4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
37 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
48 # define SET_FPEMU_CTL(a,b) (-EINVAL)
51 # define GET_FPEMU_CTL(a,b) (-EINVAL)
54 # define SET_FPEXC_CTL(a,b) (-EINVAL)
57 # define GET_FPEXC_CTL(a,b) (-EINVAL)
60 # define GET_ENDIAN(a,b) (-EINVAL)
63 # define SET_ENDIAN(a,b) (-EINVAL)
67 * this is where the system-wide overflow UID and GID are defined, for
68 * architectures that now have 32-bit UID/GID but didn't in the past
71 int overflowuid
= DEFAULT_OVERFLOWUID
;
72 int overflowgid
= DEFAULT_OVERFLOWGID
;
75 EXPORT_SYMBOL(overflowuid
);
76 EXPORT_SYMBOL(overflowgid
);
80 * the same as above, but for filesystems which can only store a 16-bit
81 * UID and GID. as such, this is needed on all architectures
84 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
85 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
87 EXPORT_SYMBOL(fs_overflowuid
);
88 EXPORT_SYMBOL(fs_overflowgid
);
91 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
96 EXPORT_SYMBOL(cad_pid
);
99 * Notifier list for kernel code which wants to be called
100 * at shutdown. This is used to stop any idling DMA operations
104 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list
);
107 * Notifier chain core routines. The exported routines below
108 * are layered on top of these, with appropriate locking added.
111 static int notifier_chain_register(struct notifier_block
**nl
,
112 struct notifier_block
*n
)
114 while ((*nl
) != NULL
) {
115 if (n
->priority
> (*nl
)->priority
)
120 rcu_assign_pointer(*nl
, n
);
124 static int notifier_chain_unregister(struct notifier_block
**nl
,
125 struct notifier_block
*n
)
127 while ((*nl
) != NULL
) {
129 rcu_assign_pointer(*nl
, n
->next
);
137 static int __kprobes
notifier_call_chain(struct notifier_block
**nl
,
138 unsigned long val
, void *v
)
140 int ret
= NOTIFY_DONE
;
141 struct notifier_block
*nb
, *next_nb
;
143 nb
= rcu_dereference(*nl
);
145 next_nb
= rcu_dereference(nb
->next
);
146 ret
= nb
->notifier_call(nb
, val
, v
);
147 if ((ret
& NOTIFY_STOP_MASK
) == NOTIFY_STOP_MASK
)
155 * Atomic notifier chain routines. Registration and unregistration
156 * use a spinlock, and call_chain is synchronized by RCU (no locks).
160 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
161 * @nh: Pointer to head of the atomic notifier chain
162 * @n: New entry in notifier chain
164 * Adds a notifier to an atomic notifier chain.
166 * Currently always returns zero.
169 int atomic_notifier_chain_register(struct atomic_notifier_head
*nh
,
170 struct notifier_block
*n
)
175 spin_lock_irqsave(&nh
->lock
, flags
);
176 ret
= notifier_chain_register(&nh
->head
, n
);
177 spin_unlock_irqrestore(&nh
->lock
, flags
);
181 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register
);
184 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
185 * @nh: Pointer to head of the atomic notifier chain
186 * @n: Entry to remove from notifier chain
188 * Removes a notifier from an atomic notifier chain.
190 * Returns zero on success or %-ENOENT on failure.
192 int atomic_notifier_chain_unregister(struct atomic_notifier_head
*nh
,
193 struct notifier_block
*n
)
198 spin_lock_irqsave(&nh
->lock
, flags
);
199 ret
= notifier_chain_unregister(&nh
->head
, n
);
200 spin_unlock_irqrestore(&nh
->lock
, flags
);
205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister
);
208 * atomic_notifier_call_chain - Call functions in an atomic notifier chain
209 * @nh: Pointer to head of the atomic notifier chain
210 * @val: Value passed unmodified to notifier function
211 * @v: Pointer passed unmodified to notifier function
213 * Calls each function in a notifier chain in turn. The functions
214 * run in an atomic context, so they must not block.
215 * This routine uses RCU to synchronize with changes to the chain.
217 * If the return value of the notifier can be and'ed
218 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
219 * will return immediately, with the return value of
220 * the notifier function which halted execution.
221 * Otherwise the return value is the return value
222 * of the last notifier function called.
225 int __kprobes
atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
226 unsigned long val
, void *v
)
231 ret
= notifier_call_chain(&nh
->head
, val
, v
);
236 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain
);
239 * Blocking notifier chain routines. All access to the chain is
240 * synchronized by an rwsem.
244 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
245 * @nh: Pointer to head of the blocking notifier chain
246 * @n: New entry in notifier chain
248 * Adds a notifier to a blocking notifier chain.
249 * Must be called in process context.
251 * Currently always returns zero.
254 int blocking_notifier_chain_register(struct blocking_notifier_head
*nh
,
255 struct notifier_block
*n
)
260 * This code gets used during boot-up, when task switching is
261 * not yet working and interrupts must remain disabled. At
262 * such times we must not call down_write().
264 if (unlikely(system_state
== SYSTEM_BOOTING
))
265 return notifier_chain_register(&nh
->head
, n
);
267 down_write(&nh
->rwsem
);
268 ret
= notifier_chain_register(&nh
->head
, n
);
269 up_write(&nh
->rwsem
);
273 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register
);
276 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
277 * @nh: Pointer to head of the blocking notifier chain
278 * @n: Entry to remove from notifier chain
280 * Removes a notifier from a blocking notifier chain.
281 * Must be called from process context.
283 * Returns zero on success or %-ENOENT on failure.
285 int blocking_notifier_chain_unregister(struct blocking_notifier_head
*nh
,
286 struct notifier_block
*n
)
291 * This code gets used during boot-up, when task switching is
292 * not yet working and interrupts must remain disabled. At
293 * such times we must not call down_write().
295 if (unlikely(system_state
== SYSTEM_BOOTING
))
296 return notifier_chain_unregister(&nh
->head
, n
);
298 down_write(&nh
->rwsem
);
299 ret
= notifier_chain_unregister(&nh
->head
, n
);
300 up_write(&nh
->rwsem
);
304 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister
);
307 * blocking_notifier_call_chain - Call functions in a blocking notifier chain
308 * @nh: Pointer to head of the blocking notifier chain
309 * @val: Value passed unmodified to notifier function
310 * @v: Pointer passed unmodified to notifier function
312 * Calls each function in a notifier chain in turn. The functions
313 * run in a process context, so they are allowed to block.
315 * If the return value of the notifier can be and'ed
316 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
317 * will return immediately, with the return value of
318 * the notifier function which halted execution.
319 * Otherwise the return value is the return value
320 * of the last notifier function called.
323 int blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
324 unsigned long val
, void *v
)
328 down_read(&nh
->rwsem
);
329 ret
= notifier_call_chain(&nh
->head
, val
, v
);
334 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain
);
337 * Raw notifier chain routines. There is no protection;
338 * the caller must provide it. Use at your own risk!
342 * raw_notifier_chain_register - Add notifier to a raw notifier chain
343 * @nh: Pointer to head of the raw notifier chain
344 * @n: New entry in notifier chain
346 * Adds a notifier to a raw notifier chain.
347 * All locking must be provided by the caller.
349 * Currently always returns zero.
352 int raw_notifier_chain_register(struct raw_notifier_head
*nh
,
353 struct notifier_block
*n
)
355 return notifier_chain_register(&nh
->head
, n
);
358 EXPORT_SYMBOL_GPL(raw_notifier_chain_register
);
361 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
362 * @nh: Pointer to head of the raw notifier chain
363 * @n: Entry to remove from notifier chain
365 * Removes a notifier from a raw notifier chain.
366 * All locking must be provided by the caller.
368 * Returns zero on success or %-ENOENT on failure.
370 int raw_notifier_chain_unregister(struct raw_notifier_head
*nh
,
371 struct notifier_block
*n
)
373 return notifier_chain_unregister(&nh
->head
, n
);
376 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister
);
379 * raw_notifier_call_chain - Call functions in a raw notifier chain
380 * @nh: Pointer to head of the raw notifier chain
381 * @val: Value passed unmodified to notifier function
382 * @v: Pointer passed unmodified to notifier function
384 * Calls each function in a notifier chain in turn. The functions
385 * run in an undefined context.
386 * All locking must be provided by the caller.
388 * If the return value of the notifier can be and'ed
389 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain
390 * will return immediately, with the return value of
391 * the notifier function which halted execution.
392 * Otherwise the return value is the return value
393 * of the last notifier function called.
396 int raw_notifier_call_chain(struct raw_notifier_head
*nh
,
397 unsigned long val
, void *v
)
399 return notifier_call_chain(&nh
->head
, val
, v
);
402 EXPORT_SYMBOL_GPL(raw_notifier_call_chain
);
405 * SRCU notifier chain routines. Registration and unregistration
406 * use a mutex, and call_chain is synchronized by SRCU (no locks).
410 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
411 * @nh: Pointer to head of the SRCU notifier chain
412 * @n: New entry in notifier chain
414 * Adds a notifier to an SRCU notifier chain.
415 * Must be called in process context.
417 * Currently always returns zero.
420 int srcu_notifier_chain_register(struct srcu_notifier_head
*nh
,
421 struct notifier_block
*n
)
426 * This code gets used during boot-up, when task switching is
427 * not yet working and interrupts must remain disabled. At
428 * such times we must not call mutex_lock().
430 if (unlikely(system_state
== SYSTEM_BOOTING
))
431 return notifier_chain_register(&nh
->head
, n
);
433 mutex_lock(&nh
->mutex
);
434 ret
= notifier_chain_register(&nh
->head
, n
);
435 mutex_unlock(&nh
->mutex
);
439 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register
);
442 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
443 * @nh: Pointer to head of the SRCU notifier chain
444 * @n: Entry to remove from notifier chain
446 * Removes a notifier from an SRCU notifier chain.
447 * Must be called from process context.
449 * Returns zero on success or %-ENOENT on failure.
451 int srcu_notifier_chain_unregister(struct srcu_notifier_head
*nh
,
452 struct notifier_block
*n
)
457 * This code gets used during boot-up, when task switching is
458 * not yet working and interrupts must remain disabled. At
459 * such times we must not call mutex_lock().
461 if (unlikely(system_state
== SYSTEM_BOOTING
))
462 return notifier_chain_unregister(&nh
->head
, n
);
464 mutex_lock(&nh
->mutex
);
465 ret
= notifier_chain_unregister(&nh
->head
, n
);
466 mutex_unlock(&nh
->mutex
);
467 synchronize_srcu(&nh
->srcu
);
471 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister
);
474 * srcu_notifier_call_chain - Call functions in an SRCU notifier chain
475 * @nh: Pointer to head of the SRCU notifier chain
476 * @val: Value passed unmodified to notifier function
477 * @v: Pointer passed unmodified to notifier function
479 * Calls each function in a notifier chain in turn. The functions
480 * run in a process context, so they are allowed to block.
482 * If the return value of the notifier can be and'ed
483 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain
484 * will return immediately, with the return value of
485 * the notifier function which halted execution.
486 * Otherwise the return value is the return value
487 * of the last notifier function called.
490 int srcu_notifier_call_chain(struct srcu_notifier_head
*nh
,
491 unsigned long val
, void *v
)
496 idx
= srcu_read_lock(&nh
->srcu
);
497 ret
= notifier_call_chain(&nh
->head
, val
, v
);
498 srcu_read_unlock(&nh
->srcu
, idx
);
502 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain
);
505 * srcu_init_notifier_head - Initialize an SRCU notifier head
506 * @nh: Pointer to head of the srcu notifier chain
508 * Unlike other sorts of notifier heads, SRCU notifier heads require
509 * dynamic initialization. Be sure to call this routine before
510 * calling any of the other SRCU notifier routines for this head.
512 * If an SRCU notifier head is deallocated, it must first be cleaned
513 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's
514 * per-cpu data (used by the SRCU mechanism) will leak.
517 void srcu_init_notifier_head(struct srcu_notifier_head
*nh
)
519 mutex_init(&nh
->mutex
);
520 if (init_srcu_struct(&nh
->srcu
) < 0)
525 EXPORT_SYMBOL_GPL(srcu_init_notifier_head
);
528 * register_reboot_notifier - Register function to be called at reboot time
529 * @nb: Info about notifier function to be called
531 * Registers a function with the list of functions
532 * to be called at reboot time.
534 * Currently always returns zero, as blocking_notifier_chain_register
535 * always returns zero.
538 int register_reboot_notifier(struct notifier_block
* nb
)
540 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
543 EXPORT_SYMBOL(register_reboot_notifier
);
546 * unregister_reboot_notifier - Unregister previously registered reboot notifier
547 * @nb: Hook to be unregistered
549 * Unregisters a previously registered reboot
552 * Returns zero on success, or %-ENOENT on failure.
555 int unregister_reboot_notifier(struct notifier_block
* nb
)
557 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
560 EXPORT_SYMBOL(unregister_reboot_notifier
);
562 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
566 if (p
->uid
!= current
->euid
&&
567 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
571 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
575 no_nice
= security_task_setnice(p
, niceval
);
582 set_user_nice(p
, niceval
);
587 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
589 struct task_struct
*g
, *p
;
590 struct user_struct
*user
;
593 if (which
> 2 || which
< 0)
596 /* normalize: avoid signed division (rounding problems) */
603 read_lock(&tasklist_lock
);
608 p
= find_task_by_pid(who
);
610 error
= set_one_prio(p
, niceval
, error
);
614 who
= process_group(current
);
615 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
616 error
= set_one_prio(p
, niceval
, error
);
617 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
620 user
= current
->user
;
624 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
625 goto out_unlock
; /* No processes for this user */
629 error
= set_one_prio(p
, niceval
, error
);
630 while_each_thread(g
, p
);
631 if (who
!= current
->uid
)
632 free_uid(user
); /* For find_user() */
636 read_unlock(&tasklist_lock
);
642 * Ugh. To avoid negative return values, "getpriority()" will
643 * not return the normal nice-value, but a negated value that
644 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
645 * to stay compatible.
647 asmlinkage
long sys_getpriority(int which
, int who
)
649 struct task_struct
*g
, *p
;
650 struct user_struct
*user
;
651 long niceval
, retval
= -ESRCH
;
653 if (which
> 2 || which
< 0)
656 read_lock(&tasklist_lock
);
661 p
= find_task_by_pid(who
);
663 niceval
= 20 - task_nice(p
);
664 if (niceval
> retval
)
670 who
= process_group(current
);
671 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
672 niceval
= 20 - task_nice(p
);
673 if (niceval
> retval
)
675 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
678 user
= current
->user
;
682 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
683 goto out_unlock
; /* No processes for this user */
687 niceval
= 20 - task_nice(p
);
688 if (niceval
> retval
)
691 while_each_thread(g
, p
);
692 if (who
!= current
->uid
)
693 free_uid(user
); /* for find_user() */
697 read_unlock(&tasklist_lock
);
703 * emergency_restart - reboot the system
705 * Without shutting down any hardware or taking any locks
706 * reboot the system. This is called when we know we are in
707 * trouble so this is our best effort to reboot. This is
708 * safe to call in interrupt context.
710 void emergency_restart(void)
712 machine_emergency_restart();
714 EXPORT_SYMBOL_GPL(emergency_restart
);
716 static void kernel_restart_prepare(char *cmd
)
718 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
719 system_state
= SYSTEM_RESTART
;
724 * kernel_restart - reboot the system
725 * @cmd: pointer to buffer containing command to execute for restart
728 * Shutdown everything and perform a clean reboot.
729 * This is not safe to call in interrupt context.
731 void kernel_restart(char *cmd
)
733 kernel_restart_prepare(cmd
);
735 printk(KERN_EMERG
"Restarting system.\n");
737 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
738 machine_restart(cmd
);
740 EXPORT_SYMBOL_GPL(kernel_restart
);
743 * kernel_kexec - reboot the system
745 * Move into place and start executing a preloaded standalone
746 * executable. If nothing was preloaded return an error.
748 static void kernel_kexec(void)
751 struct kimage
*image
;
752 image
= xchg(&kexec_image
, NULL
);
755 kernel_restart_prepare(NULL
);
756 printk(KERN_EMERG
"Starting new kernel\n");
758 machine_kexec(image
);
762 void kernel_shutdown_prepare(enum system_states state
)
764 blocking_notifier_call_chain(&reboot_notifier_list
,
765 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
766 system_state
= state
;
770 * kernel_halt - halt the system
772 * Shutdown everything and perform a clean system halt.
774 void kernel_halt(void)
776 kernel_shutdown_prepare(SYSTEM_HALT
);
777 printk(KERN_EMERG
"System halted.\n");
781 EXPORT_SYMBOL_GPL(kernel_halt
);
784 * kernel_power_off - power_off the system
786 * Shutdown everything and perform a clean system power_off.
788 void kernel_power_off(void)
790 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
791 printk(KERN_EMERG
"Power down.\n");
794 EXPORT_SYMBOL_GPL(kernel_power_off
);
796 * Reboot system call: for obvious reasons only root may call it,
797 * and even root needs to set up some magic numbers in the registers
798 * so that some mistake won't make this reboot the whole machine.
799 * You can also set the meaning of the ctrl-alt-del-key here.
801 * reboot doesn't sync: do that yourself before calling this.
803 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
807 /* We only trust the superuser with rebooting the system. */
808 if (!capable(CAP_SYS_BOOT
))
811 /* For safety, we require "magic" arguments. */
812 if (magic1
!= LINUX_REBOOT_MAGIC1
||
813 (magic2
!= LINUX_REBOOT_MAGIC2
&&
814 magic2
!= LINUX_REBOOT_MAGIC2A
&&
815 magic2
!= LINUX_REBOOT_MAGIC2B
&&
816 magic2
!= LINUX_REBOOT_MAGIC2C
))
819 /* Instead of trying to make the power_off code look like
820 * halt when pm_power_off is not set do it the easy way.
822 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
823 cmd
= LINUX_REBOOT_CMD_HALT
;
827 case LINUX_REBOOT_CMD_RESTART
:
828 kernel_restart(NULL
);
831 case LINUX_REBOOT_CMD_CAD_ON
:
835 case LINUX_REBOOT_CMD_CAD_OFF
:
839 case LINUX_REBOOT_CMD_HALT
:
845 case LINUX_REBOOT_CMD_POWER_OFF
:
851 case LINUX_REBOOT_CMD_RESTART2
:
852 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
856 buffer
[sizeof(buffer
) - 1] = '\0';
858 kernel_restart(buffer
);
861 case LINUX_REBOOT_CMD_KEXEC
:
866 #ifdef CONFIG_SOFTWARE_SUSPEND
867 case LINUX_REBOOT_CMD_SW_SUSPEND
:
869 int ret
= software_suspend();
883 static void deferred_cad(void *dummy
)
885 kernel_restart(NULL
);
889 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
890 * As it's called within an interrupt, it may NOT sync: the only choice
891 * is whether to reboot at once, or just ignore the ctrl-alt-del.
893 void ctrl_alt_del(void)
895 static DECLARE_WORK(cad_work
, deferred_cad
, NULL
);
898 schedule_work(&cad_work
);
900 kill_cad_pid(SIGINT
, 1);
904 * Unprivileged users may change the real gid to the effective gid
905 * or vice versa. (BSD-style)
907 * If you set the real gid at all, or set the effective gid to a value not
908 * equal to the real gid, then the saved gid is set to the new effective gid.
910 * This makes it possible for a setgid program to completely drop its
911 * privileges, which is often a useful assertion to make when you are doing
912 * a security audit over a program.
914 * The general idea is that a program which uses just setregid() will be
915 * 100% compatible with BSD. A program which uses just setgid() will be
916 * 100% compatible with POSIX with saved IDs.
918 * SMP: There are not races, the GIDs are checked only by filesystem
919 * operations (as far as semantic preservation is concerned).
921 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
923 int old_rgid
= current
->gid
;
924 int old_egid
= current
->egid
;
925 int new_rgid
= old_rgid
;
926 int new_egid
= old_egid
;
929 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
933 if (rgid
!= (gid_t
) -1) {
934 if ((old_rgid
== rgid
) ||
935 (current
->egid
==rgid
) ||
941 if (egid
!= (gid_t
) -1) {
942 if ((old_rgid
== egid
) ||
943 (current
->egid
== egid
) ||
944 (current
->sgid
== egid
) ||
950 if (new_egid
!= old_egid
) {
951 current
->mm
->dumpable
= suid_dumpable
;
954 if (rgid
!= (gid_t
) -1 ||
955 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
956 current
->sgid
= new_egid
;
957 current
->fsgid
= new_egid
;
958 current
->egid
= new_egid
;
959 current
->gid
= new_rgid
;
960 key_fsgid_changed(current
);
961 proc_id_connector(current
, PROC_EVENT_GID
);
966 * setgid() is implemented like SysV w/ SAVED_IDS
968 * SMP: Same implicit races as above.
970 asmlinkage
long sys_setgid(gid_t gid
)
972 int old_egid
= current
->egid
;
975 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
979 if (capable(CAP_SETGID
)) {
980 if (old_egid
!= gid
) {
981 current
->mm
->dumpable
= suid_dumpable
;
984 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
985 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
986 if (old_egid
!= gid
) {
987 current
->mm
->dumpable
= suid_dumpable
;
990 current
->egid
= current
->fsgid
= gid
;
995 key_fsgid_changed(current
);
996 proc_id_connector(current
, PROC_EVENT_GID
);
1000 static int set_user(uid_t new_ruid
, int dumpclear
)
1002 struct user_struct
*new_user
;
1004 new_user
= alloc_uid(new_ruid
);
1008 if (atomic_read(&new_user
->processes
) >=
1009 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
1010 new_user
!= &root_user
) {
1015 switch_uid(new_user
);
1018 current
->mm
->dumpable
= suid_dumpable
;
1021 current
->uid
= new_ruid
;
1026 * Unprivileged users may change the real uid to the effective uid
1027 * or vice versa. (BSD-style)
1029 * If you set the real uid at all, or set the effective uid to a value not
1030 * equal to the real uid, then the saved uid is set to the new effective uid.
1032 * This makes it possible for a setuid program to completely drop its
1033 * privileges, which is often a useful assertion to make when you are doing
1034 * a security audit over a program.
1036 * The general idea is that a program which uses just setreuid() will be
1037 * 100% compatible with BSD. A program which uses just setuid() will be
1038 * 100% compatible with POSIX with saved IDs.
1040 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
1042 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
1045 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
1049 new_ruid
= old_ruid
= current
->uid
;
1050 new_euid
= old_euid
= current
->euid
;
1051 old_suid
= current
->suid
;
1053 if (ruid
!= (uid_t
) -1) {
1055 if ((old_ruid
!= ruid
) &&
1056 (current
->euid
!= ruid
) &&
1057 !capable(CAP_SETUID
))
1061 if (euid
!= (uid_t
) -1) {
1063 if ((old_ruid
!= euid
) &&
1064 (current
->euid
!= euid
) &&
1065 (current
->suid
!= euid
) &&
1066 !capable(CAP_SETUID
))
1070 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
1073 if (new_euid
!= old_euid
) {
1074 current
->mm
->dumpable
= suid_dumpable
;
1077 current
->fsuid
= current
->euid
= new_euid
;
1078 if (ruid
!= (uid_t
) -1 ||
1079 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
1080 current
->suid
= current
->euid
;
1081 current
->fsuid
= current
->euid
;
1083 key_fsuid_changed(current
);
1084 proc_id_connector(current
, PROC_EVENT_UID
);
1086 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
1092 * setuid() is implemented like SysV with SAVED_IDS
1094 * Note that SAVED_ID's is deficient in that a setuid root program
1095 * like sendmail, for example, cannot set its uid to be a normal
1096 * user and then switch back, because if you're root, setuid() sets
1097 * the saved uid too. If you don't like this, blame the bright people
1098 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
1099 * will allow a root program to temporarily drop privileges and be able to
1100 * regain them by swapping the real and effective uid.
1102 asmlinkage
long sys_setuid(uid_t uid
)
1104 int old_euid
= current
->euid
;
1105 int old_ruid
, old_suid
, new_ruid
, new_suid
;
1108 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
1112 old_ruid
= new_ruid
= current
->uid
;
1113 old_suid
= current
->suid
;
1114 new_suid
= old_suid
;
1116 if (capable(CAP_SETUID
)) {
1117 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
1120 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
1123 if (old_euid
!= uid
) {
1124 current
->mm
->dumpable
= suid_dumpable
;
1127 current
->fsuid
= current
->euid
= uid
;
1128 current
->suid
= new_suid
;
1130 key_fsuid_changed(current
);
1131 proc_id_connector(current
, PROC_EVENT_UID
);
1133 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
1138 * This function implements a generic ability to update ruid, euid,
1139 * and suid. This allows you to implement the 4.4 compatible seteuid().
1141 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
1143 int old_ruid
= current
->uid
;
1144 int old_euid
= current
->euid
;
1145 int old_suid
= current
->suid
;
1148 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
1152 if (!capable(CAP_SETUID
)) {
1153 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
1154 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
1156 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
1157 (euid
!= current
->euid
) && (euid
!= current
->suid
))
1159 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
1160 (suid
!= current
->euid
) && (suid
!= current
->suid
))
1163 if (ruid
!= (uid_t
) -1) {
1164 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
1167 if (euid
!= (uid_t
) -1) {
1168 if (euid
!= current
->euid
) {
1169 current
->mm
->dumpable
= suid_dumpable
;
1172 current
->euid
= euid
;
1174 current
->fsuid
= current
->euid
;
1175 if (suid
!= (uid_t
) -1)
1176 current
->suid
= suid
;
1178 key_fsuid_changed(current
);
1179 proc_id_connector(current
, PROC_EVENT_UID
);
1181 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
1184 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
1188 if (!(retval
= put_user(current
->uid
, ruid
)) &&
1189 !(retval
= put_user(current
->euid
, euid
)))
1190 retval
= put_user(current
->suid
, suid
);
1196 * Same as above, but for rgid, egid, sgid.
1198 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
1202 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
1206 if (!capable(CAP_SETGID
)) {
1207 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
1208 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
1210 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
1211 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
1213 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
1214 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
1217 if (egid
!= (gid_t
) -1) {
1218 if (egid
!= current
->egid
) {
1219 current
->mm
->dumpable
= suid_dumpable
;
1222 current
->egid
= egid
;
1224 current
->fsgid
= current
->egid
;
1225 if (rgid
!= (gid_t
) -1)
1226 current
->gid
= rgid
;
1227 if (sgid
!= (gid_t
) -1)
1228 current
->sgid
= sgid
;
1230 key_fsgid_changed(current
);
1231 proc_id_connector(current
, PROC_EVENT_GID
);
1235 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
1239 if (!(retval
= put_user(current
->gid
, rgid
)) &&
1240 !(retval
= put_user(current
->egid
, egid
)))
1241 retval
= put_user(current
->sgid
, sgid
);
1248 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1249 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1250 * whatever uid it wants to). It normally shadows "euid", except when
1251 * explicitly set by setfsuid() or for access..
1253 asmlinkage
long sys_setfsuid(uid_t uid
)
1257 old_fsuid
= current
->fsuid
;
1258 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
1261 if (uid
== current
->uid
|| uid
== current
->euid
||
1262 uid
== current
->suid
|| uid
== current
->fsuid
||
1263 capable(CAP_SETUID
)) {
1264 if (uid
!= old_fsuid
) {
1265 current
->mm
->dumpable
= suid_dumpable
;
1268 current
->fsuid
= uid
;
1271 key_fsuid_changed(current
);
1272 proc_id_connector(current
, PROC_EVENT_UID
);
1274 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
1280 * Samma på svenska..
1282 asmlinkage
long sys_setfsgid(gid_t gid
)
1286 old_fsgid
= current
->fsgid
;
1287 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
1290 if (gid
== current
->gid
|| gid
== current
->egid
||
1291 gid
== current
->sgid
|| gid
== current
->fsgid
||
1292 capable(CAP_SETGID
)) {
1293 if (gid
!= old_fsgid
) {
1294 current
->mm
->dumpable
= suid_dumpable
;
1297 current
->fsgid
= gid
;
1298 key_fsgid_changed(current
);
1299 proc_id_connector(current
, PROC_EVENT_GID
);
1304 asmlinkage
long sys_times(struct tms __user
* tbuf
)
1307 * In the SMP world we might just be unlucky and have one of
1308 * the times increment as we use it. Since the value is an
1309 * atomically safe type this is just fine. Conceptually its
1310 * as if the syscall took an instant longer to occur.
1314 struct task_struct
*tsk
= current
;
1315 struct task_struct
*t
;
1316 cputime_t utime
, stime
, cutime
, cstime
;
1318 spin_lock_irq(&tsk
->sighand
->siglock
);
1319 utime
= tsk
->signal
->utime
;
1320 stime
= tsk
->signal
->stime
;
1323 utime
= cputime_add(utime
, t
->utime
);
1324 stime
= cputime_add(stime
, t
->stime
);
1328 cutime
= tsk
->signal
->cutime
;
1329 cstime
= tsk
->signal
->cstime
;
1330 spin_unlock_irq(&tsk
->sighand
->siglock
);
1332 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1333 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1334 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1335 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1336 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1339 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1343 * This needs some heavy checking ...
1344 * I just haven't the stomach for it. I also don't fully
1345 * understand sessions/pgrp etc. Let somebody who does explain it.
1347 * OK, I think I have the protection semantics right.... this is really
1348 * only important on a multi-user system anyway, to make sure one user
1349 * can't send a signal to a process owned by another. -TYT, 12/12/91
1351 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1355 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1357 struct task_struct
*p
;
1358 struct task_struct
*group_leader
= current
->group_leader
;
1362 pid
= group_leader
->pid
;
1368 /* From this point forward we keep holding onto the tasklist lock
1369 * so that our parent does not change from under us. -DaveM
1371 write_lock_irq(&tasklist_lock
);
1374 p
= find_task_by_pid(pid
);
1379 if (!thread_group_leader(p
))
1382 if (p
->real_parent
== group_leader
) {
1384 if (p
->signal
->session
!= group_leader
->signal
->session
)
1391 if (p
!= group_leader
)
1396 if (p
->signal
->leader
)
1400 struct task_struct
*p
;
1402 do_each_task_pid(pgid
, PIDTYPE_PGID
, p
) {
1403 if (p
->signal
->session
== group_leader
->signal
->session
)
1405 } while_each_task_pid(pgid
, PIDTYPE_PGID
, p
);
1410 err
= security_task_setpgid(p
, pgid
);
1414 if (process_group(p
) != pgid
) {
1415 detach_pid(p
, PIDTYPE_PGID
);
1416 p
->signal
->pgrp
= pgid
;
1417 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1422 /* All paths lead to here, thus we are safe. -DaveM */
1423 write_unlock_irq(&tasklist_lock
);
1427 asmlinkage
long sys_getpgid(pid_t pid
)
1430 return process_group(current
);
1433 struct task_struct
*p
;
1435 read_lock(&tasklist_lock
);
1436 p
= find_task_by_pid(pid
);
1440 retval
= security_task_getpgid(p
);
1442 retval
= process_group(p
);
1444 read_unlock(&tasklist_lock
);
1449 #ifdef __ARCH_WANT_SYS_GETPGRP
1451 asmlinkage
long sys_getpgrp(void)
1453 /* SMP - assuming writes are word atomic this is fine */
1454 return process_group(current
);
1459 asmlinkage
long sys_getsid(pid_t pid
)
1462 return current
->signal
->session
;
1465 struct task_struct
*p
;
1467 read_lock(&tasklist_lock
);
1468 p
= find_task_by_pid(pid
);
1472 retval
= security_task_getsid(p
);
1474 retval
= p
->signal
->session
;
1476 read_unlock(&tasklist_lock
);
1481 asmlinkage
long sys_setsid(void)
1483 struct task_struct
*group_leader
= current
->group_leader
;
1487 mutex_lock(&tty_mutex
);
1488 write_lock_irq(&tasklist_lock
);
1490 /* Fail if I am already a session leader */
1491 if (group_leader
->signal
->leader
)
1494 session
= group_leader
->pid
;
1495 /* Fail if a process group id already exists that equals the
1496 * proposed session id.
1498 * Don't check if session id == 1 because kernel threads use this
1499 * session id and so the check will always fail and make it so
1500 * init cannot successfully call setsid.
1502 if (session
> 1 && find_task_by_pid_type(PIDTYPE_PGID
, session
))
1505 group_leader
->signal
->leader
= 1;
1506 __set_special_pids(session
, session
);
1507 group_leader
->signal
->tty
= NULL
;
1508 group_leader
->signal
->tty_old_pgrp
= 0;
1509 err
= process_group(group_leader
);
1511 write_unlock_irq(&tasklist_lock
);
1512 mutex_unlock(&tty_mutex
);
1517 * Supplementary group IDs
1520 /* init to 2 - one for init_task, one to ensure it is never freed */
1521 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1523 struct group_info
*groups_alloc(int gidsetsize
)
1525 struct group_info
*group_info
;
1529 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1530 /* Make sure we always allocate at least one indirect block pointer */
1531 nblocks
= nblocks
? : 1;
1532 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1535 group_info
->ngroups
= gidsetsize
;
1536 group_info
->nblocks
= nblocks
;
1537 atomic_set(&group_info
->usage
, 1);
1539 if (gidsetsize
<= NGROUPS_SMALL
)
1540 group_info
->blocks
[0] = group_info
->small_block
;
1542 for (i
= 0; i
< nblocks
; i
++) {
1544 b
= (void *)__get_free_page(GFP_USER
);
1546 goto out_undo_partial_alloc
;
1547 group_info
->blocks
[i
] = b
;
1552 out_undo_partial_alloc
:
1554 free_page((unsigned long)group_info
->blocks
[i
]);
1560 EXPORT_SYMBOL(groups_alloc
);
1562 void groups_free(struct group_info
*group_info
)
1564 if (group_info
->blocks
[0] != group_info
->small_block
) {
1566 for (i
= 0; i
< group_info
->nblocks
; i
++)
1567 free_page((unsigned long)group_info
->blocks
[i
]);
1572 EXPORT_SYMBOL(groups_free
);
1574 /* export the group_info to a user-space array */
1575 static int groups_to_user(gid_t __user
*grouplist
,
1576 struct group_info
*group_info
)
1579 int count
= group_info
->ngroups
;
1581 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1582 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1583 int off
= i
* NGROUPS_PER_BLOCK
;
1584 int len
= cp_count
* sizeof(*grouplist
);
1586 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1594 /* fill a group_info from a user-space array - it must be allocated already */
1595 static int groups_from_user(struct group_info
*group_info
,
1596 gid_t __user
*grouplist
)
1599 int count
= group_info
->ngroups
;
1601 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1602 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1603 int off
= i
* NGROUPS_PER_BLOCK
;
1604 int len
= cp_count
* sizeof(*grouplist
);
1606 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1614 /* a simple Shell sort */
1615 static void groups_sort(struct group_info
*group_info
)
1617 int base
, max
, stride
;
1618 int gidsetsize
= group_info
->ngroups
;
1620 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1625 max
= gidsetsize
- stride
;
1626 for (base
= 0; base
< max
; base
++) {
1628 int right
= left
+ stride
;
1629 gid_t tmp
= GROUP_AT(group_info
, right
);
1631 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1632 GROUP_AT(group_info
, right
) =
1633 GROUP_AT(group_info
, left
);
1637 GROUP_AT(group_info
, right
) = tmp
;
1643 /* a simple bsearch */
1644 int groups_search(struct group_info
*group_info
, gid_t grp
)
1646 unsigned int left
, right
;
1652 right
= group_info
->ngroups
;
1653 while (left
< right
) {
1654 unsigned int mid
= (left
+right
)/2;
1655 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1666 /* validate and set current->group_info */
1667 int set_current_groups(struct group_info
*group_info
)
1670 struct group_info
*old_info
;
1672 retval
= security_task_setgroups(group_info
);
1676 groups_sort(group_info
);
1677 get_group_info(group_info
);
1680 old_info
= current
->group_info
;
1681 current
->group_info
= group_info
;
1682 task_unlock(current
);
1684 put_group_info(old_info
);
1689 EXPORT_SYMBOL(set_current_groups
);
1691 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1696 * SMP: Nobody else can change our grouplist. Thus we are
1703 /* no need to grab task_lock here; it cannot change */
1704 i
= current
->group_info
->ngroups
;
1706 if (i
> gidsetsize
) {
1710 if (groups_to_user(grouplist
, current
->group_info
)) {
1720 * SMP: Our groups are copy-on-write. We can set them safely
1721 * without another task interfering.
1724 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1726 struct group_info
*group_info
;
1729 if (!capable(CAP_SETGID
))
1731 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1734 group_info
= groups_alloc(gidsetsize
);
1737 retval
= groups_from_user(group_info
, grouplist
);
1739 put_group_info(group_info
);
1743 retval
= set_current_groups(group_info
);
1744 put_group_info(group_info
);
1750 * Check whether we're fsgid/egid or in the supplemental group..
1752 int in_group_p(gid_t grp
)
1755 if (grp
!= current
->fsgid
)
1756 retval
= groups_search(current
->group_info
, grp
);
1760 EXPORT_SYMBOL(in_group_p
);
1762 int in_egroup_p(gid_t grp
)
1765 if (grp
!= current
->egid
)
1766 retval
= groups_search(current
->group_info
, grp
);
1770 EXPORT_SYMBOL(in_egroup_p
);
1772 DECLARE_RWSEM(uts_sem
);
1774 EXPORT_SYMBOL(uts_sem
);
1776 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1780 down_read(&uts_sem
);
1781 if (copy_to_user(name
, utsname(), sizeof *name
))
1787 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1790 char tmp
[__NEW_UTS_LEN
];
1792 if (!capable(CAP_SYS_ADMIN
))
1794 if (len
< 0 || len
> __NEW_UTS_LEN
)
1796 down_write(&uts_sem
);
1798 if (!copy_from_user(tmp
, name
, len
)) {
1799 memcpy(utsname()->nodename
, tmp
, len
);
1800 utsname()->nodename
[len
] = 0;
1807 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1809 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1815 down_read(&uts_sem
);
1816 i
= 1 + strlen(utsname()->nodename
);
1820 if (copy_to_user(name
, utsname()->nodename
, i
))
1829 * Only setdomainname; getdomainname can be implemented by calling
1832 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1835 char tmp
[__NEW_UTS_LEN
];
1837 if (!capable(CAP_SYS_ADMIN
))
1839 if (len
< 0 || len
> __NEW_UTS_LEN
)
1842 down_write(&uts_sem
);
1844 if (!copy_from_user(tmp
, name
, len
)) {
1845 memcpy(utsname()->domainname
, tmp
, len
);
1846 utsname()->domainname
[len
] = 0;
1853 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1855 if (resource
>= RLIM_NLIMITS
)
1858 struct rlimit value
;
1859 task_lock(current
->group_leader
);
1860 value
= current
->signal
->rlim
[resource
];
1861 task_unlock(current
->group_leader
);
1862 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1866 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1869 * Back compatibility for getrlimit. Needed for some apps.
1872 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1875 if (resource
>= RLIM_NLIMITS
)
1878 task_lock(current
->group_leader
);
1879 x
= current
->signal
->rlim
[resource
];
1880 task_unlock(current
->group_leader
);
1881 if (x
.rlim_cur
> 0x7FFFFFFF)
1882 x
.rlim_cur
= 0x7FFFFFFF;
1883 if (x
.rlim_max
> 0x7FFFFFFF)
1884 x
.rlim_max
= 0x7FFFFFFF;
1885 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1890 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1892 struct rlimit new_rlim
, *old_rlim
;
1893 unsigned long it_prof_secs
;
1896 if (resource
>= RLIM_NLIMITS
)
1898 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1900 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1902 old_rlim
= current
->signal
->rlim
+ resource
;
1903 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1904 !capable(CAP_SYS_RESOURCE
))
1906 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1909 retval
= security_task_setrlimit(resource
, &new_rlim
);
1913 task_lock(current
->group_leader
);
1914 *old_rlim
= new_rlim
;
1915 task_unlock(current
->group_leader
);
1917 if (resource
!= RLIMIT_CPU
)
1921 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1922 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1923 * very long-standing error, and fixing it now risks breakage of
1924 * applications, so we live with it
1926 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1929 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1930 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1931 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1934 if (rlim_cur
== 0) {
1936 * The caller is asking for an immediate RLIMIT_CPU
1937 * expiry. But we use the zero value to mean "it was
1938 * never set". So let's cheat and make it one second
1943 cputime
= secs_to_cputime(rlim_cur
);
1944 read_lock(&tasklist_lock
);
1945 spin_lock_irq(¤t
->sighand
->siglock
);
1946 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1947 spin_unlock_irq(¤t
->sighand
->siglock
);
1948 read_unlock(&tasklist_lock
);
1955 * It would make sense to put struct rusage in the task_struct,
1956 * except that would make the task_struct be *really big*. After
1957 * task_struct gets moved into malloc'ed memory, it would
1958 * make sense to do this. It will make moving the rest of the information
1959 * a lot simpler! (Which we're not doing right now because we're not
1960 * measuring them yet).
1962 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1963 * races with threads incrementing their own counters. But since word
1964 * reads are atomic, we either get new values or old values and we don't
1965 * care which for the sums. We always take the siglock to protect reading
1966 * the c* fields from p->signal from races with exit.c updating those
1967 * fields when reaping, so a sample either gets all the additions of a
1968 * given child after it's reaped, or none so this sample is before reaping.
1971 * We need to take the siglock for CHILDEREN, SELF and BOTH
1972 * for the cases current multithreaded, non-current single threaded
1973 * non-current multithreaded. Thread traversal is now safe with
1975 * Strictly speaking, we donot need to take the siglock if we are current and
1976 * single threaded, as no one else can take our signal_struct away, no one
1977 * else can reap the children to update signal->c* counters, and no one else
1978 * can race with the signal-> fields. If we do not take any lock, the
1979 * signal-> fields could be read out of order while another thread was just
1980 * exiting. So we should place a read memory barrier when we avoid the lock.
1981 * On the writer side, write memory barrier is implied in __exit_signal
1982 * as __exit_signal releases the siglock spinlock after updating the signal->
1983 * fields. But we don't do this yet to keep things simple.
1987 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1989 struct task_struct
*t
;
1990 unsigned long flags
;
1991 cputime_t utime
, stime
;
1993 memset((char *) r
, 0, sizeof *r
);
1994 utime
= stime
= cputime_zero
;
1997 if (!lock_task_sighand(p
, &flags
)) {
2004 case RUSAGE_CHILDREN
:
2005 utime
= p
->signal
->cutime
;
2006 stime
= p
->signal
->cstime
;
2007 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
2008 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
2009 r
->ru_minflt
= p
->signal
->cmin_flt
;
2010 r
->ru_majflt
= p
->signal
->cmaj_flt
;
2012 if (who
== RUSAGE_CHILDREN
)
2016 utime
= cputime_add(utime
, p
->signal
->utime
);
2017 stime
= cputime_add(stime
, p
->signal
->stime
);
2018 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
2019 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
2020 r
->ru_minflt
+= p
->signal
->min_flt
;
2021 r
->ru_majflt
+= p
->signal
->maj_flt
;
2024 utime
= cputime_add(utime
, t
->utime
);
2025 stime
= cputime_add(stime
, t
->stime
);
2026 r
->ru_nvcsw
+= t
->nvcsw
;
2027 r
->ru_nivcsw
+= t
->nivcsw
;
2028 r
->ru_minflt
+= t
->min_flt
;
2029 r
->ru_majflt
+= t
->maj_flt
;
2038 unlock_task_sighand(p
, &flags
);
2041 cputime_to_timeval(utime
, &r
->ru_utime
);
2042 cputime_to_timeval(stime
, &r
->ru_stime
);
2045 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
2048 k_getrusage(p
, who
, &r
);
2049 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
2052 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
2054 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
2056 return getrusage(current
, who
, ru
);
2059 asmlinkage
long sys_umask(int mask
)
2061 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
2065 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
2066 unsigned long arg4
, unsigned long arg5
)
2070 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2075 case PR_SET_PDEATHSIG
:
2076 if (!valid_signal(arg2
)) {
2080 current
->pdeath_signal
= arg2
;
2082 case PR_GET_PDEATHSIG
:
2083 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
2085 case PR_GET_DUMPABLE
:
2086 error
= current
->mm
->dumpable
;
2088 case PR_SET_DUMPABLE
:
2089 if (arg2
< 0 || arg2
> 1) {
2093 current
->mm
->dumpable
= arg2
;
2096 case PR_SET_UNALIGN
:
2097 error
= SET_UNALIGN_CTL(current
, arg2
);
2099 case PR_GET_UNALIGN
:
2100 error
= GET_UNALIGN_CTL(current
, arg2
);
2103 error
= SET_FPEMU_CTL(current
, arg2
);
2106 error
= GET_FPEMU_CTL(current
, arg2
);
2109 error
= SET_FPEXC_CTL(current
, arg2
);
2112 error
= GET_FPEXC_CTL(current
, arg2
);
2115 error
= PR_TIMING_STATISTICAL
;
2118 if (arg2
== PR_TIMING_STATISTICAL
)
2124 case PR_GET_KEEPCAPS
:
2125 if (current
->keep_capabilities
)
2128 case PR_SET_KEEPCAPS
:
2129 if (arg2
!= 0 && arg2
!= 1) {
2133 current
->keep_capabilities
= arg2
;
2136 struct task_struct
*me
= current
;
2137 unsigned char ncomm
[sizeof(me
->comm
)];
2139 ncomm
[sizeof(me
->comm
)-1] = 0;
2140 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
2141 sizeof(me
->comm
)-1) < 0)
2143 set_task_comm(me
, ncomm
);
2147 struct task_struct
*me
= current
;
2148 unsigned char tcomm
[sizeof(me
->comm
)];
2150 get_task_comm(tcomm
, me
);
2151 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
2156 error
= GET_ENDIAN(current
, arg2
);
2159 error
= SET_ENDIAN(current
, arg2
);
2169 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
2170 struct getcpu_cache __user
*cache
)
2173 int cpu
= raw_smp_processor_id();
2175 err
|= put_user(cpu
, cpup
);
2177 err
|= put_user(cpu_to_node(cpu
), nodep
);
2180 * The cache is not needed for this implementation,
2181 * but make sure user programs pass something
2182 * valid. vsyscall implementations can instead make
2183 * good use of the cache. Only use t0 and t1 because
2184 * these are available in both 32bit and 64bit ABI (no
2185 * need for a compat_getcpu). 32bit has enough
2188 unsigned long t0
, t1
;
2189 get_user(t0
, &cache
->blob
[0]);
2190 get_user(t1
, &cache
->blob
[1]);
2193 put_user(t0
, &cache
->blob
[0]);
2194 put_user(t1
, &cache
->blob
[1]);
2196 return err
? -EFAULT
: 0;