x2f, 0x80);
3401 if (sd->bridge == BRIDGE_OV518PLUS) {
3402 reg_w(sd, 0x24, 0x94);
3403 reg_w(sd, 0x25, 0x90);
3404 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3405 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3406 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3407 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3408 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3409 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3410 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3411 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3412 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3413 } else {
3414 reg_w(sd, 0x24, 0x9f);
3415 reg_w(sd, 0x25, 0x90);
3416 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3417 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3418 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3419 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3420 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3421 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3422 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3423 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3424 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3427 reg_w(sd, 0x2f, 0x80);
3429 return 0;
3433 /* Sets up the OV519 with the given image parameters
3435 * OV519 needs a completely different approach, until we can figure out what
3436 * the individual registers do.
3438 * Do not put any sensor-specific code in here (including I2C I/O functions)
3440 static int ov519_mode_init_regs(struct sd *sd)
3442 static const struct ov_regvals mode_init_519_ov7670[] = {
3443 { 0x5d, 0x03 }, /* Turn off suspend mode */
3444 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3445 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
3446 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3447 { 0xa3, 0x18 },
3448 { 0xa4, 0x04 },
3449 { 0xa5, 0x28 },
3450 { 0x37, 0x00 }, /* SetUsbInit */
3451 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3452 /* Enable both fields, YUV Input, disable defect comp (why?) */
3453 { 0x20, 0x0c },
3454 { 0x21, 0x38 },
3455 { 0x22, 0x1d },
3456 { 0x17, 0x50 }, /* undocumented */
3457 { 0x37, 0x00 }, /* undocumented */
3458 { 0x40, 0xff }, /* I2C timeout counter */
3459 { 0x46, 0x00 }, /* I2C clock prescaler */
3460 { 0x59, 0x04 }, /* new from windrv 090403 */
3461 { 0xff, 0x00 }, /* undocumented */
3462 /* windows reads 0x55 at this point, why? */
3465 static const struct ov_regvals mode_init_519[] = {
3466 { 0x5d, 0x03 }, /* Turn off suspend mode */
3467 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3468 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
3469 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3470 { 0xa3, 0x18 },
3471 { 0xa4, 0x04 },
3472 { 0xa5, 0x28 },
3473 { 0x37, 0x00 }, /* SetUsbInit */
3474 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3475 /* Enable both fields, YUV Input, disable defect comp (why?) */
3476 { 0x22, 0x1d },
3477 { 0x17, 0x50 }, /* undocumented */
3478 { 0x37, 0x00 }, /* undocumented */
3479 { 0x40, 0xff }, /* I2C timeout counter */
3480 { 0x46, 0x00 }, /* I2C clock prescaler */
3481 { 0x59, 0x04 }, /* new from windrv 090403 */
3482 { 0xff, 0x00 }, /* undocumented */
3483 /* windows reads 0x55 at this point, why? */
3486 /******** Set the mode ********/
3487 if (sd->sensor != SEN_OV7670) {
3488 if (write_regvals(sd, mode_init_519,
3489 ARRAY_SIZE(mode_init_519)))
3490 return -EIO;
3491 if (sd->sensor == SEN_OV7640) {
3492 /* Select 8-bit input mode */
3493 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3495 } else {
3496 if (write_regvals(sd, mode_init_519_ov7670,
3497 ARRAY_SIZE(mode_init_519_ov7670)))
3498 return -EIO;
3501 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3502 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3503 if (sd->sensor == SEN_OV7670 &&
3504 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3505 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3506 else
3507 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3508 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3509 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3510 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3511 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3512 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3513 reg_w(sd, 0x26, 0x00); /* Undocumented */
3515 /******** Set the framerate ********/
3516 if (frame_rate > 0)
3517 sd->frame_rate = frame_rate;
3519 /* FIXME: These are only valid at the max resolution. */
3520 sd->clockdiv = 0;
3521 switch (sd->sensor) {
3522 case SEN_OV7640:
3523 switch (sd->frame_rate) {
3524 default:
3525 /* case 30: */
3526 reg_w(sd, 0xa4, 0x0c);
3527 reg_w(sd, 0x23, 0xff);
3528 break;
3529 case 25:
3530 reg_w(sd, 0xa4, 0x0c);
3531 reg_w(sd, 0x23, 0x1f);
3532 break;
3533 case 20:
3534 reg_w(sd, 0xa4, 0x0c);
3535 reg_w(sd, 0x23, 0x1b);
3536 break;
3537 case 15:
3538 reg_w(sd, 0xa4, 0x04);
3539 reg_w(sd, 0x23, 0xff);
3540 sd->clockdiv = 1;
3541 break;
3542 case 10:
3543 reg_w(sd, 0xa4, 0x04);
3544 reg_w(sd, 0x23, 0x1f);
3545 sd->clockdiv = 1;
3546 break;
3547 case 5:
3548 reg_w(sd, 0xa4, 0x04);
3549 reg_w(sd, 0x23, 0x1b);
3550 sd->clockdiv = 1;
3551 break;
3553 break;
3554 case SEN_OV8610:
3555 switch (sd->frame_rate) {
3556 default: /* 15 fps */
3557 /* case 15: */
3558 reg_w(sd, 0xa4, 0x06);
3559 reg_w(sd, 0x23, 0xff);
3560 break;
3561 case 10:
3562 reg_w(sd, 0xa4, 0x06);
3563 reg_w(sd, 0x23, 0x1f);
3564 break;
3565 case 5:
3566 reg_w(sd, 0xa4, 0x06);
3567 reg_w(sd, 0x23, 0x1b);
3568 break;
3570 break;
3571 case SEN_OV7670: /* guesses, based on 7640 */
3572 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3573 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3574 reg_w(sd, 0xa4, 0x10);
3575 switch (sd->frame_rate) {
3576 case 30:
3577 reg_w(sd, 0x23, 0xff);
3578 break;
3579 case 20:
3580 reg_w(sd, 0x23, 0x1b);
3581 break;
3582 default:
3583 /* case 15: */
3584 reg_w(sd, 0x23, 0xff);
3585 sd->clockdiv = 1;
3586 break;
3588 break;
3590 return 0;
3593 static int mode_init_ov_sensor_regs(struct sd *sd)
3595 struct gspca_dev *gspca_dev;
3596 int qvga, xstart, xend, ystart, yend;
3597 __u8 v;
3599 gspca_dev = &sd->gspca_dev;
3600 qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3602 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3603 switch (sd->sensor) {
3604 case SEN_OV2610:
3605 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3606 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3607 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3608 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3609 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3610 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3611 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3612 return 0;
3613 case SEN_OV3610:
3614 if (qvga) {
3615 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
3616 ystart = (776 - gspca_dev->height) / 2;
3617 } else {
3618 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
3619 ystart = (1544 - gspca_dev->height) / 2;
3621 xend = xstart + gspca_dev->width;
3622 yend = ystart + gspca_dev->height;
3623 /* Writing to the COMH register resets the other windowing regs
3624 to their default values, so we must do this first. */
3625 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3626 i2c_w_mask(sd, 0x32,
3627 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3628 0x3f);
3629 i2c_w_mask(sd, 0x03,
3630 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3631 0x0f);
3632 i2c_w(sd, 0x17, xstart >> 4);
3633 i2c_w(sd, 0x18, xend >> 4);
3634 i2c_w(sd, 0x19, ystart >> 3);
3635 i2c_w(sd, 0x1a, yend >> 3);
3636 return 0;
3637 case SEN_OV8610:
3638 /* For OV8610 qvga means qsvga */
3639 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3640 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3641 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3642 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3643 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3644 break;
3645 case SEN_OV7610:
3646 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3647 i2c_w(sd, 0x35, qvga?0x1e:0x9e);
3648 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3649 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3650 break;
3651 case SEN_OV7620:
3652 case SEN_OV76BE:
3653 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3654 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3655 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3656 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3657 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3658 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3659 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3660 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3661 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3662 if (sd->sensor == SEN_OV76BE)
3663 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3664 break;
3665 case SEN_OV7640:
3666 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3667 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3668 /* i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a); */
3669 /* i2c_w(sd, 0x25, qvga ? 0x30 : 0x60); */
3670 /* i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); */
3671 /* i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0); */
3672 /* i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); */
3673 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3674 break;
3675 case SEN_OV7670:
3676 /* set COM7_FMT_VGA or COM7_FMT_QVGA
3677 * do we need to set anything else?
3678 * HSTART etc are set in set_ov_sensor_window itself */
3679 i2c_w_mask(sd, OV7670_REG_COM7,
3680 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3681 OV7670_COM7_FMT_MASK);
3682 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3683 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_AWB,
3684 OV7670_COM8_AWB);
3685 if (qvga) { /* QVGA from ov7670.c by
3686 * Jonathan Corbet */
3687 xstart = 164;
3688 xend = 28;
3689 ystart = 14;
3690 yend = 494;
3691 } else { /* VGA */
3692 xstart = 158;
3693 xend = 14;
3694 ystart = 10;
3695 yend = 490;
3697 /* OV7670 hardware window registers are split across
3698 * multiple locations */
3699 i2c_w(sd, OV7670_REG_HSTART, xstart >> 3);
3700 i2c_w(sd, OV7670_REG_HSTOP, xend >> 3);
3701 v = i2c_r(sd, OV7670_REG_HREF);
3702 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
3703 msleep(10); /* need to sleep between read and write to
3704 * same reg! */
3705 i2c_w(sd, OV7670_REG_HREF, v);
3707 i2c_w(sd, OV7670_REG_VSTART, ystart >> 2);
3708 i2c_w(sd, OV7670_REG_VSTOP, yend >> 2);
3709 v = i2c_r(sd, OV7670_REG_VREF);
3710 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
3711 msleep(10); /* need to sleep between read and write to
3712 * same reg! */
3713 i2c_w(sd, OV7670_REG_VREF, v);
3714 break;
3715 case SEN_OV6620:
3716 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3717 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3718 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3719 break;
3720 case SEN_OV6630:
3721 case SEN_OV66308AF:
3722 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3723 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3724 break;
3725 default:
3726 return -EINVAL;
3729 /******** Clock programming ********/
3730 i2c_w(sd, 0x11, sd->clockdiv);
3732 return 0;
3735 static void sethvflip(struct sd *sd)
3737 if (sd->sensor != SEN_OV7670)
3738 return;
3739 if (sd->gspca_dev.streaming)
3740 ov51x_stop(sd);
3741 i2c_w_mask(sd, OV7670_REG_MVFP,
3742 OV7670_MVFP_MIRROR * sd->hflip
3743 | OV7670_MVFP_VFLIP * sd->vflip,
3744 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
3745 if (sd->gspca_dev.streaming)
3746 ov51x_restart(sd);
3749 static int set_ov_sensor_window(struct sd *sd)
3751 struct gspca_dev *gspca_dev;
3752 int qvga, crop;
3753 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
3754 int ret;
3756 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
3757 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610 ||
3758 sd->sensor == SEN_OV7670)
3759 return mode_init_ov_sensor_regs(sd);
3761 gspca_dev = &sd->gspca_dev;
3762 qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3763 crop = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 2;
3765 /* The different sensor ICs handle setting up of window differently.
3766 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
3767 switch (sd->sensor) {
3768 case SEN_OV8610:
3769 hwsbase = 0x1e;
3770 hwebase = 0x1e;
3771 vwsbase = 0x02;
3772 vwebase = 0x02;
3773 break;
3774 case SEN_OV7610:
3775 case SEN_OV76BE:
3776 hwsbase = 0x38;
3777 hwebase = 0x3a;
3778 vwsbase = vwebase = 0x05;
3779 break;
3780 case SEN_OV6620:
3781 case SEN_OV6630:
3782 case SEN_OV66308AF:
3783 hwsbase = 0x38;
3784 hwebase = 0x3a;
3785 vwsbase = 0x05;
3786 vwebase = 0x06;
3787 if (sd->sensor == SEN_OV66308AF && qvga)
3788 /* HDG: this fixes U and V getting swapped */
3789 hwsbase++;
3790 if (crop) {
3791 hwsbase += 8;
3792 hwebase += 8;
3793 vwsbase += 11;
3794 vwebase += 11;
3796 break;
3797 case SEN_OV7620:
3798 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
3799 hwebase = 0x2f;
3800 vwsbase = vwebase = 0x05;
3801 break;
3802 case SEN_OV7640:
3803 hwsbase = 0x1a;
3804 hwebase = 0x1a;
3805 vwsbase = vwebase = 0x03;
3806 break;
3807 default:
3808 return -EINVAL;
3811 switch (sd->sensor) {
3812 case SEN_OV6620:
3813 case SEN_OV6630:
3814 case SEN_OV66308AF:
3815 if (qvga) { /* QCIF */
3816 hwscale = 0;
3817 vwscale = 0;
3818 } else { /* CIF */
3819 hwscale = 1;
3820 vwscale = 1; /* The datasheet says 0;
3821 * it's wrong */
3823 break;
3824 case SEN_OV8610:
3825 if (qvga) { /* QSVGA */
3826 hwscale = 1;
3827 vwscale = 1;
3828 } else { /* SVGA */
3829 hwscale = 2;
3830 vwscale = 2;
3832 break;
3833 default: /* SEN_OV7xx0 */
3834 if (qvga) { /* QVGA */
3835 hwscale = 1;
3836 vwscale = 0;
3837 } else { /* VGA */
3838 hwscale = 2;
3839 vwscale = 1;
3843 ret = mode_init_ov_sensor_regs(sd);
3844 if (ret < 0)
3845 return ret;
3847 i2c_w(sd, 0x17, hwsbase);
3848 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
3849 i2c_w(sd, 0x19, vwsbase);
3850 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
3852 return 0;
3855 /* -- start the camera -- */
3856 static int sd_start(struct gspca_dev *gspca_dev)
3858 struct sd *sd = (struct sd *) gspca_dev;
3859 int ret = 0;
3861 /* Default for most bridges, allow bridge_mode_init_regs to override */
3862 sd->sensor_width = sd->gspca_dev.width;
3863 sd->sensor_height = sd->gspca_dev.height;
3865 switch (sd->bridge) {
3866 case BRIDGE_OV511:
3867 case BRIDGE_OV511PLUS:
3868 ret = ov511_mode_init_regs(sd);
3869 break;
3870 case BRIDGE_OV518:
3871 case BRIDGE_OV518PLUS:
3872 ret = ov518_mode_init_regs(sd);
3873 break;
3874 case BRIDGE_OV519:
3875 ret = ov519_mode_init_regs(sd);
3876 break;
3877 /* case BRIDGE_OVFX2: nothing to do */
3878 case BRIDGE_W9968CF:
3879 ret = w9968cf_mode_init_regs(sd);
3880 break;
3882 if (ret < 0)
3883 goto out;
3885 ret = set_ov_sensor_window(sd);
3886 if (ret < 0)
3887 goto out;
3889 setcontrast(gspca_dev);
3890 setbrightness(gspca_dev);
3891 setcolors(gspca_dev);
3892 sethvflip(sd);
3893 setautobrightness(sd);
3894 setfreq(sd);
3896 ret = ov51x_restart(sd);
3897 if (ret < 0)
3898 goto out;
3899 ov51x_led_control(sd, 1);
3900 return 0;
3901 out:
3902 PDEBUG(D_ERR, "camera start error:%d", ret);
3903 return ret;
3906 static void sd_stopN(struct gspca_dev *gspca_dev)
3908 struct sd *sd = (struct sd *) gspca_dev;
3910 ov51x_stop(sd);
3911 ov51x_led_control(sd, 0);
3914 static void sd_stop0(struct gspca_dev *gspca_dev)
3916 struct sd *sd = (struct sd *) gspca_dev;
3918 if (sd->bridge == BRIDGE_W9968CF)
3919 w9968cf_stop0(sd);
3922 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
3923 u8 *in, /* isoc packet */
3924 int len) /* iso packet length */
3926 struct sd *sd = (struct sd *) gspca_dev;
3928 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
3929 * byte non-zero. The EOF packet has image width/height in the
3930 * 10th and 11th bytes. The 9th byte is given as follows:
3932 * bit 7: EOF
3933 * 6: compression enabled
3934 * 5: 422/420/400 modes
3935 * 4: 422/420/400 modes
3936 * 3: 1
3937 * 2: snapshot button on
3938 * 1: snapshot frame
3939 * 0: even/odd field
3941 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
3942 (in[8] & 0x08)) {
3943 if (in[8] & 0x80) {
3944 /* Frame end */
3945 if ((in[9] + 1) * 8 != gspca_dev->width ||
3946 (in[10] + 1) * 8 != gspca_dev->height) {
3947 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
3948 " requested: %dx%d\n",
3949 (in[9] + 1) * 8, (in[10] + 1) * 8,
3950 gspca_dev->width, gspca_dev->height);
3951 gspca_dev->last_packet_type = DISCARD_PACKET;
3952 return;
3954 /* Add 11 byte footer to frame, might be usefull */
3955 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
3956 return;
3957 } else {
3958 /* Frame start */
3959 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
3960 sd->packet_nr = 0;
3964 /* Ignore the packet number */
3965 len--;
3967 /* intermediate packet */
3968 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
3971 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
3972 u8 *data, /* isoc packet */
3973 int len) /* iso packet length */
3975 struct sd *sd = (struct sd *) gspca_dev;
3977 /* A false positive here is likely, until OVT gives me
3978 * the definitive SOF/EOF format */
3979 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
3980 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
3981 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
3982 sd->packet_nr = 0;
3985 if (gspca_dev->last_packet_type == DISCARD_PACKET)
3986 return;
3988 /* Does this device use packet numbers ? */
3989 if (len & 7) {
3990 len--;
3991 if (sd->packet_nr == data[len])
3992 sd->packet_nr++;
3993 /* The last few packets of the frame (which are all 0's
3994 except that they may contain part of the footer), are
3995 numbered 0 */
3996 else if (sd->packet_nr == 0 || data[len]) {
3997 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
3998 (int)data[len], (int)sd->packet_nr);
3999 gspca_dev->last_packet_type = DISCARD_PACKET;
4000 return;
4004 /* intermediate packet */
4005 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4008 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4009 u8 *data, /* isoc packet */
4010 int len) /* iso packet length */
4012 /* Header of ov519 is 16 bytes:
4013 * Byte Value Description
4014 * 0 0xff magic
4015 * 1 0xff magic
4016 * 2 0xff magic
4017 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4018 * 9 0xXX 0x01 initial frame without data,
4019 * 0x00 standard frame with image
4020 * 14 Lo in EOF: length of image data / 8
4021 * 15 Hi
4024 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4025 switch (data[3]) {
4026 case 0x50: /* start of frame */
4027 #define HDRSZ 16
4028 data += HDRSZ;
4029 len -= HDRSZ;
4030 #undef HDRSZ
4031 if (data[0] == 0xff || data[1] == 0xd8)
4032 gspca_frame_add(gspca_dev, FIRST_PACKET,
4033 data, len);
4034 else
4035 gspca_dev->last_packet_type = DISCARD_PACKET;
4036 return;
4037 case 0x51: /* end of frame */
4038 if (data[9] != 0)
4039 gspca_dev->last_packet_type = DISCARD_PACKET;
4040 gspca_frame_add(gspca_dev, LAST_PACKET,
4041 NULL, 0);
4042 return;
4046 /* intermediate packet */
4047 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4050 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4051 u8 *data, /* isoc packet */
4052 int len) /* iso packet length */
4054 /* A short read signals EOF */
4055 if (len < OVFX2_BULK_SIZE) {
4056 gspca_frame_add(gspca_dev, LAST_PACKET, data, len);
4057 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4058 return;
4060 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4063 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4064 u8 *data, /* isoc packet */
4065 int len) /* iso packet length */
4067 struct sd *sd = (struct sd *) gspca_dev;
4069 switch (sd->bridge) {
4070 case BRIDGE_OV511:
4071 case BRIDGE_OV511PLUS:
4072 ov511_pkt_scan(gspca_dev, data, len);
4073 break;
4074 case BRIDGE_OV518:
4075 case BRIDGE_OV518PLUS:
4076 ov518_pkt_scan(gspca_dev, data, len);
4077 break;
4078 case BRIDGE_OV519:
4079 ov519_pkt_scan(gspca_dev, data, len);
4080 break;
4081 case BRIDGE_OVFX2:
4082 ovfx2_pkt_scan(gspca_dev, data, len);
4083 break;
4084 case BRIDGE_W9968CF:
4085 w9968cf_pkt_scan(gspca_dev, data, len);
4086 break;
4090 /* -- management routines -- */
4092 static void setbrightness(struct gspca_dev *gspca_dev)
4094 struct sd *sd = (struct sd *) gspca_dev;
4095 int val;
4097 val = sd->brightness;
4098 switch (sd->sensor) {
4099 case SEN_OV8610:
4100 case SEN_OV7610:
4101 case SEN_OV76BE:
4102 case SEN_OV6620:
4103 case SEN_OV6630:
4104 case SEN_OV66308AF:
4105 case SEN_OV7640:
4106 i2c_w(sd, OV7610_REG_BRT, val);
4107 break;
4108 case SEN_OV7620:
4109 /* 7620 doesn't like manual changes when in auto mode */
4110 if (!sd->autobrightness)
4111 i2c_w(sd, OV7610_REG_BRT, val);
4112 break;
4113 case SEN_OV7670:
4114 /*win trace
4115 * i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_AEC); */
4116 i2c_w(sd, OV7670_REG_BRIGHT, ov7670_abs_to_sm(val));
4117 break;
4121 static void setcontrast(struct gspca_dev *gspca_dev)
4123 struct sd *sd = (struct sd *) gspca_dev;
4124 int val;
4126 val = sd->contrast;
4127 switch (sd->sensor) {
4128 case SEN_OV7610:
4129 case SEN_OV6620:
4130 i2c_w(sd, OV7610_REG_CNT, val);
4131 break;
4132 case SEN_OV6630:
4133 case SEN_OV66308AF:
4134 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4135 break;
4136 case SEN_OV8610: {
4137 static const __u8 ctab[] = {
4138 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4141 /* Use Y gamma control instead. Bit 0 enables it. */
4142 i2c_w(sd, 0x64, ctab[val >> 5]);
4143 break;
4145 case SEN_OV7620: {
4146 static const __u8 ctab[] = {
4147 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4148 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4151 /* Use Y gamma control instead. Bit 0 enables it. */
4152 i2c_w(sd, 0x64, ctab[val >> 4]);
4153 break;
4155 case SEN_OV7640:
4156 /* Use gain control instead. */
4157 i2c_w(sd, OV7610_REG_GAIN, val >> 2);
4158 break;
4159 case SEN_OV7670:
4160 /* check that this isn't just the same as ov7610 */
4161 i2c_w(sd, OV7670_REG_CONTRAS, val >> 1);
4162 break;
4166 static void setcolors(struct gspca_dev *gspca_dev)
4168 struct sd *sd = (struct sd *) gspca_dev;
4169 int val;
4171 val = sd->colors;
4172 switch (sd->sensor) {
4173 case SEN_OV8610:
4174 case SEN_OV7610:
4175 case SEN_OV76BE:
4176 case SEN_OV6620:
4177 case SEN_OV6630:
4178 case SEN_OV66308AF:
4179 i2c_w(sd, OV7610_REG_SAT, val);
4180 break;
4181 case SEN_OV7620:
4182 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4183 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4184 if (rc < 0)
4185 goto out; */
4186 i2c_w(sd, OV7610_REG_SAT, val);
4187 break;
4188 case SEN_OV7640:
4189 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4190 break;
4191 case SEN_OV7670:
4192 /* supported later once I work out how to do it
4193 * transparently fail now! */
4194 /* set REG_COM13 values for UV sat auto mode */
4195 break;
4199 static void setautobrightness(struct sd *sd)
4201 if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7670 ||
4202 sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4203 return;
4205 i2c_w_mask(sd, 0x2d, sd->autobrightness ? 0x10 : 0x00, 0x10);
4208 static void setfreq(struct sd *sd)
4210 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4211 return;
4213 if (sd->sensor == SEN_OV7670) {
4214 switch (sd->freq) {
4215 case 0: /* Banding filter disabled */
4216 i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_BFILT);
4217 break;
4218 case 1: /* 50 hz */
4219 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4220 OV7670_COM8_BFILT);
4221 i2c_w_mask(sd, OV7670_REG_COM11, 0x08, 0x18);
4222 break;
4223 case 2: /* 60 hz */
4224 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4225 OV7670_COM8_BFILT);
4226 i2c_w_mask(sd, OV7670_REG_COM11, 0x00, 0x18);
4227 break;
4228 case 3: /* Auto hz */
4229 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4230 OV7670_COM8_BFILT);
4231 i2c_w_mask(sd, OV7670_REG_COM11, OV7670_COM11_HZAUTO,
4232 0x18);
4233 break;
4235 } else {
4236 switch (sd->freq) {
4237 case 0: /* Banding filter disabled */
4238 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4239 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4240 break;
4241 case 1: /* 50 hz (filter on and framerate adj) */
4242 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4243 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4244 /* 20 fps -> 16.667 fps */
4245 if (sd->sensor == SEN_OV6620 ||
4246 sd->sensor == SEN_OV6630 ||
4247 sd->sensor == SEN_OV66308AF)
4248 i2c_w(sd, 0x2b, 0x5e);
4249 else
4250 i2c_w(sd, 0x2b, 0xac);
4251 break;
4252 case 2: /* 60 hz (filter on, ...) */
4253 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4254 if (sd->sensor == SEN_OV6620 ||
4255 sd->sensor == SEN_OV6630 ||
4256 sd->sensor == SEN_OV66308AF) {
4257 /* 20 fps -> 15 fps */
4258 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4259 i2c_w(sd, 0x2b, 0xa8);
4260 } else {
4261 /* no framerate adj. */
4262 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4264 break;
4269 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
4271 struct sd *sd = (struct sd *) gspca_dev;
4273 sd->brightness = val;
4274 if (gspca_dev->streaming)
4275 setbrightness(gspca_dev);
4276 return 0;
4279 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
4281 struct sd *sd = (struct sd *) gspca_dev;
4283 *val = sd->brightness;
4284 return 0;
4287 static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val)
4289 struct sd *sd = (struct sd *) gspca_dev;
4291 sd->contrast = val;
4292 if (gspca_dev->streaming)
4293 setcontrast(gspca_dev);
4294 return 0;
4297 static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val)
4299 struct sd *sd = (struct sd *) gspca_dev;
4301 *val = sd->contrast;
4302 return 0;
4305 static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val)
4307 struct sd *sd = (struct sd *) gspca_dev;
4309 sd->colors = val;
4310 if (gspca_dev->streaming)
4311 setcolors(gspca_dev);
4312 return 0;
4315 static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val)
4317 struct sd *sd = (struct sd *) gspca_dev;
4319 *val = sd->colors;
4320 return 0;
4323 static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val)
4325 struct sd *sd = (struct sd *) gspca_dev;
4327 sd->hflip = val;
4328 if (gspca_dev->streaming)
4329 sethvflip(sd);
4330 return 0;
4333 static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val)
4335 struct sd *sd = (struct sd *) gspca_dev;
4337 *val = sd->hflip;
4338 return 0;
4341 static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val)
4343 struct sd *sd = (struct sd *) gspca_dev;
4345 sd->vflip = val;
4346 if (gspca_dev->streaming)
4347 sethvflip(sd);
4348 return 0;
4351 static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val)
4353 struct sd *sd = (struct sd *) gspca_dev;
4355 *val = sd->vflip;
4356 return 0;
4359 static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val)
4361 struct sd *sd = (struct sd *) gspca_dev;
4363 sd->autobrightness = val;
4364 if (gspca_dev->streaming)
4365 setautobrightness(sd);
4366 return 0;
4369 static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val)
4371 struct sd *sd = (struct sd *) gspca_dev;
4373 *val = sd->autobrightness;
4374 return 0;
4377 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
4379 struct sd *sd = (struct sd *) gspca_dev;
4381 sd->freq = val;
4382 if (gspca_dev->streaming) {
4383 setfreq(sd);
4384 /* Ugly but necessary */
4385 if (sd->bridge == BRIDGE_W9968CF)
4386 w9968cf_set_crop_window(sd);
4388 return 0;
4391 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
4393 struct sd *sd = (struct sd *) gspca_dev;
4395 *val = sd->freq;
4396 return 0;
4399 static int sd_querymenu(struct gspca_dev *gspca_dev,
4400 struct v4l2_querymenu *menu)
4402 struct sd *sd = (struct sd *) gspca_dev;
4404 switch (menu->id) {
4405 case V4L2_CID_POWER_LINE_FREQUENCY:
4406 switch (menu->index) {
4407 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4408 strcpy((char *) menu->name, "NoFliker");
4409 return 0;
4410 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4411 strcpy((char *) menu->name, "50 Hz");
4412 return 0;
4413 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4414 strcpy((char *) menu->name, "60 Hz");
4415 return 0;
4416 case 3:
4417 if (sd->sensor != SEN_OV7670)
4418 return -EINVAL;
4420 strcpy((char *) menu->name, "Automatic");
4421 return 0;
4423 break;
4425 return -EINVAL;
4428 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4429 struct v4l2_jpegcompression *jcomp)
4431 struct sd *sd = (struct sd *) gspca_dev;
4433 if (sd->bridge != BRIDGE_W9968CF)
4434 return -EINVAL;
4436 memset(jcomp, 0, sizeof *jcomp);
4437 jcomp->quality = sd->quality;
4438 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4439 V4L2_JPEG_MARKER_DRI;
4440 return 0;
4443 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4444 struct v4l2_jpegcompression *jcomp)
4446 struct sd *sd = (struct sd *) gspca_dev;
4448 if (sd->bridge != BRIDGE_W9968CF)
4449 return -EINVAL;
4451 if (gspca_dev->streaming)
4452 return -EBUSY;
4454 if (jcomp->quality < QUALITY_MIN)
4455 sd->quality = QUALITY_MIN;
4456 else if (jcomp->quality > QUALITY_MAX)
4457 sd->quality = QUALITY_MAX;
4458 else
4459 sd->quality = jcomp->quality;
4461 /* Return resulting jcomp params to app */
4462 sd_get_jcomp(gspca_dev, jcomp);
4464 return 0;
4467 /* sub-driver description */
4468 static const struct sd_desc sd_desc = {
4469 .name = MODULE_NAME,
4470 .ctrls = sd_ctrls,
4471 .nctrls = ARRAY_SIZE(sd_ctrls),
4472 .config = sd_config,
4473 .init = sd_init,
4474 .start = sd_start,
4475 .stopN = sd_stopN,
4476 .stop0 = sd_stop0,
4477 .pkt_scan = sd_pkt_scan,
4478 .querymenu = sd_querymenu,
4479 .get_jcomp = sd_get_jcomp,
4480 .set_jcomp = sd_set_jcomp,
4483 /* -- module initialisation -- */
4484 static const __devinitdata struct usb_device_id device_table[] = {
4485 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4486 {USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
4487 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4488 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4489 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4490 {USB_DEVICE(0x041e, 0x4064),
4491 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4492 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4493 {USB_DEVICE(0x041e, 0x4068),
4494 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4495 {USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
4496 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4497 {USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4498 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4499 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4500 {USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
4501 {USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
4502 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4503 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4504 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4505 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4506 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4507 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4508 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4509 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4510 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4511 {USB_DEVICE(0x8020, 0xEF04), .driver_info = BRIDGE_OVFX2 },
4515 MODULE_DEVICE_TABLE(usb, device_table);
4517 /* -- device connect -- */
4518 static int sd_probe(struct usb_interface *intf,
4519 const struct usb_device_id *id)
4521 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4522 THIS_MODULE);
4525 static struct usb_driver sd_driver = {
4526 .name = MODULE_NAME,
4527 .id_table = device_table,
4528 .probe = sd_probe,
4529 .disconnect = gspca_disconnect,
4530 #ifdef CONFIG_PM
4531 .suspend = gspca_suspend,
4532 .resume = gspca_resume,
4533 #endif
4536 /* -- module insert / remove -- */
4537 static int __init sd_mod_init(void)
4539 int ret;
4540 ret = usb_register(&sd_driver);
4541 if (ret < 0)
4542 return ret;
4543 PDEBUG(D_PROBE, "registered");
4544 return 0;
4546 static void __exit sd_mod_exit(void)
4548 usb_deregister(&sd_driver);
4549 PDEBUG(D_PROBE, "deregistered");
4552 module_init(sd_mod_init);
4553 module_exit(sd_mod_exit);
4555 module_param(frame_rate, int, 0644);
4556 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");