eCryptfs: Copy lower directory inode times and size on link
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sys.c
blob8298878f4f7116ec8b04d6babbd016cfa2edb026
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
40 #include <linux/compat.h>
41 #include <linux/syscalls.h>
42 #include <linux/kprobes.h>
43 #include <linux/user_namespace.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/unistd.h>
49 #ifndef SET_UNALIGN_CTL
50 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
51 #endif
52 #ifndef GET_UNALIGN_CTL
53 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
54 #endif
55 #ifndef SET_FPEMU_CTL
56 # define SET_FPEMU_CTL(a,b) (-EINVAL)
57 #endif
58 #ifndef GET_FPEMU_CTL
59 # define GET_FPEMU_CTL(a,b) (-EINVAL)
60 #endif
61 #ifndef SET_FPEXC_CTL
62 # define SET_FPEXC_CTL(a,b) (-EINVAL)
63 #endif
64 #ifndef GET_FPEXC_CTL
65 # define GET_FPEXC_CTL(a,b) (-EINVAL)
66 #endif
67 #ifndef GET_ENDIAN
68 # define GET_ENDIAN(a,b) (-EINVAL)
69 #endif
70 #ifndef SET_ENDIAN
71 # define SET_ENDIAN(a,b) (-EINVAL)
72 #endif
73 #ifndef GET_TSC_CTL
74 # define GET_TSC_CTL(a) (-EINVAL)
75 #endif
76 #ifndef SET_TSC_CTL
77 # define SET_TSC_CTL(a) (-EINVAL)
78 #endif
81 * this is where the system-wide overflow UID and GID are defined, for
82 * architectures that now have 32-bit UID/GID but didn't in the past
85 int overflowuid = DEFAULT_OVERFLOWUID;
86 int overflowgid = DEFAULT_OVERFLOWGID;
88 #ifdef CONFIG_UID16
89 EXPORT_SYMBOL(overflowuid);
90 EXPORT_SYMBOL(overflowgid);
91 #endif
94 * the same as above, but for filesystems which can only store a 16-bit
95 * UID and GID. as such, this is needed on all architectures
98 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
99 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
101 EXPORT_SYMBOL(fs_overflowuid);
102 EXPORT_SYMBOL(fs_overflowgid);
105 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
108 int C_A_D = 1;
109 struct pid *cad_pid;
110 EXPORT_SYMBOL(cad_pid);
113 * If set, this is used for preparing the system to power off.
116 void (*pm_power_off_prepare)(void);
119 * set the priority of a task
120 * - the caller must hold the RCU read lock
122 static int set_one_prio(struct task_struct *p, int niceval, int error)
124 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
125 int no_nice;
127 if (pcred->uid != cred->euid &&
128 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
129 error = -EPERM;
130 goto out;
132 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
133 error = -EACCES;
134 goto out;
136 no_nice = security_task_setnice(p, niceval);
137 if (no_nice) {
138 error = no_nice;
139 goto out;
141 if (error == -ESRCH)
142 error = 0;
143 set_user_nice(p, niceval);
144 out:
145 return error;
148 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
150 struct task_struct *g, *p;
151 struct user_struct *user;
152 const struct cred *cred = current_cred();
153 int error = -EINVAL;
154 struct pid *pgrp;
156 if (which > PRIO_USER || which < PRIO_PROCESS)
157 goto out;
159 /* normalize: avoid signed division (rounding problems) */
160 error = -ESRCH;
161 if (niceval < -20)
162 niceval = -20;
163 if (niceval > 19)
164 niceval = 19;
166 rcu_read_lock();
167 read_lock(&tasklist_lock);
168 switch (which) {
169 case PRIO_PROCESS:
170 if (who)
171 p = find_task_by_vpid(who);
172 else
173 p = current;
174 if (p)
175 error = set_one_prio(p, niceval, error);
176 break;
177 case PRIO_PGRP:
178 if (who)
179 pgrp = find_vpid(who);
180 else
181 pgrp = task_pgrp(current);
182 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
183 error = set_one_prio(p, niceval, error);
184 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
185 break;
186 case PRIO_USER:
187 user = (struct user_struct *) cred->user;
188 if (!who)
189 who = cred->uid;
190 else if ((who != cred->uid) &&
191 !(user = find_user(who)))
192 goto out_unlock; /* No processes for this user */
194 do_each_thread(g, p) {
195 if (__task_cred(p)->uid == who)
196 error = set_one_prio(p, niceval, error);
197 } while_each_thread(g, p);
198 if (who != cred->uid)
199 free_uid(user); /* For find_user() */
200 break;
202 out_unlock:
203 read_unlock(&tasklist_lock);
204 rcu_read_unlock();
205 out:
206 return error;
210 * Ugh. To avoid negative return values, "getpriority()" will
211 * not return the normal nice-value, but a negated value that
212 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
213 * to stay compatible.
215 SYSCALL_DEFINE2(getpriority, int, which, int, who)
217 struct task_struct *g, *p;
218 struct user_struct *user;
219 const struct cred *cred = current_cred();
220 long niceval, retval = -ESRCH;
221 struct pid *pgrp;
223 if (which > PRIO_USER || which < PRIO_PROCESS)
224 return -EINVAL;
226 rcu_read_lock();
227 read_lock(&tasklist_lock);
228 switch (which) {
229 case PRIO_PROCESS:
230 if (who)
231 p = find_task_by_vpid(who);
232 else
233 p = current;
234 if (p) {
235 niceval = 20 - task_nice(p);
236 if (niceval > retval)
237 retval = niceval;
239 break;
240 case PRIO_PGRP:
241 if (who)
242 pgrp = find_vpid(who);
243 else
244 pgrp = task_pgrp(current);
245 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
246 niceval = 20 - task_nice(p);
247 if (niceval > retval)
248 retval = niceval;
249 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
250 break;
251 case PRIO_USER:
252 user = (struct user_struct *) cred->user;
253 if (!who)
254 who = cred->uid;
255 else if ((who != cred->uid) &&
256 !(user = find_user(who)))
257 goto out_unlock; /* No processes for this user */
259 do_each_thread(g, p) {
260 if (__task_cred(p)->uid == who) {
261 niceval = 20 - task_nice(p);
262 if (niceval > retval)
263 retval = niceval;
265 } while_each_thread(g, p);
266 if (who != cred->uid)
267 free_uid(user); /* for find_user() */
268 break;
270 out_unlock:
271 read_unlock(&tasklist_lock);
272 rcu_read_unlock();
274 return retval;
278 * emergency_restart - reboot the system
280 * Without shutting down any hardware or taking any locks
281 * reboot the system. This is called when we know we are in
282 * trouble so this is our best effort to reboot. This is
283 * safe to call in interrupt context.
285 void emergency_restart(void)
287 machine_emergency_restart();
289 EXPORT_SYMBOL_GPL(emergency_restart);
291 void kernel_restart_prepare(char *cmd)
293 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
294 system_state = SYSTEM_RESTART;
295 device_shutdown();
296 sysdev_shutdown();
300 * kernel_restart - reboot the system
301 * @cmd: pointer to buffer containing command to execute for restart
302 * or %NULL
304 * Shutdown everything and perform a clean reboot.
305 * This is not safe to call in interrupt context.
307 void kernel_restart(char *cmd)
309 kernel_restart_prepare(cmd);
310 if (!cmd)
311 printk(KERN_EMERG "Restarting system.\n");
312 else
313 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
314 machine_restart(cmd);
316 EXPORT_SYMBOL_GPL(kernel_restart);
318 static void kernel_shutdown_prepare(enum system_states state)
320 blocking_notifier_call_chain(&reboot_notifier_list,
321 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
322 system_state = state;
323 device_shutdown();
326 * kernel_halt - halt the system
328 * Shutdown everything and perform a clean system halt.
330 void kernel_halt(void)
332 kernel_shutdown_prepare(SYSTEM_HALT);
333 sysdev_shutdown();
334 printk(KERN_EMERG "System halted.\n");
335 machine_halt();
338 EXPORT_SYMBOL_GPL(kernel_halt);
341 * kernel_power_off - power_off the system
343 * Shutdown everything and perform a clean system power_off.
345 void kernel_power_off(void)
347 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
348 if (pm_power_off_prepare)
349 pm_power_off_prepare();
350 disable_nonboot_cpus();
351 sysdev_shutdown();
352 printk(KERN_EMERG "Power down.\n");
353 machine_power_off();
355 EXPORT_SYMBOL_GPL(kernel_power_off);
357 static DEFINE_MUTEX(reboot_mutex);
360 * Reboot system call: for obvious reasons only root may call it,
361 * and even root needs to set up some magic numbers in the registers
362 * so that some mistake won't make this reboot the whole machine.
363 * You can also set the meaning of the ctrl-alt-del-key here.
365 * reboot doesn't sync: do that yourself before calling this.
367 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
368 void __user *, arg)
370 char buffer[256];
371 int ret = 0;
373 /* We only trust the superuser with rebooting the system. */
374 if (!capable(CAP_SYS_BOOT))
375 return -EPERM;
377 /* For safety, we require "magic" arguments. */
378 if (magic1 != LINUX_REBOOT_MAGIC1 ||
379 (magic2 != LINUX_REBOOT_MAGIC2 &&
380 magic2 != LINUX_REBOOT_MAGIC2A &&
381 magic2 != LINUX_REBOOT_MAGIC2B &&
382 magic2 != LINUX_REBOOT_MAGIC2C))
383 return -EINVAL;
385 /* Instead of trying to make the power_off code look like
386 * halt when pm_power_off is not set do it the easy way.
388 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
389 cmd = LINUX_REBOOT_CMD_HALT;
391 mutex_lock(&reboot_mutex);
392 switch (cmd) {
393 case LINUX_REBOOT_CMD_RESTART:
394 kernel_restart(NULL);
395 break;
397 case LINUX_REBOOT_CMD_CAD_ON:
398 C_A_D = 1;
399 break;
401 case LINUX_REBOOT_CMD_CAD_OFF:
402 C_A_D = 0;
403 break;
405 case LINUX_REBOOT_CMD_HALT:
406 kernel_halt();
407 do_exit(0);
408 panic("cannot halt");
410 case LINUX_REBOOT_CMD_POWER_OFF:
411 kernel_power_off();
412 do_exit(0);
413 break;
415 case LINUX_REBOOT_CMD_RESTART2:
416 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
417 ret = -EFAULT;
418 break;
420 buffer[sizeof(buffer) - 1] = '\0';
422 kernel_restart(buffer);
423 break;
425 #ifdef CONFIG_KEXEC
426 case LINUX_REBOOT_CMD_KEXEC:
427 ret = kernel_kexec();
428 break;
429 #endif
431 #ifdef CONFIG_HIBERNATION
432 case LINUX_REBOOT_CMD_SW_SUSPEND:
433 ret = hibernate();
434 break;
435 #endif
437 default:
438 ret = -EINVAL;
439 break;
441 mutex_unlock(&reboot_mutex);
442 return ret;
445 static void deferred_cad(struct work_struct *dummy)
447 kernel_restart(NULL);
451 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
452 * As it's called within an interrupt, it may NOT sync: the only choice
453 * is whether to reboot at once, or just ignore the ctrl-alt-del.
455 void ctrl_alt_del(void)
457 static DECLARE_WORK(cad_work, deferred_cad);
459 if (C_A_D)
460 schedule_work(&cad_work);
461 else
462 kill_cad_pid(SIGINT, 1);
466 * Unprivileged users may change the real gid to the effective gid
467 * or vice versa. (BSD-style)
469 * If you set the real gid at all, or set the effective gid to a value not
470 * equal to the real gid, then the saved gid is set to the new effective gid.
472 * This makes it possible for a setgid program to completely drop its
473 * privileges, which is often a useful assertion to make when you are doing
474 * a security audit over a program.
476 * The general idea is that a program which uses just setregid() will be
477 * 100% compatible with BSD. A program which uses just setgid() will be
478 * 100% compatible with POSIX with saved IDs.
480 * SMP: There are not races, the GIDs are checked only by filesystem
481 * operations (as far as semantic preservation is concerned).
483 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
485 const struct cred *old;
486 struct cred *new;
487 int retval;
489 new = prepare_creds();
490 if (!new)
491 return -ENOMEM;
492 old = current_cred();
494 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
495 if (retval)
496 goto error;
498 retval = -EPERM;
499 if (rgid != (gid_t) -1) {
500 if (old->gid == rgid ||
501 old->egid == rgid ||
502 capable(CAP_SETGID))
503 new->gid = rgid;
504 else
505 goto error;
507 if (egid != (gid_t) -1) {
508 if (old->gid == egid ||
509 old->egid == egid ||
510 old->sgid == egid ||
511 capable(CAP_SETGID))
512 new->egid = egid;
513 else
514 goto error;
517 if (rgid != (gid_t) -1 ||
518 (egid != (gid_t) -1 && egid != old->gid))
519 new->sgid = new->egid;
520 new->fsgid = new->egid;
522 return commit_creds(new);
524 error:
525 abort_creds(new);
526 return retval;
530 * setgid() is implemented like SysV w/ SAVED_IDS
532 * SMP: Same implicit races as above.
534 SYSCALL_DEFINE1(setgid, gid_t, gid)
536 const struct cred *old;
537 struct cred *new;
538 int retval;
540 new = prepare_creds();
541 if (!new)
542 return -ENOMEM;
543 old = current_cred();
545 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
546 if (retval)
547 goto error;
549 retval = -EPERM;
550 if (capable(CAP_SETGID))
551 new->gid = new->egid = new->sgid = new->fsgid = gid;
552 else if (gid == old->gid || gid == old->sgid)
553 new->egid = new->fsgid = gid;
554 else
555 goto error;
557 return commit_creds(new);
559 error:
560 abort_creds(new);
561 return retval;
565 * change the user struct in a credentials set to match the new UID
567 static int set_user(struct cred *new)
569 struct user_struct *new_user;
571 new_user = alloc_uid(current_user_ns(), new->uid);
572 if (!new_user)
573 return -EAGAIN;
575 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
576 new_user != INIT_USER) {
577 free_uid(new_user);
578 return -EAGAIN;
581 free_uid(new->user);
582 new->user = new_user;
583 return 0;
587 * Unprivileged users may change the real uid to the effective uid
588 * or vice versa. (BSD-style)
590 * If you set the real uid at all, or set the effective uid to a value not
591 * equal to the real uid, then the saved uid is set to the new effective uid.
593 * This makes it possible for a setuid program to completely drop its
594 * privileges, which is often a useful assertion to make when you are doing
595 * a security audit over a program.
597 * The general idea is that a program which uses just setreuid() will be
598 * 100% compatible with BSD. A program which uses just setuid() will be
599 * 100% compatible with POSIX with saved IDs.
601 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
603 const struct cred *old;
604 struct cred *new;
605 int retval;
607 new = prepare_creds();
608 if (!new)
609 return -ENOMEM;
610 old = current_cred();
612 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
613 if (retval)
614 goto error;
616 retval = -EPERM;
617 if (ruid != (uid_t) -1) {
618 new->uid = ruid;
619 if (old->uid != ruid &&
620 old->euid != ruid &&
621 !capable(CAP_SETUID))
622 goto error;
625 if (euid != (uid_t) -1) {
626 new->euid = euid;
627 if (old->uid != euid &&
628 old->euid != euid &&
629 old->suid != euid &&
630 !capable(CAP_SETUID))
631 goto error;
634 if (new->uid != old->uid) {
635 retval = set_user(new);
636 if (retval < 0)
637 goto error;
639 if (ruid != (uid_t) -1 ||
640 (euid != (uid_t) -1 && euid != old->uid))
641 new->suid = new->euid;
642 new->fsuid = new->euid;
644 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
645 if (retval < 0)
646 goto error;
648 return commit_creds(new);
650 error:
651 abort_creds(new);
652 return retval;
656 * setuid() is implemented like SysV with SAVED_IDS
658 * Note that SAVED_ID's is deficient in that a setuid root program
659 * like sendmail, for example, cannot set its uid to be a normal
660 * user and then switch back, because if you're root, setuid() sets
661 * the saved uid too. If you don't like this, blame the bright people
662 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
663 * will allow a root program to temporarily drop privileges and be able to
664 * regain them by swapping the real and effective uid.
666 SYSCALL_DEFINE1(setuid, uid_t, uid)
668 const struct cred *old;
669 struct cred *new;
670 int retval;
672 new = prepare_creds();
673 if (!new)
674 return -ENOMEM;
675 old = current_cred();
677 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
678 if (retval)
679 goto error;
681 retval = -EPERM;
682 if (capable(CAP_SETUID)) {
683 new->suid = new->uid = uid;
684 if (uid != old->uid) {
685 retval = set_user(new);
686 if (retval < 0)
687 goto error;
689 } else if (uid != old->uid && uid != new->suid) {
690 goto error;
693 new->fsuid = new->euid = uid;
695 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
696 if (retval < 0)
697 goto error;
699 return commit_creds(new);
701 error:
702 abort_creds(new);
703 return retval;
708 * This function implements a generic ability to update ruid, euid,
709 * and suid. This allows you to implement the 4.4 compatible seteuid().
711 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
713 const struct cred *old;
714 struct cred *new;
715 int retval;
717 new = prepare_creds();
718 if (!new)
719 return -ENOMEM;
721 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
722 if (retval)
723 goto error;
724 old = current_cred();
726 retval = -EPERM;
727 if (!capable(CAP_SETUID)) {
728 if (ruid != (uid_t) -1 && ruid != old->uid &&
729 ruid != old->euid && ruid != old->suid)
730 goto error;
731 if (euid != (uid_t) -1 && euid != old->uid &&
732 euid != old->euid && euid != old->suid)
733 goto error;
734 if (suid != (uid_t) -1 && suid != old->uid &&
735 suid != old->euid && suid != old->suid)
736 goto error;
739 if (ruid != (uid_t) -1) {
740 new->uid = ruid;
741 if (ruid != old->uid) {
742 retval = set_user(new);
743 if (retval < 0)
744 goto error;
747 if (euid != (uid_t) -1)
748 new->euid = euid;
749 if (suid != (uid_t) -1)
750 new->suid = suid;
751 new->fsuid = new->euid;
753 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
754 if (retval < 0)
755 goto error;
757 return commit_creds(new);
759 error:
760 abort_creds(new);
761 return retval;
764 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
766 const struct cred *cred = current_cred();
767 int retval;
769 if (!(retval = put_user(cred->uid, ruid)) &&
770 !(retval = put_user(cred->euid, euid)))
771 retval = put_user(cred->suid, suid);
773 return retval;
777 * Same as above, but for rgid, egid, sgid.
779 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
781 const struct cred *old;
782 struct cred *new;
783 int retval;
785 new = prepare_creds();
786 if (!new)
787 return -ENOMEM;
788 old = current_cred();
790 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
791 if (retval)
792 goto error;
794 retval = -EPERM;
795 if (!capable(CAP_SETGID)) {
796 if (rgid != (gid_t) -1 && rgid != old->gid &&
797 rgid != old->egid && rgid != old->sgid)
798 goto error;
799 if (egid != (gid_t) -1 && egid != old->gid &&
800 egid != old->egid && egid != old->sgid)
801 goto error;
802 if (sgid != (gid_t) -1 && sgid != old->gid &&
803 sgid != old->egid && sgid != old->sgid)
804 goto error;
807 if (rgid != (gid_t) -1)
808 new->gid = rgid;
809 if (egid != (gid_t) -1)
810 new->egid = egid;
811 if (sgid != (gid_t) -1)
812 new->sgid = sgid;
813 new->fsgid = new->egid;
815 return commit_creds(new);
817 error:
818 abort_creds(new);
819 return retval;
822 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
824 const struct cred *cred = current_cred();
825 int retval;
827 if (!(retval = put_user(cred->gid, rgid)) &&
828 !(retval = put_user(cred->egid, egid)))
829 retval = put_user(cred->sgid, sgid);
831 return retval;
836 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
837 * is used for "access()" and for the NFS daemon (letting nfsd stay at
838 * whatever uid it wants to). It normally shadows "euid", except when
839 * explicitly set by setfsuid() or for access..
841 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
843 const struct cred *old;
844 struct cred *new;
845 uid_t old_fsuid;
847 new = prepare_creds();
848 if (!new)
849 return current_fsuid();
850 old = current_cred();
851 old_fsuid = old->fsuid;
853 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
854 goto error;
856 if (uid == old->uid || uid == old->euid ||
857 uid == old->suid || uid == old->fsuid ||
858 capable(CAP_SETUID)) {
859 if (uid != old_fsuid) {
860 new->fsuid = uid;
861 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
862 goto change_okay;
866 error:
867 abort_creds(new);
868 return old_fsuid;
870 change_okay:
871 commit_creds(new);
872 return old_fsuid;
876 * Samma på svenska..
878 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
880 const struct cred *old;
881 struct cred *new;
882 gid_t old_fsgid;
884 new = prepare_creds();
885 if (!new)
886 return current_fsgid();
887 old = current_cred();
888 old_fsgid = old->fsgid;
890 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
891 goto error;
893 if (gid == old->gid || gid == old->egid ||
894 gid == old->sgid || gid == old->fsgid ||
895 capable(CAP_SETGID)) {
896 if (gid != old_fsgid) {
897 new->fsgid = gid;
898 goto change_okay;
902 error:
903 abort_creds(new);
904 return old_fsgid;
906 change_okay:
907 commit_creds(new);
908 return old_fsgid;
911 void do_sys_times(struct tms *tms)
913 cputime_t tgutime, tgstime, cutime, cstime;
915 spin_lock_irq(&current->sighand->siglock);
916 thread_group_times(current, &tgutime, &tgstime);
917 cutime = current->signal->cutime;
918 cstime = current->signal->cstime;
919 spin_unlock_irq(&current->sighand->siglock);
920 tms->tms_utime = cputime_to_clock_t(tgutime);
921 tms->tms_stime = cputime_to_clock_t(tgstime);
922 tms->tms_cutime = cputime_to_clock_t(cutime);
923 tms->tms_cstime = cputime_to_clock_t(cstime);
926 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
928 if (tbuf) {
929 struct tms tmp;
931 do_sys_times(&tmp);
932 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
933 return -EFAULT;
935 force_successful_syscall_return();
936 return (long) jiffies_64_to_clock_t(get_jiffies_64());
940 * This needs some heavy checking ...
941 * I just haven't the stomach for it. I also don't fully
942 * understand sessions/pgrp etc. Let somebody who does explain it.
944 * OK, I think I have the protection semantics right.... this is really
945 * only important on a multi-user system anyway, to make sure one user
946 * can't send a signal to a process owned by another. -TYT, 12/12/91
948 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
949 * LBT 04.03.94
951 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
953 struct task_struct *p;
954 struct task_struct *group_leader = current->group_leader;
955 struct pid *pgrp;
956 int err;
958 if (!pid)
959 pid = task_pid_vnr(group_leader);
960 if (!pgid)
961 pgid = pid;
962 if (pgid < 0)
963 return -EINVAL;
965 /* From this point forward we keep holding onto the tasklist lock
966 * so that our parent does not change from under us. -DaveM
968 write_lock_irq(&tasklist_lock);
970 err = -ESRCH;
971 p = find_task_by_vpid(pid);
972 if (!p)
973 goto out;
975 err = -EINVAL;
976 if (!thread_group_leader(p))
977 goto out;
979 if (same_thread_group(p->real_parent, group_leader)) {
980 err = -EPERM;
981 if (task_session(p) != task_session(group_leader))
982 goto out;
983 err = -EACCES;
984 if (p->did_exec)
985 goto out;
986 } else {
987 err = -ESRCH;
988 if (p != group_leader)
989 goto out;
992 err = -EPERM;
993 if (p->signal->leader)
994 goto out;
996 pgrp = task_pid(p);
997 if (pgid != pid) {
998 struct task_struct *g;
1000 pgrp = find_vpid(pgid);
1001 g = pid_task(pgrp, PIDTYPE_PGID);
1002 if (!g || task_session(g) != task_session(group_leader))
1003 goto out;
1006 err = security_task_setpgid(p, pgid);
1007 if (err)
1008 goto out;
1010 if (task_pgrp(p) != pgrp)
1011 change_pid(p, PIDTYPE_PGID, pgrp);
1013 err = 0;
1014 out:
1015 /* All paths lead to here, thus we are safe. -DaveM */
1016 write_unlock_irq(&tasklist_lock);
1017 return err;
1020 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1022 struct task_struct *p;
1023 struct pid *grp;
1024 int retval;
1026 rcu_read_lock();
1027 if (!pid)
1028 grp = task_pgrp(current);
1029 else {
1030 retval = -ESRCH;
1031 p = find_task_by_vpid(pid);
1032 if (!p)
1033 goto out;
1034 grp = task_pgrp(p);
1035 if (!grp)
1036 goto out;
1038 retval = security_task_getpgid(p);
1039 if (retval)
1040 goto out;
1042 retval = pid_vnr(grp);
1043 out:
1044 rcu_read_unlock();
1045 return retval;
1048 #ifdef __ARCH_WANT_SYS_GETPGRP
1050 SYSCALL_DEFINE0(getpgrp)
1052 return sys_getpgid(0);
1055 #endif
1057 SYSCALL_DEFINE1(getsid, pid_t, pid)
1059 struct task_struct *p;
1060 struct pid *sid;
1061 int retval;
1063 rcu_read_lock();
1064 if (!pid)
1065 sid = task_session(current);
1066 else {
1067 retval = -ESRCH;
1068 p = find_task_by_vpid(pid);
1069 if (!p)
1070 goto out;
1071 sid = task_session(p);
1072 if (!sid)
1073 goto out;
1075 retval = security_task_getsid(p);
1076 if (retval)
1077 goto out;
1079 retval = pid_vnr(sid);
1080 out:
1081 rcu_read_unlock();
1082 return retval;
1085 SYSCALL_DEFINE0(setsid)
1087 struct task_struct *group_leader = current->group_leader;
1088 struct pid *sid = task_pid(group_leader);
1089 pid_t session = pid_vnr(sid);
1090 int err = -EPERM;
1092 write_lock_irq(&tasklist_lock);
1093 /* Fail if I am already a session leader */
1094 if (group_leader->signal->leader)
1095 goto out;
1097 /* Fail if a process group id already exists that equals the
1098 * proposed session id.
1100 if (pid_task(sid, PIDTYPE_PGID))
1101 goto out;
1103 group_leader->signal->leader = 1;
1104 __set_special_pids(sid);
1106 proc_clear_tty(group_leader);
1108 err = session;
1109 out:
1110 write_unlock_irq(&tasklist_lock);
1111 if (err > 0)
1112 proc_sid_connector(group_leader);
1113 return err;
1116 DECLARE_RWSEM(uts_sem);
1118 #ifdef COMPAT_UTS_MACHINE
1119 #define override_architecture(name) \
1120 (current->personality == PER_LINUX32 && \
1121 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1122 sizeof(COMPAT_UTS_MACHINE)))
1123 #else
1124 #define override_architecture(name) 0
1125 #endif
1127 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1129 int errno = 0;
1131 down_read(&uts_sem);
1132 if (copy_to_user(name, utsname(), sizeof *name))
1133 errno = -EFAULT;
1134 up_read(&uts_sem);
1136 if (!errno && override_architecture(name))
1137 errno = -EFAULT;
1138 return errno;
1141 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1143 * Old cruft
1145 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1147 int error = 0;
1149 if (!name)
1150 return -EFAULT;
1152 down_read(&uts_sem);
1153 if (copy_to_user(name, utsname(), sizeof(*name)))
1154 error = -EFAULT;
1155 up_read(&uts_sem);
1157 if (!error && override_architecture(name))
1158 error = -EFAULT;
1159 return error;
1162 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1164 int error;
1166 if (!name)
1167 return -EFAULT;
1168 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1169 return -EFAULT;
1171 down_read(&uts_sem);
1172 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1173 __OLD_UTS_LEN);
1174 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1175 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1176 __OLD_UTS_LEN);
1177 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1178 error |= __copy_to_user(&name->release, &utsname()->release,
1179 __OLD_UTS_LEN);
1180 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1181 error |= __copy_to_user(&name->version, &utsname()->version,
1182 __OLD_UTS_LEN);
1183 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1184 error |= __copy_to_user(&name->machine, &utsname()->machine,
1185 __OLD_UTS_LEN);
1186 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1187 up_read(&uts_sem);
1189 if (!error && override_architecture(name))
1190 error = -EFAULT;
1191 return error ? -EFAULT : 0;
1193 #endif
1195 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1197 int errno;
1198 char tmp[__NEW_UTS_LEN];
1200 if (!capable(CAP_SYS_ADMIN))
1201 return -EPERM;
1202 if (len < 0 || len > __NEW_UTS_LEN)
1203 return -EINVAL;
1204 down_write(&uts_sem);
1205 errno = -EFAULT;
1206 if (!copy_from_user(tmp, name, len)) {
1207 struct new_utsname *u = utsname();
1209 memcpy(u->nodename, tmp, len);
1210 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1211 errno = 0;
1213 up_write(&uts_sem);
1214 return errno;
1217 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1219 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1221 int i, errno;
1222 struct new_utsname *u;
1224 if (len < 0)
1225 return -EINVAL;
1226 down_read(&uts_sem);
1227 u = utsname();
1228 i = 1 + strlen(u->nodename);
1229 if (i > len)
1230 i = len;
1231 errno = 0;
1232 if (copy_to_user(name, u->nodename, i))
1233 errno = -EFAULT;
1234 up_read(&uts_sem);
1235 return errno;
1238 #endif
1241 * Only setdomainname; getdomainname can be implemented by calling
1242 * uname()
1244 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1246 int errno;
1247 char tmp[__NEW_UTS_LEN];
1249 if (!capable(CAP_SYS_ADMIN))
1250 return -EPERM;
1251 if (len < 0 || len > __NEW_UTS_LEN)
1252 return -EINVAL;
1254 down_write(&uts_sem);
1255 errno = -EFAULT;
1256 if (!copy_from_user(tmp, name, len)) {
1257 struct new_utsname *u = utsname();
1259 memcpy(u->domainname, tmp, len);
1260 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1261 errno = 0;
1263 up_write(&uts_sem);
1264 return errno;
1267 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1269 if (resource >= RLIM_NLIMITS)
1270 return -EINVAL;
1271 else {
1272 struct rlimit value;
1273 task_lock(current->group_leader);
1274 value = current->signal->rlim[resource];
1275 task_unlock(current->group_leader);
1276 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1280 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1283 * Back compatibility for getrlimit. Needed for some apps.
1286 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1287 struct rlimit __user *, rlim)
1289 struct rlimit x;
1290 if (resource >= RLIM_NLIMITS)
1291 return -EINVAL;
1293 task_lock(current->group_leader);
1294 x = current->signal->rlim[resource];
1295 task_unlock(current->group_leader);
1296 if (x.rlim_cur > 0x7FFFFFFF)
1297 x.rlim_cur = 0x7FFFFFFF;
1298 if (x.rlim_max > 0x7FFFFFFF)
1299 x.rlim_max = 0x7FFFFFFF;
1300 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1303 #endif
1305 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1307 struct rlimit new_rlim, *old_rlim;
1308 int retval;
1310 if (resource >= RLIM_NLIMITS)
1311 return -EINVAL;
1312 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1313 return -EFAULT;
1314 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1315 return -EINVAL;
1316 old_rlim = current->signal->rlim + resource;
1317 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1318 !capable(CAP_SYS_RESOURCE))
1319 return -EPERM;
1320 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1321 return -EPERM;
1323 retval = security_task_setrlimit(resource, &new_rlim);
1324 if (retval)
1325 return retval;
1327 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1329 * The caller is asking for an immediate RLIMIT_CPU
1330 * expiry. But we use the zero value to mean "it was
1331 * never set". So let's cheat and make it one second
1332 * instead
1334 new_rlim.rlim_cur = 1;
1337 task_lock(current->group_leader);
1338 *old_rlim = new_rlim;
1339 task_unlock(current->group_leader);
1341 if (resource != RLIMIT_CPU)
1342 goto out;
1345 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1346 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1347 * very long-standing error, and fixing it now risks breakage of
1348 * applications, so we live with it
1350 if (new_rlim.rlim_cur == RLIM_INFINITY)
1351 goto out;
1353 update_rlimit_cpu(new_rlim.rlim_cur);
1354 out:
1355 return 0;
1359 * It would make sense to put struct rusage in the task_struct,
1360 * except that would make the task_struct be *really big*. After
1361 * task_struct gets moved into malloc'ed memory, it would
1362 * make sense to do this. It will make moving the rest of the information
1363 * a lot simpler! (Which we're not doing right now because we're not
1364 * measuring them yet).
1366 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1367 * races with threads incrementing their own counters. But since word
1368 * reads are atomic, we either get new values or old values and we don't
1369 * care which for the sums. We always take the siglock to protect reading
1370 * the c* fields from p->signal from races with exit.c updating those
1371 * fields when reaping, so a sample either gets all the additions of a
1372 * given child after it's reaped, or none so this sample is before reaping.
1374 * Locking:
1375 * We need to take the siglock for CHILDEREN, SELF and BOTH
1376 * for the cases current multithreaded, non-current single threaded
1377 * non-current multithreaded. Thread traversal is now safe with
1378 * the siglock held.
1379 * Strictly speaking, we donot need to take the siglock if we are current and
1380 * single threaded, as no one else can take our signal_struct away, no one
1381 * else can reap the children to update signal->c* counters, and no one else
1382 * can race with the signal-> fields. If we do not take any lock, the
1383 * signal-> fields could be read out of order while another thread was just
1384 * exiting. So we should place a read memory barrier when we avoid the lock.
1385 * On the writer side, write memory barrier is implied in __exit_signal
1386 * as __exit_signal releases the siglock spinlock after updating the signal->
1387 * fields. But we don't do this yet to keep things simple.
1391 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1393 r->ru_nvcsw += t->nvcsw;
1394 r->ru_nivcsw += t->nivcsw;
1395 r->ru_minflt += t->min_flt;
1396 r->ru_majflt += t->maj_flt;
1397 r->ru_inblock += task_io_get_inblock(t);
1398 r->ru_oublock += task_io_get_oublock(t);
1401 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1403 struct task_struct *t;
1404 unsigned long flags;
1405 cputime_t tgutime, tgstime, utime, stime;
1406 unsigned long maxrss = 0;
1408 memset((char *) r, 0, sizeof *r);
1409 utime = stime = cputime_zero;
1411 if (who == RUSAGE_THREAD) {
1412 task_times(current, &utime, &stime);
1413 accumulate_thread_rusage(p, r);
1414 maxrss = p->signal->maxrss;
1415 goto out;
1418 if (!lock_task_sighand(p, &flags))
1419 return;
1421 switch (who) {
1422 case RUSAGE_BOTH:
1423 case RUSAGE_CHILDREN:
1424 utime = p->signal->cutime;
1425 stime = p->signal->cstime;
1426 r->ru_nvcsw = p->signal->cnvcsw;
1427 r->ru_nivcsw = p->signal->cnivcsw;
1428 r->ru_minflt = p->signal->cmin_flt;
1429 r->ru_majflt = p->signal->cmaj_flt;
1430 r->ru_inblock = p->signal->cinblock;
1431 r->ru_oublock = p->signal->coublock;
1432 maxrss = p->signal->cmaxrss;
1434 if (who == RUSAGE_CHILDREN)
1435 break;
1437 case RUSAGE_SELF:
1438 thread_group_times(p, &tgutime, &tgstime);
1439 utime = cputime_add(utime, tgutime);
1440 stime = cputime_add(stime, tgstime);
1441 r->ru_nvcsw += p->signal->nvcsw;
1442 r->ru_nivcsw += p->signal->nivcsw;
1443 r->ru_minflt += p->signal->min_flt;
1444 r->ru_majflt += p->signal->maj_flt;
1445 r->ru_inblock += p->signal->inblock;
1446 r->ru_oublock += p->signal->oublock;
1447 if (maxrss < p->signal->maxrss)
1448 maxrss = p->signal->maxrss;
1449 t = p;
1450 do {
1451 accumulate_thread_rusage(t, r);
1452 t = next_thread(t);
1453 } while (t != p);
1454 break;
1456 default:
1457 BUG();
1459 unlock_task_sighand(p, &flags);
1461 out:
1462 cputime_to_timeval(utime, &r->ru_utime);
1463 cputime_to_timeval(stime, &r->ru_stime);
1465 if (who != RUSAGE_CHILDREN) {
1466 struct mm_struct *mm = get_task_mm(p);
1467 if (mm) {
1468 setmax_mm_hiwater_rss(&maxrss, mm);
1469 mmput(mm);
1472 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1475 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1477 struct rusage r;
1478 k_getrusage(p, who, &r);
1479 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1482 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1484 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1485 who != RUSAGE_THREAD)
1486 return -EINVAL;
1487 return getrusage(current, who, ru);
1490 SYSCALL_DEFINE1(umask, int, mask)
1492 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1493 return mask;
1496 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1497 unsigned long, arg4, unsigned long, arg5)
1499 struct task_struct *me = current;
1500 unsigned char comm[sizeof(me->comm)];
1501 long error;
1503 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1504 if (error != -ENOSYS)
1505 return error;
1507 error = 0;
1508 switch (option) {
1509 case PR_SET_PDEATHSIG:
1510 if (!valid_signal(arg2)) {
1511 error = -EINVAL;
1512 break;
1514 me->pdeath_signal = arg2;
1515 error = 0;
1516 break;
1517 case PR_GET_PDEATHSIG:
1518 error = put_user(me->pdeath_signal, (int __user *)arg2);
1519 break;
1520 case PR_GET_DUMPABLE:
1521 error = get_dumpable(me->mm);
1522 break;
1523 case PR_SET_DUMPABLE:
1524 if (arg2 < 0 || arg2 > 1) {
1525 error = -EINVAL;
1526 break;
1528 set_dumpable(me->mm, arg2);
1529 error = 0;
1530 break;
1532 case PR_SET_UNALIGN:
1533 error = SET_UNALIGN_CTL(me, arg2);
1534 break;
1535 case PR_GET_UNALIGN:
1536 error = GET_UNALIGN_CTL(me, arg2);
1537 break;
1538 case PR_SET_FPEMU:
1539 error = SET_FPEMU_CTL(me, arg2);
1540 break;
1541 case PR_GET_FPEMU:
1542 error = GET_FPEMU_CTL(me, arg2);
1543 break;
1544 case PR_SET_FPEXC:
1545 error = SET_FPEXC_CTL(me, arg2);
1546 break;
1547 case PR_GET_FPEXC:
1548 error = GET_FPEXC_CTL(me, arg2);
1549 break;
1550 case PR_GET_TIMING:
1551 error = PR_TIMING_STATISTICAL;
1552 break;
1553 case PR_SET_TIMING:
1554 if (arg2 != PR_TIMING_STATISTICAL)
1555 error = -EINVAL;
1556 else
1557 error = 0;
1558 break;
1560 case PR_SET_NAME:
1561 comm[sizeof(me->comm)-1] = 0;
1562 if (strncpy_from_user(comm, (char __user *)arg2,
1563 sizeof(me->comm) - 1) < 0)
1564 return -EFAULT;
1565 set_task_comm(me, comm);
1566 return 0;
1567 case PR_GET_NAME:
1568 get_task_comm(comm, me);
1569 if (copy_to_user((char __user *)arg2, comm,
1570 sizeof(comm)))
1571 return -EFAULT;
1572 return 0;
1573 case PR_GET_ENDIAN:
1574 error = GET_ENDIAN(me, arg2);
1575 break;
1576 case PR_SET_ENDIAN:
1577 error = SET_ENDIAN(me, arg2);
1578 break;
1580 case PR_GET_SECCOMP:
1581 error = prctl_get_seccomp();
1582 break;
1583 case PR_SET_SECCOMP:
1584 error = prctl_set_seccomp(arg2);
1585 break;
1586 case PR_GET_TSC:
1587 error = GET_TSC_CTL(arg2);
1588 break;
1589 case PR_SET_TSC:
1590 error = SET_TSC_CTL(arg2);
1591 break;
1592 case PR_TASK_PERF_EVENTS_DISABLE:
1593 error = perf_event_task_disable();
1594 break;
1595 case PR_TASK_PERF_EVENTS_ENABLE:
1596 error = perf_event_task_enable();
1597 break;
1598 case PR_GET_TIMERSLACK:
1599 error = current->timer_slack_ns;
1600 break;
1601 case PR_SET_TIMERSLACK:
1602 if (arg2 <= 0)
1603 current->timer_slack_ns =
1604 current->default_timer_slack_ns;
1605 else
1606 current->timer_slack_ns = arg2;
1607 error = 0;
1608 break;
1609 case PR_MCE_KILL:
1610 if (arg4 | arg5)
1611 return -EINVAL;
1612 switch (arg2) {
1613 case PR_MCE_KILL_CLEAR:
1614 if (arg3 != 0)
1615 return -EINVAL;
1616 current->flags &= ~PF_MCE_PROCESS;
1617 break;
1618 case PR_MCE_KILL_SET:
1619 current->flags |= PF_MCE_PROCESS;
1620 if (arg3 == PR_MCE_KILL_EARLY)
1621 current->flags |= PF_MCE_EARLY;
1622 else if (arg3 == PR_MCE_KILL_LATE)
1623 current->flags &= ~PF_MCE_EARLY;
1624 else if (arg3 == PR_MCE_KILL_DEFAULT)
1625 current->flags &=
1626 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1627 else
1628 return -EINVAL;
1629 break;
1630 default:
1631 return -EINVAL;
1633 error = 0;
1634 break;
1635 case PR_MCE_KILL_GET:
1636 if (arg2 | arg3 | arg4 | arg5)
1637 return -EINVAL;
1638 if (current->flags & PF_MCE_PROCESS)
1639 error = (current->flags & PF_MCE_EARLY) ?
1640 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1641 else
1642 error = PR_MCE_KILL_DEFAULT;
1643 break;
1644 default:
1645 error = -EINVAL;
1646 break;
1648 return error;
1651 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1652 struct getcpu_cache __user *, unused)
1654 int err = 0;
1655 int cpu = raw_smp_processor_id();
1656 if (cpup)
1657 err |= put_user(cpu, cpup);
1658 if (nodep)
1659 err |= put_user(cpu_to_node(cpu), nodep);
1660 return err ? -EFAULT : 0;
1663 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1665 static void argv_cleanup(char **argv, char **envp)
1667 argv_free(argv);
1671 * orderly_poweroff - Trigger an orderly system poweroff
1672 * @force: force poweroff if command execution fails
1674 * This may be called from any context to trigger a system shutdown.
1675 * If the orderly shutdown fails, it will force an immediate shutdown.
1677 int orderly_poweroff(bool force)
1679 int argc;
1680 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1681 static char *envp[] = {
1682 "HOME=/",
1683 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1684 NULL
1686 int ret = -ENOMEM;
1687 struct subprocess_info *info;
1689 if (argv == NULL) {
1690 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1691 __func__, poweroff_cmd);
1692 goto out;
1695 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1696 if (info == NULL) {
1697 argv_free(argv);
1698 goto out;
1701 call_usermodehelper_setcleanup(info, argv_cleanup);
1703 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1705 out:
1706 if (ret && force) {
1707 printk(KERN_WARNING "Failed to start orderly shutdown: "
1708 "forcing the issue\n");
1710 /* I guess this should try to kick off some daemon to
1711 sync and poweroff asap. Or not even bother syncing
1712 if we're doing an emergency shutdown? */
1713 emergency_sync();
1714 kernel_power_off();
1717 return ret;
1719 EXPORT_SYMBOL_GPL(orderly_poweroff);